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XPECT—A MONTE CARLO PROGRAM TO
PREDICT THE EXPECTED-TIME-TO-NEXT-FAILURE
IN CONTROLLED THERMONUCLEAR RESEARCH SYSTEMS

by

G. P. Boicourt

ABSTRACT

The ability to predict failure rates is of increasing importance in
controlled thermonuclear research (CTR) engineering as the
systems increase in size. If a large CTR system is assembled
~=without an examination of failure rates, its usefulness may be

T e W
= b - limited by insufficient time between failures. The usual mean-tlme- ~

'h‘““—-‘x;; -between failure calculation does not apply here. Instead, an

§§3 8 : - and a Monte Carlo program (XPEC’I‘) is glven for its computatlon
°§’==~r=-°
<—38F:~ ~The computatlon takes advantage of the fact that fallures in pre-
=0L
58{.; sent CTR systems occur predominantly in developmental com-
=1
4

== /- ponents being used in large quantities.

I. INTRODUCTION

The ability to predict failure rates is of increasing importance in controlled ther-
monuclear research (CTR) engineering as the systems increase in size. A large theta-
pinch svstem may contain thousands of identical components, many of which are hardly
beyond the development stage and whose failure rates may be fairly high. If such a

system is assembled without due regard for these failure rates. it quite possibly will not

operate satisfactorily,



The usual mean-time-between-failure calculation does not apply here because it
assumes each component to be on the flat part of its failure-rate curve. This means that
early-failure components ha;'e been eliminated before the system is assembled. Unfor-
tunately, because of time and expense, some critical components in a large CTR system
may not have been tested sufﬁciently to reach the flat part of the failure-rate curve.
Usually only a few types of components determine the failure rate in CTR systems, and
this makes possible the Monte Carlo calculation of an analogous quantity, the expected-
time-to-next-failure, provided the failure distributions of the critical component types

are known.

II. THEORETICAL PRELIMINARIES

We consider a probabilistic series system, that is, one in which the failure of any com-

ponent causes the system to fail. The failure rate r(t) of any system is given by

r(t) = - = B 1)
-7 R_ dt ’
-}
where R, is the system reliability function. For series systems,
R_= R (2)
where N is the total number of components and R; is the reliability function of the ith

component. R; is defined to be

R, = {fi(c')dc' . (3)

Here f; (t) is the failure probability densitv of the i'h component.

From (3),
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so, from (1),

N £ (t)
1

x(t) = 3 .
i=1 By

(5

In analogy with the mean-time-to-next failure, defined to be the reciprocal of the cons-
tant failure rate of an exponential distribution, we define the expected-time-to-next-
failure by

1 3
EINF(t) = FITSY (6)

Using the equivalent notation Rj(t) = 1 — Fj(t),

§ £.(t) .
ETNF(t) = 1 .
by 1 - Fj(t)

F; (t) is the unreliability of the j'® component defined by

_t
F (t) = Jo £5(s")ae '
it is the probability that the i'h component has failed at some time equal to or less than t.
Thus. the problem of calculating the expected-time-to-next-failure involves merely the
mechanics of evaluating the series in Eqg. (7) at each time point desired. If the system con-
sists of thousands of dissimilar components. this evaluation would be very time-
consuming or even impossible. However. only a few tvpes of critical components are
found in CTR experiments. and evaluation of the sum in Eq. (7) is considerably easier
because one evaluation of f; and F; at each time step suffices to evaluate the contribution
of all type-j components that have survived from the initial time point. The required

computations are detailed after the following notation.



Let

J = number of component types

Nk (t) = number of original units of the k" type at time t

My (t) = number of replacement units of the kth type at time t

fuk = probability density associated with all remaining original units of the
kth type

fik = probability density associated with the ith individual replacement unit
of the k! type

Fuik = unreliability of any remaining original unit of the kth type

F = unreliability of the it" individual replacement unit of the k" type

Puk = a posteriori failure probability of any original individual unit of the kth
type

Pik = a posteriori failure probability of the i'h replacement individual unit of
the k' type

tik = time at which the i'" individual unit of the kP type began operation

t = time of operation of the system,

A constant total number of operating units is assumed and is given by

Me

]
]
")

(Nk(t) + .\xk(t)) .

This implies that each sum. N+ My. is a constant: thus, when an original unit fails, N
is reduced by one and the number of replacements My is increased by one.

In the notation just defined. Eq. (7) can be written

(t)
I N _(©F (t) 3 £t = tyy) (8)

ETNF(t) = 1
LIS T T T Y

k=1 1- E‘o



Although the sum in Eq. (8) looks more complicated than that in Eq. (7). its computation
is actually much simpler. Instead of computing f.«(t) and F,i(t) N times at point t, we
need only compute these values once at time t. Moreover. if we use a constant time step
At.

t, = t-nat (9)

for some n. At any time n will be known, so if the values of

iok(nAt) / (1 - Pck(nAt))

are saved. much computation can be avoided. Computation of this ratio is quite time-
consuming for certain types of statistics, so this storage strategy can save large amounts
of computer time. The required computations of f, and F,; will be treated later under
the individual type of st%atistics. ,

The next concern is the épmputation of Nk(t) and M i(t). A short time step At is chosen
so that no more than one component is likely to fail during the interval (t, t + At). For
pulsed CTR systems, this interval could be a single shot. Then we calculate the probabili-
ty that a failure will o(‘c.lir'..'in the interval (t, t + At), assuming all components to be
working at time t. This probability is found as follows. The probability that a given unit
of type k did not fail is q.x = 1 — puk if the unit is an original unit. orqg = 1 — p i if the
unit is a replacement. p,(t) is the a posteriori failure probability for an original type-k

unit in the time interval (t. t + At), and is given by

t+At
1 .
tok (t')at

pok‘t) =

The pix (1) represent the a posteriori failure probabilities for the replacement units and
can be obtained by use of Eq. (9) from the stored p.(t) for earlier times.

The probability that the entire system worked is

A "
Q = Il na-p,)- 0 1-p,.)
5 kel \ 3=l ok’ gm1 ik '



so the probability that a failure occurred is

5[ E (10)
P(t) = min I 0 Qa-p.) - (1 -p,,) 1 .
k=1 \ j=1 ok’ ju1 e

Given the probability of failure during the time step At, one can use Monte Carlo
methods to decide if a failure occurred. A random number between O and 1 is selected and
compared to P(t); if it is greater than P(t), no failure occurred and the calculation
proceeds to compute ETNF and print, if desired. If P(t) is greater than or equal to the
random number, the program must branch to a computation to find the failed unit and to
replace it. Of course, if P(t) equals one, then the system cannot operate and the computa-
tion should be terminated with a print of the failure probabilities.

Determination of the failed component should be made in a way that takes into ac-
count the contribution of each component to the total failure probability. If the product

in Eq. (10) is expanded it can be written

N
P(t) = E p]!. (11)
i=1

where the p; are of the form

p; = p; - 1/2 py 2 p; + 1/3 py 2 PP + -
pL 2t L
k#i
- pi . Al -

Thus the pi are proportional to the individual failure probabilities of the components.
The factor A; is independent of other contributions of the i'h component and represents
the most natural way of assigning to an individual component the effects of multiple
failures. In general, the A} are not equal. but if the assumption of equality is made, then
the determination of the failed component can be made according to the normalized

probabilities obtained by dividing each probability by the sum of the probabilities. Thus
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Use of Eq. (12) can also be justified by assuming that At is short enough that the
probabilities of multiple failures are small compared to single failure probabilities. This
amounts to taking A; equal to 1. In CTR systems where At equals one shot. this ix
probably a good approximation. Usually when a single component fails in such svstems
the rest of the shot is aborted. The remaining components then either do not receive the
full stress of the shot or get an overstress during the abort—it is impossible to foretell
which will happen on a given shot, but over a long period the average etfect should be
equivalent to the assignment of a shot to the remaining components,

To find the type that failed. a random number is picked and the sum in Eq. (12) is built
up until it equals or exceeds the number. The k value for which this occurs gives the type.

Using the same random number, the procedure is then used on the term

"

N p' + 2: p!
k*ok im1 ik

to decide if an original unit or a replacement unit of type k failed. After the failure is
found it is replaced by making the necessary changes in N, My, and t i
Control is then returned to the point of origin and the computation is continued. A flow

diagram for the computation is given in Fig. 1.

III. FAILURE DISTRIBUTIONS

Seven distributions are included in the program. Thev may not seem as familiar as

some used in probability and statistics, but they are those most commonly obeyed by
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Flow diagram for computation of expected-time-to-next-failure.



components and systems. Additional distributions can be added to the program if
deéired. A subroutine must be written for the distribution and it can be modeled after the
distribution subroutines already included. To include the calls to the subroutine, an ad-
ditional GOTO branch is then required in the computed GOTO statements in sub-
routines DIDITFL and CETNF.

A. Exponential Distribution

The exponential distribution is followed by many components and component
assemblies, provided sufficient bench testing has been done before installation, 123
Components that follow different exponential distributions can be combined easily into a
single composite type, also of the exponential family, provided that the components are

connected statistically in series.

The exponential density function is

£(2) =
ae- a(t-B)

The parameter 8 is the “guarantee’” time. The failure rate is a constant

] t <8

p(t) =



10

B. Weibull Distribution
The Weibull density function is!-*4

0 t <Y

£(t) =

st = 1" axp [t -1%a] >
a

Here vy represents the guarantee time. For t = v, the value of f depends on 8. We have

0 g >1
£(7) = 1l/a =1
o g <1

Notice that this produces a singularity in the failure rate when 8 < 1. The failure rate is

given by
0 t<v
0 t=7,8>1
z(t) = { 1/a t=7 =1
oo t=17,8<1
(6/a) (& - 7)P~2 t >

Because the rate is well behaved fort > y when 8 < 1, we arbitrarily set t = y + 0.01At if
B < 1. This is merely a device to obtain a finite failure rate for computing purposes. If 8
= 1, the Weibull distribution reduces to an exponential distribution and such instances
are probably better handled as exponential. For replacement units we ignore the
singularity, and set the contribution for the unit to zero when t = vy. The a posteriori

failure probability for the Weibull distribution is

plt) =
1-e (1/a)[(c+Ac-1)B - (t-v)"] t=7



C. Normal Distribution (Truncated Normal)

Two forms of the normal distribution are commonly used in reliability

computations: %3 the standard normal and the truncated normal. The density function

of each is of the form

£(t) = (/8 VIR exp [-(t - a)?/(28%).

C is a normalizing constant determined from the condition that the integral of f(t) equals
one. In the case of the standard normal distribution, the integral ranges over all t values
from —o to +. In the truncated distribution, t ranges only from O to 4+, on the
assumption that no failures occur until t is greater than zero. For the purpose of the
expected-time-to-next-failure calculation, it makes no difference which distribution we
consider because the constant C disappears and we obtain identical values for the failure

rate and a posteriori probability of failure. These values are given by

ctty = V7T exp [ ~(¢ - a2 %/(28%)
B erfc [(t - a)/(8 V2))

and
t+At 2 2
V7% f exp [-(x - a)“/(26%)) ax
t
pit) =

g exfe [(t -a)/(8 VD))

The integral appearing in the expression for p(t) could be converted to the difference of
two error function values, but this would lead to considerable round-off error for small At.

In the program the integral is computed numerically, using a 41-point Simpson’s rule. .

D. Logarithmic Normal Distribution

If the logarithm of a random variable has a normal distribution, the variable itself
follows a logarithmic normal distribution. There are at least three log normal dis-
tributions, ranging from two parameters to four parameters.'>3® We use a three-

parameter distribution which includes a guaranteed life. The density function is

11
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£(t) =
1 exp{- (ente = 1 - o) 262} £ > 7
(t - 7) 8 ¥2n
which reduces to the standard two-parameter distribution when vy = 0.
The failure rate is given by
0 t =7
r(t) =
ViTE e fente - 7) - a}?/26°
t > 7
(t - ) [} erfe .Q_ELt_:_ﬁ_'_a
pv2
and the a posteriori failure probability by
0 t <7
t+At
57 2 2
plt) = 2 (:'l_ ) e_{“(t.-” - a} / 28 ger t >y

ﬁerfc{ gn(t = 7) - a} t
8v2
t+At

2 2

(1/28) ¥2/x -i?.i:—;y—) a {Qn(t.-” - a} / 28 dat’ t =7

t

A 41-point Simpson’s rule is also used to find this integral. In this case we also assume

that v is an integral multiple of At.

E. Gamma Distribution

The gamma distribution in its three-parameter form has the density function, 13

t=-7<o0
£(t) =

-1 -a(t-7)
a{a(t-v){}(m e A t-720




The exponential and Erlang distributions are special cases of this distribution. The

failure rate is given by

0 t-1=<0
r(t) =
-1 -alt-7)
a{a(t 7)} 2 t-7>0
r(s.ate - 1)
and the a posteriori failure probability by
0 t-17=<0

plt) =

aft-rAt{ ale! - ,n]B-l U=
t

t-7>0
r{g.att - 1)

In those formulas I'(3,u) is one of the incomplete gamma functions, and is defined by

r(g,u) = f xﬂ“1 e * ax .
u

The integral in the expression for p(t) could be expressed as the difference between in-
complete gamma functions, but would result in considerable round.off error when At is
small. A 41-point Simpson’s rule is used instead and. as in the log normal case, ¥ is

assumed to be an integral multiple of At.

F. Uniform Distribution

The uniform distribution has the density function?

o] t<a and t = §

£(c) =

1 a<t <y
g-a

13



The failure rate is

t<aand t =g

r(t) =

g -t a=t< g

and the a posteriori failure probability is

0 t<a
pt) = pAE: ast<p
1 gt

G. Rayleigh Distribution

The Rayleigh distribution has the density®

0 -ens.'t < t
[}
£(t) = 4
2
} (t-to)
L(t-to) 202 t <= t<e
02

This distribution is a special case of the Weibull distribution, as is easily shown by

making the following substitutions in the Weibull density function:

a-202 ’
g =2 ’
'Y-to .

To input a Rayleigh component type to the program, the first parameter is ¢ and the
second parameter is t,. The program makes the above substitutions and thereafter the

component is treated as if it were following a Weibull distribution.

14



IV. Description of the Program

The calculation has been described. The subroutines and their functions are described

below, a complete listing is given in Appendix A, and an example is given in Appendix B.

The program is written for the CDC 7600 using the CROS operating system.

Subroutine

Function

EXPECT

SETUP

CETNF

DIDITFL

FAILURE

DRIVER FOR PROGRAM

The program calls SETUP and initializes certain variables. A loop
on the time step At is started and continued until the required final
time is reached or until one of three other conditions requires that
the calculation be terminated. Diagnostic prints are made in the
latter event. The loop calls the subroutine DIDITFL to determine if
a failure occurred; subroutine FAILURE is called if one occurred.
One time step is then added to each component of the system being
considered, and subroutine CETNF is called. Data for a plot is
stored if a plot is desired, and a print is made if an output time has
been reached. On exit from the loop, the program makes a plot if it

has been requested.

Reads and prints the input data, initializes the replacement array,
and determines the index of the last time step required. A Rayleigh

distribution component is changed to a Weibull component.

Calculates the ETNF. It calls PEXPON, PWEIB, PNORM,
PLNORM, PGAMMA, and PUNIFM.

Determines by Monte Carlo methods whether a failure occurred by
the end of the current time step. It calls PPEXPON, PPWEIB,
PPNORM, PPLNORM, PPGAMMA. and PPUNIFM. It signals the

main program if the system failure probability is too great.

This routine is called when DIDITFL decides that a failure has oc-
curred. It determines which component failed and replaces the com-

ponent.

15
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The following six subroutines compute the failure rates and a posteriori failure

probabilities for the various distributions. The probabilities are stored for future use. In

each case, the failure rate is calculated by a call to the subroutine, whereas failure

probabilities are calculated by a call to the entry name.

Function

Subroutine Entry
PEXPON PPEXPON
PWEIB PPWEIB
PNORM PPNORM
PLNORM PPLNORM
PGAMMA PPGAMMA
PUNIF PPUNIF

Used for components following exponential dis-

tributions.

Used for components following Weibull dis-

tributions.

Used for components following normal dis-

tributions.

Used for components following log normal dis-

tributions.

Used for components following gamma distribu-

tion.

Used for domponents following uniform dis-

tributions.

The following subroutines are used to compute integrals.

ERK LOGERK

GAMPROB

ERK is called by PPNORM to compute the a
posteriori failure probability of a single compo-
nent of normal type. A 41-point Simipson’s rule
is used for the required integration. LOGERK
performs a similar computation for single log

normal components.

This routine is called by PPGAMMA to com-
pute the a posteriori failure probability of a
single component following a gamma distribu-

tion.



V. INPUT REQUIREMENTS

TITLE CARD

Cols

1-80

CONTROL CARD

Cols

1-6

7-12

13-18

19-24

25-36

37-48

COMPONENT CARDS

Format (8A10)

Title

Format (416, 2E12.6)

Number of component groups. The program will accept up
to 10 groups and can be modified to accept more. These

groups may obey the same or different types of distribution.

MSP, an integer giving the spacing in numbers of steps of At

desired between output points.

Plot control. A one in column 18 indicates a plot is desired;

otherwise no plot is made.

Probability print control. A one in column 24 will cause a
print of the a posteriori failure probabilities for each compo-
nent group. These prints occur with the same spacing as the

ETNF output points.

Time at which last output point is desired. May not be
greater than 1000*At*MSP unless the program storage is
modified.

Time step, At.

For each component group the following two cards must be
present: Group title card Format (8A10) and Distribution
card Format (2112, 3E12.6).

17



Cols

1-12 An integer indicating the type of distribution followed by
the components in the group according to the following
code:

1 - Exponential distribution
2 - Weibull distribution
3 - Normal distribution
4 - Log normal distribution
5 - Gamma distribution
6 - Uniform distribution

7 - Rayleigh distribution

1:3-24 An integer giving the number of components in the group.
25-36 a - First distribution parameter

37-48 B8 - Second distribution parameter

49-60 v - Third distribution parameter.

The «, 8, and v required for the distributions must conform to the notation used in the
test. If a second or third parameter is not required. the corresponding field on the dis-

tribution card may be left blank.
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APPENDIX A

FORTRAN LISTING OF XPECT PROGRAM
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Q=0

LASL identification number : LP-0534
PROGRAM XPECT (INP,OUT,FILM)

XPECT

THIS PROGRAM COMPUTES THE EXPECTED NUMBER OF SHOTS BETWEEN FAILUREXPECT
OR MALFUNCTIONS FOR A SYSTEM HAVING UP TO 10 TYPES OF COMPONENTS XPECT
THESE COMPONENT TYPES MAY FOLLOW ANY OF THE FOLLOWING FAILURE

DISTRIBUTIONS
1-——EXPONENTIAL DISTRIBUTION
2---WEIBULL DISTRIBUTION
g---NORMAL DISTRIBUTION
-—-LOG NORMAL DISTRIBUTION
5---GAMMA DISTRIBUTION
6---UNIFORM DISTRIBUTION
7---RAYLEIGH DISTRIBUTION
THE INPUT REQUIREMENTS ARE
A TITLE CARD ORMAT 8A10
A SINGLE CARD GIVING
THE NUMBER OF DIFFERENT COMPONENT TYPES--FORMATI6
THE SPACING BETWEEN OUTPUT VALUES FORMATI6
A ONE IN COLUMN 18 IF A PLOT IS DESIRED
A ONE IN COLUMN 24 IF PROBABILITIES ARE DESIRED
THE LAST TIME OUTPUT IS NEEDED
TIME STEP
FOR EACH TYPE THE FOLLOWING DATA
CARD 1--NAME OF COMPONENT
CARD 2--COMPONENT DISTRIBUTION TYPE (ITYPE
NUMBER OF COMPONENTS OF TYPE (NORIG
1ST DISTRIBUTION PARAMETER (ALPHA(
2ND DISTRIBUTION PARAMETER (BETA(J
3ED DISTRIBUTION PARAMETER (GAMMA(
IN CASES WHERE ONLY 1 OR 2 PARAMETERS ARE USED
COMMON /XP1/ TYPE(8,10),TITLE(8),EXPECT(1001)
COMMON /XP2/ ALPHAE1 ; ,BETA(10) ,GAMMA(10) ,RETN
COMMON /XP3/ NORIG(10),NREPLAC(10), IREPL(1000, 1
COMMON /XPL/ NGROUPS,PROB(10),P(1000, 10), IGROUP(
COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS, IPLOT,LAST
DATA LABELX/1OHTIME /
DATA LABELY/29HEXPECTED TIME TO NEXT FAILURE/
CALL SETUP
KPRINT=0
NSHOT=0
SHOTS=0.
CALL CETNF (ETNF,IREASON)
IF (IREASON.EQ.2} PRINT 14
PRINT 13, NSHOT,ETNF
EXPECT (1} =ETNF

x§1 =0.

START LOOP ON SHOTS
DO 6 NSHOT=1,LASTSHT
SHOTS= FLOAT(NSHOT)*TDELTA
CALL DIDITFL (IFAIL)

GO TO (2,1,11)
A FAILURE occﬁRé
CALL FAILURE
ADD A SHOT TO ALL REPLACEMENT UNITS
DO NGROUPS
KSTOP= NREPLAC( )
IF (KSTOP.EQ.0) GO TO 4
IF (KSTOP. GT 1000) GO TO 7
DO 3 K=1,KSTOP
IREPL(K,J)=IREPL(K,J)+1
CONTINUE
IF (MSP.EQ.1) GO TO 5
TPRINT=NSHOT+1
IF (MOD(IPRINT,MSP).NE. 1; GO TO 6
CALL CETNF (ETNF,IREASON
KPRINT=KPRINT+1
X(KPRINT)=SHOTS
EXPECT (KPRINT)=ETNF
IF (IREASON.EQ.2) PRINT 14
PRINT 13 SHOTS, ETNF
CONTINUE'
PRINT 18, ((NREP(I) I),I=1,NGROUPS)
GO TO 8

PRINT 16, J

))
G}
ik
e
e
0

J
g
E
1
1
)
1
S

l—]v O <}

9
0
H

FORMAT E12.6
FORMAT E12.6

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

E SPACE B
1) ,LABELY

SUM, IPROB,MSP
,PTEST( 10}
’NREP( 10)

~CmEEHH=

WIS bttt 0O

~2Z PN N

ﬁANCH TO ROUTINE TO DECIDE WHICH TYPE FAILED

iy
o

Re ¢ o«

ONONON

XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT
XPECT

OO OO L= N =2 OO CO~I WU I

PON) = e b b ed b b =
-

22

32

~J 331313 O\ONONON ONONONON ONOMT VT UIUTUIUT UTUIVIUN = 2o 454 o 20 42 12 2 L0 l) LoD L)
L2 LON) =2 O O 0O~ OV L) N =2 OO OO OV £t N = OO CO~I MW LI N = OO QO oW =

21



22

c

13
14
15
16
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IF (IPLOT.NE.1) GO TO 12 XPECT
PLOT IF DESIRED XPECT
IF (KPRINT.GT.1001) GO TO 10 XPECT
CALL PLOJB (X,EXPECT,KPRINT,1,0,46,0,10.,6.,TITLE,80,LABELX, 10,LABXPECT
1ELY, 29) XPECT
Go to 12 XPECT
PRINT 15 XPECT
GO TO 12 XPECT
PROBABILITY OF FAILURE GREATER THAN OR EQUAL TO 1. XPECT
PRINT 17 XPECT
IF (IPLOT.EQ.1.AND.KPRINT.GT.1) GO TO 9 XPECT
CONTINUE XPECT
RETURN XPECT

XPECT

XPECT

XPECT
1F9R§%§ é;H ,# AT TIME * E13.6,% EXPECTED TIME TO NEXT FAILUREXPEE%

XPE
FORMAT (1H ,* FAILURE RATE IS ZERO SO ETNF WOULD BE INFINITE.*/% RXPECT

1UN CONTINUES.#®) XPECT

1

1

FORMAT (1H ,* NUMBER OF POINTS DESIRED PLOTED GREATER THAN 1000. VXPECT
ECTOR EXPECT HAS OVERFLOWED. NO PLOT MADE. ¥) XPECT
FORMAT (1HO,* NUMBER OF REPLACEMENTS OF COMPONENT TYPE % 13,% EXCEXPECT

1EDS ALLOWED STORAGE®*/*# RUN TERMINATED.*) XPECT
FORMAT 515 ,* RUN TERMINATED TO GIVE YOU TIME TO THINK, *) XPECT
FORMAT (1HO,//10(I5,* UNITS OF GROUP*,I3,* WERE REPLACED#/)) XPECT1
END XPECT1
SUBROUTINE SETUP SETUP
COMMON /XP1/ TYPE£8 10) ,TITLE(8),EXPECT (1001) X§1001),LABELY(3) SETUP
COMMON /XP2/ ALPHA(10),BETA(10) ;GAMMA(10) .RETRF(10) SETUP
COMMON /XP3/ NORIG(10),NREPLAC(}0),IREPL(1000,10),PSUM, IPROB.MSP SETUP
COMMON /XPh/ NGROUPS, PROB(10),P(1000,10) , IGROGP(10),PTEST(10} SETUP
COMMON /XP5/ TLAST,TBELTA,NSHOT,SHOTS, IPLOT ,LASTSHT |NREP(10) SETUP
DIMENSION YN(2), NAMEgz) SETUP
DATA NAME(1),NAME(2)/10H LOGNORMAL,10H  GAMMA / SETUP
DATA YN/10H "NO. , 10H YES. / SETUP
READ 8, (TITLE(I),I=1 8& SETUP
PRINT 5, (TITLE(1},I=1,8) SETUP
READ 6, NGROUPS,MSB,IPLOT,IPROB,TLAST,TDELTA SETUP
IP=1 SETUP
IPB=1 SETUP
IF éIPLOT.EQ.1; IP=2 SETUP
IF_(IPROB.EQ.1) IPB=2 SETUP
PRINT 7, NGROUPS,MSP,TLAST,TDELTA,YN(IP),YN(IPB) SETUP
DO 1 I=1,NGROUP SETUP
READ 8, [TYPE(J,I),J=1,8) SETUP
READ 9, IGROUP(1) RORI&(I),ALPHA(I),BETA(I),GAMMA(I) SETUP
PRINT 10, I,(TYPElJ,1),d=1,8),IGROUB(I) ,NORIG(I) ,ALPHA(T) ,BETSETUP
A(I% GAMMA (1) SETUP
CONTINUE SETUP
ZERO. THE REPLACEMENT VECTOR SETUP
DO 2 I-=1,NGROUPS SETUP
NREP(I)=0 SETUP
NREPLACEI):O SETUP
LASTSHT=IFIX(TLAST/TDELTA)+1 SETUP
DO 3 I=1,NGROUPS SETUP
IF {IGROUP(I).NE.T) GO TO 3 SETUP
IGROUP(I)=2 SETUP
ALPHAEI§=2.*ALPHA(I)**2 SETUP
GAMMA (I)=BETA(I) SETUP
BETA(1)=2. SETUP
CONTINUE SETUP
DO 4 I=1,NGROUPS SETUP
IF (IGROﬂPEIg.NE.H.AND.IGROUP(I).NE.S) GO TO 4 SETUP
TEMP=GAMMA (I)/TDELTA SETUP
ITEMP=INT(TEMP) SETUP
TEMP:ETEMP-FLO?T(ITEMP))*TDELTA SETUP
GAMMA(I)=GAMMA(I)-TEMP SETUP
J=MOD(IGROUP(I),3) SETUP
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IF (TEMP.NE.O.) PRINT 12, IGROUP(I),NAME(J),GAMMA(I) SETUP 44
CONTINUE SETUP 45

PRINT 11 SETUP 146
RETURN SETUP 47
SETUP 48

SETUP 49

FORMAT 213 ,8410) SETUP 50
FORMAT (4I6.2E12.6) SETUP 51
FORMAT (1HO,* NUMBER OF GROUPS OF COMPONENTS CONSIDERED-==ee-—————c SETUP 52
1-* T5/% SPACING DESIRED BETWEEN OUTPUT DATA - -——% T5SETUP 5
2/%' FINAL TIME DESIRED-- — —— # E12.6/%*SETUP 5
TIME STEP-—- * g}2.6/*% SETUP 55
IS A PLOT DESIRED-- - * A10/%# ARE SETUP 56
5PROBABILITY PRINTS DESIRED-=mmmeee e mm e e e e * 14103 SETUP 5
FORMAT (8A10) SETUP 5
FORMAT (2I12,3E12.6) SETUP 59
FORMAT (1HO,# GROUP*,I3,/2X,8410/* DISTRIBUTION TYPE NUMBER¥ I3/*SETUP 80
1 NUMBER OF UNITS*,16,7% "ALPHA-*,E12.6,* BETA=*,6E13.6,*% GAMMA=¥ ESETUP 61
212.6) SETUP 62
FORMAT (1H1) SETUP 63
FORMAT (1HO,/* FOR COMPONENT GROUP*,I3,*, OBEYING*,A10,* DISTRIBUTSETUP 6l
1ION, GAMMA PARAMETER IS A NONINTEGRAL MULTIPLE OF DELTA T.*/% ~GAMSETUP 65
2MA PARAMETER HAS BEEN CHANGED TO*,E14.6) SETUP 66
END SETUP 67

SUBROUTINE CETNF ETNF,IREASON? CEINF 2
COMMON /XP2/ ALPH E103,BETA(10 GAMMA ( 10) ,RETNF( 10) CETNF g

COMMON /XP3/ NORIG(10) !NREPLAC(}0),IREPL(1000,10),PSUM,IPROB,MSP CETNF
COMMON /XPL/ NGROUPS, PROB(10),P(1000,10),IGROUP(10),PTEST(10) CETNF 5
COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS, IPLOT ,LASTSHT ,NREP( 10) CETNF 6
FORM THE SUM OF F(X)/(1-INRT(F(X}) FOR'EACH &OMPONENT OF EACH TYPE.CETNF g
EXPECTED NUMBER OF SHOTS TO NEXT FAILURE IS RECIPROCOL OF THIS SUMCETNF

IREASON=1 CEINF 9

DO 7 I=1,NGROUPS CETNF 10
IWORK=IGROUP(I) CEINF 11

Go T0 (1,2,3,4,5,6), IWORK CETNF 12

CALL pEXPOR™ {1} CETNF 13

GO TO 7 CETNF 1}

CALL PWEIB (I) CETNF 15

GO CETNF 16

CALL PNORM (I) CEINF 17

GO TO 7 CETNF 18

CALL PLNORM (I) CETINF 19

GO TO 7 CETNF 20

CALL PGAMMA (I) CETNF 21

GO TO 7 CEINF 22

CALL PUNIFM (I) CETNF 23
CONTINUE CEINF 2

SUM THE INDIVIDUAL FAILURE RATES AND TAKE RECIPROCAL CETNF 25
SUM=0. CETNF 26
DO 8 I=1,NGROUPS CETNF 2
SUM=SUM+RETNF(I) CETNF 2

IF (SUM.EQ.O.) GO TO 9 CETNF 29

ETNF=1./SUM CETNF 30
RETURN CETNF 31
IREASON=2 CETNF ga

ETNF=1.E+300 CETNF g
RETURN CETNF 3
CETNF 35

END CETNF 36

SUBROUTINE DIDITFL(IFAIL) DIDITFL2
COMMON /XP2/ ALPHAE10;,BETA(10) GAMMA(10) ,RETNF(10) DIDITFL
COMMON /XP3/ NORIG(10) NREPLAC(}0),IREPL(1000,10),PSUM, IPROB,MSP DIDITFL
COMMON /XPL/ NGROUPS Ph05(1o& P(1000,10) IGROﬁP(16),PTESTS105 DIDITFL
COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT,LASTSHT ,NREP(10) DIDITFL
COMMON /XP6/ PS(10},PPROB DIDITFL7
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LCM /XP7/ PSAVE(10000,10)
FOR EACH COMPONENT TYPE COMPUTE THE PROBABILITY OF FAILURE
THIS PROBABILITY IS THE A POSTERIORI PROBABILITY SINCE ALL
gggggNENTs WERE OPERATING ON ENTRY TO SUBROUTINE.
=1l
DO 7 I=1,NGROUPS
IWORK=IGROUP(I)
Go t0 (1,2,3,4,5,6), IWORK
CALL PPEXPON’ (1)

GO TO 7
CALL PPWEIB (I)
GO TO 7
88LL PPNORM (I)

7
CALL PPLNORM (I)
GO TO 7
CALL PPGAMMA (I)
GO TO

7

CALL PPUNIFM (I)

CONTINUE
Y=RANDOM (DUMMY)
PSUM=1.-PPROB
IFAIL=1
IF (PSUM.GE.1.) IFAIL=3
IF (IPROB.NE.1) GO TO 10
PRINT PROBABILITIES IF DESIRED.
IF (MSP.EQ.1) GO TO 8

IPRINT=NSHOT+1
MSP).NE.1) GO TO 10

IF (MOD(IPRINT
PRINT 14, SHOTS
DO g IMPRINT= 1, NGROUPS
PRINT 16, IMPRINT,PS(IMPRINT)
IF (IFAIL.NE.3) GO TO 12
PRINT 15, NSHOT,SHOTS
po~ 11 I=1,RGROUPS
PRINT 16, I,PS(I)

GO TO 13
IF (Y,LE.,PSUM) IFAIL=2
RETURN

FORMAT (1H
FORMAT ' (1HO,* ON SHOT*,I6,* AT TIME *,E13.6
LARGE. YOUR SYSTEM'WONT WORK,*/%*

IT,.*
ESSMAT (1H ,* COMPONENT*,I2,% PROB OF FAILURE:z,E15.7)

SUBROUTINE FAILURE
COMMON /XPE/ NORIG(10)
COMMON /XPL/

COMMON /XP5/ TLAST

NREPLAC(10),IREPL( 1000

TDELTA ,NSHOT ,SHOTS , IPLOT , LASTSHT

10) ,PSUM, IPROB
NGROUPS, PROB(10) ,P(1000,10) , IGROOP( 1) ,PTEST(10
NREP(10)

J

* A POSTERIORI COMPONENT GROUP FAILURE PROBABILITY AT
1TIME *,E13.8)

MSP

FIND SUM OF INDIVIDUAL FAILURE PROBABILITIES FOR NORMALIZATION.

DURING SUMMATION FIND AND SAVE CONTRIBUTIONS OF EACH GROUP.
PTEST HOLDS TOTAL FOR GROUP
ggﬁTg AND P HOLDS CONTRIBUTION OF REPLACEMENT UNITS.
DO 1 I=1,NGROUPS
NTEMP=NORIG(I)-NREPLAC(I)
IF (NTEMP.LT.1) PROB(I)=0.
PROB(I)=PROB(I)*FLOAT(NTEMP)
SUM=SUM+PROB( I
DO 3 I=1,NGROUPS
ISTOP=NREPLAC(I)
IF (ISTOP.EQ.0) GO TO 3
DO 2 J=1,ISTOP
SUM=SUM+?(J,I)
CONTINUE

PROB HOLDS CONTRIBUTION OF ORIGINAL

DIDITFLS
DIDITFL9
DIDITF10
DIDITF11
DIDITF12
DIDITF1
DIDITF1
DIDITF15
DIDITF16
DIDITF1
DIDITF1
DIDITF19
DIDITF20
DIDITF21
DIDITF22
DIDITF2
DIDITF2
DIDITF2
DIDITF2
DIDITF2
DIDITF?2
DIDITF29
DIDITF30
DIDITF31
DIDITF32
DIDITF E
DIDITF
DIDITF35
DIDITF36
DIDITF g
DIDITF
DIDITF39
DIDITF40
DIDITF41
DIDITF42
DIDITFY
DIDITFY
DIDITFU5H
DIDITFU4b6
DIDITFY
DIDITFY
DIDITF49
DIDITF50
DIDITF51

,* PROBABILITY OF FAILUDIDITF52
WE WILL PRINT THE PROBABIDIDITF5

DIDITF5
DIDITF55
DIDITF56

FAILURE2
FAILURE
FAILURE
FAILURES
FAILUREbG
FAILURE
FAILURE
FAILURE9
FAILUR10
FAILUR11
FAILUR12
FAILUR1
FAILUR1
FAILUR1
FAILUR1
FAILUR1
FAILUR1
FAILUR19
FAILUR20
FAILUR21
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RECPSUM= /SUM FAILUR22

DO u FAILURZ
PROB(I) ﬁROBéI%*RECPSUM FAILUR2
DO 6 I=1,NG FAILUR25
UM_O FAILUR26
ISTOP=NREPLAC(I) FAILUR2
IF (ISTOP. EQ 0) GO TO 6 < FAILUR2
DO 5 J=1,ISTOP FAILUR29
P(J, I) =P{J I)*RECPSUM FAILUR30
SUM=SUM+P(J, I FAILUR31
PTEST(I)= PROB(I)+SUM FAILUR32
FIND FAILED UNIT FATILUR33
Y=RANDOM( DUMMY ) FAILUR3L
1ST FIND TYPE FAILUR35
SUM=0, FAILUR36
DO 7 I=1,NGROUPS FAILUR37
SUM= SUM+PTEST(I% FAILUR38
IF (Y.LE.SUM) GO TO 8 FAILURE9
FAILURE WAS OF TYPE FATLURLD
DETERMINE IF FAILURE WAS ORIGINAL UNIT OR REPLACEMENT FAILUR41
SUM=SUM-PTEST(I) FAILUR42
IF (NREPLAC(I).EQ.0) GO TO 10 FAILURY
JSTOP=NREPLAC(I) FAILURY
DO 9 J=1, JSTOP : FAILURY5
SUM=SUM+P(J FAILURYS
IF (Y.LE, SUM) GO TO 11 FATILURY
IF PROGRAM REACHES THIS POINT FAILURE WAS AN ORIGINAL UNIT OF FAILURY
TYPE I. ADD 1 TO THE REPLACEMENT INDEX AND SET SHOT COUNT ON THE FAILURUQ
NEW UNIT TO -—1. FAILUR50
NREPLAC(I) =NREPLAC(I)+1 FAILUR51
NREP(I)=NREP(I)+1 FAILUR52
IDUMMY=NREPLAC(I) FAILUR53
IREPL(IDUMMY, I)=-1 FAILURSL
RETURN FATLURS5
géILED UNIT WAS REPLACEMENT UNIT J OF TYPE I. SET SHOT COUNT ON ITFAIEE%%?
IREPL(J,I)=-1 FAILUR58
NREP(I) *NREP(I)+1 FAILUR59
RETUR FAILURGO
END FAILUR61
SUBROUTINE PEXPON(I) PEXPON 2
FOR COMPONENTS FOLLOWING EXPONENTIAL STATISTICS. PEXPON E
THE FAILURE RATE IS INDEPENDENT OF THE NUMBER OF SHOTS PEXPON
COMMON /XP2/ ALPHA(10),BETA(10),GAMMA(10), RETNF( 0) PEXPON 5
COMMON /xpg/ NORIG(10) . NREPLAC(10), IREPL(1000,10) ,PSUM,IPROB,MSP PEXPON b
COMMON /XPL/ NGROUPS, PROB(10),P(1000,10) IGRoﬁP( ), PTEST( 10} PEXPON g
COMMON /XP5/ TLAST,TDELTA,NSHOT,SROTS, IPL.OT,LASTSHT ,NREP(10) PEXPON
COMMON /XP&/ PSE105 PPROB’ PEXPON 9
LCM /XP7/ PSAVE(10000 10) PEXPON 10
CALCULATE FAILURE RATE PEXPON11
INDEX=NREPLAC(TI) PEXPON12
RETNF (I)=ALPHA(I)*FLOAT(NORIG(I)) PEXPON1§
REMOVE CONTRIBUTIONS OF UNITS WITH LESS THAN BETA SHOTS . PEXPON1
TEMP=SHOTS-BETA(I) PEXPON12
IF ETEMP.LT.O.; GO TO 2 PEXPON 1
IF (INDEX.EQ.Q) RETURN PEXPON 1
DO 1 DEX PEXPON 1
TEMP= FLOAT(IREPL(J I))*TDELTA-BETA(I) PEXPON19
IF (TEMP.LT.O0.) RETNF(I)=RETNF(I)-ALPHA(I) PEXPON20
RETURN PEXPON21
RETNF(I)=0. PEXPON22
RETURN PEXPON2
ENTRY PPEXPON PEXPON2
CALCULATE THE A POSTERIORI PROBABILITY PEXPON25
INDEX=NREPLAC(I) PEXPON26
TEMP=SHOTS-BETA(I) PEXPON2
IF (TEMP GE.O.) GO TO 3 PEXPON2
PROB(I)=0. PEXPON29
PS(I)=0. PEXPON30

25
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PSAVE§NSHOT,I)=0. PEXPON31
RETUR PEXPON32
PROBéI&:1.-EXP(-ALPHA(I)*TDELTA) PEXPON 3
PSAVE(NSHOT,I)=PROB(I) PEXPON
Ps(1%=1. PEXPON g
MULT 0=NORIG§I)-INDEX PEXPON
IF (MULTTO.LT.1) GO TO 5 PEXPON g
PS(I)=1.-PROB(I PEXPON
IF (MULTTO.EQ.1) GO TO 5 PEXPON39
DO 4 J= LTTO PEXPONLO
PS(T)=PS{I)*(1.-PROB(I)) PEXPONUY 1
IF (INDEX.EQ.0) GO TO 7 PEXPONY2
DO 6 J=2 INDEX PEXPONHE
K=IREPL(J,I)+1 PEXPONY
P(J I):PSAVEEK,I) PEXPONY
PS(H)=PS(I)*(1.-P(J,I)) PEXPONY
PPROB=PPROB*PS(I) PEXPONY
PS(I)=1.-PS(I) PEXPONY
RETURN PEXPONU
END PEXPON5
SUBROUTINE PWEIB(I) PWEIB 2
FOR COMPONENTS FOLLOWING WEIBULL STATISTICS PWEIB 3
COMMON /XP2/ ALPHAE10;,BETA(10) GAMMA(10) ,RETNF (10) PWEIB
COMMON /XP37 NORIG(10).NREPLAC(}0),IREPL(1000,10),PSUM,IPROB PWEIB 5
COMMON /XPL/ NGROUPS,PROB(10),P(1000,10) IGROUP(10%,PTEST(10 PWEIB 6
COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT,LASTSHT,NREP(10) PWEIB g
COMMON /XPb/ PS§105 PPROB WEIB
LCM /XP7/ PSAVE(10000,10) PWEIB 9
INDEX=NREPLAC(I) PWEIB 10
TEMP=SHOTS-GAMMA (T) PWEIB 11
IF ETEMP.LT.O.g GO TO 4 PWEIB 12
IF (TEMP.EQ.0.) GO TO 5 PWEIB 13
NTEMP=NORIG(I)~-INDEX PWEIB 1
RETNF (I)=0. PWEIB 12
IF (NTEMP.LT.1) GO TO 1 PWEIB 1
RETNF (I)=BETA(T)¥*( TEMP**(BETA(I)-1.))*FLOAT(NTEMP)/ALPHA(I) PWEIB 15
IF (INDEX.EQ.O) RETURN PWEIB 1
DO 3 J=1, INDEX PWEIB 19
TEMP=FLOAT (IREPL(J,I))*TDELTA-GAMMA(I) PWEIB 20
IF ETEMP.L ,0.) GO'TO 3 PWEIB 21
IF (TEMP.EQ.0.) GO TO 2 PWEIB 22
RETNF (I)=RETNF(I)+BETA(I)*(TEMP**(BETA(I)-1.))/ALPHA(I) PWEIB 23
GO TO 3 PWEIB 2
IF (BETA(I).NE.1.) GO TO 3 PWEIB 25
RETNF(I%:RETNF(I)+1./ALPHA(I) PWEIB 26
CONTINU PWEIB 2g
RETURN PWEIB 2
NUMBER OF SHOTS LESS THAN GAMMA NO FAILURES CAN OCCUR PWEIB 29
RETNF(I)=0. PWEIB go
RETURN PWEIB 31
NUMBER OF SHOTS EQUALS GAMMA PWEIB gz
IF (BETA(I).LE.1.) GO TO 6 PWEIB 3
RETNF(I)=0. PWEIB 3
RETURN PWEIB 35
IF (BETA(I).LT.1.) GO TO 7 PWEIB %6
RETNF(I)=1./ALPHA(I) PWEIB 37
RETURN PWEIB 38
PRINT 13 PWEIB 39
TEMP=.01 PWEIB 10
RETNF(I):BETA(I)*(TEMP**(BETA(I)-1.))*FLOAT(NORIG(I)-INDEX)/ALPHA(PEE%E 3;
P
RETURN PWEIB ug
ENTRY PPWEIB PWEIB U
CALCULATE THE A POSTERIORI PROBABILITY PWEIB U5
INDEX=NREPLAC(I) PWEIB L6
TEMP=SHOTS-GAMMA (I) PWEIB ug
IF (TEMP.LT.1.) GO TO 12 PWEIB U4
TEMP=( (TEMP—TDELTA ) ##BETA (1) -TEMP**BETA(I))/ALPHA(I) PWEIB 49
PROB(I)=1.-EXP(TEMP) PWEIB 50
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ggA%E(NSHOT,I):PROB(I) PWEIB

=1. PWEIB
MULTTO=NORIG(I)-INDEX PWEIB
IF (MULTTO.LT.1) GO TO 9 PWEIB
PS(I)=1.-PROB(I; PWEIB
IF (MULTTO.EQ.1) GO TO 9 PWEIB
DO 8 J=2.MULTTO PWEIB
PS(I)=PS{I)*(1.-PROB(I)) PWEIB

IF (INDEX.EQ.0) GO TO 11 PWEIB
DO 10 J=1,INDEX PWEIB
K=IREPL(J I)+1 PWEIB
P(J,I)=PSAVE(K,I) PWEIB
PS(I)=PS(I)*(1.-P(J,I)) PWEIB
PPROB=PPROB#PS (1) PWEIB
PS(I)=1.-PS(I) PWEIB
RETURN PWEIB
PROB(I)=0. PWEIB
PS(I)=0. PWEIB
PSAVE(NSHOT,I)=0. PWEIB
RETURN PWEIB
PWEIB

PWEIB

FORMAT (1HO,/* FOR THE WEIBULL DISTRIBUTION, BETA LESS THAN 1 AND PWEIB
1TIME-GAMMA=0" CAUSES THE FAILURE RATE TO APPROACH INFINITY.*/* SINCPWEIB
2E IT WILL BE WELL BEHAVED FOR TIME-GAMMA GREATER THAN ZERQ, TIME-GPWEIB

AMMA IS GIVEN A SMALL POSITIVE VALUE */* AND THE FAILURE RATE IS CPWEIB

ALCULATED FOR THIS VALUE. THE INFINITIES DUE TO REPLACEMENTS ARE PWEIB
SIGNORED.*/% IT IS POSSIBLE THAT THIS MAY CAUSE DISCONTINUITIES IN PWEIB
6%&% OVERALL ETNF.*//) PWEIB

PWEIB

SUBROUTINE PNORM(I) PNORM
FOR COMPONENTS FOLLOWING NORMAL STATISTICS PNORM
COMMON /XP2/ ALPHAE10§,BETA(10) GAMMA (10) ,RETINF( 10) PNORM
COMMON /XP3/ NORIG(10) 'NREPLAC(10),IREPL(1000,10),PSUM,IPROB,MSP PNORM

COMMON /XPL/ NGROUPS PﬁOB(10& p(1000,10) , IGROUP(10),PTEST (10} PNORM
COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS, IPLOT,LASTSHT ,NREP(10) PNORM
COMMON /XP6/ PSE105 PPROB PNORM
LCM /XP7/ PSAVE(10000,10) PNORM
DATA C1,C2/1.4142135623731,0.79788456080286/ PNORM
INDEX=NREPLAC(I) PNORM
TEST=( SHOTS-ALPHA(I))/(BETA(I)*C1) PNORM
IF (TEST.GT.26.) GO TO 3 PNORM
FBAR:BETAEI)*ERFC(TEST) PNORM
DF=C2%EXP(-TEST*#2) PNORM
NTEMP=NORIG(I)-INDEX PNORM
RETNF(I)=0. PNORM
IF (NTEMP.LT.1) GO TO 1 PNORM
RETNF (I)=FLOAT({NTEMP)*DF /FBAR PNORM
IF (INDEX.EQ.0) RETURN PNORM

DO 2 J=1, INDEX PNORM

TEST:(FLbAT(IREPLEJ I);*TDELTA-ALPHA(I))/(BETA(I)*C1) PNORM

FBAR=BETA ( I) *ERFC( TEST PNORM

DF=C2*EXP( -TEST*#2) PNORM

RETNF(I)=RETNF(I)+DF/FBAR PNORM
RETURN PNORM
IF PROGRAM REACHES THIS POINT FAILURE IS VIRTUALY CERTAIN PNORM
WE ARBITRARILY SET RETNF=1.E+100 AND RETURN PNORM
RETNF(I)=1.E+100 PNORM
RETURN PNORM
ENTRY PPNORM PNORM
CALCULATE THE A POSTERIORI PROBABILITY PNORM
INDEX=NREPLAC(I) PNORM
CALL ERK (PROB(I),ALPHA(I),BETA(I)) PNORM
PSAVE(NSHOT,I)=PROB(I) PNORM
PS(I)=1. PNORM
MULTTO=NORIG(I)-INDEX PNORM
IF (MULTTO.LT.1; GO TO 5 PNORM
PS(I)=1.-PROB(I PNORM
IF (MULTTO.EQ.1) GO TO 5 PNORM
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DO 4 J=2,MULTTO

SéI):PS(I)*(1.-PROB(I))
IF (INDEX.EQ.0) GO T

DO 6 J=1,INDEX

K=IREPL(J,I)+1

P(J I)=PSAVEEK,I)

PS(})=PS(T)*(1.-P(J,1))
PPROB= PPROB*P?(I)

EURE
END

SUBROUTINE PLNORM(I)

FOR COMPONENTS FOLLOWING LOG NORMA
COMMON /XP2/ ALPHA2103 ,BETA(10),G
NREPLAC(

COMMON /xpg/ NORIG(10
COMMON /XPL/ NGROUPS, PROB(10)
COMMON /XP5/ TLAST,TDELTA,NSH
COMMON /XPb/ PSE105 PPRO

LCM /XP7/ PSAVE(10000,1

o' %y

ATISTICS
10) , RETNF(10)
gL(iooo

DATA C1,C2/1. u1u21356é3731 0.79788456080286/

INDEX=NREPLAC(I
RETNF( =0,
TEMP1=SHOTS-GAMMA
IF (TEMP1 LE.O.)
1./(C1#BETA(I))
TEMP2 ( ALOG ( TEMP1
IF (TEMP2.GE.26.) G
NTEMP=NORIG(I)-INDEX
IF (NTEMP.LT.1) GO

(I)
RETURN
)=

TO 1
RETNFEIg C2*EXP(-TEMP2**2)/ET%MP1*BETA(I)*ERFC(TEMP2))

RETNF(I)=FLOAT(NTEMP) *RETNF
IF (INDEX.EQ.O) R
DO 2 J=1

ALgHA(I))*D

INDE X
TEMP1= FLbAT(IREPL(J I))*TDELTA-GAMMA(I)

IF (TEMP1.LE.O.) G

TEMP2= (ALOG(TEMP1)-ALPHA(I))

10) , PSUM, IPROB,MSP
IGROUP(10),PTEST(10}
OT,LASTSHT NREP(10)

PNORM
PNORM
PNORM
PNORM
PNORM
PNORM
PNORM
PNORM
PNORM
PNORM
PNORM

(10 B NN —F o o o
=2 OO CO~IONVJ W) ==

PLNORM 2
PLNORM
PLNORM
PLNORM
PLNORM
PLNORM
PLNORM
PLNORM
PLNORM1
PLNORM1
PLNORM1
PLNORM1
PLNORM1
PLNORM1
PLNORM1
PLNORM1
PLNORM1
PLNORM19
PLNORM20
PLNORM21

9
0
1
2
:

" PLNORM22

PLNORM2

-PLNORM2

PLNORM25
PLNORM26

RETNF(I):RETNF(I)+C2*EXP(-TEMP2**2)/(TEMP1*BETA(I)*ERFC(TEMP2§EES§§§E

CONTINUE
RETURN

IF TEMP2.GE.26, ERFC WILL UNDERFLOW.

RETNFEIg=1.E+1OO AND RETURN
RETNF(I)=1.E+100

RETURN

ENTRY PPLNORM

CALCULATE THE A POSTERIORI PROBABILITY
ALPHA(I),BETA(I),GAMMA(I))

INDEX=NREPLAC(I
CALL LOGERK (PROB(I)
gS%VE(NSHOT ,I)=PROB(1)

MULTTO= NORIG%I) -INDEX
IF (MULTTO.L 1) GO TO 5
PS(I)=1.-PROB g
IF (MULTTO.EQ.1) GO TO 5

DO U4 J=2.MULTTO

PS(I)= PS(I)*(1.-PROB(I))
IF (IggEg .EQ.0) GO TO 7

K,I)
1.-P(J, 1))

ARBITRARILY SET

PLNORM29
PLNORM30
PLNORM31
PLNORM<2
PLNORM E
PLNORM3

PLNORM g
PLNORM
PLNORM g
PLNORM

PLNORM§9
PLNORMIO
PLNORMY 1
PLNORM42
PLNORM4

PLNORMY

PLNORMUS
PLNORMU6
PLNORMM

PLNORMY

PLNORM49
PLNORMSO
PLNORM5 1
PLNORM52
PLNORM5,

PLNORM5

PLNORM55



ann

SUBRQUTINE PGAMMA(I)
FOR COMPONENTS FOLLOWING GAMMA DISTRIBUTIONS

GAMMA IN COMMON/XP2/ HAS BEEN CHANGED TO ZAMMA TO ALLOW THE USE

OF A FUNCTION ON DISC
COMMON /XP2/ ALPHAE10§,BETA(10) ZAMMA(10) ,RETNF (10)
COMMON /XP3/ NORIG(10) .NREPLAC(10),IREPL(1000, 10)

COMMON /XPL/ NGROUPS,PROB(10)

COMMON /XPb/ PSE105 PPROB

LCM /XP7/ PSAVE(10000,10)

INDEX=NREPLAC(TI)

U=ALPHA (I)*(SHOTS-ZAMMA(I))

RETNF(I%:O.

IF (U.LE.O.) RETURN

NTEMP=NORIG(I)-INDEX

IF (NTEMP.LT.1) GO TO 1

RETNFEI%:ALPHAéI)*U**&BETA(I)-1.)*EXP(-U)

RETNF (I)=FLOAT(NTEMP)*RETNF(I)/GAMMA(BETA(I),U)

IF (INDEX.EQ.O) RETURN
DO 2 J=1,INDEX
U=ALPHA(I)*(FLOAT(IREPL(J,I))*TDELTA-ZAMMA(I))
IF (U.LE.0.) GO TO 2
RATE=ALPHA(I)®*U¥**(BETA(I)-1.)*EXP(-U)
RATE=RATE/GAMMA (BETA(I),0)
RETNF (I)=RETNF (I)+RATE
CONTINUE

RETURN

ENTRY PPGAMMA

CALCULATE THE A POSTERIORI PROBABILITY

INDEX=NREPLAC(I)

IF (SHOTS-ZAMMA(I).LT,0.) GO TO 7

CALL GAMPROB (ALPHAEI),BETA(I),ZAMMA(I),PROB(I))

gg%%E(?SHOT,I):PROB I)

MULTTO=NORIG(I)-INDEX
IF (MULTTO.LT.1) GO TO &4
PS(I)=1.-PROB(Ig
IF (MULTTO.EQ.1) GO TO 4
DO 3 J=2.MULTTO
PS(I)=PS!I)*(1.-PROB(I))
IF (INDEX.EQ.0) GO TO 6
DO 5 J

=1, INDEX

K=IREPL(J,I)

P(J,I)= SAVEéK,I)
S(I)

ggggé?§LéTy OF FAILURE IS ZERO, SHOTS LESS THAN GAMMA
PSAVE(NSHOT,I)=0.

PS(I)=0.

RETURN

END

SUBROUTINE PUNIFM(I)

FOR COMPONENTS FOLLOWING UNIFORM STATISTICS
COMMON /XP2/ ALPHAE10;,BETA(10) GAMMA (10) ,RETNF(10)
COMMON /XP3/ NORIG(10) . NREPLAC(}0)

COMMON /XPL/ NGROUPS,PROB(10),P(1000,10)
COMMON /XPb/ PSE105 PPROB

LCM /XP7/ PSAVE(10000,10)
INDEX=NREPLAC(T)
RETNF(I)=0.

IF ESHOTS.LT.ALPHA(IB) RETURN
IF (SHOTS.GE.BETA(I)) RETURN
NTEMP=NORIG(I)-INDEX

IF (NTEMP.LT.1) GO TO 1

RETNF (I)=FLOAT(NTEMP)/ (BETA (I)-SHOTS)

PSUM, IPROB,MSP
P(1000,10), IGROGP(10), PTEST( 10}
COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS, IPLOT,LASTSHT |NREP(10)

IREPL( 1000, 10) , PSUM, IPROB,MSP
IGROUP(10),PTEST( 10}
COMMON /XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLOT ,LASTSHT |NREP(10)

PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA
PGAMMA 17
PGAMMA 18
PGAMMA19
PGAMMA20
PGAMMA21
PGAMMA22
PGAMMA?2

PGAMMA2

PGAMMA 25
PGAMMA26
PGAMMA?2

PGAMMA2

PGAMMA 29
PGAMMA 30
PGAMMA 31
PGAMMA 32
PGAMMA3

PGAMMA3

PGAMMA35
PGAMMA 36
PGAMMA3
PGAMMA§

OV L= N =2 O WO CO~I MW L= WO

—-— e e b b b -

PGAMMA 39
PGAMMA40
PGAMMAL1
PGAMMAL2
PGAMMAL
PGAMMAL
PGAMMA L5
PGAMMALG
PGAMMAL
PGAMMAY
PGAMMALQ
PGAMMAS0
PGAMMAS 1
PGAMMAS2
PGAMMAS
PGAMMAS
PGAMMAS5

PUNIFM
PUNIFM
PUNIFM
PUNIFM
PUNIFM
PUNIFM
PUNIFM
PUNIFM
PUNIFM1
PUNIFM1
PUNIFM1
PUNIFM1
PUNIFM1

PUNIFM16
29

1IN = OO QO OV =10 D
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IF (INDEX.EQ.O) RETURN
DO 2 J=1, INDEX
TEMP:TDELTA*FLOAT&IREPL(J 1))
IF (TEMP.LT.ALPHA(TI)) GO 10 2
RETNF(I)=RETNF(I)+1./(BETA(I)-TEMP)
CONTINUE

RETURN

ENTRY PPUNIFM

CALCULATE THE A POSTERIORI PROBABILITY

INDEX=NREPLAC(I)

PROB(I)=0.

PSAVE(NSHOT,I)=0.

PS(I%:O.
IF g HOTS.LT .ALPHA(I
IF (SHOTS.GE.BETA(I)

% ;) ETURN
PROB(I)=TDELTA/(BETA(I
af 205

TO 7
?HOTS)

EY 8=

PROB(I)=AMIN1(1.,PRO
PSAVE(NSHOT, I)=PROB(
PS(I%=1.
MULTTO=NORIG(I)-INDEX
IF (MULTTO.LT.1) GO TO &4
PS(1)=1.-PROB(I) |
IF (MULTTO.EQ.1) GO TO 4
3 J=2.MULTTO
PS(I):PS{I)*61.-PROB(I))
IF (INDEX.EQ.O) GO TO 6
DO 5 J=1,INDEX
K=IREPL(J,I)+1
P(J I)=PSAVEEK,I)
PS(i%:PS(I)* 1.-P(J,1))
PPRO?:PPR B*PS(I)
PS(I)=1.-PS(I)
RETURN

R
PROBABILITY OF FAILURE IS 1. IF NUMBER OF SHOTS .GE. BETA

SUBROUTINE ERK(P,ALPHA,BETA,GAMMA)

ERK COMPUTES THE A POSTERIORI FAILURE PROBABILITY
FOR A NORMALLY DISTRIBUTED COMPONENT, IT COMPUTES THE INTEGRAL
OF THE DISTRIBUTION FUNCTION FROM SHOT N-1 TO SHOT N USING A 41

POINT SIMPSONS RULE.

ENTRY LOGERK DOES THE SAME FOR A LOG NORMAL COMPONENT.
COMMON ~/XP5/ TLAST,TDELTA,NSHOT,SHOTS,IPLQT,LASTSHT ,NREP(10)
DATA C1,C271.4142135623731,0.79788456080286/7

B=SHOTS~ALPHA
A=B-TDELTA
STEP=.025%TDELTA
Q=-.5/ (BETA#¥2)
P=EXP(Q¥A%¥2)

DO 1 I=2

40,2 ERK
] g;g;g.*EkP(é*(A+FL0AT(1-1)*STEP)**2)+2.*EXP(Q*(A+FL0AT(1)*STEE§§
P=P-EXP(Q¥B*#2)

P=STEP*C2%P/(3.*BETA*ERFC(A/(BETA%*C1)))
RETURN

ENTRY LOGERK

P—OI

B=SHOTS-GAMMA

IF (B.LE.0.) RETURN

STEP=.025%TDELTA

A=B-TDELTA

Q=1./(2.*BETA*BETA)

IF (A.E?.O.) GO TO 2

P=EXP( - ALOG%AL-ALPHA)**2*Q)/A
po 3 I=2,40,2
X1=A+FLOAT(I-1)*STEP

PUNIFM1
PUNIFM1
PUNIFM19
PUNIFM20
PUNIFM21
PUNIFM22
PUNIFM2
PUNIFM2
PUNIFM2
PUNIFM2
PUNIFM2
PUNIFM2
PUNIFM29
PUNIFM30
PUNIFM31
PUNIFM32
PUNIFM E
PUNIFM
PUNIFM g
PUNIFM
PUNIFM%E
PUNIFM
PUNIFME9
PUNIFM40
PUNIFM41
PUNIFM42
PUNIFMHE
PUNIFMY
PUNIFMU5
PUNIFM46
PUNIFMH%
PUNIFM4
PUNIFMY
PUNIFM5
PUNIFM51
PUNIFM52
PUNIFM5
PUNIFM5
PUNIFM55

ERK
ERK
ERK
ERK
ERK
ERK
ERK
ERK
ERK
ERK
ERK
ERK
ERK

ERK
ERK
ERK
ERK
ERK
ERK
ERK
ERK
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X2=A+FLOATE ) #STEP ERK %2
P=P+4 ,*EXP(-(ALOG(X1)-ALPHA)*#2%#Q) /X142, *¥EXP(-(ALOG(X2)-ALPHAERK 3
YRED%Q) /XD ERK 34
P=P-EXP(- (ALOG(B)-ALPHA)**2*Q)/B ERK 35
IF ; .EQ.0.) GO TO 4 ERK 36
P=P STEP*C2/(3 *BETA*ERFC((ALOG(A)-ALPHA)/(BETA*C1))) ERK 35
RETURN ERK 3
P=P#C2%STEP/(6.%BETA) ERK 39
RETURN ERK 140
END ERK 41
SUBROUTINE GAMPROB(ALPHA,BETA,ZAMMA,PROB) GAMPROB2
THIS ROUTINE COMPUTES THE'A POSTERIORI PROBABILITY OF FAILURE GAMPROB
BETWEEN T AND T+DELTA T OF A COMPONENT WHICH FOLLOWS A GAMMA GAMPROB
DISTRIBUTION. IT USES A L41-POINT SIMPSONS RULE. GAMPROB
COMMON /XP5/ TLAST,TDELTA, NSHOT ,SHOTS, IPLOT ,LASTSHT ,NREP( 10) GAMPROB
B=SHOTS-ZAMMA GAMPROB7
A=B-TDELTA GAMPROB8
STEP=.025%TDELTA GAMPROB9
IF EB.LE.o.g GO TO 4 GAMPRO10
IF (A.EQ.0.) GO TO 1 GAMPRO11
SUM:SALPHA*A)**(BETA-1.)*EXP(-ALPHA*A) GAMPRO 12
GO TO 2 GAMPR01§
SUM=0. GAMPRO 1
DO 3 I=2,40,2 GAMPRO15
AIM1=(A+FLOAT (I-1)*STEP) *ALPHA GAMPRO 16
AI= (A+FLOAT§I)*STEP)*ALPHA GAMPR 015
SUM=SUM+4 ,# (AIM1) *## (BETA-1. ) *EXP(-AIM1)+2.%AT*¥*(BETA-1. )*EXP(GAMPR01
-AT) GAMPRO19
CONTINUE GAMPRO20
SUM= SUM—(ALPHA*B)**(BETA 1. )*EXP(-ALPHA*B) GAMPRO21
U=ALPHA#*A GAMPRO22
Z= GAMMA(BETA U) GAMPRO2
PROB=SUM*STEP*ALPHA/( 3. %Z) GAMPRO?2
RETURN GAMPRO?2
SHOTS ARE BELOW GUARANTEED LIFE. BY ASSUMPTION NO FAILURES OCCUR. GAMPRO2
PROB=0. GAMPRO2
RETURN GAMPRO?2
END GAMPRO29

31



(43

APPENDIX B

EXAMPLE OF ETNF CALCULATION

An example of the expected-time-to-next-failure computation is given for seven groups
of hypothetical components that represent the seven distribution types the program
accepts. The distribution type is used as the group name and the parameters used are
those given in the test problem printout below. These parameters were chosen to il-
lustrate the use of the program and do not, in general, correspond to known components.
Probability prints for this example were not requested so that the output listing would be

shorter.

123456749312545674991234567189012345678941234567890123456789012345678901234567890

TEST PROHLEM
7 49
EXPONeMTIAL

{
wkIblot

P
NORMAL

3
LLOG NURMAL

4
GAMMA

5
UNIFORM

6
RAYLELGH

7

i 2r9@, 2,5
1eay «000K28 100,
1200790282, o 75

129 25uv0, 400.
100 15, 50,
1960 91 29,
1290 Saa, 402200,
2Av1V%)¢, 0a,
Fig. B-1.

Input to program.

B00UBINAP11111111112P222222225333335333444444444455555555556666666666777777771778

"3'7
-5.2
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TEST PROBLLM

NUMBER OF GKOUKFS OF COMPONENTS CONSIDERE(=receccccmes 7

P ILAL TIME UESIKED=e-

TIne STEV

IS a PLOT WESIREV

SPaClNG UESIRED BETWEEN OUTPUT UATA=- 40
+200000E
«500000E
’ YES.
ARE PROBABILITY PRINTS DESIRED NO.

GROUP 1}
EXPONENTIAL

DISTRIBUTION TYPE NUMBER
NUMBER OF UNITS 1000
ALPnAs ,800000E=05 BETAm

GROUP 2

wElsULL

VISTRILBUTION TYPE NUMYER
NUMBER OF UNITS 1009
ALPMAS 4700000E*05 BETA®

GROUP 3

NCHMAL

OISTRILUTION TYPE NUMBER
NUMBER OF UNITS  Jog
ALPHAT .250000E+04 BETA®

GROUP &

LOG NORMAL

QISTRIBUTION TYPE NUMBER
NUMBER OF UNITS 106
ALPhA= 4150000E*02 BETA®

GROUP S

GAMMA

OISTRIBUTION TYPE NUMBER
NUMBER OF* UNITS lo0
ALPNA= ,100000E-01 BETAW

OGROUP &

UNIF ORM

DISTRIBUTION TYPE NUMBER
NUMBER OF UNITS 11uo0o
ALPnAz 4500000E+03 BETAS

GROUP 7

RAYLEIGH

DISTRIBUTION TYPE NUMBER
NUMBER OF UNITS 209
ALPHAS ,100000E*05 HETAS

1

«100000E+03 GAMMAm®,

2

*750000E°00 GAMMA=g,

3

+400000E°03 GAMMAwe,-

4

+500000E°02 GAMMA®~,370000E*0]

+200000E°02 GAMMA==,520000E+01

6

+400000E+06 GAMMAme,

7

+%00000E*03 GAMMAx®,

04
*00

Fig. B-2.
Program output page 1.

FOR COMPONENT GROUP 4+ OBEYING LOGNORMAL OISTRIBUTIONy GAMMA PARAMETER IS A NONINTEGRAL MULTIPLE OF OELIA T,
LAMMA PARAMETER HAS BEEN CHANGED TO =,350000E¢01

FOR COMPONENT GROUP Sy QBEYING

GAMMA OISTRIBUTIONy GAMMA P

UAMMA PARAMETER HAS BEEN CHMANGED T0 «,500000E+01

ARAMETER IS A NONINTEGRAL MULTIPLE OF DELIA T,




143

FOR THE WEIWULL UISTRIBUTIONe BETA LESS THAN 1 AND TIME=GAMMA3Q CAUSES THE FAILURE RATE YO ‘PPR?:§CEXC:tﬁéTY.
SINCE IT wlll BE WELL BEMAVED FOR TIME-GAMMA GREATER THAN ZERO, TIME=GAMMA IS GIVEN A SMALL PosR

C THE INFINITIES DUE TO REPLACEMENTS ARE IGNORED,

IT IS POSSIBLE THAT THIS MAY CAUSE DISCONTINUITIES IN THE OVEHALL ETNF,

AND THE FAILURE HATE IS GALCULATEO FOR THIS VALUE,.

TINE
TINME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TInE
TINE
TIME
TIME
To€
Time
TInE
TIME
T2kE
TIME
TIME
TIME
TIME
TIME
Tinc

‘TIME

TIngE
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TINE
TIME
TIME
TIME
TIME
TIME
TIME
TIHE
TIME

T TIME

TInE
TIME
TIME
TIME
TIME
TIME

T TIME

Co
«2000¢-0E*02
+40ncV0Er02
«60n0V0te02
«H0000CEe D2
»100000E®03
¢120000E°03
¢140000Ee03
»160000Ee03
+18cce0Een3
2200000Leg3
»220000E903
$240020c003
2200 GOE* Q3
«28r0J0Eey3
»300000E+03
.32nono§oo3
~3400R0EeC
+360C0CEC03
238nanctepl
«400000E003
+4200p0Ee02
+4400C0EC03
s06nnNQtep3
+480000E+03
+56000CE*03
»52001rCte0d
eS4npnoterd
¢S60000E03
581 090E-03
s6000GGE®N3
+620000E03
e64np90E*Q3
«66n0uUCEeD3
«080nCOLe03
»700600E03
«720000E*03
= 747.0005°03
n76000C0E*03
o780¢Nn0t 03
«¢b00000E*03
oeb20Cn0E*03
»840000E*03
«B6P0Y0EC3
«8BNGRUESDI
«900000E*03
09200005'03
09‘0000u'03
«9600uuEe03
+980000E-03
¢30000CE~0%
0102000804
0104000l006
¢306000E+04

EXPECTFD
EXPECTED
EXPECTED
EXPECTED
EXPECTED
EXPECTED
EXPECTED
EXPECTED
EXPECTED
ExPECTED
EXPECTED
EXPECTED
F.XPECTED
EXPECTEL
EXPECTED
EXPECTED
EXPECTEOD
EXAPECTED
EXPECTED
EXPECTED
EXPECTED
EXPECTED
EXPECTED
EXPECTED
EXPECTED
EXFECTED
EXPECTED
EXPECTED
:ArECTEC
EXPE»TED
EXPECTED
EXPECTED
EXFECTED
EXPECTED
EXPECTED
EXPECTED
EAPECTED
EXPECTED
EXPZCTED
ExPECTED
EXPECTED
EXPECTED
EAPELTEOD
EXPECTED
EXPECTEOD
EXPECTED

EXPECTED T

EXPECTED
EXPECTED
EXPECTEL
EXPECTED
EXPECTED
EXPECTEO
EXPECTED

TIME
TNk
TIME
TinE
TIME
TIME
TiME
TIME
TIME
TIME
TIME
TIME
TIME
] ]i‘lE
T1/E
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
T IME
TIME
TIME
TIME
TIME
TIME
TIhE
TIME
TIME
TIME
TIME
TIME
TIME
TIMF
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
ME
TIME
TIME
TiME
TIME
TiME
TIME
TIME

10
0
10
10
10

-
1

T0
T0
10
70
T0
10
10
7C
10
10
10
10
T0
10
T0
10
10
10
10
10
T0
10
10
10
10
10
T0
10
10
10
10
10
10
T0
0
O
T0
10
10
10
10
10
10
To
10
70
70
70

NEXT
NEXT
NEXT
MEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
3 |
NEXT
NEXT
NEXT
NEAT
NEXT
HEX)
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
MEXT
NEXT
NEXT
NEXT
NEXT
NEXT
MevY
NEXT
NEXT
MEXT
NEXT
MEXT
NEXT
MEXT
NEXT
NEXT
NEXT
NEXT
NEAT

FAILUKE=
FAILUKE=
FAILURE=s
FAILUKE=
FAJLURE=
FAILURE=
FAILURE=
FAJl URE=
FAILURE=
FAILURE=
FAILURE=
FAILURE=
FAILURE=
TAILURE
FAILUKE=
FAILURE=
FAILURE=
FAILURE=
FAILURE=
FATLURE=
FAILURE=
FAJLURES
FAJLUREE
FAIL{KE®
FAILUREs
FAILYRE=
FAILURE=
FAJLUKE=
FAILURE=
FAILURES
FAILURE=
FAILLRER
FAJLURE=
FAILUREs
FAILURE=
FAILURE=
FAILURES
FAILURE=
FAILURE=
FAILURE=
FAILURE=
FAILURE=
FATLURE=
FAILURE=
FAILURE=
FAILURE=
FAILURE=
FAILURE=

FAJLURE= ~

FAILURE=
FAILURE=
FAILURE=
FAILURE=
FAILURE=

»25333REe M
+1581916E<02
«2H86R02E402
+373147E902
v4HATTRECQ2
+369625€+02
¢6403T7TE*Q2
4 T9247E*02
¢5)2217E%02
+5220T1E%02
»5576T0E*02
*+583863E°02
+»605971E*02
:4"5555E¢02
»643204E02
»658923E¢02
¢6732T4E02
»686825E°02
+699373E 02
«T1103RE%02
»722336E¢02
«730388E¢02
«73770AE*02
- T44365E02
¢750418E02
»63531RE*02
»638827E¢02
0642317Ee02
0645481E°02
e L4TY9Eep2
¢650177E*02
26521376902
+65329AE¢02
+654072E02
¢630S4nE02
064239GE¢02
0646251E¢02
2647406E°02
+646946E902
26645161E°02
0642426E902
+£38250E°02
»632482E¢02
0625502802
¢6165T2E02
¢605695E¢02
+593234E02
5790427002
2562754E002
+545281E002
¢526279E02
505978502
+4B4625E902
+463884E02

Fig. B-3.
Program output page 2.
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AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT

T AT

AT
AT
AT
AT
AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT

16

13
12
63

TINE
TINE
TINE
TINE
TINnE
TIME
TIME
TINe
TIME
TIME
TINE
TINE
TIME
TIME
TINE
TIME
TIME
TIME
TIME
TIHE
TIME
TIME
TIME
TIME
TIME
TINE
TIME
TIME
TIME
11ME
TIME
TIME
TIME
TIME
TIME
TInE
TIME
TIKE
TIME
TIME
TIME
TINE
TIME
TIME
TIME
TIME
TIME

UNITS
UNITS
UNITS
UNITS
UNITS
UNITS
UNITS

+J0KONOECQ4
e110¢000Ee04
o 112¢0uCL-04
s1)enuoblensd
o 116G50E 004
+118000E°04
+1295000E+04
»1220n0E*04
«124000E004
¢1260r0E*04
0 128000E*04
«1300n0E<04
«132000Le04
e134030Eens
¢1360110E004
o[38000§'04
¢160000E°04
¢142000Ee 04
v 1440c0E04
e146000E°04
s 146000E04
+150000Ee0¢
¢152010Ee04
¢154000E°04
¢156000E04
+1580r0Lece
+160000Ev 04
»162000E*06
166000k 04
+166L00EeCH
»16b0u0E* Qs
«170000E°04
«172000E°04
¢174000E004
«1760n0E°04
»178000Le04
»1650000L+04
¢182000E-04
+1840u0E<04
+186000E 04
»18H4000E°04
»190000Ee04
«192000E+04
»194000E+04
+196000E<04
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Fig. B-4.
Program output page 3.
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