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CONSISTENCY AMONG DIFFERENTIAL NUCLEAR DATA

AND INTEGRAL OBSERVATIONS:

THE ALVIN CODE FOR DATA ADJUSTMENT,

FOR SENSITIVITY CALCULATIONS, AND FOR IDENTIFICATION OF INCONSISTENT DATA

by

D. R. Harris, W. A. Reupke, and W. B. Wilson

ABSTRACT

Successful nuclear design requires adequate prediction of integral design param-

eters, and this in turn requires an adequate differential nuclear data base.

Data

bases that apparently permit reduced blases and design margins have been developed by
a) least squares adjustment of differential data or b) trial-and-error selection from

alternative evaluated data sets.
cussed.

Criticisms and defenses of such procedures are dis-
We relate useful data adjustment to consistency of the combined differential-

integral data set, and we describe consistency tests related to least squares adjust-

ment procedures.
sistency analysis.

We suggest an approach to data adjustment that is contingent on con-
A FORTRAN code ALVIN has been developed to carry out the indicated

data consistency and adjustment calculations, and to compute required semnsitivities of

integral parameters to nuclear data changes.

The sensitivity modules of ALVIN are val-

idated by computing with two distinct methods the cross-section sensitivity profile for

neutron penetration through a thick iron shield.

The data consistency and adjustment

modules DAFT2 (for arbitrary variance-covariance data) and DAFT3 (for differential data
base of arbitrary size uncorrelated with integral data) are validated by comparing their
results for a set of data for three ZPR criticals.

I. INTRODUCTION

Successful nuclear design requires adequate pre-
diction of a number of integral design par;meters.’
Among these are reactivity worths, energy deposition
rates, nuclide transmutation rates, radiation doses,
and Rossi-a. Adequate prediction of integral design
quantities requires, in turn, a recognizably ade-
quate nuclear data base. Massive programs for meas-
urement and analysis of differential and integral
nuclear data have been devoted to this objective,
and the end is not yet in sight.

In the meantime, "improved" nuclear data bases
have been achieved, apparently permitting reduced
design biases and margins, through a) data adjust-
ment by least squares techniques, or b) trial-and-
error selection among alternative data sets. Data
adjustment or selection is carried out so as to im-
prove agreement between calculations and measure-
ments made on as-built nuclear devices and on spe-

cial experiments devised to resemble them. Many

workers have contributed to this development:.lm26

It is generally supposed that the data adjustment
or selection is not simply compensating for the sys-
tematic errors in computational technique; instead,
errors in calculation are assumed to be driven down
or allowed for as a result of numerical experimenta-
tion or as a result of comparison with very accurate
methods such as continuous energy Monte Carlo.
Critics of data adjustment and selection strat-
egles emphasize that forced but unphysical changes
in data may yileld improved agreement with available
integral observations, but may worsen agreement with
unmeasured, and frequently more important, integral
design parameters. Advocates of data adjustment or
selection respond that differential data are not now
and possibly will never be measured to the accuracies
required and inferrable from good integral measure-
ments. Other arguments have been put forth on both
sides of the controversy. In any case, the strategy

chosen by a nuclear design organization to deal with



inadequacies in the nuclear data base is of suffi-
cient consequence that the choice is made deliber-
ately and the resulting adjusted or selected data
base often 18 protected.

Here we suggest an approach27 having potential
not confined solely to the design organization, and
we describe a computer program, ALVIN, to implement
and test the approach. We assume the existence of
an evaluated nuclear data file, specifically ENDF/B,
containing carefully analyzed and selected integral
data as well as differential data, and containing
for these quantities evaluated variance and covari-
ance data as well. The combined first and second
moment differential and integral data set, or a par-
ticularly significant part of the data set, first
is tested for consistency in the statistical chi-
squared sense. (Consistency tests are discussed in
Sec. II~A.) If the data are consistent, there can
be no objection to adjusting the differential data
to improve agreement of predictions with the inte-
gral observations. (Data adjustment is discussed
in Sec. II-B.) When consistency has been establish-
ed, data adjustment is unlikely to distort unreal-
istically the differential data base. I1f, on
the other hand, the combined differential-integral
data set 1s clearly inconsistent, data adjustment
may be questionable and it might be more profitable
to use expedients such as design biases until the
source of the inconsistency is identified and re-
solved.

The next step 1s to identify the source of the
inconsistency, and this also is discussed in Sec.
II-A. If the inconsistency arises from over-opti-
mism as to the accuracy of integral data, this re-
sult is of great interest to designers in treating
design bilases and margins. More likely there are a
number of sources of inconsistency. Consistency
tests applied to the unadjusted data set provide de-
tails of discrepancies only in particular integral
data. For corresponding details of inconsistencies
in particular differential data, the necessary tech-
niques are formally the same as data adjustment by
least squares. Intuitively, one is looking for
critical directions in the combined space of inte-
gral and differential parameters for which reduction
of the least squares functional forces the point rep-
resenting the data set to move far beyond reasonable
ﬁrobability. Thus we are led to data adjustment for

analysis of consistency as well as for the achieve-

ment of an improved data base.

The ALVIN code provides the computational cap-

ability for this approach. Consistency and adjust-

ment procedures used in the code are described in

Sec. II, while necessary sensitivity calculations

are described in Sec. II1I1. Programming techniques

are outlined in Sec. IV, and a code abstract is in-

cluded as Appendix A. The data consistency and ad-

justment module, DAFT2, is adapted from a previous

code, DAFTl.28 Sample problems are described in

Sec. V and Appendixes C, D, E, and F. Code valida-

tion is carried out in terms of the sample problems

by carrying out required calculations in distinct

ways, then comparing the results, Data for three

ZPR assemblies provide the sample problem for the

data consistency and adjustment portions of ALVIN.
The sample problem for the sensitivity parts of the

code is one for which a biological dose equivalent
is produced by D-Be neutrons penetrating a thick
iron shield. Input and output are described in Sec.

VI. Capabilities and limitations of ALVIN are sum-
marized in Sec. VII.

I1. CONSISTENCY TESTS AND DATA ADJUSTMENT

Group cross sections, particle and photon yield

*
data, and other differential data in a nuclear data

library will be represented by xl,xz,...,xs, where §,

the number of differential parameters, may be of or-
3 5

der 10° to 10°. Integral parameters Yys¥greees¥g

such as reactivity worths and reaction rate ratios

are computed as functions of the primary parameters
yi(xl,xz,...,xj) for 1=1,2,...,%, or yi(x) in a con-
venient notation. Here 1, the number of integral

parameters,usually is of order 101 or 102. From a

combination of measurements, corrections, and analy-

ses one arrives at "evaluated" observed values x;,
e e e e e

xz,...,xj and yl,yz,...,yj. Usually the evaluated
observed values of the integral parameters do not

equal the values of the integral parameters calcu-

lated using the evaluated data base x*. That is, y;

*Other data might include x; representing a nuclear
temperature characteristic of inelastic neutron
emission as suggested by D. W. Muir. As another
example, x; might be a mixing parameter such that
the cross 3ection is xjoa + (1-x3)0y, where O and
Op are alternative physically reasonable evaluations
of the cross section.

<
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differs from yi(xe). In dealing with this discrep-
ancy, we assume that numerical experimentation has
shown it to be a result of errors in differential
aata, or integral data, or both, and not a result of
inadequate computational techniques.

A. Tests for Consistency among Differential and
Integral Data

The data may be discrepant in that yi #=yi(xe),

but at the same time they may be consistent in view
of uncertainties in measurement and evaluation. The
combined set of differential and integral parameters
may be consistent in that their values could reason-
ably have been drawn from an assigned joint proba-
bility distribution. To test for consistency we

frame the so-called simple null hypothesi529

that
the populations are normal with the evaluated means,
variances, and covariances. We then draw a sample
from the population and compute values for one or
more statistics. The values thus obtained permit

a decision to accept or reject the hypothesis at a
certain level of confidence.

Consider initially the quadratic form

Z T[yi(x ) =y,

i=1 1'=1.
[y, =y, (¢))

where Y7V is the evaluated matrix of variances and
covariances among the evaluated integral parameters.
That is, yyvii. represents the evaluated variance
of y: if 1 = 1' and the evaluated covariance of yi
with yi. if 1 # 1'. Under the simple null hypothesis
we expect Sl to be distributed as a XA distribution
with % degrees of freedom, symbolized as X" Here
the values yi(x ) are calculated outside ALVIN and
are regarded as sample values from the multivariate
normal distribution with means yi and evaluated var-
jance-covariance matrix J7V. For example, for the
case described in Sec. V-A, 1 is 24 and Sl is found
to be 503. For the X;& diatribubion the value of
503 is far outside the 1% probability limits (there
is a 1% probability that Xza is less than 10.7 and
a 1% probability that X24 exceeds 43.0). Thus the
simple null hypothesis is rejected at the "highly
significant'" level of 1%. We take this to imply

that the combined set of means, variances, and co-

variances for the evaluated parameter set is highly
inconsistent.

" In practice the integral observations usually
are considered to be independent (when common quan-
tities like delayed neutron fraction are removed
from quantities like reactivity worth observation).

The quadratic form then becomes

b4
5, =) e =yt vy, @)
i=1

where yyvii represents the evaluated variance for
the evaluated integral parameter yi. The individual
contribution of each integral parameter to the value
of Sl is evident and is distributed as a xi distri-
bution with one degree of freedom according to the
hypothesis. Thus deviant integral data can be iden-
tified under the initial hypothesis. However, no
information has been obtained as to the consistency
of particular differential data with this procedure.
To examine the consistency of the combined dif-
ferential and integral data, consider the quadratic

form

3 1
DD ACE

yilyywii.[yi-(x) -yl
i=1 1'=1 :

3 3
e e
+Z Z [xj _xj]xijjl[x ] _lel

=1 3'=1

+zZ Z[yi(x)-yilxyw x, - %51, @

j=1
subject to the requirements that

v, 00 =y, x%) +

[x; - xje] , 1=1,2,...,%. (&)




The weight matrix W in the quadrature form will be

taken to be the inverse of the matrix V of evaluated

variances and covariances among the evaluated dif- <
ferential and integral parameters. Yy will repre~-
sent the partition corresponding to the integral pa-
rameters, XXy will represent that for the differen-
tial parameters, and Ny will represent that for
both. The matrices V and W are symmetric.

Different samples of differential and integral
data will yileld differing sample values of S,. At
the evaluated point x = xe, used in the preceding

initial tests, S, resembles Sl. If we minimize S

2 2
by adjusting the combined data set to x = xa, then
the sample value of S, is algo distributed as xi.

We can ask if the data set 1is consistent after ad-

justment by examining the new value of S In the

previous example 82 is found to be 108 bit remains
improbably large. Data adjustment may be risky in
such cases. Nevertheless, we can examine the con-
tribution to 82 of residuals x7-x% in order to iden-
tify potentially deviant differential or integral
data. The least squares adjustment process here is
looked upon as a device to identify anomalies in the
connected network of differential and integral data.
Thus we are led to consider data adjustment, both
for its role in the strategy of data improvement
outlined in Sec. I, and for determination of data
consistency.

Before discussing data adjustment it is useful
to touch briefly on the normal approximation and on
the linearity of Eq. (4).

Our consistency tests assume that the popula-
tions are normal, an assumption often made by eval-
uators in arriving at the evaluated variances and
covariances. Hence, the assumed normality and the
evaluated data values are related, and it is natural
to have them appear together in the consistency
tests. Nevertheless, the assumption of normality
may be inadequate.

Linear expressions relate calculated integral
parameters to differential parameters in Eq. (4) for
convenience and because ayilaxj is easily calculated
by perturbation techniques, while higher derivatives
are not. The computation of yi(x) and 8y1/3xj is
discussed in detail in Sec. III. We note here only
that the computation of ayilaxj for j=1,2,...,3 is
carried out in a single calculation when, as in
ALVIN, linear perturbation theory is used for the
derivatives.

4

B. Nuclear Data Adjustment

Many groups have investigated and applied vari-
ous adjustment techniques to nuclear datl.27 One
might, as in other disciplines, introduce cost fac-
tors Ci’ which represent the cost to the design of
an error in predicting ¥y in the sense that the ov-
erall design penalty is a function of the C1 and of
the deviations Iyi-yil from unknown true values y,.
In the absence of a more realistic penalty function,
the nuclear designer might use differential data
sets adjusted to minimize

¢

C= Z Cilyi(x) - yi . (5)
i=1

This strategy, however, does not reflect uncertain-
ties in determination of the differential and inte-
gral data., Moreover, it does not respond to the ob-
jection that to decrease.one set of design blases
may increase others for which integral observations
are sparse. Most investigators have used a mixed
strategy that attempts to improve the basic data set
as well as the integral results, or at least does
not seriously degrade the differential data. Barré,
Chaudat, and others3’5 have adjusted the differen-
tial data in multigroup form so as to minimize

LS

5= D by, -y, )
i=1

as in Eq. (2), but subject to constraints

Ixj - x;I <by L eL2,ef ¢2)

Conversely, Cecchini et 81.7 minimize the sum of

squared residuals for the differential data,

)

82 jz [xj xj] /xxvjj , (8)
=1

subject to constraints

v, - yi <a; o, 1=1,2,3,..,1 . (9)

13,18,21

British, Israeli, and other groups have mini-

mized the general quadratic form, Eq. (3), assuming

-

~e




correlations to be negligible, whereas Swedishlofll’l2

15,16

and Japanese groups and others have included

some correlations. It appears that correlations in
the differential data3o’3l should be 1ncluded.16
Finally, linear programming techniques have been em-

ployed to minimize25

1 3
Sy =§ |y1(x) - yjllui + 2 |xj - x‘jI/vj , (10)
1=1 =1

[}

subject to constraints

yi(x) = Y: < ui » i=1,2,...,% ’ (11)

and

3=1,2,...,% . (12)

[ =<y o
Where bounds are required in Eqs. (6)-(12) they are
usually taken to be one or two times standard devi-
ations.

We choose to use the least squares approach,
minimizing the quadratic form in Eg. (3), because of
the connection of this technique with consistency

tests. Bounds are not placed on changes of differ-

ential data during adjustment.2’9 When the integral
parameters are assumed to be linearly dependent on

(4),

it 18 not necessary to iterate to convergence32 in

the differential data, as 1s expressed in Eq.
order to compute adjustments. Thus the data adjust-
ment subroutines DAFT2 and DAFT3 (to be described)
are simpler than DAFT1,28 but their notation and
DAFT2 ad-

justs data and computes diagnostics in the general

coding techniques are otherwise similar.

case when differential and integral parameters may
be correlated; matrices of order at least J x J are
inverted in this case. DAFT3 computes the same
quantities, but requires inversion only of 1 x 1
matrices by use of a special technique described in
Sec. II-B-2. This technique is only applicable when
the differential data are uncorrelated with the in-
tegral data, but it permits simultaneous adjustment
of arbitrarily large differential data libraries.

1. Data Adjustment with Full Correlations ——
DAFT2.

ing purposes to form the union of the differential

It is convenient conceptually and for cod-

and integral parameters and to normalize them by

dividing by their evaluated values., Let

yk(x)/yi for k=1,2,...,% ,
z

2,0 ==& = 3

xk/xﬁ for k=1+1,242,...,2+3=R .

XK

Similarly, the primary quantities to be adjusted are
transformed to
for j=1,2,...,3 .

Xy = xj/x.j (14)

]
Let 2z ka. represent the evaluated variance for the
evaluated parameter Zi if k=k', or the evaluated

covariance between Zi and Zi. if k#k'. Note that

22" A e e 22"
Ve = ka./(zkzk.). Let V represent the
]
matrix with elements 2z ka., and form the weight
matrix
zz', _ 22' Ty Yy

W= . (15)

X, Xy

This matrix is partitioned only to relate to
the partitioned matrices appearing in Eq. (3); DAFT2
makes no assumptions requiring partitioning, such as
that YXW vanishes, The Gauss-Markov theorem shows
that for this cholce of weight matrix, the variances
are minimized for any linear combinations of the ad-
justed parameters; thus the variances on derived in-
tegral quantities are minimized as well. When norm-
al distributions are assumed, as 18 done for our
consistency tests, this 1s a maximum-likelihood esti-
mate as well.zg’33

The quadratic form to be minimized is, from

Eq. (3),

e tr 22'

s, = [2(X) - 2°] wiz) - 2% . (16)

Here Z and Ze are column vectors with elements Zk
and ones, respectively. The linear relations, Eq.
(4), between differential and integral quantities

are transformed to
3
_ e 2:: _ y®
B

k=1,2,...,R , 17)



where

yk(xe)/y: for k=1,2,...,%

2, () =
1 for kei+l,...,R (18)
and
e
z, (X )nkj
for k=1,2,...,% and j=1,2,...,%
Ay -
85,k-1
for ke=?+1,...,R and j=1,2,...,3, (19)
and

e

b =4 Sk
kj ( e) 8x e
Y\ 3 x

for k=1,2,...,% and j=1,2,...,5 . (20)

The D matrix is the matrix of computed relative sen-

sitivities. The normal equations to be solved are

R R 3
2D OO - D ag - K50

k=l k'=1 3=l
x Zzlwkk,Ak,j =0 for i=1,2,...,] , (21)

with solution

a

]
e ~1
X "J+jzl i3yt for 3=1,2,...,5 . @2

Here
f £
- e _ e, ,22'
Bom D D02 - 2N g A,
k=l k'=l
for j=1,2,...,3 (23)
and

This symbolism follows that in DAFT1 and is used in
coding DAFT2. Now that the adjusted values of the
differential parameters have been obtained, the as-

justed values of the integral parameters develop

. from Eq. (17),

8 L v3/,8 = e\ ,,@
Y=y /vy =y Gy

3
+ E AL X2 -x%5) . 2
J=1
The matrix C ' is the matrix of variances and
covariances among the adjusted quantities as derived
]
from the input evaluated uncertainty matrix 2z v,
but it does not reflect the actual dispersion in the

data. 29,33

Hence it 1is customary, in obtaining the

variance-covariance for the normalized adjusted data,
to multiply by s;/i, a “dispersion multiplier,” where
S; is computed after adjustment.

sa
Xy - -%1— ¢t o, (26)

1f S;/i is less than unity, it is replaced by unity
in ALVIN, Similarly, combining Eqs. (25) and (26),

one obtains the variance-covariance matrix among the

adjusted integral quantities,

YWy = a ¥y at* @n

and the covariance matrix between adjusted integral
and differential quantities,

YXM = A XKM ' @8

2., Adjustment of Arbitrarily Large Differential

Data Sets -~ DAFT3., Daft 2 must invert one matrix
(V) of order (1 + ) x (1 + J) and one matrix (C) of
order 3 x 3. When 3, the number of differential
quantities in the library, is large, say 103 to 105,

the matrix inversion becomes a problem which is fre-
quently resolved by adjusting only part of the data

set. Had the adjustment been applied to another

g R
50" E E Akj'zz VigetAey for 3410 = 1,2,...,7 . (24)

kel k'=1




part of the library, the result would be different.
This matrix inversion problem can be circumvent:ed,8
and arbitrarily large differential data sets adjusted
simultaneously when, as is assumed by most groups,
the differential data are uncorrelated with the in-
tegral data.

Let YYV represent the evaluated variance-covar-
iance matrix for the evaluated integral quantities,
let XXV represent the evaluated variance-covariance
matrix for the differential quantities, and suppose
that the evaluated differential quantities are un-
correlated with the evaluated integral quantities.
The weight matrix expressed by Eq. (15) then has
partitions YYW = YYV-l, Xxw = XXV-l, and XYW = 0.

Let YXA represent the upper £ X § partition of the
A matrix expressed by Eq. (19). That is, a compo-
YxAkj of this 1 x § matrix is z(xe)nkj. The

adjusted values of the differential quantities are

nent

obtained in this case from

-1
2 -8 Xy YXAtr(YYV + YXA XX, YXAtr)

x [¥¢-vyx®H1 (29)
where the largest matrix to be inverted is only of
order ¥ x ¢, The adjusted values of the integral
quantities are obtained as before from Eq. (25).
The variance-covariance matrix of the adjusted dif-.

ferential quantities is

~1

XXVa _ XXV _ XXV YXAtr(YYv + YXA XXV YXAtr)
x YXA XXV

(30)
and again a matrix of order only f x 1 must be in-
verted. The variance-covariance matrix XXM is ob-
tained from Eq. (26) by replacing C by XXva’ and
YYM and YXM are computed as before from Eqs. (27)
and (28), respectively.

Because 1 usually is much less than 3, this
technique, coded as DAFT3, requires inversion of

much smaller matrices than 18 the case for DAFT2.

IIX. SENSITIVITY CALCULATIONS
The calculations described in the previous
section required derivatives 6y1/6xj of integral

parameter 1 with respect to differential parameter j.

These derivatives can be expressed conveniently as

relative sensitivities [see Eq. (20)],

e
Y Oy
D,, = (31)
13 e, Ox,|{.e
y, () i x
where both integral values yi(xe) and derivatives
are computed for a given evaluated differential data

set x°. Many workers also have contributed to this

34-45 We now describe computations of

development.
relative sensitivities and derived quantities, such
as sensitivity profiles, from linear perturbation
theory using SENSI and related modules in ALVIN.

A. Inhomogeneous Transport

The particle or photon flux YP(£) at a point §
in phase-time space satisfies the inhomogeneous lin-

ear Boltzmann equation

=5 , (32)
where S({) 1s the local source density. The adjoint
flux ¢+(5) satisfies the adjoint equation

et (33)

where S+(C) is an adjoint source, and where L+ is an
operator adjoint to the Boltzmann operator L. The
adjoint operator and boundary conditions on w+ are
defined such that

o = vty . (34)
Here (¢,X) symbolizes an inner product, in this case
just the integral of ¢(£)X(E) over the relevant re-
glon of phase~time space.

Choose S+(£) so that (S+,£) is an integral
quantity of interest. Suppose that the operators
and sources change as might occur, for example, if
differential nuclear data are changed. Then

(L+8L) + &) =s+8 , (35)

and

ar vt + st = st est . (36)



When these results are combined, it follows that the
exact change 6(§+,w) in the integral quantity, even

for large changes in operators and sources, is
s(s* .0 = ~wh.Ly + sun) + @69

+(ssty+ o, leT)
or

sty =~ vt + vt + @f + atLes)

+ s, (38)

in addition to two other equivalent forms.

We now confine ourselves to the case of fixed
sources and small perturbations, i.e., to linear per=
turbation theory. In this case, from Eqs. (37) and
(38),

st = -t e = oty (39)

Further, consider the time-independent, one-space-

dimensional, multigroup situation for which the Bolte-

mann equation and its adjoint are
@'V + 28)‘1‘8 (1_-.’2)

[

8
- 2 : 2‘ 2]+ o]
g'= -

o

= Sg(r,ﬂ) » (40)

and

. +
RV + EUp (D

a .o
DD I 2NN LA
g =1 1=0
- Sl (1)

for each multigroup g=1,2,...,8. Here wg(g,g) and
¢+(5,g) are the adjoint £lux, respectively, at posi-

tion r in multigroup g and in direction 1, with Le-
gendre expansions

. 2§+1

e =Y Hly e “2)
30

+ . 2§+1 +

e =) orw 43)
30

in terma of the Legendre polynomials, Pj(u). of the
polar angle cosine W. The Legendre coefficients of
, flux, ng, and adjoint flux w;j’ are readily computed

from S,,, multigroup Monte Carlo, PN’ and diffusion

»
theoryNsolutionc, and their use eliminates the neces-
sity for determining consistent quadrature techniques
for the inner product, so Legendre fluxes and adjoint
€luxes are utilized henceforth. In this case the in-

ner product expressions of Eqs. (37) and (38) become

sty = -t

23+l +
S TX A

g8 j=0

- 3
x [-68 g +Zczs.+gw8.jl . (48)
gl
and
sty = -yt

J= TR

g8 3=0

_ + 3 +
x 1 st‘paj + Zszm'wsﬁwzj v (45)
g

for the change in the integral quantity consequLnt to
changes in group cross sections. Thus for chnnﬁel in

.




particular cross sections we obtain from either Eq.
(14) or (15) the results

/ ar e, o
+
EICHA) N 25+
ol € S Verlery - 47
4

These derivatives, of the form ayilaxj, complete~
ly characterize nuclear data sensitivities as comput-
ed by multigroup SN’ Monte Carlo, PN’ or diffusion
theory codes. Fission neutron production cross sec-
tions can be thought of as being absorbed in the
Zi.*g The expressions, Eqs. (46) and (47),
do not require cross sections or values of (S+,W),

arrays.

i.e., yi, so they represent a discrete calculation
which is carried out by a basic subroutine, SENSI,
in ALVIN. Legendre fluxes and adjoint fluxes are
read in (KFLUX=1) by subroutine REDFLX, or are com—
puted (KFLUX=2) by REDFLX from discrete ordinate
fluxes and adjoints. SENSI computes the inner pro-
duct in slab, spherical, or cylindrical geometry ac-
cording as KGEOM is 1,2, or 3, respectively. In
ALVIN the derivative a(s ,W)/az is labeled DYDG(IG),
and 3(S ,u;)/azj 1s labeled DYDL(LJ,IGI,IG). These
quantities can be normalized and stored into sensi-
tivity arrays for use in data adjustment.

If the inhomogeneous problem is time-dependent,
we merely add a time integral to the inner product,
add v;la“‘/ac to Eq. (40), add -vgla“’/ac to Eq. (41),
and note that these do not change when differential
Thus Eqs. (46) and
(47) apply also to the time-dependent case if the

multigroup data are changed.

right-hand sides are integrated over time. If

KTIMS = 1, the time integral is carried out in SENSI
by reading in fluxes and adjoints at each time step,
executing Eqs. (46) and (47), multiplying by the
width of the time step, accumulating, and repeating
the operation for all time steps.

Two aspects of the adjoint source S+ are note-
worthy, First, suppose (S+,w) represents a detector
response or dose such that a response or dose per
unit monoenergetic flux is Zd ¢ over a volume V
then we wish (S ,P) to equal V

det’
det detwO if the angle

integrated flux wo is uniform over the detector re-

glon. The inner product (S+,¢) then is

fag  fars* @y @) or VierS @V, in this case. Thus
the directed adjoint source S+(Q) is zdet’ but the
angle integrated source frequently input into trans-—
port codes is szdet.

Second, consider a time-dependent problem for
which the response of interest is the temperature
e(tm) at a time tm’ of a material of volume Vm’ with
total heat capacity C, with a total heat transfer co-
efficient K to a reservolr, and subject to fission
heating., Let qg represent the local energy deposi-

tion per fission in group g. Then

+ dQ .
Ko = Zﬁr qgfgg

(48) is

(48)

The solution to Eq.

"0 = 8w

—(c-c ) a
/dtZﬁQ/ By, HED 6o

so the angle-integrated adjoint source is

-Ee-t »)

QWq z le ¢

fg © U(t t )

(50)

Here we have used the

unit function U(T) which 1is unity for T 2 0 and is

in Vm and zero elsewhere.
zero otherwise. Adjoint sources generally can be
constructed by this method.

B. Reactivity, Rossi-a, and Other Eigenproblems

The transport operator L can be broken up in
many ways and for each there i1s an eigenproblem,
' - "
L wa aL wa . (51)
Here wa is the eigenfunction corresponding to eigen-

value a. For example, L" might be the fission neu-
tron production operator, in which case 1/a is the
multiplication factor. For another example, L"

might be in multigroup notation a square matrix whose
elements are zero except on the main diagonal where
the elements are inverse speeds, V_l. In this case,
a represents the Rossi-o parameter. For any partic-

ular breakup of the transport operator, there is a



set of eigenvalues and a corresponding set of ei-

genfunctions of which ordinarily only one, the fun—-

damental, is real and non-negative. The fundamental

is usually the only eigenfunction computed by con-

ventional transport codes. ’
After nuclear data change, L becoﬁes L + 8L,

and the eigenvalues and eigenfunctions change accord-

ingly,
(L' + GL')(W‘ + Gwa)

= (a+ )M+ LW, + ) . (52)

Subtracting Eq. (51) from Eq. (52) and linearizing,

we leave

GaL“wa = (L' - aL“)G\pa + (L' - aGL“)\p8 . (53)
Adjoint to Eq. (51) is the relation
(54)

with the adjoint boundary conditions described ear-
lier. Multiply Eq. (53) by w: and integrate over
phase space. The first terms on the right-hand side
of Eq. (53) contribute nothing in view of the ad-
Joint property expressed in Eq. (31), with the re-

sult that

W, 8L - abL"1y,)
*
whim,)

The fundamental eigenvalue is an integral quan-

Sa = . (55)

tity of considerable interest and according to Eq.
(55) its change can be computed using only the funda-
A much more diffi-
cult situation arises when the integral quantity of

mental eigenfunction and adjoint.

interest is a ratio of reaction rates

+
| Spu

R (56)
rq +
(Sq,\ba)

both measured in the fundamental flux. In this case
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+ +
SR (S/R.. =S80
R

rq (S:,\Pa)

(57)

and an inner product with Gwa is required. Often
in mathematical physics when an eigenfunction change
is required it is expanded in a complete set of ei-
genfunctions. In the transport problem, however, we
are unlikely to have available any eigenfunctions
other than the fundamental.

Usachevaa

has developed an iterative algorithm
for computation of Eq. (57) requiring repeated solu-
tion of the inhomogeneous transport equation. We
develop an alternative algorithm and suggest its use
in an appropriate way that only requires knowledge
of the unperturbed flux and adjoint. Let W: repre-
sent the solution to the inhomogeneous equation,
LRl -t (58)
Insert this expression into Eq. (57) and apply the
adjoint property, Eq. (54). Then

+ +
_ W/R g - VgiLteyy)

r rq
rq +
(5%,

SR . (59)

The linearized Eq. (52) can be rearranged to provide
an iterative calculation of the nth approximation,
Gwa,n, to the desired Gwa,

L'Gwa’n = (adL" + SalL" - GL')W‘

+ aL“Gwa » (60)

,n-1

with starting condition 6\1:‘ 0" 0, This constitutes
]
an algorithm for computation of the required L'Gw‘ a
’
under proper conditions of convergence. Here we

terminate at n = 1, whereupon, approximately,

Wh/r_ - ¥, [aL" + SaLl" - 6L'1Y))
6 = ——-f1 1 L. (61)
w4 (S ¥,) X
q’"a .
The above approximation is not coded into this ver- .

sion of ALVIN.




Returning to the eigenvalue perturbations, we
now apply the previously described techniques to de-
velop the inner products in Eq. (55) for Rossi-a

and for reactivity perturbations. For Rossi-a,

da 1 2+ o+ 2
2 D /di Z 4w ‘pagj‘pagj ©2)
* 1
and
o 1 2j+ 4
770, [ ar VoeiVoeg'y (63)
azg.*g o
where

= 2jH 4+ 1
f oz Z; 4 wagj Vg ‘pagj (64)
g

For reactivity perturbations, it is convenient to

break up Eé.*g into a scattering portion and a fis-

sion portion

3 - 78]
zg -g z g + vg.zfg,xg._»gsjo . (65)
Then,
o . _1 E 23+ +
3L, " 7D ./-di _i'r‘ppgjw > 69
g p
3
and
p
8] -
8[Eg.+g + Q1 p)v z g ' Xgtog jo]
-1 E v 67
D, lm ogj pg'y
where

/dr Zzwpgo 4 fg'xg'-*g‘ppg'o - (68)

These expressions also are in their simplest form.

Equations for sensitivities thus far have been
expressed as derivatives with respect to macroscopic
cross sections. Ordinarily a sensitivity of interest
will be for a single material or nuclide, but this
may occur with different number densitities DENS(IR)
in different spatial regions IR=1,2,...,NR. A deriv-
ative with respect to a microscopic cross section C
is obtained from the corresponding derivative with
respect to a macroscoplc cross section I as in Eqs.
(46), (47), (62), (63), (66), and (67) by

NR
% = dr DENS(IR)* remainder of . (69)
IR=1 “Region IR expression
When sensitivity integrals are coded in SENSI, the
number density of the material of interest is in-
cluded as in Eq. (69) with one exception: The reac-
tivity denominator in Eq. (68) requires the actual )
macroscoplc fission cross sections for the assembly,
so these are read in for each group and region and
used as macroscoplc quantities.
C. Sensitivity Profile

Expressions were developed in the previous sec-
tions for derivatives ay/azganday/azg.*g, where y
is an integral parameter. These constitute the basic
building blocks for compounding derivatives with re-
spect to any differential data, e.g., the inelastic
scattering cross sections for 238U. We illustrate
the compounding process not for a particular differ-
ential cross section, but for the "sensitivity pro-
file," an interesting parameter characterizing a

class of cross-section changes.w’l‘5

Suppose that for a particular nuclide, say 238U,
we change the total cross section in group g by the
amount GZ:, corresponding to a change in reaction x,
say an inelastic cross section. The group-to-group
transfer cross sections for this reaction, Zi¥*g’
change accordingly, and we make the particular as-

sumption that

Jx s¥
_s:s_‘sj .l (70)
zm' zg

for all exit groups g' and for all Legendre orders j.

11



Cross sections for particle transfer into group g
are unchanged. Then, compounding changes by the

-2,
usual (6y 2; axiGxi) method we have, from Egs.

(46) and (47),

+ ex
LICHN) p* £ (71)

-+ g X
(s,¥ 28

where the sensitivity profile P;‘ is

P* = 1 ~/rdr 2i+
g (S+,\P) = Zj=o 4T

_ -+ Jx +
[ Ezng +sz'ws'1w81 ) 72)

This inhomogeneous sensitivity profile character-
izes certain interesting cross-section changes and
is computed by subroutine PROFIL in ALVIN.

Similar profiles can be defined and computed
for Rossi-o and for reactivity and in general under
other assumptions than Eq. (70), but we do not carry
these out in ALVIN,

Bartine et al.l‘5 use the definition Eq. (71)
for inhomogeneous sensitivity profile, but they ap-
pear to state, on the basis of equations like Egs.
(34) and (39), that another definition can be used,

le = d,rdr
& P ,w) z

Jx
x [-Z ‘pa:l E :28 ,,g\bga . (73)

In paraphrase, because (w+,6L¢) equals (6L+w+,w),

then ¢+6Lw equals WGL+¢+ over some more limited re-—
gion of phase space. There is no a priori reason
to expect this to be generally true, although it is
true for the fully absorptive case. We have devel -
oped a complete analytic solution to the case of hy-
drogenous slowing down in in infinite homogeneous

med:l.uml‘6 to be used in clarifying a variety of prob-
lems., For this case the two definitions of ?: are

12

not equal and, because our definition, Eq. (71), was
arrived at by the orderly process of compounding,

we believe it it correct.

IV. ALVIN PROGRAMMING

ALVIN is programmed in FORTRAN-IV to be machine-
independent except for large storage requirements
which, in the distributed version, are specific to
the CDC-7600.
and only a few statement lines would need to be
Otherwise, specific CDC

Five large arrays are stored in LCM

changed for other machines.
features are avoided, e.g., Hollerith is used for
formatting rather than asterisks. A code abstract
is included as Appendix A.

The code consists of the main ALVIN routine and
eight principal subroutines with about 1100 state-
ment lines, approximately 20% of which are comment
lines. The routines, the subroutines they call, and
their tape requirements are listed in Table I. A
subroutine SENRD2, which generates sensitivities spe-
cific to a sample problem, is provided as well. Sen-
gitivity and variance-covariance matrices are so
large, and so frequently have integral regularities,
that it may be useful to create subroutines like
SENRD2 to generate them for specific problems.

Program variables have the same significance
in all parts of the code, and their values, with a
few exceptions, are passed through labeled commons.
All variables are defined in Appendix B, and these
definitions hold in all parts of ALVIN.

systematics have been followed in variable naming.

Certain

TABLE 1

ROUTINE CALLS AND TAPE REQUIREMENTS IN ALVIN

Routine Calls or Requires

ALVIN SENSRD (SENRD2), SENSI, DAFT2, DAFT3
SENSRD

SENSI REDFLX, CROSEF, CROSEC, PROFIL
REDFLX Flux tape, adjoint flux tape
PROFIL

CROSEF

CROSEC Cross section tape

DAFT2 INFO, MATINV

DAFT3 INFO, MATINV

INFQ

MATINV




.o

For example, indices have a fixed meaning, and tem~
poraries are formed by suffix T. Variable names
usually are similar to notation used in Secs. II and
111 describing the calculations.

The structure of ALVIN is shown in Fig. 1.
Pairs of control parameters KSENS and KADJST define
various modes of code operation. For example,
KSENS=3 and KADJST=2 result in sensitivities being
read in by SENSRD, some sensitivities being calcu-
lated and added by SENSI, and consistency tests and
data adjustment being carried out for full correla-
tion by DAFT2. A simple case 18 KSENS=1 and KADJST=1
where sensitivities are calculated by SENSI, and no
data adjustment or consistency calculations are car-

ried out.

V. SAMPLE PROBLEMS AND CODE VALIDATION

Two sample problems are provided, one stressing
the data consistency and adjustment parts of ALVIN,
and one stressing the sensitivity parts of the code.
The sample problems are used to i{llustrate capabil-
ity, input, and output. In addition, however, the
sample problems are used to validate the code by

carrying out the same calculation in different ways.

KSENS, KADJST

KSENS
2
Y \
Coll Coll Coll
SENSRD SENSI SENSRD
SENSI

\

A

-
P

4

AN

KADJST
2
Y

Colt Coll
DAFT2 DAFT3

Fig. 1. ALVIN structure.

A. Data Consistency and Adjustment

Integral observations made on LMFBR~like criti-
cals have frequently failed to agree with calcula-
tions. Reactivity worths in particular have been
discrepant, thus presenting the nuclear designer
with serious problems in view of the importance of
reactivity worths in the design process. Data for
three important criticals, ZPR-6-6A, ZPR-6-7, and
ZPR~-3-48, prominently display the reactivity worth
discrepancy and have been compactly presented by
Bohn.l‘7 Table II identifies 24 integral parameters
y1,1=1,2....24, for these assemblies, and Table III
identifies 19 differential nuclear quantities xj,
j=1,2...,19, of interest. It is convenient to allow
¥y to represent the ratio of the computed value C1
of an integral parameter to its experimental value
Ei’ and to let xj represent the ratio of the nuclear
datum oj to its evaluated value 0°. Then the eval-

e ]

uated quantities yi and xj are unity, and

mio (o] (wm) o,
xj <2 C1 aoj <& 1 aoj <&

This normalization is essentially that described in
Sec. II-B-1. The effects of cross-section changes
on inference of Ei from experiment are made explicit
in Eq. (66). For 1=1,2,3 the integral parameters
are the C/E values for multiplication factors of
ZPR-6-6A, SPR-6~7, and ZPR-3-48, indicated in the
second column of Table II by subscripts A, 7, and 8,
respectively. For 1=4,5...,15 the integral parame-
ters are the C/E values for central worths of 239Pu,
235y, 238;, and 198, indicated by 49, 25, 28, and B,
respectively, as superscripts on W; for example, the
239Pu in the
49

ZPR~6~7 assembly is indicated by W7 in Table II.

Finally, for i greater than 15, the integral parame-

C/E value for the central worth of

ters y, are C/E values of ratios of reaction rates,
28c
e.8., 7R49f for Y20 represents the C/E value of the

238 239Pu fission rate

U capture rate relative to the
measured in ZPR-6-7. If vy is (on/om)/(on/o)E, then

to first order (unchanged flux spectrum),

ayi
x| e” an - ij ° (75)

Jx
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TABLE II

INTEGRAL PARAMETERS yj AND VALUES yi(xe) COMPUTED
USING EVALUATED NUCLEAR DATA PARAMETERS x©

[If no adjustment were necessary yi(xe) would = unity]

(xe) Adjusted Selected
1 Yy Iy by ALVIN by Bohn
1k, 0.9920+0.004 0.993
2 K 1.0024+0.004 1.001
3 K 0.9927+0. 004 1.002
N 1.1040.025 0.990 1.06
25
s W 1.15+0.025 1.014 1.05
28
6 Wl 1.2440.035 1.090 1.09
7w 0.92+0.075 0.854 0.96
49
8 W 1.25+0.035 1.052 1.14
25
9 W 1.2440.035 1.036 1.08
28
0 W 1.16+0.025 0.936 0.95
noow 1.18+0.035 1.027 1.17
49
12w 1.25+0.035 1.042 1.12
25
13 W 1.26+0.035 1.046 1.08
28
14 W 1.2740.035 1.024 0.99
15w 1.09+0.035 0.960 1.06
28f
16 ,R23L 0.90+0.03 0.942
17 alfe  1.030.03 1.060
28f
18 LRI 0.99+0.02 0.975
o 25¢
19 7%9¢  1.05+0.02 1.032
R28c
20 7%49f  1.00+0.02 1.053
LY
21 7°25f  0.94+0.02 0.924
R28c
22 7"25f  1.0440.02 1.023
o 28f
23 8R2s¢  0.96+0.05 0.961
R28c
26 8%25¢  0.94+0.05 0.924
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TABLE III

PRIMARY NUCLEAR DATA PARAMETERS x,, THEIR
UNCERTAINTIES, AND THEIR ADJUSTED™ VALUES

3 3

x % Adjusted Selected
i ] | by Alvin by Bohn
1 o2 140.1 0.978 0.93
2 2 140.1 0.932
3 o 140.1 0.995 0.97
4 o 140.1 0.989
s o 1+0.15 0.961 0.88
6 of 140.1 0.979 0.97

28
S ™ BT 0.840 0.88

a
8 o 140.1 1.059
9 d° 140.1 1.063

el —
10 o° 140.1 0.979
1 ot 140.1 1.001
12 oF 140.1 0.995

—28

13V 1+0.06 1.138 1.10
w2 140.04 1.106 1.012
15 3 1+0.06 1.166 1.024
16 V0 140.1 1.009 1.016
17 i 140.1 1.009
18 c‘:“ 140.1 0.995
19 ¢ 140.1 1.085

el —

The third columns of Tables II and III list the val-
ues of the parameters determined at the evaluated
point together with standard errors, most of them
assigned by Bohn, for the quantities. Most of the
computed reactivity worths, Y, through Yy5» are high
and differ from unity by many standard errors; this
is the reactivity worth discrepancy. Uncertainties
in reactivity worths due to uncertainties in delayed
neutron ylelds are not included, because the delayed

data (j=13,17) are assigned uncertainties and
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examined separat:ely.l‘8

The uncertainties ascribed to
differential data in Table III assume that cross-sec-
tion errors are correlated at all energies. Sensi-
tivities presented by Bohn are listed in Table IV.
Calculated results shown in Tables I through III used
ENDF/B-II1 as the evaluated data base as processed
Values of differential
and integral parameters adjusted by ALVIN also are
listed in Tables II and III and show physically plau-

sible trends.

into multigroup form by SDX.

Values selected by Bohn from six

trial sets of differential quantities also are list-
ed. Our data adjustments are intended to be illus-
trative only of the techniques involved and, par-
ticularly, illustrative of consistency inferences.
More detailed study of data uncertainties and sensi-
tivities would be required to justify an adjusted da-
ta set for nuclear design application.

Input for this sample problem is shown in Ap-
pendix C. The output, shown in Appendix D, provides
congsiderably more information, particularly consis-
tency information, than do Tables I1I through IV.
Values of chi-squared before and after adjustment
both are improbably large, 503 and 91, respectively,
for 24 degrees of freedom. The dispersion multiplier
DISPR 18 3.8 for this problem, thus accounting for
the fact that errors in the adjusted data in Tables
ITI and III are larger than input evaluated errors in
Contributions of the 43 differential

and integral parameters to chi-squared are listed

many cases.,

before and after adjustment,

This sample problem is not fully illustrative
of the capabilities of DAFT3 in that many more than
19 differential data could be treated by DAFT3., How-
ever, the sample problem is useful for code valida-
tion in that, with only 24 + 19 parameters, data ad-
justment can be carried out by DAFT2 as well as by
DAFT3. To facilitate this comparison, inputs to
DAFT2 and DAFT3 are made similar when only standard
DAFT2 and DAFT3 re-
sults agree for this problem, thus validating the

error information is provided.

consistency and data adjustment part of the code,
B. Sensitivity Calculation

Illustrative of sensitivity calculations in
ALVIN is a spherical representation of a thick iron
shj.elcl-coll:Lmator.l‘9 The shield consists of a 70=-
cm~radius sphere of iron with a 4-cm-radius void at
the center. An isotropic neutron source is uniformly
distributed in a central l-cm-radius sphere with the
0° spectrum of neutrons produced by 50-MeV deuterons
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on beryllium.50 The response quantity consists of
the product of the neutron flux and neutron fluence-
to-dose equivalent conversion factor summed over all

neutron energy groups and, averaged over the volume of

~ the l-cm~thick air shell at the outer surface of the

sphere.

51 was used to calcu-

The SN transport code DTF
late the neutron fluxes and adjoint fluxes throughout
the shield, using 4l-group, P-5 cross sections and
S-16 quadrature. The source for the adjoint calcula-
tion, located in the l-cm~thick shell surrounding the
sphere, was the vector of neutron fluence-to-dose
equivalent conversion factor.

Directed fluxes and adjoint fluxes were read in
to ALVIN through REDFLX and converted to Legendre
components., Nuclear data were read in through CROSEC
and CROSEF. Fluxes and nuclear data were used by
SENSI to compute detalled sensitivities as described
in Sec. 1II-A. These were then used by PROFIL to
compute sensitivity profiles as described in Sec.
III-C. The computed sensitivity profile as a func-
tion of energy group is illustrated in Appendix E
and output is listed in Appendix F.

All routines in ALVIN that are concerned with
gsensitivity are used in calculation of the sensitivi-
ty profile, and can be validated by a direct calcula- -
tion. The sensitivity profile P(IG) represents the
change in neutron dose-equivalent rate at the shield
surface resulting from a change in cross section in
group IG combined with proportionate changes in
transfer cross sections from group IG to other
groups. The ALVIN calculation uses first-order per-
turbation theory; this approximation, as well as code
accuracy, can be validated by comparison with direct
calculations.

The direct approach to determine the change in
the result due to a change in the cross-section data
involves the creation of an altered cross-section
set, performing a neutron transport calculation us-
ing the altered cross sections, and converting the
fluxes in the outer shell to the neutron dose equiva-
lent rate. The fractional change in the dose equiva-
lent rate divided by the fractional change in the
cross sections of group IG thus ylelds the sensitivi-
ty P(IG) of the result to cross sections in group IG.

Sixteen separate, altered cross-section sets
were formed with ZT(IG) and ZJ(IG+IG'), IG' = IG,NG

for all j increased by 0.1, 0.5, 1.0 or 10.0X for
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Fig. 2. Sensitivity of shield surface neutron
dose-equivalent rate to neutron Cross-—
section data computed by direct change
in cross sections and by linear perturba-
tion -- ALVIN calculation.

group IG = 9, 19, 20, or 25. The sensitivities re-
sulting from the neutron transport calculation are
superimposed on the sensitivity profile histogram

of Fig. 2.
verged to 10_4, so the only directly calculated sen-

The separate DTF calculations were con-

sitivities shown are those for which the relative
4

change in dose equivalent exceeded 10 '. For exam—

ple, the dose equivalent changed from 0.7189 x 10-'.13
rem/s to 0.7188 x 10”13, 0.7187 x 10°2, and 0.7186
x 10-'.13 rem/s, when the cross sections of group 19
were increased by 0.1, 0.5, and 1.0%, respectively.
Therefore, these cases were disregarded.

In addition to accuracy problems in the direct
calculation, there are nonlinearity problems in the
perturbation calculation. Consider monoenergetic
neutron penetration through a slab of thickness X

with cross section I. Then,

P _ 1 L . 1 85,2
direct = ~[1~ 57 XE 5+ 37 (X §) LIXE L (76)

z

If 8L/I 1is chosen to be 0.1 to insure accuracy in
the dose equivalent change, then for the shield
thickness studied here (about 12 mean free paths
thick) the direct calculation underpredicts the re-
sult for very small 8I/I by about one-third accord-
ing to Eq. (75).
of magnitude can be observed in Fig. 2 for the di-
rect calculation with 8L/ equal to 0.1.

An underprediction of this order

Conversely
one can conclude from these results that linear per-
turbation theory will overpredict the change in dose
equivalent by about one~third when fractional changes
of 10% in cross section are considered.

Useful direct calculations for the purpose of
validating ALVIN's linear perturbation calculations
should have 8IL/I sufficiently small to avoid the
nonlinear effects discussed above and sufficiently
large to avold inaccuracy problems. The results
shown in Fig. 2 are in good agreement and are be-
lieved to validate the inhomogeneous sensitivity
parts of ALVIN.

Rossi-0 and reactivity utilize inhomogeneous sensi-

Calculations of sensitivities for

tivities and have not been validated separately.

VI. INPUT AND OUTPUT

Input requirements are shown in Table V. For-

mats and precise variable descriptions are given in

terms of the variable definitions listed in Appen-
dix B.
Outputs are labeled also by variable name and

follow the examples shown in Appendixes D and F.

VII. SUMMARY OF ALVIN CAPABILITIES AND LIMITATIONS

ALVIN carries out sensitivity calculations for
steady-state or time-dependent inhomogeneous trans-
port. For eigenproblems, ALVIN computes sensitivi-
ties of elgenvalues to nuclear data changes (speci-
fically reactivity and Rossi-a), but does not com-
pute sensitivities of eigenfunction properties such
as reaction rate ratios. Sensitivities are computed
with respect to total cross section, with respect to
individual Legendre components of group-to-group
transfer cross sections, and with respect to fission
parameters. Sensitivity profiles are computed.

ALVIN carries out data consistency and adjust-
ment calculations for arbitrary variances and covari-
DAFT2
is used for these calculations and the number of pa-

ances among the differential and integral data.

rameters treated is limited by the necessity for in-
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TABLE V

ALVIN PROBLEM INPUT

(KSENS=1, KADJST=3, KVAR=2)

Order Format Contents
1 16A5 Title
2 1216 KSENS,KADJST,MI,MJ
3 16A5 Title
4 6E12.6 DYDX(I,J),J=1,MJ

A card set for each I=1,MI.

5 16A5 Title
6 6E12.6 YC(I), I=1,MI
7 16A5 Title
8 1216 KVAR
9 6E12.6 VE(K1,K2),K2=1,MK

A card sget for each Ki=1,MK.

version of large matrices. The DAFT3 subroutine
carries out data consistency calculations and ad-
justs an arbitrarily large and correlated differ-
ential base uncorrelated with integral data. Least
squares techniques are employed throughout. Limits

on data adjustments are not used in ALVIN.
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APPENDIX A

PROGRAM ABSTRACT

Name of program: ALVIN.
Name of computer for which program is designed:
CDC-7600.

Programming language:
Nature of the problem solved:

FORTRAN-IV.

ALVIN analyzes
the consistency of a set of differential and in-
tegral nuclear data, adjusts the differential
nuclear data to improve agreement with integral
observations, and identifies inconsistent data.
ALVIN also computes required sensitivities and
related quantities such as sensitivity profiles.

Method of solution: Linear perturbation theory

is used for sensitivity calculations. Data con-
sistency and adjustment computations use least
squares techniques.

Restrictions on the complexity of the problem:
The DAFT2 consistency and adjustment subroutine
treats fully or partially correlated differen-
tial and integral parameters, but only as many
as the order of the largest matrix that can be
inverted. The DAFT3 consistency and adjustment
subroutine treats arbitrarily large differential
data sets, but only i1f they are uncorrelated
with the integral data.

Related and auxiliary programs: None.

7.

10.

11.

12,

13.
14,

Typical running times: About 1 min, depending

on size of problem.

Description:
input and output are described in Ref. 1.

Equations, calculational methods,

Unusual features:
A special algorithm is used in DAFT3 to

Data set consistency is ana-

lyzed.
treat arbitrarily large data sets.
Status: The program is currently in use and
can be obtained from the Argonne Code Center.

Machine requirements: Distributed version uses

LCM to store five large arrays. Otherwise ma-
chine~-independent.

Operating system: Independent.

Other programming information: None.

References:

(1) D. R. Harris, W. A. Reupke, and W. B,
Wilson, "Consistency Among Differential Nuclear
Data and Integral Observations —- the ALVIN
Code for Data Adjustment, for Sensitivity Calcu-
lations, and for Identification of Inconsistent
Data," Los Alamos Scientific Laboratory report
LA-5987 (1975).

D, R. Harris
W. A. Reupke
W. B, Wilson

Los Alamos Scientific Laboratory
P. 0. Box 1663
Los Alamos, New Mexico 87545



APPENDIX B

DEFINITIONS OF VARIABLES USED IN ALVIN

DEFINITIONS

ACI1,12)=TEMPORARY MATRIX USED WITH DIFFERENT DEFINTTIONS IN DIFFERENT
SUBRROUTINES

B(J)=VECTOR SNURCE TU RFARRANGED NORMAL EQUATIONS

C(J1,J2)2MATRIX WHOSE INVERSE IS THE ADJUSTED VARTANCE=-COVARIANCE MATRIX
OF INDEPENDENT QUANTITIES, LATER THE INVERSE IS STORED IN C

CHI2#=CHI=SQUARED AFTER ADJUSTMENT USING EVALUATED SECOND MOMENTS

CHI2I=CHI=SQUARED INITIAL

CHIDA=DTAGONAL PART OF CHIZ2A

CHIDF=DTAGONAL PART OF CHIZF

CHIDI=DIAGONAL PART OF CHTZI

DENOMA=DENQOMINATOR OF L(ALPHA)/D(CROSS SECTTON) RELATION

DENOMR=DENOMINATOR OF D(REACTIVITY)/D(CRUSS SECTION) RELATION

DENS(TR)=NUMBER DENSITY IN REGION IR

DETERM=DETERMINANT OF A MATRIX

DISPR=DISPERSTON MULTIPLIER

DYDG(TIGY=DERIVATIVE OF TINTEGRAL QUANTITY WITH RESPEGCT TO TOTAL CROSS
SECTTIOMN IN MULTIGROUP IG

DYDLCIL,IG1,1G)=DERIVATIVF OF INTEGRAL QUANTITY WITH RESPECT TO IlL=1 TH
LEGENDRE ORDER CROSS SECTION FOR TRANSFER FROM MULTIGROUP IG1 TO
MULTIGROUP IG ’

DYDX(I,J)=DERIVATIVE OF INTEGRAL GUANTITY [ WITH RESPECT TO DIFFERENTIAL
OUANTITY J COMPUTED AT THE EVALUATED DATA POINT

FLAXLCIM, TL,16)=IL=1 TH LFGENDRE COMPONENT OF ADJOINT FLUX AVERAGED OVER
SPACE MESH INTERVAL IM, IN ENERGY GROUP IG

FLUXLCIM,IL,16)=IL=1 TH LEGENDRE CDMPONENT OF FLUX AVERAGED OVER SPACE
MESH INTERVAL IM, TN ENERGY GROUP 16

{A=sQUADRATURE ANGLE INDEX

IDG(ISAVE)=IG INDEX OF SAVED SENSITIVITY CASE

IDGI(TSAVE)=1IG1 INDEXx OF SAVED SENSITIVITY CASt

IDLCISAVE)=TL INDEX OF SAVED SENSITIVITY CASE

IDXCISAVE)=TIX INDEX OF SAVED SENSITIVITY CASE

IDYCISAVE)=TY INDEX OF SAVEN SENSITTVITY CASE

IG=MULTIGROUP INDEX

IL=LEGENDRE ORDER INDFX

IMSSPATIAL MESH INDEX

IMMAX(IR)=MESH POINT WITH HIGHEST INDEX IN REGION IR

IMMINCIR)=MFSH PUTNT WITH LOWEST TNDEX IN REGION TR

INDEX(I,J)=TEMPORARY ARRAY USED IN MATRIX INVERSION

IPIVOT(I)=T1EMPORARY ARRAY USED TN MATRIX TNVERSTON

IPOS=POSITION OF CROSS SECTTON IN OTF CROSS SECTION FORMATY

IR=REGION INDEX

ITaTIME INTERVAL INDEX

ITAPE= FILE SFT NUMBER (1 OR 2)

ITYPExTYPE OF SAVED SENSITIVITY CASE, =1 IF INHOMOGFNEOUS
SENSITIVTTY, =2 IF D(ALPHA)/D(CROSS SECTION) SENSITIVIYVY,
23 IF D(REACTIVITY)/D(CKROSS SECTION) SENSITIVITY

IYR=INDEX DF CASE OF SENSITIVITItS CALCULATFG FRUM FLUXES AND
ADJOINT FLUXES READ IN

JTAPE=ASSIGNED TAPE NUMBER

KADJSTz2 IF DIFFERENTTAL DATA ARE TO BE ADJUSTED USING DAFT2, =3 TIF
DIFFERENTIAL DATA ARF TO BE AQJUSTED USING DAFT3, =1 UTHERWISE

KFLUXs1 IF LEGENDRE FLUXES ARE READ IN, =2 TF DIRECTED FLUXFS ARE READ TN
FROM WHICH LEGENDRF FLUXES ARE COMPUTED FUR USE IN SENSITIVITY
CALCULATIONS

KTYPESTYPE OF SENSITIVITY CALCULATION, =@ IF INHOMOGENEOUS
SENSTITIVITY, =1 IF D(EIGENVALUE)/D(CROSS SECTION)

KGEOM=1 IF GEOMETRY IN SENSITIVITY COMPUTATIONS IS SLAB, =2 IF SPHERICAL,
=3 IF CYLINDRICAL

KRELX=CONTROL SET IN CODE, =1 IF FLUXES ARE BEING PROCESSED,=2 IF ADJOINT
FLUXES ARE BEING PROCESSED

KSENS=1 IF SENSITTVITIES ARE ONLY READ InN, =2 IF SENSITIVITIES ARE ONLY
COMPUTED FROM INPUT FLUXES AND ADJOINT FLUXES, =3 IF SENSITIVITIES
ARE BOTH READ IN AND COMPUTED

KTIMS=1 IF TIME DEPFNDENT FLUXES ARE USED IN SENSITIVITY COMPUTATION

KVAR=1 IF EVALUATFD STANDARD ERRORS ONLY ARF READ IN FOR DIFFERFNTTIAL AND
INTEGRAL PARAMETFRS, =2 IF FULL EVALUATED VARIANCE=COVARTANCE ARRAY
IS READ IN FOR DIFFERENTTAL =INTEGRAL PARAMETERS

21
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APPENDIX B (cont)

MI=NUMBER OF INTEGRAL PARAMETERS

MJ=NUMBER OF DIFFERENTIAL PARAMETERS -

MK=MI+MJ=NUMBER OF INTEGRAL=DIFFERENTTAL PARAMETERS

NA=NUMBER OF QUADRATURE ANGLES FOR DIRECTED FLUX

NG=NUMBER OF MULTIGROUPS

NL=NUMBER OF LEGENDRE FLUX ORDERS USED IN SENSITIVITY COMPUTATION

NLR=NUMBER OF LEGENDRE FLUX ORDERS READ IN

NLCX=NUMBER OF LEGENDRE CROSS SECTION ORDERS READ IN

NM=NUMBER OF MESH INTERVALS IN SENSITIVITY CALCULATION

NR=NUMBER OF REGIONS IN SENSITIVITY CALCULATIONS

NSAVE=NUMBER OF CASES OF COMPUTED SENSITIVITIES SAVED INTO DYDX
(IY,IX) MATRIX FOR CASE IYR

NT=NUMBER OF TIME INTERVALS IN SENSITIVITY COMPUTATION

NXR=NUMBER DF IYR CASES FOR WHICH NEW SET DF UN=NORMALIZED
FVALUATED DIFFERENTIAL PARAMETERS ARE TO BE READ IN AND USED
FOR SENSITIVITY NORMALIZATION OR PROFILE CALCULATION

NYR=NUMBER OF CASES FOR WHICH FLUXES AND ADJOINT FLUXES ARE READ IN AND
SENSITIVITIES COMPUTED

P(IG)=SENSITIVITY PROFILE FOR GROUP IG

PIVOT(I)=TEMPORARY ARRAY USED IN MATRIX INVERSION

QCOSA(IA)=COSINE OF QUADRATURE ANGLE NUMBER IA FOR DIRECTED FLUX

QLEGPCIL,TA)=LEGENDRE POLYNOMIAL OF OROER IlL=-1 OF QCOSA(IA)

QWTSA(IA)=WEIGHT FOR QGUADRATURE ANGLE NUMBER TIA

RxRESPONSE, INTEGRATED OVER APPROPRIATE VOLUME OF PHASE SPACE,
USED IN INHOMOGENEOUS SENSITIVITY NORMALIZATYION AND PROFILF
CALCULATION

RELXE=(XE(J)*XE(J))/SX(J)

RELXF=(XA(JY=XE(J))/SX(J)

RELYE=(YC(I)=YE(I))/SY(I)

RELYFR(YA(IY=YE(L))/SY(])

RM(IM)ZLEFT=HAND COORDINATE OF MESH INTERVAL IM

STIGFN(IG, IR)=MACROSCOPIC FISSTON CROSS SECTION IN GROUP IG IN REGIDN IR
TIMES FISSION NEUTRON YIELD

SIGTO(IG)=MICROSCOPIC TOTAL CROSS SECTION IN GROUP IG

SIGTR(IG,I1G2,IL)=MICROSCDPIC JIL=1 TH LEGENDRE COMPONENT CROSS SECTION FOR
TRANSFER FORM GROUP IG TO GROUP 1G2

SORF(IG2)=NORMALIZED FISSION NEUTRON SPECTRUM INTO GROUP IG2

SPDS(IG)=PARTICLE SPEEDS IN GROUP IG

SX(J)=EVALUATED STANDARD ERROR FOR NIFFERENTJIAIL PARAMETER J

SXA(CJ)=STANDARD ERROR OF DIFFERENTIAL PARAMETER J AFTER ADJUSTMFNT

SY(I)=EVALUATED STANDARD ERRDR FOR INTEGRAL PARAMETER I

SYA(I)=STANDARD ERROR OF INTEGRAL PARAMETER I AFTER ADJUSTMENT

TEMSTO(TIG, TPOS)=TEMSTO(IM, IA)=TEMPORARY STORAGE FOR CRDSS SFCTIONS AND FOR
DIRECTED FLUXES AND ADJOINT FLUXES

TITLE=DESCRIPTIVE TITLE FOR JOB AND FOR SUBSECTIONS OF INPUT

TM(IT)=LOWER BOUND OF TIME INTERVAL IT

VE(K]1,K2)ZEVALUATED VARTANCE=COVARJANCE VALUE FOR INTEGRAL=DIFFFRENTIAL
PARAMETERS K1 AND K2, LATER THE INVFRSE, TE, WEIGHT MATRIX, IS
STORED IN VE

VZ(K1,K2)=COMPUTED VARIANCE=-COVARIANCE VALUE FOR INTEGRAL=DIFFERENYTAL
PARAMETERS K1 AND K2 AFTER ADJUSTMENT, [INCLUDES DISPERSTON FACTOR
LATER THE ADJUSTED CORRELATION COEFFICIENT MATRIX IS STORED
IN VZ,

XA(J)=ADJUSTED VALUE OF DIFFERENTTIAL PARAMETER J

XE(J)=ZEVALUATED VALUE OF DIFFERENT]IAL PARAMETER J

YA(T)=ADJUSTED VALUE OF INTEGRAL PARAMETER I

YC(I)=VALUE OF INTEGRAL PARAMFTER I COMPUTED FOR EVALUATED VALUES OF
DIFFERENTIAL PARAMETERS

YCUCISAVE)YRVALUE OF INTEGRAL PARAMETER, UN=NORMALIZED, COMPUTED
FROM EVALUATED DIFFERENTIAL PARAMETERS, USED TO NORMALIZE
SAVED SENSITIVITY CASE [SAVE, YCU=R IF ITYPE=1,
= IGENVALUE IF ITYPE=2,3

YE(T)=EVALUATED VALUE OF INTEGRAL PARAMETER 1

ZA(K)=ADJUSTED VALUE OF INTEGRAL=-DIFFERENTIAL PARAMETER

ZC(K)2VALUE OF INTEGRAL=-DTFFERENTIAL PARAMETER K COMPUTED FOR EVALUATED
VALUES OF DIFFERENTIAL PARAMETERS

ZE(K)=ZEVALUATED VALUE OF INTEGRAL=DIFFERENFIAL PARAMETER K




APPENDIX C

SAMPLE INPUT FOR DATA CONSISTENCY AND ADJUSTMENT PROBLEM

SAMPLE PROBLEM==CONSISTENCY AND ADJUSTMENT OF ZPR DATA

1 2 24 19

SENSITIVITIES FOR ZPR PROBLEM
61 .1 .08 ., 27
«,083

066 -, 87 <08 -, 26
-,06

b6 -, 06 .09 .,21
-7
*.991 089 1,160 ~,161 ., 239 -, 255
047 «, 045 *,115 802 -, 0086 -, AN
-,144 e, 8564 -, 005
o264 -.1748 -, 206 210
088 -,08248 -,027 010 .0082 .A05
-l 148 -.856 , .04
14345 -.094 -,583 1,22%
+346 043 «148 -,014 002 -, 002
-, 144 -, 856 082
=14252 -,14%3 ..329 -, 92
208 498 213 .,020 0084 -, 003
-, 146 =,856 .8a2

213 -,083 - U417 199
111 -,027 -,752 .003 -,003 -, An2
=e 326 =, 0252 =e597 -, 0206 -, 0312 -, 001
1.179 .,190 -1,101 6850 -, 391 o137
«150 -, 004 «835 .009 003 004
-,326 -, 8292 -,597 ., 8206 -, 8312 <096

-1,207 .. 121 .. 778 1,045
.“90 864 ™ 192 '.ﬂaﬁ .8“3 -.ﬂﬂ'§
o326 -, N252 -, 597 -. 0206 -.0312 001

-1,129 v, 216 -,509 .,260
283 149 «316 -,A33 004 -, 004
-, 326 =-,025¢2 -.597 ., 0206 -,A312 . 002

247 ., %69 -, 465 o211
104 -,%09 601 -,803 -, 002
=356 -, 0210 -.599 -,0121 -.0121 -, 002
-.060
1.199 -, 214 -1.074 .068 -, 417 o162
0183 -, 0802 .806 Jun2 «AA%
=356 -,0210 -.599 -,0121 -.0121 «A0n3
+«0857

1,446 ., 167 -1,026 1,273
640 047 e, 12 -, 004
-e356 -,0210 -.599 -.,A121 -,0121 -,001
« 395

=-1,199 =273 =,561 =226

«338 L -.218 .00} -.n04
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APPENDIX C (cont)

¢ 356 -,0210 *.599 ~,0121 -,0121
«517

INT PARAMETERS COMPUTED FRNOM EVALUATED DIFF PARAMETERS
09920 «9924 09927 1,10 1,15
92 1.25 1,24 1,16 1,18
t.26 1,27 1,89 90 1.03
1.05 1,29 94 1,04 « 96
EVALUATED STANDARD ERRORS

1

)1 o1 o1 o1 .15
»15 ol ol ol ol

06 «04 46 o1 o1

1

]

<004 « 004 004 10 10
15 11 11 10 o 11
l11 .11 .11 .03 .83
02 02 02 82 «@85

1,24
1,25

.94

ol1
11

<05
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APPENDIX D

SAMPLE OUTPUT FOR DATA CONSISTENCY AND ADJUSTMENT PROBLEM

SAMPLE PROBLEM==CONSTSTENCY AND ADJUSTMENT OF ZPR DATA

KSENS KADJST
1 2

MY MJ
24 19

XE(J)ed=1,MJ
«100000E+01 ,100000PE+0Q)
«1000M0E+A1 ,1000M0FE+01

.100000E+0Q}
«10P00VE+R1

YE(I),I=1,MT
«100070E+A1 ,10P0CVE+DY
«100000E+A1 ,1000NPE+N1
«1000M0E+A] ,100000E+0N)

«1000ARE+AL
«10P0PGE+N1
«100000E+N1

. 1000A0E+A)
«100000E+01

. 10R000E+N1
«10A00RE+N)

. 189000UE+A
. 1A0U0BE+N)
.10000BE+81

. 10P000E+A1
. 100000E+AY

INT PARAMETERS COMPUTED FROM EVALUATED DIFF PARAMETERS

YC(I)el=1,MT
«992000E+0P0 ,9924NPE+P0 ,9927ARE+0D
«1180MPE+21 ,125000E+01 ,126000E+M)
«FUDPOVE+AD ,1040PPE+DY ,967000E+AD

EVALUATED STANDARD ERRORS

KVAR
1

SX(J)ed=1,MJ
«10M0APE+AD ,1000ARE+PQ ,1000APE+AD
«107A00E+MD ,10PUPOE+AD ,600000E-01)

SY(I)el=1,MI
«40000A0E-02 ,40PVPPE~R2 ,400000E~02
+«350000E-01 ,350000E~01 ,35MPARE~A)
«2N000RE-Q1 ,20MP0VE~-A] ,50PPPRE=~01

CHI21
«502816E+03

REDUCED CHIZ2I
«2095ATE+02

CHI2F
.9091A1E+02

REDUCED CHI2F DISPR
«37B792E+01 ,378792E+01

. 1100AAF+01
<127000E +01
+9UNBBAE + MY

. 115000E+0}
. 10900A0E+NY

«1000P0GE+AD ,150BARE+ND
+49APARE~-A] ,60MDARE~A]

«25AVABE=01
.3500APE-01
.58AVAYE=-N1

+250000E=A1
.3500A0F =01

+1PPAAAE+ A
. 1ABBANE+RY

.10A0AAE+A1
. 10000ARE +A1

. 1240ANE+AY
+9ANANAE+AD

. 10AAAAE+AD
. 1ANBAAE+AD

« 35A00AF-01
«300000F=-01

.109200E+01
.10PBBBE+01

. 100000E+R1
«1000NOE+

«.920000E+00
.103000E+A1

«15ABAVE+A0D
«10AGABE+B0

.75AAQRE =71
.300000F =71

.100000PE+N}
+100000E+A}

,102000E+A1
. 100000E+81

.1000ARE+A]
.100000E+A)

., 10A000E+31
. 10A0ARE+D1

. 125000E+a1
. 9900ARE +AD

L1260PPE+A1
. 105000E+R1

.100000E+M0 ,10MYA0E +A¢
. 100000E+7A . 12000PBE+AB

.3506000E-01
,20ABBRE-01

.35A0BAF-01
,2APPARE-01

L10AAABE+AY

.10000PE+01
. 1000APE+01

. 116000€+ 91
. 109000E+A).

., 16090AYE +00

.25A000E=-01
.2000A0E-01
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APPENDIX D (cont)

Ji C(J1,J2),J2=1,H1 ADJUSTEDN VARIANCE=COVARIANCE MATRIX FDR DIFFERENTTAL PARAMETERS

1 o3930RE-A3  ,6A0N6E=-A3 ,25474F=-RA3 L,23R97€-A3 _34HAGE=-A3 ,41226E-A3 ,91392FE=-A3
'.2°FQSETFU =+35524E=A4 ,6Kh727E-04 =,75T741E=-P4 ,153A9F=A3 _46379E=-AS = 3A904E-06

2 L6AVALE.A3  ,23893E-0A2 ,346940E-83 ,94SAQE-A3 ,74204E-A3 _627ASE-A3 ,954K1E=Q3
=¢15532E-04 -,322R7E=A4 =,1B8B3RE=AT =,35A9RE=N3 = 92722F-04 =-,132A3E-0A4 «,23313E-04

3 L25874F=n3  ,36940E-A3 ,QA24HE-A3 ,14¥41E=A2 _3M219E=-@A3 ,29220E-A3 ,14274E=-02
=e11NAPE=-RY =, 17185E-A4 ,53326F=08 ,73756E=-A4 ,h1723E=-0AS =,1718AE=-0G =, 3ABK2E=-NG

4 ,23897E-A3 ,94SP4E-A3 ,14041E-A2 ,15@014F=-A1 ,hHAHBE=-U3 ,B4932E-A4 ,14592F=-02
=eISHIVE=AY =,31761F=A3 =,107A8E=A2 =,41659E=N3 = 19206E=-A2 =,27923E=-A3 =,492A3E=A3

S +34804E-A3 ,74244E-03 ,3M219E=-A3 ,HHBHKAF=-A3 ,75933E-0U3 ,4ART2E-B3 ,1Q3645FE=-02
=e23697E=04 =,2919YE=-AY =,4RSRI1E=-A4 =,1AU7BE=B3 =,39415E=-08 = 1225AE=-04 =-,24738E=A4

6  L41226E=A3 L62TRSE=-03 ,2922¢0E-B3 .RA932E-R4 ,4MAT2F=-03 ,96MRTE=-A3 =, 633R6E=03
=¢32156E=-04 =,5A774E=RY4 =,93753E=P4 =,13063E=A3 = 1A17SE=N3 = 18212E=-AQ =,33731E=-0A4

7  o91392E-A3 ,95461E-03 ,14274E-02 ,14592E-A2 ,18KUSE=N2 =,633RKE=-0A3 ,I178ASE=-01
=e630610E=05 ,24B27E-A3 ,20775E=N2 ,14763E=0A2 ,26456E=02 L17906E-A3 ,21705E=A3

8  ,362RBCE=-A3 ,62256E-N3 ,4huS3E-A3 ,32224E-A2 ,3R94T7E-A3 ,72330E-A3 =,12140E=N2
=+17371E=-A3 ,44SRIE=-0AY4 =,40292E-A3 v,64613E=A3 =_26154F=-0A3 =, 11092E-84 =,66451E=AS

9 LSB895E-P4 L4B116E-A3 ,19556E-A3 ,37120E=P2 ,103A6E=-083 ,3S5R1BE=-0A3 -,416BKE=N2
=+U91RSE=-A3 =, 13AR1E-NG +,S59US6E=A3 =,73158E=A3 = _25421F=-P4 ,23RS4E=-A3 ,S53637E=-03

18 -,965A3E-A4 =, 13553E-A3 =, A78SHE-A4 -,1136RE-P2 -,91UQBE-H4 =-,17752E-03 ,79177E-03
=+19516E=-0S =,6A749E~B4 ,19130E=-A3 ,1A314E=-03 _20452E=-03 _81692E-AS =, 4R8996E=-05

11 =,29495E=-P4 =,15532E-R4 =,11042F=A4 =,95R99F=AQ4 =, 23697E=04 =,32056E=-04 =,6361UE=AS
«37R4RE-P1 =,23942E-P4 -, AS5R2RE=-0AS =-,34616E=0S _32114E=A6 ,6A124E=-AS ,13452E-A4

12 =,35520E=-04 =,322R7E=-AY4 =,17105E=A4 =,31761E=A3 = 29190E=-04 = ,SB774E-A4 ,240U27E=N}
=+23942E-A4 ,37B4SE-A1 ,49486E-P4 ,HA3LTE=A4 /NUUBIE-A8 ,43771E-A5 ,67399E=0S

13 .66727E=-N4 =,1803RE=A3 ,53326E-A4 v, 1A744E-A2 =, 4ASAIF=-04 =,93753E-A4 ,20775E=R2
=-.85823E=0S5 ,49446F=04 ,10575F=01 -,12W33E=-02 =, 45013E=-02 =,3A7ARE-A3 = _37355F-A3

4 =,75741E=-n4 «,35R898FE=-A3 ,73756E-04 =,41659F=0A3 =, 1ANTAE=-U3 =,13A63F=-A3 ,14763E=A2
v.38416E-85 L6R367E-P4 -,12M33E-02 ,13394E=-02 ,102A3E-02 ,70696E-A4 ,A73R6E=-04

1S ,15369E=A3 =,92722E=04 ,61723F=05 =,192046F=02 =,39815E=N4 =,1A175E=-03 +26aS6E=-R2
«32114E=-R6 L440WA1E=-NG -,45413E-02 L1R2A3E=A2 ,4A199E=02 =,7A393F=A3 =,96359FE=-A3

16  ,46379E=-AS =, 132B3E=04 =,1714AF=08 =,27923E=-A3 =,1225AE=-N4 =,1A8212E=-84 ,17986E=-A3
«6A124E-A5 LA3771E=-PS =,3A7TANF=-A3 ,70A696F=04 =,7A393E=N3 ,3777HE=-A1 =,1R8290E=-03

17 =,309A4F =06 =,23313E=-P4 =, 3AKH2E-A4 =,89203F=A3 = 2473AF=-04 =,33731E-A4 ,217ASE=-03
0 13452E=-A4  ,67399E+PS ~,3735S5E-R3 ,B73R6F=P4 =,96359E=-A3 =, 1A29AE=-A3 ,37536E=-A1

18 =,321AGE=PQ =,18213E=-04 =,14335E-04 =,223R2E=A3 =,2514nE=-A4 =,4296HE=-A4 ,12722E=-03
=+318ASEvAq =,3166VE-A4 ,4A25vE-A4 ,SAB49F=-A4 ,7A374E-02 ,13916E-A4 ,L26288E=04

19 ,13262F=-n3 ,56812E-03 ,39¢0A1E-A3 ,SS583KE=-A2 ,25053E-¥3 ,6R4MLE-A3 -, 46B38E-02
=+ 9954VE-RQ =,82454E-04 =4,239R9E=A3 «,B82559E=A3 =_71723FE=-A3 = 43763E-A3 =,93084E-A3

o 362RVE=N3
=, 321R6E=Q4

.62256E-03
-.18213E-04

. 46AS3IE=A3
v, 14335€-14

. 32224E=-02
~,223R2E-B3

.3R947E-03
«,2514¢E=-0A4

. 72334E-03
«,8296KE-04

-, 1214vE=02
L 12722E-93

. 3436HE-R1
-.95450E-04

-, 742SNME=-02
-,349A9F-03

.71782E-03
-.31191E-04

-.17371E-A3
=.3180%E=0g

.Q45R9E=-AY
ey 3166UE=A4

-, 4A292E-03
L 4R2SUE-R4

=,68613E=-A3
+SARYIE=AY

-,26154E-03
.7A374E-04

-, 11092E-0a
.13916E-04

-.66451F=-05
«262BARE=-04

-.95450E=A4
+37AG1E-01

-.13310E-02
-, 93775E-04

+SAAOSF-04
«13262E=03

L4R116E-03
.56812E-83

. 19556E=A3
. 390R1F-A3

.37128E-02
.55836F=02

L1A3A6E=A3
«25653F=03

. 35810E=-A3
L 6RAAYE-A%

-, 816R6E-A2
- . 46N38E=02

-, 78250E=02
-, 13310F-02

L17801E-01
.SASARF-02

L 14718E-02
-.53671E-04

-, 491A5F-03
-,9954vE=-AY

- 14RRIE=-NY
-,32454F =0y

-.59056F=03
-.23989E-03

-, 731SHE-A3
-, 82559F=-A3

v,25421E=-04
-.71723E=-03

L23AS4F=03
-,43763€=03

.53637E-0A3
-.93uA4F-83

v,34969E=0A3
-,93775F=-04

LSRSABF=A2
. 1259AE-01

v, 965A3E=-Aa

-, 13553F=03

-.87850E-Ra

- 11368E-82

-.91098E-04

«, 17752E-03

. 79177E-03

.71782E-03

+14718E-82

. 3768801

-.19516E=-08S

-,6A749E-04

L19130F-03

.16304E=03

.2A452E-03

031692E-05

-.A8996E=-05

-.31191E-04

=4 S3671E-04




LT

K1

11

12

13

14

15

V2{X1.K?),

LUNASYE=RY
= 7261 LE=0%
-,2218 SE~n4

+U4983RE=AS
«16156E=-04
*«43529F=05

«2732SE=-0S
-.30712E=-04
+6R991E=-AS

-,35321E=-04
«64119E=-04
«22772€E=-05

.S1449E=-04
-.25117E=-a3
-, 40351E=-04

-, URBARSEwAY
e 7379kE=A4
«45630E=-04

-, 20766E=-04
«12978E=-02
«S6S92F =04

-, 41713E=04
=e52178E=04
«182S2E=-24

.53821E=-04
.31377E=-03
-,44285E=-04

-, 26h6RE=AS
»64VSIE=A3
-, 3845GE=85

-,72616E=-05
. 276A5E=A2
-.348ARE-04

-.32650E=-04
o« ISUAKE=AS
«24VRSE=-AY

«63293E=-04
=+ 72125E=05
-,20713E=-R4

«216SUE=2Y
=, 6R563F =03
-+ 17942E=-04

-, 13611E=-04
«89472E-A3

APPENDIX D (cont)

K2=1,M1 ADJUSTFL VARTANCF=COVARIANCE MATRIX FOR INTEGKAL PARAMETERS

.4983HE=05
=-.32651F=0y
=-.25U96E=n4

«2R2IIE=RY
.2P491F =04
+URIS9E=-AS

.26509F=04
.2AB9 $E=AY
.76330E=-05

«3A977F=-P4
«172RAF=-A3
+«25195E=-05

-.12666E-04
-,76478E=0Ab
v, 44673E-A4

v, 16559F =74
- IS3R6E=-AZ
»SAYAUE-AY

=.21776F=04
=-.24232E=-A3
«62613E=-04

. 1R36ME=0Y
»99725E-03
.2A194F =04

-.36012E-04
.73209E-03
-,48996E-0A4

«78293E=05
+U42SI1SE=R3
=.U42547E=8S

«16156FE=-04
+15006E=03
=.3A511E=04

«2AUIE=-AY
+10H29E=-02
+266UTE=AY

-, 4AUALE-AY
.78499E=0A3
-, 22917E=-04

«23272E=05
« IRY29E=-0Y
v, 19850E=-0y

+833ASE=-QAS
=+ 27344E=-A3

227 325F=25
.63293E=014
-, 836AR2E=-04

L 26SA9F -4
- 4A4R6E=AY
-, 6U459F =25

»31128E=04
-, 1AAGE=-A4
. 33554E=-04

=, 63411E=05
-, 13241E=-03
~o1610HE=-B3

«239A7E=05
«2A474E=-03
«21177F =04

+«5574SE=0Y
-, 2R¥12F-03
e CH2URE=03

=-,39354F-04
=o127R2F=-03
=o220S1E=-03

«32121F =04 "

«75776E=-03
+139A9E=-03

-.10866F 04
LIRGAUE=RS
=,95170E=R6

-, 65423E=15
o 123R9F=03
«291R3E=-04

-, 30712F=04
-.7212SE=0S
=, 30181F=-03

.2RR93E=-04
L TH499E-A3
. 733804E=-A4

-, 106AUF=-04
.1 107RE=22
-, 18673E=-04

=e63212E=05
«21752E=-03
e 72423E=-AY

~o1647T1E-RY
+238B1FvnS

-e35321F=-04
«21654F =05
-, 2”76R3E-04

«3RQT77E=-04
«23272E=0%
«43529E=-0S

-.63411E=-05
=.63212€=0S
+6bR991E=-AS

. 12476E=02
=, 96554E=A4
. 22772F=05

«h2436E=-03
«31374E=-04
-, 40351E=-A4

«3173UF=-A3
J44722F=03
+45630E=-AY

+4R9SSE=-A3
=eb2251E=A3
«H6S592F=-04y

«25528F=-03
«12969E=-03
«1R2S2E-RY

-,11437E=83
-,12141F=03
-, 4n285E=04

-,2M734E=03
.B1PASE=03
- 3R4GHE=AS

«6U4119E=-04Q
=+b6RS63E=03
=-.348RRE=-B4

«172RRE=-A3
«90429E=-05
+24UARSE-AQ

-.13241E=-03
«21752E=-23
-.20713F=-04

-.96550E=-A4
«2THAGE=12
v, 179U2F=-04

¢ 33267E=-03
«11767E=02

+S1N09E=N4 = 4ARRSEwAY =, 20766E=-04 =,41713E=-04

=, 13H11E=B4 =, 65RA3E=-AS

= 12606F=04 =,16559E=-04
+H33ASE=-AS =,77RS9E=-BS

.239A7E=-B5 ,SSTUSE=AS
- 16471E=04 ,1A614E=04

oh2436E=-A3 ,31730E-A3
«33267E=03 =,12792E=-A3

938U3E-B3 ,BAIRUE-AT
-.11598E=083 LU49A22E=-A4

JARIRYE-U3  ,19471E=-A2
=-,50596F=0A3 ,27877E=-A3

LGIAAZE=U3 ,1RUSTE=-A2
LU3637E-A3 L 1B166E=-B4

e21118E=04 =,346279E=-A3
+72701E=P4 L 669R4E-BY

e1R117E=M3 =,23616E=-A3
+A623UE=-AY4  ,6h4SSEwBY

=-,37849E-A4 ,59643E=-03
=, 36N1UE=-03 «, 1A794E=-0]

-,25117€E=-03 ,7379BE-04
oB9UT2E=-B3 =,15296E=-A3

= 7H4TAE=Ab =,153A6E=A3
-.2738GE-A3 =,92R87E«M6

+2R4THE=-B3 ~,20R12E=-B3
+23RA1E-A3 ,618ARSE-AQ

+34374E-04 ,44722F=03
+117THTE=-A2 ,297R4E-B4

-,11598E=83 =,50594E-A3
+27RA3E=-0A2 =,57284E-Mq

«S7399E=-0A4

=.21776E=04
«27750E=-0S

-,39354E-04
-.16294E=0A4

+4R9SSE=-A3
+2R922E-~0B4

+438A3E=-AT
=-,99172E=-85

. 10USTE=-A2
. 1AR93E=A3

«17354E=-02
o 31923E=-03

-.40765E=-A3
-.5257HE-04

-.64R23E-04
.28551E=04

-.38327E-04
-.56948F=-04

«12978E=-8B2
«11062E=-A3

-.24232E-03
-¢S3UN3E=04

=, 127R2E=-083
+68163E-04

-, 62251E=-03
-,62848E=-04

+43637E=-A3
e 11126E=-03

=+ 36R25E=-AY

+1836UE=-A4
-,21711E=-R4

.32121E=-A4
. 19GBQRE-A4

.25528E=03
-, 2A6R9E=-23

+2111RE=-BY
«1354S€-03

-.36279€-03
L42956E=-04

-,4n765E-03
-, 461ATE-83

o 1P8A9F =02
.SBR74E-AY

¢ 75274E=-03
«71696E=-84

«2A635E=-0A3
+75573E=-A4

-.52178E=-8B4
-,22325E-83

.99725E-A3
-, 49622E-04

LTS776E-03
-, 119A9E-24

.129A9E=A3
bHA16E=-04

«727A1E-04
“,12767E=03

+53R21F =AY
+S52471E-BY

-.36012E-04
-.15977€-04

-, 10466E=04
-, 16039E-A4

-,11437€-0A3
-.43284E-04

L1A117E=-03
. 12850E=-A3

=, 23616E=03
-.21959E-03

- bUR?3E-AU
-,24783E-83

,75274E=-0A3
«.B96B4E-AY

. 1A296E=-02
.77882E-04

.2A183E-03
LUR321F-04

«31377€=-03
+93321E-84

,7320M9E-03
- 132R9E-03

L9R964E=B3
L77933E=05

-,12141E-03
- .79U9RE-0S

LA623AE-04
L47294E-R4

-, 286HRF=05
.2R167E-04

.78293E-05
-.11538E-04

«,65423E-05
-.865ASE-AS

-, 2A736E-03
g 42251E-04

-.37849E«A4
.783A3E=04

.59643E-03
-.1750SE.03

- 3A327TE=04
- 19165E~0A3

.2P635€-03
-.71936E-04

+2A1A3E=-A3
«2R6HTE=RY

L123R9E=B2
L4a57M2E-0A4

. 6405ME=-A3
.ShS13E=04

.G2515E-03
-.110A2E-03

L12389E-03
« 15928E-84

.B10ASE=-A3
-, 29816E-00

«,36810E-03
.4645SE=B4




8¢

16

18

19

28

21

22

23

24

=,22775E=-05

-,65803F=-3S
“,15296E-03
-+ 12344E-03

+«ST399E-04
.11062E-03
«26037E=03

-¢36825E-04
ga22325E-03
-,51173E-04a

+52471E-04
«93321E-04
-.95164E-04

.28167E-04
.56513E=-04
.36878E-03

=,22683E-04
-,34808E-04
24P316E-03

=-,25396E-04
-+ 38S11E-04
+386ASE=-A3

-,83682E-04
-,37181E-043
o 37384E-04

“y22683E-R4
«,33808E=04
.an316E-a3

-,25198E-05

-.77859F-95
-,92847F=06
-.13657E-03

. 27750F-A5
-.53483F-04
«2RBATE-AZ

-,21711E-04a
-, 49622E-04
-,56617E-A4

=, 15977E-A4
-, 132R9E-A3
-, 1A529E=-A3

-,11518E=-04
-, 11402E-03
LA0793E-A3

+43529€-85
o 24VASF=-0AY
.3460SE-A3

«48159E=-0AS
2 2664T7E-04
.49358E-03

-, 643459E-05
+ 733R3E-04
+41362E-04

«43529E-05
+200BASE-04
+346085E=A3

-, 167R4E-03

.1A614F=08
.61885F =AY
.44999E€-03

-, 16294E-04
L6R163E-0a
.32521E-na

. 194RVE-N4
-, 119A9E-A4
L4B199E-03

-, 16039E-04
«77933E-05
-,22393E-94

-, 86505E-0%
-, 159248E-34
L201A4E-AU

+68991E-05
-, 20713F=-04
+373R4E=-R4

. T6330E-05
«,22917E-04
LU41362E-04

.33554F-04
-, 186T3E-04
.ARTR6E-A3

«6R991E-AS
-, 28713E-04
«37384E«84

=.,2?7TT5E=-0A5

=.12792F=-03
.297R4E-0Q
-.12344E-03

.2R922E-74
-, 6PBHRE-04
.26037€-A3

-, 2RHA9E=-AT
+h6B16E-04
«,51173E-04

=,33244E-04
-, 7949RE=-0S
-,95164E-04

-, U2251E-04
-,29416E-A4
.36870E=-03

«22772E-05
-y 1 7T94U2E=-BY
«30316E-03

.25195%E-AS
-, 1985¢E=-AY
«UN6ASE-A3

-o 16108E=-0A3
«720823€-04
« 3T3RUE=RQ

«22772E-0S
-y 17942E-04
«4A316E-03

APPENDIX D (cont)

LA9RP2E-A4
«,57204E=04

991 72E=085
.11126E=03

«13545E-03
-, 12767E-063

.12WSAE-A3
L47290E=0a

+7830A3E-084
LU46USSE=-RY

-, 4A3S1E=NA
-,22775E=05

«,U43643E=0A4
«.25198E=#5

L21177E-04
e, 167AUE=03

-o4A351E=02
«22775€=05

2 27877E=-03
«16965E=-A2

+17893E-A3
.13235E-92

.32956E-04
.36550E=83

—o21959E-03
-, 10452E-03

-, 175ASE=A3
-, 25164E=0A3

+45630E=-AY
-,123443E-A3

+5BURAE-BUY
-, 13657E=03

0 28242E-73
. 43999E-83

+45630E~0B4
-,12344E-03

. 1A166E=A4
«13235E-02

+31823E-A3
.17651E=0R2

-, 46107€E-03
-, 15491E=-A3

-, 24783E=03
«.199ATE=A3

-, 19165E-A3
.QQQQZE-GQ

«56592E=04
+26837E-083

262613E-74
+288ATE-03

-, 22051E-83
«32521E-04

+56592E=04
,26037E=03

+669RAE=04
« 36558E-03

-, 52570E=-74
=¢15491E=n3

+SRATAE-A4
.T6344E-83

=, 89684E-04
«28254E=N3

-, 71936E-04
.23396E=03

«18252€-04
-.51173E-84

.27193E-A4
-.56617E=84

. 139P9E-03
LGR199E-A3

. 18252E-04
- 51173E=04

+66455E=04
-, 17a52E-03

.28551E-04
-.19987E =03

.T1696E=04
,28254E=A3

L TT8R2E=04
L32815E-03

J2B6HTE-04
,22615E-03

-, 4a285€-04
«,95164E=04

- UR9IGE-A4
- 10529E-03

-, 9517BE-N6
=,22393E-04

-, Ua285E=04
- 95164E=B4

-, 18794€=04
« 2516403

«,56948E-04
. 944a2E-04

« 15573E«R4Q
23396E-A3

L48321E-04
+22615E-03

L4STA2E-04
L66230E-03

-, 38056E=05
L36870E-03

-, 42547E-05
L 48793E-03

229103E-04
+2A104E=-04

-, 38456E=05
.36878E=83
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APPENDIX D

SUMMARY FOR DIFFERENTIAL PARAMETERS

XE(I)
1.00000E+10
1.0000AE+00
1.00000E+00
1.0000AE+20
1.70000E+80
1.7090NE+00
1.0000PE+0Q0Q
1.87000E+Q0
1.70000E+D0
1.00000E+0D
1.00000E+QQ
1.00000E+00
1.70000E+09
1,00000E+00
1.AAPP0E+0Q
1.0000AE+B0
1.00000E+00
1.00000E+00
1.00000E+00

MJ
19

MK CHI2]

SX(1)
1.P000NE=-0D1
1.00A00E=-01
1.00000E-01
1.0000PE~01
1,50000PE-01
1.00000E-01
1.50000E-01
1,70000E=-0D1
1,00000E-01
1.,90000E-01
1,00000E=-01
1,00000E-01
6.A0A0RE~0?
4,00000E=-02
6.,70N0VRE=-02
1,00000PE=-01
1.70@00E=-01
1.70000E-01
1.70A0AE=-01

CHIDI

43 5,0282E+02

XC(1)
1.,00000E+00Q
1,7000AE+00
1.70000E+0Q
1.00P00E+0Q
1.,70ADAE+0Q
1.M0000E+0A
1.00000E+00
1.70900E+0@
1.0000A3E+00
1.70AQ0E+00@
1,00000E+0Q
1.,00000E+00Q
1,00000E+00Q
1.70000E+00
1,00000E+00Q
1,00000E+0@
1.70A0AE+00
1.,70M00E+00
1.00P00E+09

CHIZ2F
9.,A910F ¢+

a1

RELXE
a,
a,
a,
a,
a,
a,
a,
a,
a,
a.
a,
a,
2,
2,
8.
a,
e,
a,
a,
CHIDF
2,3247E+01

(cont)

RELXE& 22

XA(T)
9,78A12E-01
9,32236E-01
9,94686E-01
9,88789E-01
9,61475E-01
9,79102E-01
R.39995E=01
1,ASRB3E+00
1,06331E+00
9,79160E-A1
1,AA134E+00
9,95451E-01
1,13790E+70
1,10604UE+00
1,16569E+00
1,AN909E+00A
1,AARBE+AN
9,95512E-01
1,M8546E+00

SXA(T) RELXF
1,98243E-82-2.19885E=01
4,BBBOTE=826,77641E=01
2,00620E=02-5,3942AE=02
1,22533E=81=1,12109E=01
2,75562E=02-2,56R35E=01
3,09979E=02-2,A8985E=01
1,33436E=B1=1,R6670E+00
1,85363E+81 5,88324E-01
1,33422E=01 6,33865E-01
1,94A11E-81-2, A84B2E=01
1,94546E=01 1,34117E=02
1,94538E=01-4,54924E~02
1,02B34E»B1 2,29827E+00
3,66005E=-02 2,65103E+80
6,94256E=02 2,7614TE+80
1,9436PE-01 9,88541E=02
1,93743E-81 B,B2264E=02
1,9452BE-01-4,48831E=02
1,12206E+81 B,54607E=01

RELXFa&?2
4,83494E.02
4,59197E-01
2,90974E-03
1,25684E=02
6,59644E=02
4,367T4T7E-B2
1,13785E+00
3,46125E+01
4,00771E-021
4,34316E-02
1,79872E=-04
2,06956E~03
5,2B204E+00
7.02798E+00
7.62574E+00@
8,25446E=03
7.78390E=-03
2.P1449E-03
7,30352¢-01




o€

APPENDIX D (cont)

SUMMARY FOR INTEGRAL PARAMETERS

YE(T)
1.0000AE+00
1.70A0PE+00
1.70APAE+00
1.00000E+00
1.00000E+0?
1.00000E+00
1.0000PE+nA
1.70000E+00
1.0000AE+00Q
1.20A0GE+ U0
1.7000RE+0QQ
1.7AN0AE+00
1.00AV0BE+UA
1.70000L+90
1.00000E+00
1.7000AE+00
1.70A0RE+DD
1.00000E+00
1.000Q0E +70
1.70NP0BE+90P
1.70A0AE+00
1.00000E+00
1.00A00E+U0Q
1.00000E+00

MK
a4

MK CHIZ2]

sY(1)
4,00000E=03
4,00000E-03
4,000A00E=-03
2.,5000RE-02
2,50000E-02
3.50000AE~12
7.50000E=02
3.,50000E=-02
3,59000E=02
2.50000E=-02
3.50000AE=02
3.5000AE~02
3.5000AE=-02
3.50000E=-02
3.50000E-02
3.A0A00E=-02
3.00000E-02
2.A0000E=-02
2,MB000E-02
2,AP0VAE=-02
2.A008NE~02
2.0000AE=-02
S5.A0000E=-02
5.00000E=~02

CHIDI
5.A2B2E+

43 5,M282E+02

YC(1) RELYE
9,9200ME=-01-2,A0000E+0P
9,9240PE=-V1~1,90000E+00
9,92700E-A1~1,82500E+20
1.10000E+20 4,00000E+0P
1.,15000E+00 6,00A00E+00
1,24000E+v@ 6,B5718E+0Q
9,”7000NE=-Y1=1,06667E+00

1.25000E+0Q0
1,24000E+00
1.16000E+07
1.1800AE+07
1.,25000E+00
1.,26000E+00
1,27@00E+0Q0
1.,79000E+09

T.14286E+00
6,85714E+00
6,40000E+00
S5.14286E+00Q
T.14286E+00
7.82857E+00
7.71429E+007
2457143E+00

9,00000E-01-3,33333E+00
1,03000E+07 1,0000PE+0DP
9,90A00E-01-5,00000E-01
1,A5000PE+0R 2,50A0AE+00
1.,A900AE+0P0 4,5000PE+0P
9,40000E=01~3,00M00E+0@
1.04000E+00 2,00000E+00P

SUMMARY FOR COMBINED PARAMETERS

MK CHIZI

43 S,M2R2E+P2 S5,M2B2E+02 9,M910E+al

CHIDI

9,6000AE=-018,A0APAE-01
9,40000E=-01-1,20R0AE+AA
CHINF
82 6.7663E+
CHI2F
9,@910E+01
CHI2F CHIDF
9,A910E+

RELYE##2
4,PPB0RE+AN
3,61000E +A0
3,33063E+00
1,6000AE+01
3,60A0AE+01
4,78204E+0R1
1,1377BE+00
5,10204E+081
4,70204E+01
4,09600E+01
2.64890E+01
S, 10204E+01
5,51837E+A1
5.95102E+81
6,61224E+080
1.,11111E4+01
1,M0A@MAE +00
2.50AANE-01
6,25000E+00
2,0250RE+01
9, APRAAE +0A
4,AP000E +00
6,40M3AE=01
1,4400AE+00

21

DISPR

YA(T)
9,9271BE+A1
1,AA151E+00
1,AP187E+00
9.90511E-01
1,A1368E+00
1,P8997E+80
8,53378E=01
1,A5249E+00
1,A3574E+00
9,36055E~21
1 .A274RE+0VA
1,A4182E+0A0
1.,P8629E+80
1,A238RE+00
9,59831E=01
9,42179E«01
1,06012E+a0
9,74651E=01
1,A325RE+00
1,A5389E+00
9,24455E=01
1,A228AE+80
9,61A06E=01
9,24455E-01

A1 3,7RT79E+00

SYA(ID) RELYF
6,6B20BE~03~1,82041E+00
5.,31330E-03 3,76681E-01
5,57924E-0%3 4,66705E-01
3,53207E=M2=3,79562E=01
3,76338E-02 5,47022E~-01
4,41262E-82 2,57855E+00
4,16583E-02~1,95496E+00
3,28765E=02 1,49961E+00
3,17746E-02 1,02120E+00
3,51980E~»02-2,5578AE+00
5,25484E-02 7,85003E-01
3,29A7RE=A2 1,19498E+00
3,32832E-02 1,3225RE+00
5,27346E-02 6,82303E~01
5,2B047E=-A2=1,1476BE+00
4,11891E-02=-1,92737E+00
4,20133E-02 2,M0387E+0Q
2,76305E=02=1,26TU6E+DD
1,B0042E-02 1,6288B0E+D0
2,57353E=-02 2,69436E+00
2,M078BE-D2-3,77723E+00
2,2214BE-02 1,14009E+00
2,20875E=02-7,79A72E=01
2,0078BE~-02~1,51089E+007

RELYFas?2
3,31390E+00
1,41BBRE=-01
2,17813E=-01
1,84067E-01
2,99233E-01
6,60774E+00
3.8218RE+00
2,24BB3E+00
1,04284E+00
6,54233E+00
6,16230E=01
1,42797E+00
1,74922E+00
4,65537E-01
1,31718E+080
3,71474E+00
4,01548E+00
1,60646E+09
2,65299E+00
7.25955E+00
1,82675E+01
1.,29980E+00
6,06953E=-01
2,28279E+00



APPENDIX E
SAMPLE INPUT FOR SENSITIVITY CALCULATION

SENSITIVITY ANALYSIS, 41=GP NEUTRON TRANSPORT IN IRON SPHERE

SENSITIVITY ANALYSIS,

KSENS
°

DATA FOR SENSITIVITY ANALYSIS

NYR
1

2 1 ] ]
1 6
DATA FOR SENSTTIVITY ANALYSIS CASE ONE OF ONE
2 1 ] ] 1 ]
8 73
. @848 E+00
2 74 a1 ] 17 6
6
8,01443E-N9
APPENDIX F

SAMPLE QUTPUT FOR SENSITIVITY CALCULATION

KADJST
1

NXR
6

L3¢

KGEOM

MJ
a ("]

NR
2 1

CASE ONE OF ONF

NSAVE
]

IMMINCIR), IMMAX(IR), IR=1,NR

73

DENS(IR), TR21,NR

«84BV0OQE=-01

KFLUX
2

NM
74

NG NLR

41 ")

(RM(TIM), TM=1,NM+1)

INPUT RADTI
n.
«340000E+N1Y
«20AVRAE+ N
«150000E+n2
« 21 PNANE+N2
.27200A0E+RA2
+3300AVE+R2
«3900R0F+02
+45AQAVE+N2
«S100A0E+Q2
+STNRRVE+A2
«6300A0E+A2
+690000AE+@2

(J),J=1,7%
«25A0A3E+0Y
+UBAVARE+BY
«10AVAAF+02
«16P0AVE+B2
«220000E+A2
+28MANAGBFE+B2
« 3UBVNGE+R2
+30ABRAGE+ VL
+U46NVAVFE+R2
«5200AVE+A2
«S8AYAAE+R2
+64ABAVF+02
«70ARARF+02

+S0002YE+QQ
«SVUARAVE+AY
+1103000F+02
. 170000E+B2
«23000UE+N2
«29700ABE +02
«350000E+A2
«410800A0E+RC
LAUTAVAGE+ M2
«53AV0BE+A2
+S9N0NBF +02
.650000F +02
«71A0RBF+A2

(QBCOSA(TA), TA=1,NA)

COSINE(I),I=

1,17)

17

« 7S5AVQAQE+AA
+6UROAGE+DY
«120000E+R2
«18A0VYE+R2
«24AVBVE+ AL
«30R0AAE+A2
« 36AVAQYE+N2
JU2RINVE+ B
+480VABF+A2
+SUBVANE+ A2
«OVRANVE+AL
+66BUANE + A2

41-GP NFUTRON TRANSPORT IN JKRON SPHERE

KTIMS

NL

. 1000N0E+A1
. TUAVAVE+AL
. 1308000E+QA2
« 19040VE+R2
.25000UF + 012
«3100AVE +02
«3700AVF+R2
+430000E+N2
+4900AVE+A2
«5S5ANABE+A2
«61BUORE+R2
. 67PAAVE+N2

ALVIN
ALVIN
SENSI
SENSI
SENSI
SENSI
SENSI
REDFLX
CROSEC

NT KTYPE
a

. 2ABNANE+ QY
«ANBAAAF+ Y
. 14A00AAF+A2
< 2UANABF+ B2
« 26U1AANE +A2
« 32ANABE+R2
« 38AXANE+A2
JHUNBABF+02
«SBBNANE +72
+56A0ANF+ 2
L hPAVANF+A2
+HBONAABF+ A2

R

=.1070P0E+01=,982031E+AV=-,91A5R2F +A0~
=e536897E+00=,391194E+AB=,133446E+00
«6SATSH6E+PB ,T74T7468F+03@ .BR3IIB27E+0A0

(QWTSA(TA),TA=1,NA)
WEIGHT(IV,T=1,17
9. «2TB771E=01
«628440VE-01 ,997613E-01
«523245E=-A1 ,U454261F=01

«367965E=-01
. 144526E+090
JU02441F=01

«8330B27E+00=,T4TUGBE+PB=_ 650TS6F+AN
«133446E4P0 ,391194E+00 ,536R97F+90
+9105A2E+A0 ,982031E+00a

JUN2U41E=-A1 ,U454261E=-01
«144526E+00 ,907613E-01
«367965€F=01 ,270771E=-01

«523245F =01
62RULAF=A1
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APPENDIX F (cont)

(RM(IM),IM=1,NM+1)
INPUT RADII(J),Jd=1,75
4. «250000E+00
«3000NUE+B1 ,400000F+0A}
«90000VE+21 ,100000E+B2
¢ 1530A0E+A2 ,160V00GE+B2
«2100QRE+R2 ,220000E+N2
«270ANUE+N2 ,2800AQE+A2
«330VQVE+A2 ,340Y00GE+B2
«39C000E+Q2 ,4P0000E+A2
+U4S5000VE+R2 ,460000E+0BR

«500000E+00
«50NB00AE+0B1
«110000E+02
«170000E+0B2
+230000E+02
+290090E+Q2
«350400E+02
.410000E+02
«370000E+02

. 750070E+080
.60BUABE+N]
. 120400E+82
. 1800GAFE +82
. 240VBAE +012
« 300AAGE + 02
«36000NE+02
.020000F +42
. 48000AE+02

«10AUAVE+A]1 ,2000ANF+A
. 7T0000VE+N1 _RANBABF+0Y
. 130000E+R2 ,14AVPNF+A2
«1900AUF+A2 ,20ARAUF+0A2
«25MV0BBE+A2 ,2600ANE+02
«31A3AAF+02 ,32000AE+R2
« 370000E+A2 ,3800AAF+02
L U30000E+02 ,440000F+02
«49700AE+A2 ,SOAGNAF+02

«51A00VE+B2
«5700003E+A2

«630000E+082
«6900NAF+02

«520000F +aA2
+58000VUE+0B2

.640000E+QA2
« 700000E+R2

«530A0N0E+R2
.5900A0E+A2

«65000AF+A2
«71P0BNGE+A2

(QCOSA(IA),TA=1,NA)
COSINE(I),I=1,17)

COSINES MULT BY ={,

«100000E+Q1

IN REDFLX

»SUABABE+A2
«6000ABE+B2

»66ABBBE+D2

FOR ADJOINT FLUX EXPANSION

«55AVBRE+A2 ,56NANNAE+A2
«610008BE+0B2 ,62A0VANE+A2

L6TAYAVF+A2 ,6B80UANE+A2

«982031E+RL ,910582E+00 ,B33027E+00 ,T4TU6BE+AD ,65AT56F +@0
«536897E+080 .391194E+00 ,133446E+N0=,133446E+00=-,391194E+00=-,536897F+00
= 650756E+R0=,T4TU6BE+NV=,B3302TE+0V8=-,91A5R2E+0A0~,982031F+0n

(QWTSA(TA), TA=1,NA)
WEIGHT(IY, 151,17

Q. «2TA7T1E=01 ,367965E-01 ,402441F=-01 ,454261F=-01 ,523245F=01
«628440E-01 ,907613E=01 ,144526E+400 ,144526F+A0 ,947613E=-01 ,62R44AF=-0)
¢523245F=01 ,450261E-0A1 ,402441F-A1 ,367965E-01 ,270771E=-01

NLCX
6
PA FE OF Pu=-P8,41GP CROSS SECTIONS ADJ TO EXP VAL AFTER CHANGF IN CRANGE
P1 FE OF P@=-P8,41GP CROSS SECTIONS ADJ TO £XP VAL AFTER CHANGE IN CRANGE
P2 FE OF P@-P8,a81GP CROSS SECTIONS ADJ TO EXP VAL AFTER CHANGE IN CRANGE
P3 Ft UF P@=-P8,41GP CROSS SECTIONS ADJ TO EXP VAL AFTER CHANGF IN CRANGE
P4 FE OF P@=-P8,41GP CROSS SECTIONS ADJ TO EXP VAL AFTFR CHANGE IN CRANGE
PS5 FE OF P@-PA,41GP CROSS SECTIONS ADJ TO EXP VAL AFTER CHANGE IN CRANGE
R

«801443E=-78



APPENDIX F (cont)

SENSITIVITY PROFILE

GROUP

OQENCAEWN -

SENSITIVITY

*1.52696E=04
-1,02585E-82
~T,16549F=03
-4,266TVE=03
1,75711E=83
-1,63075E=-03
-1,1049SE=03
-1,15348E=03
*1,15511E=03
«9,72420F -84
-2,16578E=-03
-1,46277€=03
-2.03188E=-83
«2.80632F=03
-3,9402%E-83
«9,26679E=-03
-3,24802E-02
©5.23364E=02
-9,26852E=-03
-2.59525E=-02
-3,21815E=03
-1,996AS5F=A3
-4,84289E=04
-3.998R5E=A4
-1.835A8E=-A4
-1,6B276E=04
-1,.53271E=04
«1,35074E=-04
*1.86397E=-04
-7.35754E+05
-4.86675E=05
-1,55001E=85
«4,99287E-06
-1.192083E=06
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