

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W-7405-ENG, 36

Printed in the United States of America. Available from National Technical Information Service U S Department of Commerce 5285 Port Royal Road Springfield, VA 22151 Price: Printed Copy \$4.00 Microtiche \$2.25 •

٠

ł

•

:

· •

•

.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Genergy Research and Development Administration, nor any of their employees, nor any of their contractora, subcontractors, or their employees, makes any werranty, express or implied, or assumes any legs il liability or responsibility for the accuracy, completenes, or usefulness of any information, apparatus, product, or process disclosed, or reported that its use would not infringe privately owned rights.

XPECT—A MONTE CARLO PROGRAM TO PREDICT THE EXPECTED-TIME-TO-NEXT-FAILURE IN CONTROLLED THERMONUCLEAR RESEARCH SYSTEMS

by

G. P. Boicourt

ABSTRACT

The ability to predict failure rates is of increasing importance in controlled thermonuclear research (CTR) engineering as the systems increase in size. If a large CTR system is assembled -without an examination of failure rates, its usefulness may be limited by insufficient time between failures. The usual mean-timebetween-failure calculation does not apply here. Instead, an -analogous quantity, the expected-time-to-next-failure, is defined and a Monte Carlo program (XPECT) is given for its computation. The computation takes advantage of the fact that failures in present CTR systems occur predominantly in developmental components being used in large quantities.

I. INTRODUCTION

The ability to predict failure rates is of increasing importance in controlled thermonuclear research (CTR) engineering as the systems increase in size. A large thetapinch system may contain thousands of identical components, many of which are hardly beyond the development stage and whose failure rates may be fairly high. If such a system is assembled without due regard for these failure rates, it quite possibly will not operate satisfactorily.

The usual mean-time-between-failure calculation does not apply here because it assumes each component to be on the flat part of its failure-rate curve. This means that early-failure components have been eliminated before the system is assembled. Unfortunately, because of time and expense, some critical components in a large CTR system may not have been tested sufficiently to reach the flat part of the failure-rate curve. Usually only a few types of components determine the failure rate in CTR systems, and this makes possible the Monte Carlo calculation of an analogous quantity, the expectedtime-to-next-failure, provided the failure distributions of the critical component types are known.

II. THEORETICAL PRELIMINARIES

We consider a probabilistic series system, that is, one in which the failure of any component causes the system to fail. The failure rate r(t) of any system is given by

$$\mathbf{r}(\mathbf{t}) = -\frac{1}{R_{g}} \frac{d\mathbf{R}}{d\mathbf{t}} , \qquad (1)$$

where R_s is the system reliability function. For series systems,

$$\mathbf{R}_{\mathbf{s}} = \prod_{\mathbf{i}=1}^{N} \mathbf{R}_{\mathbf{i}} , \qquad (2)$$

where N is the total number of components and R_i is the reliability function of the ith component. R_i is defined to be

$$R_{i} = \int_{t}^{\infty} f_{i}(t') dt' \quad . \tag{3}$$

Here $f_i(t)$ is the failure probability density of the ith component.

From (3),

$$\frac{dR_{i}}{dt} = -f_{i}(t) \qquad . \tag{4}$$

Also,

$$\frac{dR_{s}}{dt} = \sum_{i=1}^{N} \begin{pmatrix} N \\ \Pi \\ j \neq i \end{pmatrix} \frac{dR_{i}}{dt}$$
$$= -\sum_{i=1}^{N} \begin{pmatrix} N \\ \Pi \\ j \neq i \end{pmatrix} \frac{dR_{i}}{dt}$$
$$f_{i}(t)$$

Hence,

$$-\frac{1}{R_{g}}\frac{dR_{g}}{dt} = \frac{1}{N} \cdot \left(\sum_{i=1}^{N} \left(\prod_{\substack{j\neq i \\ j=1}}^{N} R_{j} \right) f_{i}(t) \right)$$
$$= \sum_{i=1}^{N} \frac{f_{i}(t)}{R_{i}} \cdot$$

so, from (1),

$$r(t) = \sum_{i=1}^{N} \frac{f_i(t)}{R_i}$$
 (5)

In analogy with the mean-time-to-next failure, defined to be the reciprocal of the constant failure rate of an exponential distribution, we define the expected-time-to-nextfailure by

$$ETNF(t) = \frac{1}{x(t)}$$
(6)

Using the equivalent notation $R_j(t) = 1 - F_j(t)$,

$$ETNF(t) = 1 / \sum_{j=1}^{N} \frac{f_{j}(t)}{1 - F_{j}(t)}$$
 (7)

 $F_{j}(t)$ is the unreliability of the jth component defined by

ı

$$F_{j}(t) = \int_{0}^{t} f_{j}(t')dt'$$

it is the probability that the j^{th} component has failed at some time equal to or less than t.

Thus, the problem of calculating the expected-time-to-next-failure involves merely the mechanics of evaluating the series in Eq. (7) at each time point desired. If the system consists of thousands of dissimilar components, this evaluation would be very time-consuming or even impossible. However, only a few types of critical components are found in CTR experiments, and evaluation of the sum in Eq. (7) is considerably easier because one evaluation of f_j and F_j at each time step suffices to evaluate the contribution of all type-j components that have survived from the initial time point. The required computations are detailed after the following notation.

- J = number of component types
- $N_k(t) =$ number of original units of the kth type at time t
- $M_k(t) =$ number of replacement units of the kth type at time t
- f_{uk} = probability density associated with all remaining original units of the kth type
- f_{ik} = probability density associated with the ith individual replacement unit of the kth type
- F_{uk} = unreliability of any remaining original unit of the kth type

$$F_{ik}$$
 = unreliability of the ith individual replacement unit of the kth type

- p_{ik} = a posteriori failure probability of any original individual unit of the kth type
- P_{ik} = a posteriori failure probability of the ith replacement individual unit of the kth type
- t_{ik} = time at which the ith individual unit of the kth type began operation
- t = time of operation of the system.

A constant total number of operating units is assumed and is given by

$$N_{o} = \sum_{k=1}^{J} \left(N_{k}(t) + M_{k}(t) \right)$$

This implies that each sum. $N_k + M_k$, is a constant: thus, when an original unit fails, N_k is reduced by one and the number of replacements M_k is increased by one.

In the notation just defined. Eq. (7) can be written

$$ETNF(t) = 1 \left/ \left(\sum_{k=1}^{J} \frac{N_{k}(t)f_{ok}(t)}{1 - F_{ok}(t)} + \sum_{k=1}^{J} \sum_{i=1}^{M_{k}(t)} \frac{f_{ik}(t - t_{ik})}{1 - F_{ik}(t - t_{ik})} \right)$$
(8)

Although the sum in Eq. (8) looks more complicated than that in Eq. (7), its computation is actually much simpler. Instead of computing $f_{ok}(t)$ and $F_{ok}(t) = N_k$ times at point t, we need only compute these values once at time t. Moreover, if we use a constant time step Δt .

$$t_{ik} = t - n\Delta t \tag{9}$$

for some n. At any time n will be known, so if the values of

$$f_{ok}(n\Delta t) / (1 - F_{ok}(n\Delta t))$$

are saved, much computation can be avoided. Computation of this ratio is quite timeconsuming for certain types of statistics, so this storage strategy can save large amounts of computer time. The required computations of f_{nk} and F_{nk} will be treated later under the individual type of statistics.

The next concern is the computation of $N_k(t)$ and $M_k(t)$. A short time step Δt is chosen so that no more than one component is likely to fail during the interval $(t, t + \Delta t)$. For pulsed CTR systems, this interval could be a single shot. Then we calculate the probability that a failure will occur in the interval $(t, t + \Delta t)$. assuming all components to be working at time t. This probability is found as follows. The probability that a given unit of type k did not fail is $q_{ijk} = 1 - p_{ijk}$ if the unit is an original unit, or $q_{ik} = 1 - p_{ijk}$ if the unit is a replacement. $p_{ijk}(t)$ is the a posteriori failure probability for an original type-k unit in the time interval $(t, t + \Delta t)$, and is given by

$$P_{ok}(t) = \frac{\int_{t}^{t+\Delta t} f_{ok}(t') dt'}{1 - F_{ok}(t)}$$

The $p_{ik}(t)$ represent the a posteriori failure probabilities for the replacement units and can be obtained by use of Eq. (9) from the stored $p_{uk}(t)$ for earlier times.

The probability that the entire system worked is

$$Q_{g} = \prod_{k=1}^{J} \begin{pmatrix} N_{k} & M_{k} \\ \Pi & (1 - P_{ok}) & \Pi & (1 - P_{ik}) \\ j=1 & i=1 \end{pmatrix}$$

so the probability that a failure occurred is

$$P(t) = \min \left\{ \begin{bmatrix} J & \frac{J}{\prod_{k=1}^{J} \begin{pmatrix} N_k & M_k \\ \prod & (1 - p_{ok}) \end{pmatrix} & \prod & (1 - p_{ik}) \\ j=1 & i=1 \end{bmatrix}, 1 \right\}$$
(10)

Given the probability of failure during the time step Δt , one can use Monte Carlo methods to decide if a failure occurred. A random number between 0 and 1 is selected and compared to P(t); if it is greater than P(t), no failure occurred and the calculation proceeds to compute ETNF and print, if desired. If P(t) is greater than or equal to the random number, the program must branch to a computation to find the failed unit and to replace it. Of course, if P(t) equals one, then the system cannot operate and the computation should be terminated with a print of the failure probabilities.

Determination of the failed component should be made in a way that takes into account the contribution of each component to the total failure probability. If the product in Eq. (10) is expanded it can be written

$$P(t) = \sum_{i=1}^{N} p_{i}^{*}$$
(11)

where the pi are of the form

$$p_{i}^{*} = p_{i}^{-1/2} p_{i}^{*} \sum_{j \neq i}^{p_{j}} p_{j}^{+1/3} p_{i}^{*} \sum_{\substack{j \neq i \\ k \neq i}}^{p_{j}} p_{j}^{p_{k}} + \dots$$

= $p_{i}^{*} \cdot A_{1}^{*}$.

Thus the p_i are proportional to the individual failure probabilities of the components. The factor A_i is independent of other contributions of the ith component and represents the most natural way of assigning to an individual component the effects of multiple failures. In general, the A_i are not equal, but if the assumption of equality is made, then the determination of the failed component can be made according to the normalized probabilities obtained by dividing each probability by the sum of the probabilities. Thus

$$\mathbf{p}_{ok}^{i} = \mathbf{p}_{ok} / \sum_{k=1}^{J} \left(\mathbf{N}_{k} \mathbf{p}_{ok} + \sum_{i=1}^{M} \mathbf{p}_{ik} \right)$$
$$\mathbf{p}_{ik}^{i} = \mathbf{p}_{ik} / \sum_{k=1}^{J} \left(\mathbf{N}_{k} \mathbf{p}_{ok} + \sum_{i=1}^{M} \mathbf{p}_{ik} \right)$$

and

$$1 = \sum_{k=1}^{J} \left(N_k p_{ok}^* + \sum_{i=1}^{N_k} p_{ik}^* \right) \quad .$$
 (12)

Use of Eq. (12) can also be justified by assuming that Δt is short enough that the probabilities of multiple failures are small compared to single failure probabilities. This amounts to taking A_i equal to 1. In CTR systems where Δt equals one shot, this is probably a good approximation. Usually when a single component fails in such systems the rest of the shot is aborted. The remaining components then either do not receive the full stress of the shot or get an overstress during the abort—it is impossible to foretell which will happen on a given shot, but over a long period the average effect should be equivalent to the assignment of a shot to the remaining components.

To find the type that failed. a random number is picked and the sum in Eq. (12) is built up until it equals or exceeds the number. The k value for which this occurs gives the type. Using the same random number, the procedure is then used on the term

$$N_{k} p_{ok}^{i} + \sum_{i=1}^{M_{k}} p_{ik}^{i}$$

to decide if an original unit or a replacement unit of type k failed. After the failure is found it is replaced by making the necessary changes in N_k , M_k , and t_{ik} .

Control is then returned to the point of origin and the computation is continued. A flow diagram for the computation is given in Fig. 1.

III. FAILURE DISTRIBUTIONS

Seven distributions are included in the program. They may not seem as familiar as some used in probability and statistics, but they are those most commonly obeyed by

Fig. 1. Flow diagram for computation of expected time-to-next-failure.

components and systems. Additional distributions can be added to the program if desired. A subroutine must be written for the distribution and it can be modeled after the distribution subroutines already included. To include the calls to the subroutine, an additional GOTO branch is then required in the computed GOTO statements in subroutines DIDITFL and CETNF.

A. Exponential Distribution

The exponential distribution is followed by many components and component assemblies, provided sufficient bench testing has been done before installation.^{1,2,3} Components that follow different exponential distributions can be combined easily into a single composite type, also of the exponential family, provided that the components are connected statistically in series.

The exponential density function is

$$f(t) = \begin{cases} 0 & t < \beta \\ \\ \alpha e^{-\alpha(t-\beta)} & t \ge \beta \end{cases}$$

The parameter β is the "guarantee" time. The failure rate is a constant

$$\mathbf{r} = \begin{cases} 0 & \mathbf{t} < \beta \\ \\ \alpha & \mathbf{t} \geq \beta \end{cases}$$

and the a posteriori failure probability in the interval Δt is

$$p(t) = \begin{cases} 0 & t < \beta \\ \\ 1 - e^{-\alpha \Delta t} & t \ge \beta \end{cases}$$

B. Weibull Distribution

The Weibull density function is $^{1.3,4}$

$$f(t) = \begin{cases} 0 & t < \gamma \\ \\ \frac{\beta(t-\gamma)^{\beta-1}}{\alpha} & \exp\left[-(t-\gamma)^{\beta}/\alpha\right] & t > \gamma \end{cases}$$

Here γ represents the guarantee time. For $t = \gamma$, the value of f depends on β . We have

$$f(\gamma) = \begin{cases} 0 & \beta > 1 \\ 1/\alpha & \beta = 1 \\ \infty & \beta < 1 \end{cases}$$

Notice that this produces a singularity in the failure rate when $\beta < 1$. The failure rate is given by

$$\mathbf{r}(\mathbf{t}) = \begin{cases} 0 & \mathbf{t} < \gamma \\ 0 & \mathbf{t} = \gamma, \beta > 1 \\ 1/\alpha & \mathbf{t} = \gamma, \beta = 1 \\ \infty & \mathbf{t} = \gamma, \beta < 1 \\ (\beta/\alpha) (\mathbf{t} - \gamma)^{\beta-1} & \mathbf{t} > \gamma \end{cases}$$

Because the rate is well behaved for $t > \gamma$ when $\beta < 1$, we arbitrarily set $t = \gamma + 0.01\Delta t$ if $\beta < 1$. This is merely a device to obtain a finite failure rate for computing purposes. If $\beta = 1$, the Weibull distribution reduces to an exponential distribution and such instances are probably better handled as exponential. For replacement units we ignore the singularity, and set the contribution for the unit to zero when $t = \gamma$. The a posteriori failure probability for the Weibull distribution is

$$p(t) = \begin{cases} 0 & t < \gamma \\ \\ \\ 1 - e^{-(1/\alpha) \left[(t + \Delta t - \gamma)^{\beta} - (t - \gamma)^{\beta} \right]} & t \ge \gamma \end{cases}$$

C. Normal Distribution (Truncated Normal)

Two forms of the normal distribution are commonly used in reliability computations: 1,2,3 the standard normal and the truncated normal. The density function of each is of the form

$$f(t) = (C/\beta \sqrt{2\pi}) \exp \left[-(t-\alpha)^2/(2\beta^2)\right].$$

C is a normalizing constant determined from the condition that the integral of f(t) equals one. In the case of the standard normal distribution, the integral ranges over all t values from $-\infty$ to $+\infty$. In the truncated distribution, t ranges only from 0 to $+\infty$, on the assumption that no failures occur until t is greater than zero. For the purpose of the expected-time-to-next-failure calculation, it makes no difference which distribution we consider because the constant C disappears and we obtain identical values for the failure rate and a posteriori probability of failure. These values are given by

$$\mathbf{r}(t) = \frac{\left(\sqrt{2/\pi} \exp\left[-(t-\alpha)^2/(2\beta^2)\right]\right)}{\beta \operatorname{erfc}\left[(t-\alpha)/(\beta\sqrt{2})\right]}$$

and

$$p(t) = \frac{\sqrt{2/\pi} \int_{t}^{t+\Delta t} \exp\left[-(x-\alpha)^{2}/(2\beta^{2})\right] dx}{\beta \operatorname{erfc} \left[(t-\alpha)/(\beta \sqrt{2})\right]}$$

The integral appearing in the expression for p(t) could be converted to the difference of two error function values, but this would lead to considerable round-off error for small Δt . In the program the integral is computed numerically, using a 41-point Simpson's rule.

D. Logarithmic Normal Distribution

If the logarithm of a random variable has a normal distribution, the variable itself follows a logarithmic normal distribution. There are at least three log normal distributions, ranging from two parameters to four parameters.^{1,2,3,5} We use a three-parameter distribution which includes a guaranteed life. The density function is

$$f(t) = \begin{cases} 0 & t \leq \gamma \\ \frac{1}{(t - \gamma) \beta \sqrt{2\pi}} & \exp\left\{-\left(g_n(t - \gamma) - \alpha\right)^2/(2\beta^2)\right\} & t > \gamma \end{cases}$$

which reduces to the standard two-parameter distribution when $\gamma = 0$.

The failure rate is given by

$$r(t) = \begin{cases} 0 & t \leq \gamma \\ \frac{\sqrt{2/\pi} e^{-\left\{\ell n(t-\gamma) - \alpha\right\}^2/2\beta^2}}{(t-\gamma)\beta \operatorname{erfc}\left\{\frac{\ell n(t-\gamma) - \alpha}{\beta\sqrt{2}}\right\}} & t > \gamma \end{cases}$$

and the a posteriori failure probability by

$$p(t) = \begin{cases} 0 & t < 7 \\ \frac{\sqrt{2/\pi}}{\beta \operatorname{erfc} \left\{ \frac{\varrho_{n}(t-\gamma) - \alpha}{\beta \sqrt{2}} \right\}} \int_{t}^{t+\Delta t} \frac{1}{(t'-\gamma)} e^{-\left\{ \varrho_{n}(t'-\gamma) - \alpha \right\}^{2} / 2\beta^{2}} dt' & t > 7 \\ \frac{1}{(1/2\beta)} \sqrt{2/\pi} \int_{t}^{t+\Delta t} \frac{1}{(t'-\gamma)} e^{-\left\{ \varrho_{n}(t'-\gamma) - \alpha \right\}^{2} / 2\beta^{2}} dt' & t = 7 \end{cases}$$

A 41-point Simpson's rule is also used to find this integral. In this case we also assume that γ is an integral multiple of Δt .

E. Gamma Distribution

The gamma distribution in its three-parameter form has the density function,^{1,3}

$$f(t) = \begin{cases} 0 & t - \gamma < 0 \\ \\ \frac{\alpha \{\alpha(t - \gamma)\}^{\beta - 1} e^{-\alpha(t - \gamma)}}{\Gamma(\beta)} & t - \gamma \ge 0 \end{cases}$$

The exponential and Erlang distributions are special cases of this distribution. The failure rate is given by

$$\mathbf{r}(\mathbf{t}) = \begin{cases} 0 & \mathbf{t} - \gamma \leq 0 \\ \\ \frac{\alpha \{\alpha(\mathbf{t} - \gamma)\}^{\beta - 1} e^{-\alpha(\mathbf{t} - \gamma)}}{\Gamma(\beta, \alpha(\mathbf{t} - \gamma))} & \mathbf{t} - \gamma > 0 \end{cases}$$

and the a posteriori failure probability by

$$p(t) = \begin{cases} 0 & t - \gamma \leq 0 \\ \\ \frac{\alpha \int_{t}^{t+\Delta t} \left\{ \alpha (t' - \gamma) \right\}^{\beta-1} e^{-\alpha (t' - \gamma)} dt'}{\Gamma \left(\beta, \alpha (t - \gamma)\right)} & t - \gamma > 0 \end{cases}$$

In those formulas $\Gamma(\beta, u)$ is one of the incomplete gamma functions, and is defined by

$$\Gamma(\beta,u) = \int_{u}^{\infty} x^{\beta-1} e^{-x} dx .$$

The integral in the expression for p(t) could be expressed as the difference between incomplete gamma functions, but would result in considerable round off error when Δt is small. A 41-point Simpson's rule is used instead and, as in the log normal case, γ is assumed to be an integral multiple of Δt .

1

F. Uniform Distribution

The uniform distribution has the density function¹

$$f(t) = \begin{cases} 0 & t < \alpha \text{ and } t \ge \beta \\ \\ \frac{1}{\beta - \alpha} & \alpha \le t < \beta \end{cases}$$

The failure rate is

$$r(t) = \begin{cases} 0 & t < \alpha \text{ and } t \ge \beta \\ \\ \\ \frac{1}{\beta - t} & \alpha \le t < \beta \end{cases}$$

and the a posteriori failure probability is

$$p(t) = \begin{cases} 0 & t < \alpha \\ \frac{\Delta t}{\beta - t} & \alpha \leq t < \beta \\ 1 & \beta \leq t \end{cases}$$

G. Rayleigh Distribution

The Rayleigh distribution has the density⁶

$$f(t) = \begin{cases} 0 & -\infty \le t < t_o \\ \\ \frac{(t - t_o)}{\sigma^2} = \frac{(t - t_o)^2}{2\sigma^2} \\ t_o \le t < \infty \end{cases}$$

This distribution is a special case of the Weibull distribution, as is easily shown by making the following substitutions in the Weibull density function:

 $\alpha = 2\sigma^2 ,$ $\beta = 2 ,$ $\gamma = t_0 .$

-

To input a Rayleigh component type to the program, the first parameter is σ and the second parameter is t_0 . The program makes the above substitutions and thereafter the component is treated as if it were following a Weibull distribution.

IV. Description of the Program

The calculation has been described. The subroutines and their functions are described below, a complete listing is given in Appendix A, and an example is given in Appendix B. The program is written for the CDC 7600 using the CROS operating system.

Subroutine	Function

EXPECT DRIVER FOR PROGRAM

The program calls SETUP and initializes certain variables. A loop on the time step Δt is started and continued until the required final time is reached or until one of three other conditions requires that the calculation be terminated. Diagnostic prints are made in the latter event. The loop calls the subroutine DIDITFL to determine if a failure occurred; subroutine FAILURE is called if one occurred. One time step is then added to each component of the system being considered, and subroutine CETNF is called. Data for a plot is stored if a plot is desired, and a print is made if an output time has been reached. On exit from the loop, the program makes a plot if it has been requested.

- SETUP Reads and prints the input data, initializes the replacement array, and determines the index of the last time step required. A Rayleigh distribution component is changed to a Weibull component.
- CETNF Calculates the ETNF. It calls PEXPON, PWEIB, PNORM, PLNORM, PGAMMA, and PUNIFM.

DIDITFL Determines by Monte Carlo methods whether a failure occurred by the end of the current time step. It calls PPEXPON, PPWEIB, PPNORM, PPLNORM, PPGAMMA. and PPUNIFM. It signals the main program if the system failure probability is too great.

FAILURE This routine is called when DIDITFL decides that a failure has occurred. It determines which component failed and replaces the component. The following six subroutines compute the failure rates and a posteriori failure probabilities for the various distributions. The probabilities are stored for future use. In each case, the failure rate is calculated by a call to the subroutine, whereas failure probabilities are calculated by a call to the entry name.

Subroutine	Entry	Function				
PEXPON	PPEXPON	Used for components following exponential dis- tributions.				
PWEIB	PPWEIB	Used for components following Weibull dis- tributions.				
PNORM	PPNORM	Used for components following normal dis- tributions.				
PLNORM	PPLNORM	Used for components following log normal dis- tributions.				
PGAMMA	PPGAMMA	Used for components following gamma distribu- tion.				
PUNIF	PPUNIF	Used for components following uniform dis- tributions.				

The following subroutines are used to compute integrals.

ERK	LOGERK	ERK is called by PPNORM to compute the a
		posteriori failure probability of a single compo-
		nent of normal type, A 41-point Simpson's rule
		is used for the required integration, LOGERK
		performs a similar computation for single log
		normal components.
GAMPROB		This routine is called by PPGAMMA to com-
		pute the a posteriori failure probability of a
		single component following a gamma distribu-
		tion.

V. INPUT REQUIREMENTS

TITLE CARD	Format (8A10)
Cols	
1-80	Title
CONTROL CARD	Format (4I6, 2E12.6)
Cols	
1-6	Number of component groups. The program will accept up to 10 groups and can be modified to accept more. These groups may obey the same or different types of distribution.
7-12	MSP, an integer giving the spacing in numbers of steps of Δt desired between output points.
13-18	Plot control. A one in column 18 indicates a plot is desired; otherwise no plot is made.
19-24	Probability print control. A one in column 24 will cause a print of the a posteriori failure probabilities for each compo- nent group. These prints occur with the same spacing as the ETNF output points.
25-36	Time at which last output point is desired. May not be greater than $1000^* \Delta t^*MSP$ unless the program storage is modified.
37-48	Time step, Δt .
COMPONENT CARDS	For each component group the following two cards must be present: Group title card Format (8A10) and Distribution card Format (2112, 3E12.6).

Cols ·	
1-12	An integer indicating the type of distribution followed by
	the components in the group according to the following
	code:
	1 - Exponential distribution
	2 - Weibull distribution
	3 - Normal distribution
	4 - Log normal distribution
	5 - Gamma distribution
	6 - Uniform distribution
	7 - Rayleigh distribution
1;3-24	An integer giving the number of components in the group.
25-36	α - First distribution parameter
37-48	β - Second distribution parameter
49-60	γ - Third distribution parameter.

The α , β , and γ required for the distributions must conform to the notation used in the test. If a second or third parameter is not required, the corresponding field on the distribution card may be left blank.

ACKNOWLEDGMENTS

I would like to thank R. H. Moore and G. L. Tietgen for their helpful advice.

REFERENCES

1. B. V. Gnedenko, Yu. K. Belyayev. and A. D. Solovyev, Mathematical Methods of Reliability Theory (Academic Press, New York and London. 1969).

2. Igor Bazovsky, Reliability Theory and Practice (Prentice Hall, Inc., Englewood Cliffs, NJ, 1961).

3. R. E. Barlow and F. Proschan, Mathematical Theory of Reliability (Wiley, New York, 1965).

4. W. Weibull, "A Statistical Distribution Function of Wide Applicability," J. Appl. Mech. 18, 293-297 (1951).

5. J. Aitchison and J. A. C. Brown, *The Log Normal Distribution* (Cambridge University Press, London, 1957).

6. A. M. Polovko, Fundamentals of Reliability Theory (Academic Press, New York and London, 1968).

.

APPENDIX A

FORTRAN LISTING OF XPECT PROGRAM

LASL identification number : LP-0534 PROGRAM XPECT (INP.OUT.FILM) THIS PROGRAM COMPUTES THE EXPECTED NUMBER OF SHOTS BETWEEN FAILUREXPECT OR MALFUNCTIONS FOR A SYSTEM HAVING UP TO 10 TYPES OF COMPONENTS XPECT THESE COMPONENT TYPES MAY FOLLOW ANY OF THE FOLLOWING FAILURE XPECT 231 THESE COMPONENT TIPES THAT FOLLOW THE DISTRIBUTIONS 1---EXPONENTIAL DISTRIBUTION 2---WEIBULL DISTRIBUTION 3---NORMAL DISTRIBUTION 4---LOG NORMAL DISTRIBUTION 5---GAMMA DISTRIBUTION 6---UNIFORM DISTRIBUTION 6---UNIFORM DISTRIBUTION 7---RAYLEIGH DISTRIBUTION THE INPUT REQUIREMENTS ARE A TITLE CARD FORMAT 8A10 A SINGLE CARD GIVING THE NUMBER OF DIFFERENT COMPONENT TYPES--FORMATI6 THE SPACING BETWEEN OUTPUT VALUES FORMATI6 A ONE IN COLUMN 18 IF A PLOT IS DESIRED A ONE IN COLUMN 18 IF A PLOT IS DESIRED THE LAST TIME OUTPUT IS NEEDED FORMAT E12.6 TIME STEP FORMAT E12.6 56789 XPECT **XPECT** XPECT XPECT XPECT XPECT XPECT 10 112 134 156 XPECT 17 18 19 20 21 THE LAST TIME OUTPUT IS NEEDED FORMAT E12.6 TIME STEP FORMAT E12.6 FOR EACH TYPE THE FOLLOWING DATA CARD 1--NAME OF COMPONENT FORMAT E12.6 NUMBER OF COMPONENT OF TYPE (ITYPE(J)) FORMAT I12 NUMBER OF COMPONENTS OF TYPE (NORIG(J)) FORMAT I12 1ST DISTRIBUTION PARAMETER (ALPHA(J)) FORMAT E12.6 2ND DISTRIBUTION PARAMETER (BETA(J)) FORMAT E12.6 3ED DISTRIBUTION PARAMETER (BETA(J)) FORMAT E12.6 3ED DISTRIBUTION PARAMETER (BETA(J)) FORMAT E12.6 (SED DISTRIBUTION PARAMETER (BETA(J)) FORMAT E12.6 (SED DISTRIBUTION PARAMETER SARE USED LEAVE SPACE BLANK COMMON /XP1/ TYPE(8,10),TITLE(8),EXPECT(1001),X(1001),LABELY(3) COMMON /XP2/ ALPHA(10),BETA(10),GAMMA(10),RETNF(10) COMMON /XP2/ ALPHA(10),NREPLAC(10),IREPL(1000,10),PSUM,IPROB,MSP COMMON /XP4/ NGROUPS,PROB(10),P(100,10),IGROUP(10),PTEST(10) COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT,LASTSHT,NREP(10) DATA LABELX/10HTIME / DATA LABELY/29HEXPECTED TIME TO NEXT FAILURE/ CALL_SETUP XPECT 23456789 FORMAT 10A10 XPECT FORMAT 10A10 XPECT FORMAT 112 XPECT FORMAT 112 XPECT FORMAT F12 FORMAT E12.6 FORMAT E12.6 FORMAT E12.6 XPECT XPECT XPECT XPECT XPECT 012012000000 XPECT XPECT XPECT XPECT XPECT XPECT CALL SETUP KPRINT=O NSHOT=O XPECT XPECT XPECT 41 SHOTS=0. XPECT CALL CETNF (ETNF, IREASON) IF (IREASON.EQ.2) PRINT 14 PRINT 13, NSHOT, ETNF EXPECT (1)=ETNF XPECT XPECT XPECT XPECT XPECT 42 43 44 45 46 EXPECT(1)=ETNF X(1)=0. START LOOP ON SHOTS DO 6 NSHOT=1,LASTSHT SHOTS=FLOAT(NSHOT)*TDELTA CALL DIDITFL (IFAIL) GO TO (2,1,11), IFAIL A FAILURE OCCURED BRANCH TO ROUTINE TO DECIDE WHICH TYPE FAILED CALL FAILURE ADD A SHOT TO ALL REPLACEMENT UNITS XPECT XPECT 47 48 XPECT XPECT XPECT 49 50 XPECT XPECT XPECT 512 552 554 ADD A SHOT TO ALL REPLACEMENT UNITS DO 4 J=1,NGROUPS KSTOP=NREPLAC(J) IF (KSTOP.EQ.O) GO TO 4 IF (KSTOP.GT.1000) GO TO 7 DO 3 K=1,KSTOP IREPL(K,J)=IREPL(K,J)+1 CONTINUE XPECT XPECT XPECT 55 XPECT 56 XPECT 57 XPECT 58 XPECT XPECT XPECT XPECT XPECT 59 60 61 CONTINUE IF (MSP.EQ.1) GO TO 5 IPRINT=NSHOT+1 XPECT 62 XPECT 63 XPECT 64 IPRINT=NSHOT+1 IF (MOD(IPRINT,MSP).NE.1) GO TO 6 CALL CETNF (ETNF,IREASON) KPRINT=KPRINT+1 X(KPRINT)=SHOTS EXPECT(KPRINT)=ETNF IF (IREASON.EQ.2) PRINT 14 PRINT 13, SHOTS,ETNF CONTINUE [18. ((MEED(T) T) T) T) XPECT XPECT XPECT 65 66 67 68 XPECT XPECT 69 XPECT <u>70</u> XPECT 71 PRINT 18, ((NREP(I),I),I=1,NGROUPS) GO TO 8 XPECT XPECT 72 73 PRINT 16, J 74 XPECT

C 1

Ċ 2

34

5

6

7

С

8 9 10 C 11	IF (IPLOT.NE.1) GO TO 12 PLOT IF DESIRED IF (KPRINT.GT.1001) GO TO 10 CALL PLOJB (X,EXPECT,KPRINT,1,0,46,0,10.,6.,TITLE,80,LABELX,10,LA 1ELY,29) GO TO 12 PRINT 15 GO TO 12 PROBABILITY OF FAILURE GREATER THAN OR EQUAL TO 1. PRINT 17 IF (IPLOT.EQ.1.AND.KPRINT.GT.1) GO TO 9	XPECT 75 XPECT 76 XPECT 78 XPECT 78 XPECT 80 XPECT 81 XPECT 81 XPECT 83 XPECT 83 XPECT 84 XPECT 84
12 C C C 13 14 15 16 17 18	CONTINUE RETURN FORMAT (1H ,* AT TIME *,E13.6,* EXPECTED TIME TO NEXT FAILUF 1=*,E13.6) FORMAT (1H ,* FAILURE RATE IS ZERO SO ETNF WOULD BE INFINITE.*/* 1UN CONTINUES.*) FORMAT (1H ,* NUMBER OF POINTS DESIRED PLOTED GREATER THAN 1000. 1ECTOR EXPECT HAS OVERFLOWED. NO PLOT MADE.*) FORMAT (1H0,* NUMBER OF REPLACEMENTS OF COMPONENT TYPE *,I3,* EXC 1EDS ALLOWED STORAGE*/* RUN TERMINATED.*) FORMAT (1H, * RUN TERMINATED TO GIVE YOU TIME TO THINK.*) FORMAT (1H0,//10(15,* UNITS OF GROUP*,I3,* WERE REPLACED*/)) END	XPECT 86 XPECT 87 XPECT 89 XPECT 90 XPECT 91 XPECT 92 XPECT 93 XPECT 93 XPECT 94 VXPECT 95 XPECT 96 EXPECT 97 XPECT 98 XPECT 98 XPECT 100 XPECT 101
	<pre>SUBROUTINE SETUP COMMON /XP1/ TYPE(8,10),TITLE(8),EXPECT(1001),X(1001),LABELY(3) COMMON /XP2/ ALPHA(10),BETA(10),GAMMA(10),RETNF(10) COMMON /XP2/ NORIG(10),NREPLAC(10),IREPL(1000,10),PSUM,IPROB,MSP COMMON /XP4/ NGROUPS,PROB(10),P(1000,10),IGROUP(10),PTEST(10) COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT,LASTSHT,NREP(10) DIMENSION YN(2), NAME(2) DATA NAME(1),NAME(2)/10H LOGNORMAL,10H GAMMA / DATA YN/10H NO. ,10H YES. / READ 8, (TITLE(I),I=1,8) PRINT 5, (TITLE(I),I=1,8) READ 6, NGROUPS,MSP,IPLOT,IPROB,TLAST,TDELTA IP=1 IF (IPLOT.EQ.1) IP=2 IF (IPROB.EQ.1) IP=2 PRINT 7, NGROUPS,MSP,TLAST,TDELTA,YN(IP),YN(IPB) DO 1 I=1,NGROUPS READ 8, (TYPE(J,I),J=1,8) READ 9, IGROUP(I),NORIG(I),ALPHA(I),BETA(I),GAMMA(I) PRINT 10, I,(TYPE(J,I),J=1,8),IGROUP(I),NORIG(I),ALPHA(I),BETA(I),GAMMA(I)</pre>	SETUP 2 SETUP 4 SETUP 5 SETUP 5 SETUP 7 SETUP 9 SETUP 9 SETUP 10 SETUP 12 SETUP 12 SETUP 13 SETUP 14 SETUP 15 SETUP 16 SETUP 16 SETUP 18 SETUP 19 SETUP 22 SETUP 22 SETUP 22
1 C	ZERO. THE REPLACEMENT VECTOR DO 2 I=1,NGROUPS	SETUP 23 SETUP 24 SETUP 25 SETUP 26
2	NREF(1)=0 NREPLAC(I)=0 LASTSHT=IFIX(TLAST/TDELTA)+1 DO 3 I=1,NGROUPS IF (IGROUP(I).NE.7) GO TO 3 IGROUP(I)=2 ALPHA(I)=2.*ALPHA(I)**2 GAMMA(I)=BETA(I)	SETUP 27 SETUP 28 SETUP 29 SETUP 30 SETUP 31 SETUP 32 SETUP 33 SETUP 33
3	BETA(I)=2. CONTINUE DO 4 I=1,NGROUPS IF (IGROUP(I).NE.4.AND.IGROUP(I).NE.5) GO TO 4 TEMP=GAMMA(I)/TDELTA ITEMP=INT(TEMP) TEMP=(TEMP-FLOAT(ITEMP))*TDELTA GAMMA(I)=GAMMA(I)-TEMP J=MOD(IGROUP(I),3)	SETUP 36 SETUP 36 SETUP 37 SETUP 38 SETUP 39 SETUP 41 SETUP 42 SETUP 43

•

4 CC567 8910 11	IF (TEMP.NE.O.) PRINT 12, IGROUP(I),NAME(J),GAMMA(I) CONTINUE PRINT 11 RETURN FORMAT (1H ,8A10) FORMAT (1H0,* NUMBER OF GROUPS OF COMPONENTS CONSIDERED 1-*,I5/* SPACING DESIRED BETWEEN OUTPUT DATA 1-*,I5/* SPACING DESIRED BETWEEN OUTPUT DATA 2/* FINAL TIME DESIRED *,E12.6/* 4 IS A PLOT DESIRED FORMAT (2112,3E12.6) FORMAT (2112,3E12.6) FORMAT (1H0,* GROUP*,I3,/2X,8A10/* DISTRIBUTION TYPE NUMBER*,I3/* 1 NUMBER OF UNITS*,I6,/* ALPHA=*,E12.6,* BETA=*,E13.6,* GAMMA=*,I 212.6) FORMAT (1H1) FORMAT (1H0,/* FOR COMPONENT GROUP*,I3,*, OBEYING*,A10,* DISTRIBUT ION, GAMMA PARAMETER IS A NONINTEGRAL MULTIPLE OF DELTA T.*/* GAM 2MA PARAMETER HAS BEEN CHANGED TO*,E14.6) END	SETUP SETUP	444444555555555555566666666666666666666
CC 1 2 3 4 5 67C 8 9 C	<pre>SUBROUTINE CETNF(ETNF, IREASON) COMMON /XP2/ ALPHA(10), BETA(10), GAMMA(10), RETNF(10) COMMON /XP2/ NORIG(10), NREPLAC(10), IREPLA(1000,10), IGROUP(10), PTEST(10) COMMON /XP2/ TLAST, TDELTA, NSHOT, SHOTS, IPLOT, LASTSHT, NREP(10) FORM THE SUM OF F(X)/(1-IMT(F(X)) FOR EACH COMPONENT OF EACH TYPE EXPECTED NUMBER OF SHOTS TO NEXT FAILURE IS RECIPROCOL OF THIS SU INCAK=IGROUP(I) GO TO (1,2,3,4,5,6), IWORK CALL PEXPON (I) GO TO 7 CALL PWEIB (I) GO TO 7 CALL PNORM (I) GO TO 7 CALL PNORM (I) GO TO 7 CALL PINIFM (I) CONTINUE SUM THE INDIVIDUAL FAILURE RATES AND TAKE RECIPROCAL SUM=0, DO 8 I=1,NGROUPS SUM=SUM+RETNF(I) IF (SUM_EE.0.) GO TO 9 ETNF=1./SUM RETURN RETURN RETURN IREASON=2 ETNF=1.E+300 RETURN END</pre>	CETNFF CETNFF CETTNFF	27456789012745678901274567890127745678901277
	SUBROUTINE DIDITFL(IFAIL) COMMON /XP2/ ALPHA(10),BETA(10),GAMMA(10),RETNF(10) COMMON /XP3/ NORIG(10),NREPLAC(10),IREPL(1000,10),PSUM,IPROB,MSP COMMON /XP4/ NGROUPS,PROB(10),P(1000,10),IGROUP(10),PTEST(10) COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT,LASTSHT,NREP(10) COMMON /XP6/ PS(10),PPROB	DIDIT DIDIT DIDIT DIDIT DIDIT DIDIT	'FL2 'FL3 'FL4 'FL5 'FL6 'FL7

ł

•

C C C	LCM /XP7/ PSAVE(10000,10) FOR EACH COMPONENT TYPE COMPUTE THE PROBABILITY OF FAILURE THIS PROBABILITY IS THE A POSTERIORI PROBABILITY SINCE ALL COMPONENTS WERE OPERATING ON ENTRY TO SUBROUTINE.	DIDITFL8 DIDITFL9 DIDITF10 DIDITF11
-	PPROB=1. DO 7 I=1,NGROUPS IWORK=IGROUP(I) GO TO (1.2.3.4.5.6), IWORK	DIDITF12 DIDITF13 DIDITF14 DIDITF15
1	CALL PPEXPÓN (Í) GO TO 7	DIDITF17
2	CALL PPWEIB (I) GO TO 7	DIDITF18 DIDITF19
3	CALL PPNORM (I) GO TO Z	DIDITF20 DIDITF21
4	CALL PPLNORM (I)	DIDITF22 DIDITF23
5	CALL PPGAMMA (I)	DIDITF24 DIDITF25
6	CALL PPUNIFM (I)	DIDITF26 DIDITF27
7	Y=RANDOM(DUMMY)	DIDITF28
	PSUM=1PPROB IFAIL=1	DIDITF30
	IF (PSUM.GE.1.) IFAIL=3 IF (IPROB.NE.1) GO TO 10	DIDITF32
С	PRINT PROBABILÍTIES IF DESIRED.	DIDITF33 DIDITF34
	IPRINT=NSHOT+1 IPRINT=NSHOT+1 IF (MODELEDENT MSD) NE 1) CO TO 10	DIDITF35 DIDITF36
8	PRINT 14, SHOTS	DIDITF37 DIDITF38
9	PRINT 16, IMPRINT, PS(IMPRINT)	DIDITF39
10	PRINT 15, NSHOT, SHOTS	DIDITF41
11	DO 11 I=1,NGROUPS PRINT 16, I,PS(I)	DIDITF43
12	GO TO 13 IF (Y.LE.PSUM) IFAIL=2	DIDITF45
13 C	RETURN	DIDITF47
C C		DIDITF49
14	FORMAT (1H ,* A POSTERIORI COMPONENT GROUP FAILURE PROBABILITY AT 1TIME *,E13.6)	DIDITF51
15	FORMAT (1HO, * ON SHOT*, 16, * AT TIME *, E13.6, * PROBABILITY OF FAIL 1RE TOO LARGE. YOUR SYSTEM WONT WORK.*/* WE WILL PRINT THE PROBAB	IDIDITF52
16	2LITIES SO YOU CAN SEE WHICH COMPONENT DID IT.*) FORMAT (1H ,* COMPONENT*,12,* PROB OF FAILURE=*,E15.7) END	DIDITF54 DIDITF55 DIDITF56
	SUBROUTINE FAILURE COMMON /XP3/ NORIG(10), NREPLAC(10), IREPL(1000,10), PSUM, IPROB, MSP	FAILURE2 FAILURE3
	COMMON /XP4/ NGROUPS, PROB(10), P(1000,10), IGROUP(10), PTEST(10)	FAILURE4 FAILURE5
C	FIND SUM OF INDIVIDUAL FAILURE PROBABILITIES FOR NORMALIZATION.	FAILURE6 FAILURE7
č	PTEST HOLDS TOTAL FOR GROUP, PROB HOLDS CONTRIBUTION OF ORIGINAL	FAILURE8
С	SUM=0.	FAILUR10
	DO 1 I=1,NGROUPS NTEMP=NORIG(I)-NREPLĄC(I)	FAILUR12
	IF (NTEMP.LT.1) PROB(I)=0. PROB(I)=PROB(I)*FLOAT(NTEMP)	FAILUR13 FAILUR14
1	SUM=SUM+PROB(I) DO 3 I=1,NGROUPS	FAILUR15
	ISTŌP=NRÉPLAC(I) IF (ISTOP.EQ.O) GO TO 3	FAILUR17 FAILUR18
2	DO 2 J=1, ISTOP SUM=SUM+P(J,I)	FAILUR19 FAILUR20
3	CONTINUE	FAILUR21

۰.

4 56C C	RECPSUM=1./SUM D0 4 I=1,NGROUPS PROB(I)=PROB(I)*RECPSUM D0 6 I=1,NGROUPS SUM=0. ISTOP=NREPLAC(I) IF (ISTOP.EQ.O) GO TO 6 D0 5 J=1,ISTOP P(J,I)=P(J,I)*RECPSUM SUM=SUM+P(J,I) PTEST(I)=PROB(I)+SUM FIND FAILED UNIT Y=RANDOM(DUMMY) 1ST FIND TYPE	FAILUR22 FAILUR23 FAILUR24 FAILUR25 FAILUR26 FAILUR26 FAILUR27 FAILUR28 FAILUR28 FAILUR30 FAILUR31 FAILUR31 FAILUR33 FAILUR33 FAILUR35
7 C C 8	DO 7 I=1,NGROUPS SUM=SUM+PTEST(I) IF (Y.LE.SUM) GO TO 8 FAILURE WAS OF TYPE I DETERMINE IF FAILURE WAS ORIGINAL UNIT OR REPLACEMENT SUM=SUM-PTEST(I) IF (NREPLAC(I).EQ.O) GO TO 10 JSTOP=NREPLAC(I) DO 9 J=1,JSTOP	FAILUR37 FAILUR37 FAILUR38 FAILUR39 FAILUR40 FAILUR40 FAILUR41 FAILUR43 FAILUR43 FAILUR44 FAILUR45
9 C C C 10	SUM=SUM+P(J,I) IF (Y.LE.SUM) GO TO 11 IF PROGRAM REACHES THIS POINT FAILURE WAS AN ORIGINAL UNIT OF TYPE I. ADD 1 TO THE REPLACEMENT INDEX AND SET SHOT COUNT ON THE NEW UNIT TO -1. NREPLAC(I)=NREPLAC(I)+1 NREP(I)=NREP(I)+1 IDUMMY=NREPLAC(I) IREPL(IDUMMY,I)=-1	FAILUR46 FAILUR47 FAILUR47 FAILUR49 FAILUR50 FAILUR51 FAILUR52 FAILUR53 FAILUR54
C C 11	RETURN FAILED UNIT WAS REPLACEMENT UNIT J OF TYPE I. SET SHOT COUNT ON TO -1 IREPL(J,I)=-1 NREP(I)=NREP(I)+1 RETURN END	FAILUR55 ITFAILUR56 FAILUR57 FAILUR58 FAILUR59 FAILUR59 FAILUR60 FAILUR61
C C	SUBROUTINE PEXPON(I) FOR COMPONENTS FOLLOWING EXPONENTIAL STATISTICS. THE FAILURE RATE IS INDEPENDENT OF THE NUMBER OF SHOTS COMMON /XP2/ ALPHA(10),BETA(10),GAMMA(10),RETNF(10) COMMON /XP3/ NORIG(10),NREPLAC(10),IREPL(1000,10),PSUM,IPROB,MSP COMMON /XP4/ NGROUPS,PROB(10),P(1000,10),IGROUP(10),PTEST(10) COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT,LASTSHT,NREP(10) COMMON /XP6/ PS(10),PPROB	PEXPON 2 PEXPON 3 PEXPON 4 PEXPON 5 PEXPON 6 PEXPON 6 PEXPON 7 PEXPON 8 PEXPON 9
С	LCM /XP7/ PSAVE(10000,10) CALCULATE FAILURE RATE INDEY-NREPLAC(I)	PEXPON10 PEXPON11 PEXPON12
С	RETNF(I)=ALPHA(I)*FLOAT(NORIG(I)) REMOVE CONTRIBUTIONS OF UNITS WITH LESS THAN BETA SHOTS - TEMP=SHOTS-BETA(I) IF (TEMP.LT.O.) GO TO 2 IF (INDEX.EQ.O) RETURN DO 1 J=1. INDEX	PEXPON 13 PEXPON 14 PEXPON 15 PEXPON 16 PEXPON 16 PEXPON 18
1	TĚMP=FLOAT(IRÊPL(J,I))*TDELTA-BETA(I) IF (TEMP.LT.O.) RETNF(I)=RETNF(I)-ALPHA(I)	PEXPON19 PEXPON20
2	$\frac{\text{RETURN}}{\text{RETNF(1)=0}}$	PEXPON21 PEXPON22
С	RETURN ENTRY PPEXPON CALCULATE THE A POSTERIORI PROBABILITY INDEX=NREPLAC(I) TEMP=SHOTS-BETA(I) IF (TEMP.GE.O.) GO TO 3 PROB(I)=0. PS(I)=0.	PEXPON23 PEXPON24 PEXPON26 PEXPON26 PEXPON27 PEXPON28 PEXPON29 PEXPON30

.

3

•

3 4 5	<pre>PSAVE(NSHOT,I)=0. RETURN PROB(I)=1EXP(-ALPHA(I)*TDELTA) PSAVE(NSHOT,I)=PROB(I) PS(I)=1. MULTTO=NORIG(I)-INDEX IF (MULTTO.LT.1) GO TO 5 PS(I)=1PROB(I) IF (MULTTO.EQ.1) GO TO 5 DO 4 J=2,MULTTO PS(I)=PS(I)*(1PROB(I)) IF (INDEX.EQ.0) GO TO 7 DO 6 J=1,INDEX K=IREPL(J,I)+1 P(J,I)=PSAVE(K,I)</pre>	PEXPON3 PEXPON3 PEXPON3 PEXPON3 PEXPON3 PEXPON3 PEXPON4 PEXPON4 PEXPON4 PEXPON4 PEXPON4 PEXPON4 PEXPON4	1201 50078 9012 34 56
6 7	PS(1)=PS(1)*(1P(J,1)) PPROB=PPROB*PS(1) PS(1)=1PS(1) RETURN END	PEXPON PEXPON PEXPON PEXPON	+7 +8 +9 50
С	SUBROUTINE PWEIB(I) FOR COMPONENTS FOLLOWING WEIBULL STATISTICS COMMON /XP2/ ALPHA(10),BETA(10),GAMMA(10),RETNF(10) COMMON /XP3/ NORIG(10),NREPLAC(10),IREPL(1000,10),PSUM,IPROB,MSP COMMON /XP4/ NGROUPS,PROB(10),P(1000,10),IGROUP(10),PTEST(10) COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT,LASTSHT,NREP(10) COMMON /XP6/ PS(10),PPROB LCM /XP7/ PSAVE(10000,10) INDEX=NREPLAC(I) TEMP=SHOTS-GAMMA(I) IF (TEMP.LT.0.) GO TO 4 IF (TEMP.EQ.0.) GO TO 5 NTEMP=NORIG(I)-INDEX PETNC	PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB	27456789012745
1	IF (NTEMP.LT.1) GO TO 1 RETNF(I)=BETA(I)*(TEMP**(BETA(I)-1.))*FLOAT(NTEMP)/ALPHA(I) IF (INDEX.EQ.O) RETURN DO 3 J=1.INDEX TEMP=FLOAT(IREPL(J,I))*TDELTA-GAMMA(I) IF (TEMP.LT.O.) GO TO 3 IF (TEMP.LT.O.) GO TO 2 RETNF(I)=RETNF(I)+BETA(I)*(TEMP**(BETA(I)-1.))/ALPHA(I)	PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB	16 17 19 20 22 23 4
2	$\begin{array}{c} \text{GO} 10 3 \\ \text{IF} (\text{BETA(I).NE.1.)} \text{GO} \text{TO} 3 \\ \text{DETNIE(I).DETNIE(I).1} (AL BHA(I)) \\ \end{array}$	PWEIB PWEIB	25 26
3	CONTINUE	PWEIB PWEIB	27 28
С µ	NUMBER OF SHOTS LESS THAN GAMMA NO FAILURES CAN OCCUR RETNE(I)-0.	PWEIB PWEIB	29 30
ч С	RETURN NUMBER OF SHOTS FOLIALS GAMMA	PWEIB PWEIB	31 32
5	IF (BETA(I).LE.1.) GO TO 6 RETNF(I)=0.	PWEIB PWEIB	33
6	RETURN IF (BETA(I).LT.1.) GO TO 7	PWEIB PWEIB DWEIB	35
_	RETURN RETURN	PWEIB	38
7	TEMP=.01 RETNF(I)=BETA(I)*(TEMP**(BETA(I)-1.))*FLOAT(NORIG(I)-INDEX)/ALPHA 11) PETUPN	PWEIB (PWEIB PWEIB PWEIB	40 41 42 43
С	ENTRY PPWEIB CALCULATE THE A POSTERIORI PROBABILITY INDEX=NREPLAC(I) TEMP=SHOTS-GAMMA(I) IF (TEMP.LT.1.) GO TO 12 TEMP=((TEMP-TDELTA)**BETA(I)-TEMP**BETA(I))/ALPHA(I) PROB(I)=1EXP(TEMP)	PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB PWEIB	4567890 5

÷

.

CALCULATE THE A POSTERIORI PROBABILITY INDEX=NREPLAC(I) TEMP=SHOTS-GAMMA(I) IF (TEMP.LT.1.) GO TO 12 TEMP=((TEMP-TDELTA)**BETA(I)-TEMP**BETA(I))/ALPHA(I) PROB(I)=1.-EXP(TEMP)

26

.

•

8 9 10 11 12 C C 13	<pre>PSAVE(NSHOT,I)=PROB(I) PS(I)=1. MULTTO=NORIG(I)-INDEX IF (MULTTO.LT.1) GO TO 9 PS(I)=1PROB(I) IF (MULTTO.EQ.1) GO TO 9 DO 8 J=2,MULTTO PS(I)=PS(I)*(1PROB(I)) IF (INDEX.EQ.0) GO TO 11 DO 10 J=1,INDEX K=IREPL(J,I)+1 P(J,I)=PSAVE(K,I) PS(I)=PS(I)*(1P(J,I)) PPROB=PPROB*PS(I) PS(I)=1PS(I) RETURN PROB(I)=0. PSAVE(NSHOT,I)=0. RETURN FORMAT (1H0,/* FOR THE WEIBULL DISTRIBUTION, BETA LESS THAN 1 AND 1TIME-GAMMA=O CAUSES THE FAILURE RATE TO APPROACH INFINITY.*/* SIN: 2E IT WILL BE WELL BEHAVED FOR TIME-GAMMA GREATER THAN ZERO, TIME- 3AMMA IS GIVEN A SMALL POSITIVE VALUE */* AND THE FAILURE RATE IS 4ALCULATED FOR THIS VALUE. THE INFINITIES DUE TO REPLACEMENTS ARE 5JGNORED.*/* IT IS POSSIBLE THAT THIS MAY CAUSE DISCONTINUITIES IN 6THE OVERALL ETNF.*//) END</pre>	PWEIB 51 PWEIB 52 PWEIB 557 PWEIB 557 PWEIB 557 PWEIB 557 PWEIB 567 PWEIB 567 PWEIB 566 PWEIB 5661 PWEIB 5661 PWEIB 662 PWEIB 662 PWEIB 665 PWEIB 667 PWEIB 772 PWEIB 775 PWEIB 775 PWEID
с	SUBROUTINE PNORM(I) FOR COMPONENTS FOLLOWING NORMAL STATISTICS COMMON /XP2/ ALPHA(10), BETA(10), GAMMA(10), RETNF(10) COMMON /XP3/ NORIG(10), NREPLAC(10), IREPL(1000, 10), PSUM, IPROB, MSP COMMON /XP4/ NGROUPS, PROB(10), P(1000, 10), IGROUP(10), PTEST(10) COMMON /XP5/ TLAST, TDELTA, NSHOT, SHOTS, IPLOT, LASTSHT, NREP(10) COMMON /XP6/ PS(10), PPROB LCM /XP7/ PSAVE(10000, 10) DATA C1, C2/1.4142135623731, 0.79788456080286/ INDEX=NREPLAC(I)	PNORM 2 PNORM 3 PNORM 4 PNORM 5 PNORM 6 PNORM 6 PNORM 7 PNORM 8 PNORM 9 PNORM 10 PNORM 10
	TEST=(SHOTS-ALPHA(I))/(BETA(I)*C1) IF (TEST.GT.26.) GO TO 3 FBAR=BETA(I)*ERFC(TEST) DF=C2*EXP(-TEST**2) NTEMP=NORIG(I)-INDEX RETNF(I)=0. IF (NTEMP.LT.1) GO TO 1 RETNF(I)=FLOAT(NTEMP)*DF/FBAR	PNORM 12 PNORM 13 PNORM 14 PNORM 15 PNORM 15 PNORM 16 PNORM 17 PNORM 19
1	IF (INDEX.EQ.O) RETURN DO 2 J=1,INDEX TEST=(FLOAT(IREPL(J,I))*TDELTA-ALPHA(I))/(BETA(I)*C1) FBAR=BETA(I)*ERFC(TEST) DF=C2*EXP(-TEST**2)	PNORM 20 PNORM 21 PNORM 22 PNORM 23 PNORM 24 PNORM 25
2	RETNF(1)=RETNF(1)+DF/FBAR RETURN	PNORM 26
C C 3	IF PROGRAM REACHES THIS POINT FAILURE IS VIRTUALY CERTAIN WE ARBITRARILY SET RETNF=1.E+100 AND RETURN RETNF(I)=1.E+100 RETURN	PNORM 27 PNORM 28 PNORM 29 PNORM 30
С	ENTRY PPNORM CALCULATE THE A POSTERIORI PROBABILITY INDEX=NREPLAC(I) CALL ERK (PROB(I),ALPHA(I),BETA(I)) PSAVE(NSHOT,I)=PROB(I) PS(I)=1. MULTTO=NORIG(I)-INDEX IF (MULTTO.LT.1) GO TO 5 PS(I)=1PROB(I) IF (MULTTO.EQ.1) GO TO 5	PNORM 33 PNORM 32 PNORM 33 PNORM 34 PNORM 35 PNORM 36 PNORM 37 PNORM 38 PNORM 39 PNORM 40

	 	 _	-	-	-	_

- -

.

4 5 6 7	DO 4 J=2.MULTTO PS(I)=PS(I)*(1PROB(I)) IF (INDEX.EQ.O) GO TO 7 DO 6 J=1,INDEX K=IREPL(J,I)+1 P(J,I)=PSAVE(K,I) PS(I)=PS(I)*(1P(J,I)) PPROB=PPROB*PS(I) PS(I)=1PS(I) RETURN END	PNORM 41 PNORM 42 PNORM 43 PNORM 44 PNORM 45 PNORM 46 PNORM 46 PNORM 47 PNORM 48 PNORM 49 PNORM 50 PNORM 51
С	SUBROUTINE PLNORM(I) FOR COMPONENTS FOLLOWING LOG NORMAL STATISTICS	PLNORM 2 PLNORM 3
	COMMON /XP2/ ALPHA(10), BETA(10), GAMMA(10), RETNF(10) COMMON /XP3/ NORIG(10), NREPLAC(10), IREPL(1000,10), PSUM, IPROB, MSP COMMON /XP4/ NGROUPS, PROB(10), P(1000,10), IGROUP(10), PTEST(10) COMMON /XP5/ TLAST, TDELTA, NSHOT, SHOTS, IPLOT, LASTSHT, NREP(10) COMMON /XP6/ PS(10), PPROB	PLNORM 4 PLNORM 5 PLNORM 6 PLNORM 7 PLNORM 8
	LCM /XP7/ PSAVE(10000,10) DATA C1,C2/1.4142135623731,0.79788456080286/ INDEX=NREPLAC(I) RETNF(I)=0. TEMP1=SHOTS-GAMMA(I)	PLNORM 9 PLNORM10 PLNORM11 PLNORM12 PLNORM13
	IF (TEMP1.LE.O.) RETURN D=1./(C1*BETA(I)) TEMP2=(ALOG(TEMP1)-ALPHA(I))*D IF (TEMP2.GE.26.) GO TO 3 NTEMP=NORIG(I)-INDEX	PLNORM14 PLNORM15 PLNORM16 PLNORM16 PLNORM17 PLNORM18
1	IF (NTEMP.LT.1) GO TO 1 RETNF(I)=C2*EXP(-TEMP2**2)/(TEMP1*BETA(I)*ERFC(TEMP2)) RETNF(I)=FLOAT(NTEMP)*RETNF(I) IF (INDEX.EQ.0) RETURN DO 2.1-1 INDEX	PLNORM19 PLNORM20 PLNORM21 PLNORM22 PLNORM22
	TEMP1=FLOAT(IREPL(J,I))*TDELTA-GAMMA(I) IF (TEMP1.LE.O.) GO TO 2 TEMP2=(ALOG(TEMP1)-ALPHA(I))*D RETNF(I)=RETNF(I)+C2*EXP(-TEMP2**2)/(TEMP1*BETA(I)*ERFC(TEMP	PLNORM24 PLNORM24 PLNORM25 PLNORM26 2PLNORM27
2	CONTINUE	PLNORM28 PLNORM29
C	IF_TEMP2.GE_26. ERFC WILL_UNDERFLOW. ARBITRARILY SET	PLNORM30 PLNORM31
3	$\begin{array}{l} \text{RETNF}(1) = 1.E + 100 \text{AND} \text{RETURN} \\ \text{RETNF}(1) = 1.E + 100 \end{array}$	PLNORM32 PLNORM33
-	ETURN ENTRY PPLNORM	PLNORM34 PLNORM35
С	CALCULATE THE A POSTERIORI PROBABILITY INDEX=NREPLAC(I)	PLNORM36 PLNORM37
	CALL LOGERK (PROB(I),ALPHA(I),BETA(I),GAMMA(I)) PSAVE(NSHOT,I)=PROB(I)	PLNORM38 PLNORM39
	PS(1)=1. MULTIO=NORIG(1)-INDEX	PLNORM40 PLNORM41
	PS(I)=1PROB(I)	PLNORM42 PLNORM43
	IF (MULTTO.EQ.1) GO TO 5 DO 4 J=2,MULTTO	PLNORM44 PLNORM45
4 5	PS(I)=PS(I)*(1PROB(I)) IF (INDEX.EQ.O) GO TO 7	PLNORM46 PLNORM47
	DO 6 $J=1, INDEX$ K=IREPL(J,I)+1	PLNORM48 PLNORM49
6	P(J,I)=PSAVE(K,I) PS(I)=PS(I)*(1P(J,I))	PLNORM50 PLNORM51
7	PPROB=PPROB*PS(I) PS(I)=1PS(I)	PLNORM52 PLNORM53
	RETURN END	PLNORM54 PLNORM55

CCC	SUBROUTINE PGAMMA(I) FOR COMPONENTS FOLLOWING GAMMA DISTRIBUTIONS GAMMA IN COMMON/XP2/ HAS BEEN CHANGED TO ZAMMA TO ALLOW THE USE OF A FUNCTION ON DISC COMMON /XP2/ ALPHA(10),BETA(10),ZAMMA(10),RETNF(10) COMMON /XP3/ NORIG(10),NREPLAC(10),IREPL(1000,10),PSUM,IPROB,MSP COMMON /XP4/ NGROUPS,PROB(10),P(1000,10),IGROUP(10),PTEST(10) COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT,LASTSHT,NREP(10) COMMON /XP6/ PS(10),PPROB LCM /XP7/ PSAVE(10000,10) INDEX=NREPLAC(I)	PGAMMA 2 PGAMMA 3 PGAMMA 4 PGAMMA 5 PGAMMA 6 PGAMMA 7 PGAMMA 7 PGAMMA 8 PGAMMA 10 PGAMMA 11 PGAMMA 12
1	U=ALPHA(1)*(SHOTS-ZAMMA(1)) RETNF(I)=0. IF (U.LE.O.) RETURN NTEMP=NORIG(I)-INDEX IF (NTEMP.LT.1) GO TO 1 RETNF(I)=ALPHA(I)*U**(BETA(I)-1.)*EXP(-U) RETNF(I)=FLOAT(NTEMP)*RETNF(I)/GAMMA(BETA(I),U) IF (INDEX.EQ.O) RETURN DO 2 J=1,INDEX U=ALPHA(I)*(FLOAT(IREPL(J,I))*TDELTA-ZAMMA(I)) IF (U.LE.O.) GO TO 2 RATE=ALPHA(I)*U**(BETA(I)-1.)*EXP(-U) RATE=RATE/GAMMA(BETA(I),U)	PGAMMA 13 PGAMMA 14 PGAMMA 15 PGAMMA 16 PGAMMA 16 PGAMMA 18 PGAMMA 19 PGAMMA 20 PGAMMA 21 PGAMMA 22 PGAMMA 23 PGAMMA 25
2	RETNF(I)=RETNF(I)+RATE CONTINUE RETURN	PGAMMA26 PGAMMA27
С	ENTRY PPGAMMA CALCULATE THE A POSTERIORI PROBABILITY INDEX=NREPLAC(I) IF (SHOTS-ZAMMA(I).LT.O.) GO TO 7 CALL GAMPROB (ALPHA(I),BETA(I),ZAMMA(I),PROB(I)) PSAVE(NSHOT,I)=PROB(I) PS(I)=1. MULTTO=NORIG(I)-INDEX IF (MULTTO.LT.1) GO TO 4 PS(I)=1PROB(I) IF (MULTTO.EQ.1) GO TO 4 DO 2 J-2 MULTTO	PGAMMA28 PGAMMA29 PGAMMA30 PGAMMA31 PGAMMA32 PGAMMA33 PGAMMA33 PGAMMA35 PGAMMA35 PGAMMA36 PGAMMA37 PGAMMA38 PGAMMA38
3 4	PS(I) = PS(I) * (1 PROB(I)) IF (INDEX.EQ.0) GO TO 6 DO 5 J= 1, INDEX K=IREPL(J,I)+1	PGAMMA40 PGAMMA41 PGAMMA42 PGAMMA43 PGAMMA44
56	P(J,I)=PSAVE(K,I) PS(I)=PS(I)*(1P(J,I)) PPROB=PPROB*PS(I) PS(I)=1PS(I)	PGAMMA45 PGAMMA46 PGAMMA47 PGAMMA48
C 7	RETURN PROBABILITY OF FAILURE IS ZERO, SHOTS LESS THAN GAMMA PROB(I)=0. PSAVE(NSHOT,I)=0. PS(I)=0. RETURN END	PGAMMA49 PGAMMA50 PGAMMA51 PGAMMA52 PGAMMA53 PGAMMA54 PGAMMA55
С	<pre>SUBROUTINE PUNIFM(I) FOR COMPONENTS FOLLOWING UNIFORM STATISTICS COMMON /XP2/ ALPHA(10),BETA(10),GAMMA(10),RETNF(10) COMMON /XP3/ NORIG(10),NREPLAC(10),IREPL(1000,10),PSUM,IPROB,MSP COMMON /XP4/ NGROUPS,PROB(10),P(1000,10),IGROUP(10),PTEST(10) COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT,LASTSHT,NREP(10) COMMON /XP6/ PS(10),PPROB LCM /XP7/ PSAVE(10000,10) INDEX=NREPLAC(I) RETNF(I)=0. IF (SHOTS.LT.ALPHA(I)) RETURN IF (SHOTS.GE.BETA(I)) RETURN IF (SHOTS.GE.BETA(I)) RETURN NTEMP=NORIG(I)-INDEX IF (NTEMP.LT.1) GO TO 1 RETNF(I)=FLOAT(NTEMP)/(BETA(I)-SHOTS)</pre>	PUNIFM 2 PUNIFM 3 PUNIFM 4 PUNIFM 5 PUNIFM 6 PUNIFM 7 PUNIFM 7 PUNIFM 9 PUNIFM 9 PUNIFM 10 PUNIFM 10 PUNIFM 12 PUNIFM 13 PUNIFM 15 PUNIFM 16

٠

•

•

4

1 2 C 34	<pre>IF (INDEX.EQ.0) RETURN DO 2 J=1,INDEX TEMP=TDELTA*FLOAT(IREPL(J,I)) IF (TEMP.LT.ALPHA(I)) GO TO 2 RETNF(I)=RETNF(I)+1./(BETA(I)-TEMP) CONTINUE RETURN ENTRY PPUNIFM CALCULATE THE A POSTERIORI PROBABILITY INDEX=NREPLAC(I) PROB(I)=0. PSAVE(NSHOT,I)=0. PS(I)=0. IF (SHOTS.LT.ALPHA(I)) RETURN IF (SHOTS.LT.ALPHA(I)) RETURN IF (SHOTS.GE.BETA(I)) GO TO 7 PROB(I)=TDELTA/(BETA(I)-SHOTS) PROB(I)=TDELTA/(BETA(I)-SHOTS) PROB(I)=1. MULTTO=NORIG(I)-INDEX IF (MULTTO.LT.1) GO TO 4 PS(I)=1. MULTTO=NORIG(I)-INDEX IF (MULTTO.EQ.1) GO TO 4 DO 3 J=2,MULTTO PS(I)=PS(I)*(1PROB(I)) IF (INDEX.EQ.0) GO TO 6 DD 5 J=1,INDEX K=IREPL(J,I)+1 P(J,I)=PS(I)*(1P(J,I))</pre>	PUNIFM17 PUNIFM18 PUNIFM19 PUNIFM20 PUNIFM21 PUNIFM23 PUNIFM23 PUNIFM24 PUNIFM25 PUNIFM26 PUNIFM26 PUNIFM27 PUNIFM27 PUNIFM30 PUNIFM30 PUNIFM31 PUNIFM32 PUNIFM33 PUNIFM35 PUNIFM35 PUNIFM36 PUNIFM37 PUNIFM37 PUNIFM37 PUNIFM38 PUNIFM39 PUNIFM41 PUNIFM43 PUNIFM43 PUNIFM45 PUNIFM45 PUNIFM45
5 6	$\frac{PPROB=PPROB*PS(I)}{PS(I)=1PS(I)}$	PUNIFM47 PUNIFM48
C 7	RETURN PROBABILITY OF FAILURE IS 1. IF NUMBER OF SHOTS .GE. BETA PROB(I)=1. PS(I)=1. PPROB=0. RETURN END	PUNIFM50 PUNIFM51 PUNIFM52 PUNIFM53 PUNIFM54 PUNIFM55
ССССС	SUBROUTINE ERK(P, ALPHA, BETA, GAMMA) ERK COMPUTES THE A POSTERIORI FAILURE PROBABILITY FOR A NORMALLY DISTRIBUTED COMPONENT. IT COMPUTES THE INTEGRAL OF THE DISTRIBUTION FUNCTION FROM SHOT N-1 TO SHOT N USING A 41 POINT SIMPSONS RULE. ENTRY LOGERK DOES THE SAME FOR A LOG NORMAL COMPONENT. COMMON /XP5/ TLAST, TDELTA, NSHOT, SHOTS, IPLOT, LASTSHT, NREP(10) DATA C1, C2/1.4142135623731, 0.79788456080286/ B=SHOTS-ALPHA A=B-TDELTA STEP=.025*TDELTA Q=.5/(BETA**2) P=EXP(Q*A**2) DO 1 I=2.40.2	ERK 2 ERK 3 ERK 5 ERKK 5 ERKK 6 ERKK 6 ERKK 112 ERKK 112 ERKK 113 ERRKK 115
1	$\widetilde{P} = P + 4 \cdot \widetilde{*} \widetilde{E} \widetilde{X} P (\widetilde{Q}^{*} (A + FLOAT(I-1) * STEP) **2) + 2 \cdot *EXP(Q*(A + FLOAT(I) *S))$ $P = P - EXP(Q*B**2)$ $P = STEP*C2*P/(3 \cdot *BETA*ERFC(A/(BETA*C1)))$ $RETURN$ $ENTRY LOGERK$ $P = 0 \cdot B$ $B = SHOTS - GAMMA$ $IF (B \cdot LE \cdot 0 \cdot) RETURN$ $STEP = \cdot 025 * TDELTA$ $A = B - TDELTA$ $A = B - TDELTA$ $Q = 1 \cdot /(2 \cdot *BETA*BETA))$ $IF (A \cdot EQ \cdot 0 \cdot) GO TO 2$	TEERK 16 ERK 17 ERK 18 ERK 20 ERK 21 ERK 22 ERK 22 ERK 22 ERK 25 ERK 26 ERK 26 ERK 26
2	P=EXP(-(ALOG(A)-ALPHA)**2*Q)/A DO 3 I=2,40,2 X1=A+FLOAT(I-1)*STEP	ERK 29 ERK 30 ERK 31

.

.

3	X2=A+FLOAT(I)*STEP P=P+4.*EXP(-(ALOG(X1)-ALPHA)**2*Q)/X1+2.*EXP(-(ALOG(X2)-ALPHA)**2*Q)/X2 P=P-EXP(-(ALOG(B)-ALPHA)**2*Q)/B IF (A.EQ.O.) GO TO 4 P=P*STEP*C2/(3.*BETA*ERFC((ALOG(A)-ALPHA)/(BETA*C1))) RETURN P=P*C2*STEP/(6.*BETA) RETURN END	ERK ERK ERKK ERKK ERKK ERK ERK ERK	20345678901 33333333344
CCC	SUBROUTINE GAMPROB(ALPHA, BETA, ZAMMA, PROB) THIS ROUTINE COMPUTES THE A POSTERIORI PROBABILITY OF FAILURE BETWEEN T AND T+DELTA T OF A COMPONENT WHICH FOLLOWS A GAMMA DISTRIBUTION. IT USES A 41-POINT SIMPSONS RULE. COMMON /XP5/ TLAST, TDELTA, NSHOT, SHOTS, IPLOT, LASTSHT, NREP(10) B=SHOTS-ZAMMA A=B-TDELTA STEP=.025*TDELTA IF (B.LE.O.) GO TO 4 IF (A.EQ.O.) GO TO 1 SUM=(ALPHA*A)**(BETA-1.)*EXP(-ALPHA*A)	GAMPR GAMPR GAMPR GAMPR GAMPR GAMPR GAMPR GAMPR GAMPR GAMPR	0B2 10B3 10B4 10B5 10B6 10B6 10B8 10B8 10B8 10B8 10B8 10B8 10B8 10B8
1 2	GU IU 2 SUM=0. DO 3 I=2,40,2 AIM1=(A+FLOAT(I-1)*STEP)*ALPHA AI=(A+FLOAT(I)*STEP)*ALPHA SUM=SUM+4.*(AIM1)**(BETA-1.)*EXP(-AIM1)+2.*AI**(BETA-1.)*EXP	GAMPF GAMPF GAMPF GAMPF (GAMPF	1013 1014 1015 1016 1017 1018
3	CONTINUE SUM=SUM-(ALPHA*B)**(BETA-1.)*EXP(-ALPHA*B) U=ALPHA*A Z=GAMMA(BETA,U) PROB=SUM*STEP*ALPHA/(3.*Z) BETURN	GAMPH GAMPH GAMPH GAMPH GAMPH GAMPH	1020 1021 1022 1023 1023 1024
C 4	SHOTS ARE BELOW GUARANTEED LIFE. BY ASSUMPTION NO FAILURES OCCUR. PROB=0. RETURN END	GAMPI GAMPI GAMPI GAMPI	1026 1027 1028 1028 1029

•

APPENDIX B

EXAMPLE OF ETNF CALCULATION

An example of the expected-time-to-next-failure computation is given for seven groups of hypothetical components that represent the seven distribution types the program accepts. The distribution type is used as the group name and the parameters used are those given in the test problem printout below. These parameters were chosen to illustrate the use of the program and do not, in general, correspond to known components. Probability prints for this example were not requested so that the output listing would be shorter.

TEST PROBLEM				
7 40	1	S600.	0.5	
EXPONENTIAL				
1	1000	.0000	98 100.	
WEIBULL				
2	10001	10030.	.75	0.0
NORMAL				-
3	100	2500.	400.	
LOG NURMAL				
4	100	15.	50,	3, 7
GAMMA				-
5	190	.01	20,	-5.2
UNIFORM				
6	1000	500.	400000,	
RAYLEIGH				
7	2001	10930,	00.	

Fig. B-1. Input to program.

FOR COMPONENT GROUP 5, OBEYING GAMMA DISTRIBUTION, GAMMA PARAMETER IS A NONINTEGRAL MULTIPLE OF DELIA T. GAMMA PARAMETER HAS BEEN CHANGED TO -. 50000000-01

NUMBER OF GROUPS OF COMPONENTS CONSIDERED-----7 SPACING DESIRED BETWEEN OUTPUT DATA----- 40 TIME STEP------ .500000E.00 IS A PLOT DESIRED----- YES. ARE PROBABILITY PRINTS DESIRED----- NO. GROUP 1 EXPONENTIAL DISTRIBUTION TYPE NUMBER 1 NUMBER OF UNITS 1000 ALPHA= .800000E-05 BETA# .100000E+03 GAMMA=+. . GROUP 2 WEIBULL DISTRIBUTION TYPE NUMBER 2 NUMBER OF UNITS 1009 ALPHA# .700000E+05 BETA# .750000E+00 GAMMA=0. GROUP 3 NCRMAL OISTRIBUTION TYPE NUMBER 3 Fig. B-2. NUMBER OF UNITS 100 Program output page 1. ALPHA= .250000E+04 BETA# .400000E+03 GAMMA=+. GROUP 4 LOG NOPMAL UISTRIBUTION TYPE NUMBER 4 NUMBER OF UNITS 106 ALPHA= +150000E+02 BETAT .500000E+02 GAMMA=-.370000E+01 GROUP 5 GAMMA DISTRIBUTION TYPE NUMBER 5 NUMBER OF UNITS 100 ALPHA= .100000E-01 BETA# .200000E+02 GAMMA=+.520000E+01 GROUP 6 UNIFORM DISTRIBUTION TYPE NUMBER 6 NUMBER OF UNITS 1000 ALPHA= .500000E+03 BETA# .400000E+06 GAMMA=*. GROUP 7 RAYLEIGH DISTRIBUTION TYPE NUMBER 7 NUMBER OF UNITS 200 ALPHA= .100000E+05 BETA= .400000E+03 GAMMA=+. FOR COMPONENT GROUP 4. OBEYING LOGNORMAL DISTRIBUTION. GAMMA PARAMETER IS A NONINTEGRAL MULTIPLE OF DELIA T. GAMMA PARAMETER HAS BEEN CHANGED TO -. 350000E+01

TEST PROBLEM

FOR THE WEIHULL DISTRIBUTION. BETA LESS THAN I AND TIME-GAMMA=0 CAUSES TH**E FAILURE RATE TO APPROACH INFINITY.** Since it will be well behaved for time-gamma greater than zero, time-gamma is given a small positive value and the failure hate is calculated for this value. The infinities due to replacements are ignored. It is possible that this may cause discontinuities in the overall etnf.

			•					
≜ T	TIME	0.	EXPECTED	TIME	τo	NEXT	FAILINES	.20333AE+01
AT	TIME	+2000f-0E+02	EXPECTED	7185	10	NEXT	FATLURES	-151916E+02
AT	TIME	400000E+02	EXPECTED	TTHE	τ'n	NEXT	EATLURES	. 2860025402
AT	TIME	-600000E+02	EXPECTED	TIME	to	NEYT	FAILURE	3731475463
AT	TIME	. HOAA66FA32	ÉXDECTEN	TINC	ŤŇ	NEVT	FAILURE-	• 37 31 47 2 402
ĀŤ	TIME	1000000000	EXPECTED	TIME	+2	NEAT	FAILURES	++++//FE+02
AT	TIME	12000002003	EXPECTED	TIME	+0	NEAT	PAILURE=	. 30 4025E 02
	TIME	•120000000	EXPECTED	TIME	10	NEXT	FAILURE	+440377E+02
	TIME	•14000E+03	EVECTED	ITWE	10	NEAT	FAILURE =	+479247E+02
AI	TIME	.160000E+03	EXPECTED	TIME	TO	NEXT	FA1LURE=	•512217E•02
AT.	TIME	•18cccoE+03	EXPECTED	T 1 ME	70	NEXT	FAILURE=	•2552071E+02
AT	TIME	•2000C0 <u>+</u> •03	EXPECTED	TIME	TO	NEXT	FAILURE=	•557670E •02
. Ă.L	TIME	•220000E•03	EXPECTED	TIME	TO	NEXT	FAILURE=	+\$83863E+02
AT.	TIME	.24nnt0⊑+u3	EXPECTED	TIME	ΤO	NEXT	FAILURE=	.605971E.02
AT	TINE	•260;;0Ē•03	ÊXPECTEU	1 JinE	7C	HEXT	FAILURE=	+15555E+02
ÁT.	TIME	.280000E+03	Ė XPECTED	TIHE	TO	NEXT	FALLURES	-643204F+02
AT	TIME	-300000E+03	EXPECTED	TIME	то	NEXT	FATLURES	- 658023E+02
ÅΤ.	TIME	- 320000E+03	EXPECTED	TIME	ŤŐ	NEXT	FATLURES	.6732745402
AT	TINE	-340000F+C3	EXPECTED	TIME	τŏ	NEXT	FATUREE	- 4940355407
ÂT	TIME	-36000000-03	FXPECTED	TIME	τň	MEYT		6003735403
AT	TF	380 2005 + 03	EXPECTED	TIME	ŤŐ	SIE S S	FAILURE-	3345705402
AT	TIME	\$0000E003	EXPECTED	TIME	10	HEAT	FAILURE#	•/1103HE •02
ÂŤ	T T ++E	+ 30 0 0 0 0 C + 0 3	É TOECTEU	TIME	10	NEAT	PAILUREE	• 122336E • 02
	TTNE	• • 200002 • 03	EXPENSED	TIME	10	NEAT	FAILURES	• 730388E • 02
	TIME	•••00CUE+03	EXPECTED	TIME	10	NEXT	FAILURE=	•73770AE•02
	TIME	• • • • • • • • • • • • • • • • • • •	EXPECTED	TIME	10	NEXT	FAILURE	.744365E+02
- 21	TIME	.480000E+03	EXPECTED	TIME	TO	NEXT	FAILURE=	•750418E•02
AT	TIME	•50000E+03	EXPECTED	TIME	ΤO	NE X T	FAILURE=	+635318E+02
AT.	TIME	•20000£•03	EXPECTED	TIME	ΤO	NEXT	FAILURE=	.638827E.02
. Ă.T.	Tine	•540000£•c3	EXPECTED	TIME	ΤO	NEXT	FAILURE=	.642317E.02
ÁT.	TIME	•56ncJ0É•03	ÊAFECTED	TIME	TO.	NEXT	FAILURE=	+645481E+02
AT.	TINE	.58c0)0E+03	ÉXPECTED	T1NE	τo	NEXT	FAILURES	+047991E+02
ÅΤ.	TIME	•60000GE+03	EXPECTED	TIME	τo	NEXT	FAILURE=	+650177E+02
AT	TIME	•620000E+03	ĒXPECTED	TIME	TO	NEXT	FAILURES	+652137E+02
AT	TINE	+64ng90E+03	Ė ≭ PECTEO	TIME	TÓ	NEXT	FAILURE	+653298E+02
ÅΤ	TIME	.66000CE+03	EXPECTED	TTME	TO	NEXT	FATLURFE	-654072E+02
AT	TIME	+6800C0E+03	EXPECTED	TIME	τõ	NEXT	FATLURE	+630540F+02
ÂŤ	TIME	-7000:05+03	EXPECTED	TIME	ŤŐ	NEXT	FATLURE	++++++++++++++++++++++++++++++++++++++
AT	TIME	• 720000E • 03	EXPECTED	TIME	τŏ	NEXT	FATLURES	+0423792*02
ÅΤ.	TINE	.740005+03	EXPECTED	TIME	TO	NEXT	FATLURES	-6474045+02
ÁT.	TIME	.760000E+03	EXPECTED	TIME	TO	NEXT	FATLURES	- 6440445402
AT	TIME	-7805005+63	EXPECTED	TIME	tõ	NEYT	FAILURE-	+ 4 5 1 4 1 5 4 0 2
ÅT.	TINE		E VOS CTEO	TTME	+0	NEVE	FAILUNE-	+045101E+UZ
Π.	TTHE	• • • • • • • • • • • • • • • • • • • •	EXPECTED	TTME	+ 6	NEAT	FAILURE	+642426E+02
ĀŤ	TIME	8400005403	EAPECIEU	1106	10	772.A.I.	FAILUMES	+138520F+05
ÂT	TTHE	• 0 + P 0 D 0 E + 0 3	EXPECTED	TIME		NEXT	FALLURE	•632482E•02
	1,200	•86r000E•03	EXPECTED	TIME	10	NEXT	FAILURES	+625502E+02
	TINC	• 0000HUL+03	EXPECTED	TIME	10	NEXT	FAILURE	•016572E+02
	TIME	• YON0COE • 03	EXPECTED	TIME	TO	NEXT	FAILURE=	•605635E•02
<u>.</u>	TIME	• Y20000E • 03	L XPECTEO	TIME	TQ	MEXT	FAILUPE=	•20+35256E
<u><u>A</u><u></u></u>	TIHE	•9400002:63	EXPECTED	TIME	ΤO	NEXT	FAILURE=	•579 <u>0</u> 678•n2
AT	TIME	•96nnuu£•03	EXPECTED	TIME	ΤO	NEXT	FAILURE= '	.562754E+02
ĂŢ.	TIME	•980000E+03	EXPECTED	TIME	ΤŌ	NEXT	FAILURE=	.545281E.02
AT.	TIME	•10000CĒ≁ú∻	EXPECTEO	TIME	ΤO	NEXT	FAILURE=	+526279E+02
ÂT.	TIME	•102000Ē•04	EXPECTED	TIME	TO	NEXT	FAILURE=	+5059785+02
AT	TIME	+104000E+04	EXPECTED	TIME	TO	NEXT	FAILURF=	+484625E+02
ĂŢ	TIME	+106000E+04	EXPECTED	TIME	TÖ	NEXT	FAILURE=	+463884E+02
		-	-					

.

Fig. B-3. Program output page 2.

. .

•

,

		• • • •
16 UNITS OF GROUP 1 WERE H	REPLACED	
4 UNITS OF GROUP 2 WERE R	REPLACED	
13 UNITS OF GROUP 3 WERE R	REPLACEO	
63 UNITS OF GROUP & WERE H	REPLACEO	
4 UNITS OF GROUP 6 WERE R 4 UNITS OF GROUP 7 WERE R	REPLACED	

r .

	+441336E+02	FATLURES	NEXT	ME T	EXPECTED	.108000E+04	AT TIHE	
	-4185665+02	FATLUHER	NEXT	NL T	EXPECTED	-110000E+04	AT TIHE	
	3060076403	EATL UVE	NEXT	MF T	FAPELIED	-1120-05+04	AT TTHE	
	2772015402	EALLURE		INE T	EXUET TEN	114000000404		
	•3/33/16/18	FALLINE -			5 X DC(TED	1140000-04		
	•351492E•02	FAILURE=		111 <u>6</u> 11	EXPECTED	110000000404		
	•331908E •02	FAILURES			Expected	•110000L+04	AT TIME	
	•313187E •02	FAILURE	I NEXT		EXPECTED	•129000E+64	AT TIME	
	+295422E+02	FAILURES) IEXT	ME I	EXPECTED	.122000E.04		
	•276949E+02	FAILURE=	NEXT	ME T	EXPECTED	.1240002+04	AT TIME	
	•261150E•02	FAILU9E=) NEXT	MET	EXPECTED	+1200COE+04	AT TIME	
	•244694E+02	FAILURE=	D NEXT	ME TI	EXPECTED	-128000E+04	AT TIME	
	•530819E+0S	FAILURE=) NEXT	ME TO	EXPECTED	+1300n0E+04	AT TIME	
	•208753E•02	FAILURE=) NEXT	ME TI	EXPECTED	-132000L+04	AT TIME	
	•202520E+02	FAILURE=) NEXT	NE TO	EXPECTED '	•134030E+04	AT TIME	
	190863E+02	FAILURE=) NFXT	HE T	EXPECTED '	•136040E+04	AT TIME	
	+179567E+02	FAILURE=) NEXT	ME TO	EXPECTED 1	.138000L+04	AT TIME	
	.162486E .02	FAILURE=	NEXT	ME TO	EXPECTED '	+140000E+04	AT TIME	
	+160193E+02	FAILURES) NEXT	ME TO	ĖXPECTEO '	+0+3000E+04	AT TIME	
	+156547E+02	FAILURE=) NEXT	NE TO	EXPECTED '	-144000E+04	AT TIME	
	-147956E+02	FAILURE:	DEXT	ME TO	EXPECTED '	-146CU0E+04	ÁT TIHE	
	-1398385+02	FAILUREE	NEXT	ME TO	EXPECTED	-148600E+04	AT TIME	
	-1322365+02	FATLURES	NEXT	ME TO	EXPECTED	-150000E+04	AT TIME	
	124254E+02	FAILURES	NEXT	ME TO	EXPECTED	-152000E+04	AT TIHE	
	1206785402	FAILURES	NEXT	ME TO	EXPECTED 1	-154000E+04	AT TIME	
	1154935403		DEXT	ME TO	EXPECTED '	.1560000004	AT TIME	
n	1104632-02	FATLUPE		ME TO	ÉXUECTEO 1	154000100	- AT TTHE	
PTOgi	•1106562 •02	FAILURE -	NEXT	NE 10		1600005004	AT TIME	
	•108126E •02	FALLURES				16000000004	AT TIME	
	•103833E•02	FAILURES	NEAL			• 10/0UUE • 0•		
	+1008H4E+02	FAILURES	NEAL	ME 10	EXPECTED 1	.1040000.404	AT TIME	
	•990412E •01	FAILUREE	NEAL	ME TO		•]00C00E+C+		
	+954168E*01	FAILUREE	NEAL	ME 10		.1000005-04		
	•921319E•01	FAILURE=	NEXT	MEIC	EXPECTED 1	+1/0000E+04	AT TIME	
	•889252E*01	FAILURE	NEXT	ME IC	EXPECTED	+1/2000E+04	AT TIME	
	•860269E •01	FAILURE=	NEXT	ME TO	EXPECTED	+174000L+04	AT TIME	
	•840607E•01	FAILURE=	NEXT	METO	EXPECTED	+176040E+04	AT TIME	
	•831240E•01	FAILURE=	NEXT	ME TO	EXPECTED	-1780U0L+04	AT TIHE	
	+823174E+01	FAILURE=	NEXT	ME TO	EXPECTED 1	•150000L+04	AT TIME	
	825935E • 01	FAILURE=	NEXT	ME TO	EXPECTED 1	+182000E+c4	AT TIME	
	•830745E+01	FAILURE=	NEXT	ME TO	EXPECTED 1	•1840×0E+04	AT TIME	
	•837245E•01	FAILURE=	NEXT	ME TO	EXPECTED 1	•186000E+04	AT TIME	
	•815128E•01	FAILURE=	NEXT	ME TO	EXPECTED 1	.1880J0E+04	AT TIME	
	+815367E+01	FAILURE=	NEXT	ME TO	EXPECTED 1	.1900(IOE+04	AT TINE	
	+819602E+01	FAILURE =	NEXT	ME TO	EXPECTED 1	•192000Ė•04	ÅT TIME	
	+793978E+01	FAILURE=	NEXT	ME TO	ĖXPECTEO T	-194000E+04	AT TIME	
	.797989E+01	FAILURE=	NEXT	ME TO	EXPECTED T	.1960U0E+04	.AT TIME	
	.780262E.01	FAILURE=	NEXT	ME TO	EXPECTED T	.1980U0E+04	AT TIME	
	.763425E · 01	FAILURE	NEXT	ME TO	EXPECTED	+0+30000E+04	AT TINE	
							•	

Fig. B-4.	
Program output page	З.

.

· .

TEST PROBLEM

- •

Fig. B-5. Film output.

•