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A MRTHOD OF CHARACTERISTICS FOR THE TMNSPORT EQUATION SOLUTION

‘—————T
by

~, %rigt G. Carlaon
—
=3
-t-
!Bm..

?=*’ ABSTRACT

—ki~
8

A method of characteristics is developed for the numerical
~~ml solution of the multigroup discrete ordinates transport equa-

~s.—m
tion. A revised form of the diamond difference method is co-

0—J— m ordinated with the new approach and some alternate, possibly
~m
-m!

useful methods are developed. Alao, several minor numerical

~, difficulties that occasionally troubled calculations in the
past have been resolved.

1. INTRODUCTION

This report discusses the numerical solution of

the multigroup, discrete ordinates transport equation

with special emphasis on neutron transport and dif-

fusion, and develops an improved Sri-typemethod for

such solution with several new features. Included

among these is a method of characteristics that fur-

nishes a different approach to the solution. For

clarification, a transport method is a collection of

methods, which typically includes dhcretizations,

quadrature formulas, difference schemes, and itera-

tive techniques, plus numerous special nethods for

special situations. Reference 1 should be regarded

as a companion report to this one. To some extent,

this report updates and rearranges material from

Ref. 1.

The revised methods have many advantages over

earlier methods, which will become apparent as the

discussion progresses. The characteristic approach,

for example, imparts more general and consistent

properties to the fiml discretized equations. It

facilitates the generation of physically realtstic

solutions even under very adverae conditions. Spe-

cifically, the positivity and smoothness of a solu-

tion can be enforced as the computations progress,

which reduces or eliminates various types of oscil-

lations, including,to some degree,sc-cal.ledray ef-

fects. This, in turn, has a beneficial effect on the

convergence rate of iterative sequences. However,

the revised method is not radically different from

the Sn methods and codes now used, or from those

explored or used in the past.

Solution by a discrete Sn (DSN) method typically

involves piecing together a distribution function

over a coordinate mesh in energy, direction, time,

and position by means of straight-line segments,

using continuous segments whenever this seems the

most sensible thing to do. Based on various practi–

cal considerations, the discrete treatment has be-

come the favored treatment for the energy variable.

In other variables, including directional or angular,

the normal treatment is by continuous segments, with

occasional departures from that norm by means of so-

called modified difference schemes. The finite ele-

ment and spherical harmonic methods represent sig-

nificant departures from the general approach of

this report. The finite element method replaces

simple difference schemes by more elaborate tech-

niques, and the spherical harmonics method approxi-

mates the angular-dependent segment of the distribu-

tion by a continuous polynomial rather than by a net

of connected straight-line segments.

The multigroup, discrete ordinates equation is

a simplified form of the linear Boltzmann equation,

an integro-differentialequation. It governs the

distribution N of particlea, typically neutrons or
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photons, as a function of particle class (g,m)

tion in space R, and time t, and consists of a

of G times M partial differential equations of

form

+Ng,m(s) +Ug(S) Ng,m(s) = Sg(s),

where g = 1, 2, .... G, andm=l, 2, .... M.

loca-

system

the

(1.1)

The

functions N are the unknowns to be determined,
g,m

given the other quantities. Here an index pair (g,m)

refers to a beam or collection of neutrons, say, of

velocity about Vg moving in the direction about Qm.

The quantity s is measured along so-called character-

istic lines, that is, in the direction Clmof stream-

ing. Equation (1.1) assumes that time t and the

components of R depend parametrically on s.

The multigroup transformation is largely a

transformationof the physical data (mainly cross-

section data for a variety of particle-nuclei inter-

actions) from their more natural energy-dependent

form to the multigroup or transfer matrix form. When

done to any precision, this is a very complex and

laborious transformation. The data include the to-

tal removal cross-section Ug shown explicitly in Eq.

(1.1) and similar, more detailed data used to form

the source term S . This term is the principal cou-
g

pling term in the above system of G times M equations.

For any given g, Sg generally depends on the

N for that g, as well as on N for other or
g,m g,m

perhaps all g. Therefore, to arrive at a numerical

solution in a simple way, a sequence of iterative

cycles is performed. Initially, Sg is computed from

given trial functions but at later stages it comes

from previous iterates. Fortunately, in most prac-

tical situations, such sequences of iterates con-

verge. Moreover, in cases of slow convergence, vari-

ous means are available for the acceleration of

convergence.

The solution for N in angle, space, and time is

obtained by means of difference schemes. For angu-

lar components, quadrature methods are also involved.

The solution is generated mesh cell by mesh cell in

the (Q,R,t) space, usually in a very particular se-

quence. Iteration is involved for each time step

and each group g. Here, R may have up to three com-

ponents, and Q E (v,~,~) with V2 + T12+ ~2 = 1, up

to two independent components. Assuming regular mesh

cells with d dimensions and two times d sides, the
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calculations first entail the determination of the

midcell value of N and then d extrapolation across

the cell. The latter, which may be based on the d

input fluxes and the midcell flux, determine the

cell output fluxes. Here by extrapolation scheme

is meant the same as difference scheme. In the

rectangular geometries (the Cartesian case), with

R = (x,y,z) in the most general case, extrapolation

in the angular variables is normally not necessary.

In the simple curvilinear cases of spherical (r)

and cylindrical geometry, only one extrapolation in

angle is needed. Discontinuous extrapolation, used

occasionally, is used chiefly to maintain positive

output fluxes.

In the discrete Sn method, one normally chooses

M. = n(n+2)/8 directions per octant of the unit

sphere, the general domain of Q, where n is the order

of angular approximation, n = 2, 4, ... . The usual

value of K is therefore 2%., where d is the dimen-

sionality of R. The calculations are greatly sim-

plified if the total mesh in all the variables pres-

ent is obtained as the logical product of the in-

dividual meshes. Although this restriction is con-

venient and generally reduces the calculation time

per cell, it is not necessary, may not suit all ap-

plications, and may produce far too many cells.

The revised methods can be expected to save a

great deal of computing time because, with smoother

fluxes’expected, the number of cells in one or sev-

eral of the variables may be decreased markedly and

the number of iterations needed for convergence may

also be reduced. The basic procedure uses special

schemes in a variety of situations. In general,

such schcxnesare more elaborate than the regular

ones. However, the special schemes are only used

when actually needed and involve but a fraction of

the cells, thus having little effect on the calcula-

tion time. The fraction depends on the locality in

the configuration and on the cell sizes chosen, as

well as on the particle speed and direction.

The main difficulty with the discrete ordinate,

difference relation approach is the occasional de-

velopment of flux distortions, often in the form of

oscillations in the calculated fluxes with no basis

in the physics of the problem. Oscillations in the

forward direction (flux seesaw), oscillations at

large angles to the main stream (flux skewing), and

Irfegular, wave-like variations in the flux referred

to as ray effects can be observed.



Oscillations generally develop as a consequence

of rapid local variation in the flux with too large

intervals and too stiff extrapolations to handle the

situation. In this context, the importance of the

optical dimensions that depend on cross-sections o
g

multiplied by cell dimensions is noted. Actually,

as explained later, what counts is the effective op-

tical dimensions. Oscillations can sometimes be

controlled by inserting more intewals in the appro-

priate places. In such localities, however, they

are better controlled by using modified difference

schemes if a precise determination of the flux is

not of prime concern.

Ray effects develop in certain situations as a

result of the discrete ordinatea approximation in the

absence of sufficient natural smoothing, for example,

by particle scattering. Ray effects can be mitigated

readily by increasing the order n but, unfortunately,

the mitigation tends to go slowly with increasing n.

They can be effectively reduced or eliminated by in-

troducing a fictitious source correction of total

strength zero, which operates aa a smoothing agent.

In general, well-baaed, effective source corrections

are very complex and are expensive in terms of com-

puter time and storage. Also, they interfere seri-

ously with the rate of iterative convergence. Other

smoothing methods combined with a simplified ficti-

tious source, as suggested in this report, may pos-

sibly be an answer to this occasional dilemma.

II. RECTANGULAR GEOMETRIES

For (x,y) rectangular geometry, the multigroup

transport equation is given by —

section, denotes the probability per unit length of

travel that a given particle experiences a collision

(a change in Q, a removal from the beam). The source

term Sg denotes the number of particles of velocity

about v being released (inserted into the beam) per
g

unit volume at (x,y) per unit time. Therefore,

Vug Ng represents the interaction losses in a small

volume V at (x,y), VS the interaction and other
g

gains, and V(S - Ug Ng) the net change due to all
g

local sources and sinks. In particular, the term

Sg acts as a coupling term between the groups. It

includes contributions from its own and other groups,

from a selection of the groups if not from all. In

the neutron case, it includes contributions from in-

dependent sources, scattering events, and fission

reactions. The derivative terms in Eq. (2.1), how-

ever, have to do with the migration or propagation

of particles in the (x,y) space.

Equation (2.1) illustrates the general rectang-

ular case that may include as many as four deriva-

tive terms. Equation (2.1) is simplified to one less

term if Ng depends on x only. It gains a term

E(3Ng/3z) if Ng depends on z as well as on x and y.

Finally, it receives a term 3N /v EItif Ng is also
gg

a function of time t.

Equation (2.1) can be written more concisely

in the characteristic form

~N(s,fl) +6(S) N<s,~) = S(S,Q), (2.2)

where the variable s is measured along the path

determined by Q, with $2assuming the role of a

u ~ Ng(X,Y,LI,TI)+ ~lN (X,y,).l,Tl) + ug(X,y) Ng(x,y,~,ll) = Sg(x,y).
ay g

This ia the analytical equation discretized in the

energy variable. If the particles are neutrons,

discrete energy is represented by a set of G dis-

crete velocities v , g = 1, 2, .... G. The simple
g

form of Eq. (2.1) also reflects that isotropic scat-

tering, isotropic sources, and a stationary situa-

tion have been aasumed.

In the above, Ng means the number of particles

of velocity about Vg streaming in the direction f2,

Q = (p,rl,~)with p2 + r12+ :2 = 1, per unit area

normal to Q at R, R = (x,y), per unit time. The

quantity Ug, called the total macroscopic cross

(2.1)

parameter. Here and following, the index g is sup-

pressed. Equation (2.2) is the physically more

meaningful equation that describes the attenuation

and amplification of the intensity or flux of a

unidirectional beam involving a single independent

variable a. Given a change in s, the changes in

the other variables can be calculated. Equation

(2.1) can be derived from Eq. (2.2) by the operator

relation

(2.3)
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where v = dxlds and TI= dy/ds.

h importsnt subcase in transport theory is

diffusion theory, the result of taking the transport

equation to the diffusion theory limit. This may be

defined as the limit in which

by a linear expression in the

N(x,y,P,rl)‘ti(X,y) + 3P

where ; is the scalar flux

/7
1

N(x,y) = ~ dq de

o -1

and I and J are the currents

tions, respectively.

N can be approximated

angular components

I(x,y) + 3rIJ(x,y),

(2.4)

1f(x,y,v,rl), (2.5)

in the x and y direc-

[1
1

I(x,y) =% P drld8 N(x,y,P,~), (2.6)

01

and

[[

1
J(x,y) =% rldq de N(x,y,P,ll). (2.7)

01

Here, in the special case of N ~ 1, ~ = 1 and I =

J=O. The azimuthal variable 13is related to p and

rIby

A-7COS8. (2.8)

The mixed moment Q, a second-order moment needed

later, is defined by

[/

1

Q(x,Y) ‘~ P q drldfIN(x,Y,v,ll). (2.9)

o -1

If Eq. (2.1) is integrated over the Q domain three

separate times after multiplying the terms by 1,

3P, and 3t_I,respectively, all times l/2T, one ob-

tains the balance equation

a
x

the net

a
x

and the

4

I(X,Y) +% J(x,Y) +

flux equation in the

—
Cf(x,y)N(x,y) = S(X,Y),

(2.10)

x direction

ii(x,y) + 3cf(x,y) I(x,y) = O, (2.11)

net flux equation in the y direction

~ti(x,y) + 3u(x,y) J(x,y) = O. (2.12)

The last two assume that Eq. (2.4) is substituted in

Eq. (2.1) before integration. The above three equa-

tiona, which may be combined into a single second-

order equation, define diffusion theory.

However, if Eq. (2.4) is not substituted in

Eq. (2.1) before integration, the net flu equations

are given by

&~(x>Y) + 3~Q(x,Y) + 3U(X,Y) I(x,y) = O

(2.13)

and

3& Q(x,Y) +@%Y) + 3U(X,Y) J(x,y) = O.

(2.14)

These two equations, plus Eq. (2.10), are consistent

with the expansion

N(x,y,v,@ ‘fi(X,y) + 3P I(x,Y) + 3~ J(x,Y)

+ 151NIQ(x,Y). (2.15)

The above procedure, coupled with the assumption that

Q(x,y) ~ O, ia an alternate, second route to diffu-

sion theory.

Note that Eq. (2.15) ia not a complete polynomial

of second order in p and ~ because the terms in 1.12
2

and tl are absent. Stated otherwise, Eq. (2.15) is

a Polynomial of firet order with an excess term in Q.

Therefore, if one desires not to propagate the excess

term, done by writing Eq. (2.1) as

+(N - 15uTIQ)+ TI$ (N- 15PTIQ)+UN=S,

(2.16)

Eqs. (2.10), (2.11), and (2.12) follow without assum-

ing either Eq. (2.4) or (2.15). In this third ap-

proach, diffusion theory is obtained without assuming

that Q(x,y) ~ O.

The next two steps represent successive dis-

cretizations of the angular variable n = (u,rl,c)and

the position variable R = (x,Y,z). The first step

is the discrete ordinates transformation and the

second step is the finite cell formulation. Follow-

ing these steps with a third major step, difference

schemes are introduced to effect the numerical solution.



The multigroup discrete ordinates equations are

on the same physical bssis as Eq. (2.1) and are given

by

a
N (X,y) +~

‘m% m &Nm(x,y) + ~(X,y) Nm(x,y)

= S(x,y), (2.17)

where m refers to one of M discrete directions, Qm =

(Dm,TIm,&n),with

Pm
z+~z+cmz=l (2.18)

assumed, m = 1, 2, .... M. The direction cosine p is

normally attached to the x direction, rlto the y

direction, and ~ to the z direction. In (x,y) geom-

etry, in which four octants of the unit sphere, or

half of the O space, is normally involved, M is

taken to be

This

n is

....

with

M= n(n+ 2)/2. (2.19)

implies n(n + 2)/8 directions per octant, where

the order of angular approximation, n = 2, 4,

and also that

-l<um, nm<l, (2.20)

O<<ms 1.

For discrete ordinates in the diffusion theory

limit, one writes

Nm(x,y) = ii(X,y)

with

+ 3Pm I(x,Y) + 3~m J(x,Y),

(2.21)

i(x,y) = Zm Wm Nm(x,y), (2.22)

I(x,Y) = ~m wm lJmNm(x,Y), (2.23)

and

J(x,y) = ~mWm llmNm(x,y). (2.24)

For consistency with the analytical case, the follow-

ing conditions must hold for the quadrature sets

(Wm, urn,Tim).

Zmwm = 1, (2.25)

Zm Wm ~ =Zwmll=o,
m m

(2.26)

and

Zm Wm llmz=Zmwmll
2
= 1/3.

m
(2.27)

These are extended to include also the component ~

in the case of (x,y,z) geometry. The laat of the

conditions [Eq. (2.27)] is required to get consistent

balance and net flux equations, which in this case

are obtained by summations over m in Eq. (2.17)

after multiplying by the factors 1, 3pm, and 3rlm,

respectively.

The finite cell formulation results from the

discretization of position (x,y) in the discrete

ordinates equations. Again, the physical principles

of Eq. (2.1) are retained. The finite cell equation

is written

Pm A
(

i,j ‘m,i+,j - ‘m,i-%,j
)

(

+rlmB. N
~,j

-Nm,i,j* m,i,j-%
)

+0
i,j ‘i,j ‘m,i,j = ‘i,j ‘i,j’

(2.28)

where the cell is defined by the coordinates x.
1-+‘

‘i*’ ‘j-%’ and ‘j-l-l+’
and the area and volume ele-

ments by

A
i-l+j,j = ‘i-+,j = ‘i,j = “j’

‘i,j+%=‘i,j-+= ‘i,j = ‘i’

(2.29)

(2.30)

and

v.
(

= Axi Ayj = Xi+ - Xi_%
I,j )( J’j+%

)

- Yj_~ .

(2.31)

In general, area ele”mentsdivided by volume elements

(here A/V and B/V) have units of inverse length,

that is, the units of u. Note that here, for a

regular rectangular mesh, A
i,ll

depends only on the

y index j and B. only on the x index i. In con-
~,j

ventional, simplified notation, omitting all central

subscripts, Eq. (2.28) becomes

PA(Ni+% - Ni_%) + rlB(Nj% - Nj_%)

+uVN=VS. (2.32)

If the variable z is present, a flux difference with
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the factor C C is added. In this case A = Ay Az,

B=AxAz, C=kAy, and v=AxAyAz. If the time

variable is present, a flux difference with a factor

V/vAt is added.

Equation (2.28) is to be solved numerically for

the central flux N and the extrapolations to
g,m,i,j

the cell boundaries which, in the case of Pm and rlm

positive, are N and N With three
g,m,i*,j g,m,i,j*”

unknowns involved, Eq. (2.28) must be supplemented

by two auxiliary equations, that is, by difference

schemes. The source terms depend on the Ng,m,i,j
functions but usually not strongly, therefore iter-

ative means of solution can be used effectively. In

other words, in any iterative step, the term V
i,j

‘i$j
in Eq. (2.28) is assumed to be known.

Equation (2.28) is taken to be exact in the

‘ense ‘hat ‘i,j’ ‘i,j ‘m,i$j’ and ‘i$j ‘ePresent
appropriate volume averages of U, oN, and S, and

the remaining N’s similarly represent appropriate

surface averages. Equations (2.28) and (2.32) clear-

ly reveal the conservation nature of the transport

equation. The term [plANix+ signifies, for exsmple,

the number of particles leaving (entering if P < O)

the cell over the face defined by the index pair

(i+%,j); l~lBNj-+ the number entering (leaving if

~ > O) the cell over the face (i,j-%); and V(S4N)

the net change of particles in the cell from emis-

sions and removals. Here the source term VS includes

in-scattering from its own and other groups, the

collision term VcfNlosses in the form of out-scatter-

ing to ita own or other groups.

The finite cell equation for the characteristic

formulation may be written

(T ‘h& - ‘h-%)
+VN=vs, (2.33)

where the effective input or output area, or target

area, is defined by

T= IPIA+ In[B, (2.34)

and ‘here ‘h+% and ‘h-% are ‘iven by

and

These two formulas are valid for the principal octant.

In the following text, most formulas will only be

developed for that octant. The sign and index rules

by octant are given in Table II-1.

Equation (2.33), the one-dfmensionalized form

of Eq. (2.32), is readily solved by the methods de-

scribed in the next section for infinite plane (x)

geometry. The solution is generated in a prescribed

sequence, mesh cell by mesh cell, for each discrete

direction and for each velocity group. To control

round-off errors in the calculations, the direction

of evaluation through the mesh must be COnSiateLlt

with $lm. Therefore, if pm is negative and ~ posi-

tive, the evaluation progresses in the negative x-

directian and the positive y-direction. The process

assumes an estimate for the source term, as it be-

gins, tileupdating of the source whenever practical,

as it continues, and the recalculation of the source,

as it terminates, thereby setting up an iterative

loop. In many problems, the calculations entail two

or more iterative loops, usually nested, in which

the number of cycles is limited by prescribed con-

vergence criteria. The process also assumes known

inputs from adjoining cells, previous in the calcu-

lating sequence, or, in exceptional cases, from

boundary conditions. As a result, Eq. (2.33) is an

equation in two unknowns, N and N
h~ “

But, as stated

above, solution is made possible by introducing a

difference scheme.

As indicated, the solution of Eq. (2.33) appears

as a pair of positive numbers, one for the midcell

flux N and the other for the extrapolated flux Nh~.

A weight P is associated with the pair, where P = 1

in the normal, small cell case, and a P subject to

O < P < 1 is determined in the large cell case. The

solution, as explained further in Sec. 111, depends

on the difference relation

TABLE 11-1

SIGN AND INDEX RULES FOR (X,y) GEOMETRY

Octant sign Sign
Indices in the Terms of

Number(2.35) Ql—lL— of 11 ~h~

1 + + i+%, j+

2 + i-% j+~

3 + ii%, j-%

4 i-+, j-%(2.36)

6



‘h+% - ‘h-$ =

and is found to be

(l+P)T

(1 + P)(N - Nh-%), (2.37)

NLI. +VS
N=

11-2

(l+P)T+UV ‘
(2.38)

together with

N
‘(1 ‘P)T- p ‘o]Nh-$+ ‘l+P) v s

~+~ = (l+P)T+csV
.

(2.39)

The difference scheme [Eq. (2.37)] implies an

Sri-typeapproximation to the flux for P = 1, that is,

an approximation by means of connected straight-line

segments. In the exceptional case, 0 i P < 1, the

line segments are allowed to be discontinuous. The

P = O case is referred to as the step scheme and the

O < P < 1 case is referred to as the sloping step

scheme. Equation (2.37) with P = 1 implies the dia-

mond difference scheme,accurate to second-order

terms in As.

It remains to determine the individual extra-

polations, or average outputs, knowing the combined

average output ‘h+%”
If the direction lies in the

principal octant, these outputs are N
i++

and N.
3+%”

Several methods will be discussed.

In the diamond difference scheme, N
ih

and

N are obtained from the following detailed schemes.j+%

N = (l+P)N- PNi_+
i+%

(2.40)

and

N = (1 +P)N - PNj-%,
j+%

(2.41)

which are consistent with Eq. (2.37). l%is is readily

seen by combining the two equations with the weights

lUIAand l~lB, respectively, which yields

TN
h~~ = ‘(1 ‘P)N - ‘pNh-%”

(2.42)

In some situations, Eqs. (2.40) and (2.41) may

produce one negative extrapolation. This is referred

to as flux skewing, and positivity of the errant ex-

trapolation may be restored by a skewing correction

as follows. The correction is formulated so that

‘hti
is left unchanged. The set of extrapolations

is revised

negative.

satisfying

tested and

each time a particular one is found to be

The following simple skewing correction,

the condition, may be used. If N~+% is

found to be negative, Nfq3 is set to zero

after first computing a factor f. -

f=-N i~/(Nhg3 - Ni%).

The set of extrapolations is then modified

‘k+ + ‘(Nh#+ - Nk+%) + NE+%’

(2.43)

by

(2.44)

where 1,denotes the sequence of indices, here i and

j. The calculation for L = i can of course be omit-

ted because in this case the revised N. equals
~+%

zero by construction. If Nib is not negative, one

goes on to test N. etc. In the (x,Y) case, if
J+%’

‘i+%
~ O, N. need not be tested because at least

1+$
one of the outputs must be positive.

The extrapolations may be based on the idea

that one is dealing with a single stream and that

therefore the coordinate directions are auxiliary,

less important directions. This is the character-

istic approach in which Eq. (2.33), not Eq. (2.32),

is the basic equation. The simplest extrapolation

of this type is based on

This rather crude scheme

scheme in the coordinate

no skewing corrections.

implies a sloping

directions and it

(2.45)

step

requires

A more refined method is

based on interpolation using N and Nhti and the pro-

jections of the output points on the line through

the N and N
h++ p

oints. This leads to

Nii-%‘
N+ DIPIAx (Nh~+- N)

and

N
j+* = N+Dl~lAy (Nh++- N),

(2.46)

(2.47)

with D to be determined so that the correct combined

output TN ~ is obtained.
h+-j

One finds

D=

Finally,

T/(IJ2+ T12)V. (2.48)

the most refined characteristic scheme is

7



in this geometry equivalent to the diamond scheme.

In this and the previous case, it becomes necessary

to test for skewing corrections.

The extrapolation methods based on Eq. (2.45)

or Eqs. (2.46) and (2.47) exercise considerable re-

straint on the variation of the angular flux N. They

I-MY therefore be regarded as methods for smoothing

the flux and may, together with the diamond scheme,

be combined with a smoothing of the inputs by one of

the methods described in Ref. 1, Sec. V. In general,

smoothing methods can bring about considerable miti-

gation of ray effects. However, from all indications,

the effect of smoothing extends over rather few in-

tervals. Therefore, smoothing is not likely to be a

complete remedy for ray effects.

The discrete Sn method, based on solving Eq.

(2.32) or Eq. (2.33) by means of the diamond scheme,

performs rather well over a wide range of applica-

tions. Actually, in some instances it performs too

well -- too much in accordance with the assumptions

made, particularly to the discrete ordinates approx-

imation. In that basic, rather crude approximation,

isotropic sources are replaced by spoke-like sources

with fairly sparse apokes. In many probiems this

does not matter because scattering and other natural

smoothing processes are present. In some problems,

however, the natural smoothing is not sufficient in

magnitude or uniform distribution over the system.

In such cases, wavelike distortions in the flux may

become evident. This is referred to as ray effects.

It is a form of extraneous behavior, an imprint on

N of the discrete representation for ~. Ray effects

become possible when two or more time and position

variables are present.

Several methods have been proposed for major

reduction or elimination of ray effects. A few,

rather elaborate procedures have proved to be ef-

fective. However, these have also proved to be

costly in computer time and storage and to slow down

the convergence of iterative sequences. The most

direct means of alleviating ray effects is of course

to increase the order n of approximation. Unfortu-

nately, this is an ineffective method because a very

large n is required.

A simplified method, which probably has some

adverse effect on convergence but demands little in

terms of added computer time and storage, is based

on a modified form of the transport equation, like

Eq. (2.16). Here, for n = 2, a single excess term,

15prIQ,is excluded from the derivative terms. In

the general case, fluxes are obtained for n(n+2)/2

directions which can be used to determine a poly-

nomial in P and q, complete to degree n - 1, plus

a few terms of degree n. The complete part requires

n(n+l)/2 fluxes, leaving % terms to determine as

many excess terms. In the simplified method, as an

approximation, one seta the excess terms equal to

15 Cn U~Q where C2 = 1.0, and Cn, n > 2, is deter-

mined by solving some basic problem for a few n’s,

say n = 4, 6, 8, and 12. The quantities Cn would

be selected to give as smooth a solution as possible.

A suitable problem might be a centrally located

source in a vacuous and aquare (x,y) configuration.

Assuming that such Cn can be determined, the regular

difference procedure with P = 1 leads to a source

correction AS of the form

AS = 30Cn Pn([UlA+ ln\B)Q. (2.49)

More explicitly, the VS source terms in Eqs. (2.32)

and (2.33) are replaced by V(S + AS).

The mitigation of ray effects has two main re;

suits, one highly desirable, the other undesirable

but usually acceptable. The desirable result ia

that the scalar flux ~ becomes smoother and more

realistic. The undesirable result is that the

angular flux generally becomes less smooth.

111. SOLUTION IN THE ONE-DIMENSIONAL PLANE CASE

In infinite plane (x,P) geometry the differ-

ential equation for particle transport is given by

I+(x,P) + u(x) N(x,U) = s(x), (3.1)

his assumes isotropic emissions and interactions,

so that S and D are independent of p, and a single

component B of Q, - 1 s p < 1, representing direc-

tion relative to the space coordinate x.

In the discrete ordinates formulation of the

above, with ordinates Nm defined by

Nm(x) = N(x,Vm), (3.2)

Eq. (3.1) is replaced by a system of equations.

‘N (X) + U(X) Nm(x) = S(X).
‘m ax m (3.3)
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Here a U-interval of length Ap = P#+ - Pm_%, or

weight Wm = %A!Jn,is assigned ~o each distinct pm,

m=l,2, .... n, where n is the order of angular

approximation, n = 2, 4, ... . In general, a quad-

rature set (Wm,Pm) for Eq. (3.3) must satisfy the

following conditions.

Zmwm = 1, (3.4)

Zwp =0,
mmm (3.5)

and

Zmwmpmz = 1/3. (3.6)

The abscissas pm and related p neighborhoods are

normally placed symmetricallywith respect to v = O

on the interval (-1, 1), an arrangement that implies

Eq. (3.5). The subject of quadrature is discussed

in more detail In Sec. VI.

The finite difference equation corresponding to

Eq. (3.3) is written

‘~(Ai+!*Nm,i* - ‘i-~ ‘m,i-~)

+ aiViNn i = VtSi, (3.7)
,

where, in plane geometry,

%+%
=Ai_%=Ai=l (3.8)

and

Vi=llxi=x
ii% - ‘i-% ‘

(3.9)

with Ai defined by

‘i “ +(Ai* + ‘i-%)”
(3.10)

In Eq. (3.7), Si, Nm,i, and aiNm,i represent volume

averages of S(x), Nm(x), and a(x)Nm(x) over

(xi_*, Xi#+). In many situations a is constant

within intervals so that a(x) = a
i“

Physically,

ViSi and aiViNm ~ represent total releases and re-
,

movals of particles, respectively.

Using the above formulaa for area and volume

elements, and the convention of omitting central

subscripts, Eq. (3.7) becomes

P(Niti - Ni_%) + ahN = AxS. (3:11)

(3.12)

In the general context of the method of character-

istics, Eq. (3.11) is written

(Nh%- Nh_+) +uN ‘uSla,

where u = CTV/T.and, for the present geometry,

u=aV/T =ah~/lpml. (3.13)

Here h is defined so that ~_4 is the boundary of

inflowsnd ~~is

fore

‘h+% - ‘h-% =

The thickness of a

the boundary of outflow. There-

N -N
m,i+ m,i-$’

pm positive,

N -N
m,i-~

pm negative.
m,ih’

(3.14)

given mesh cell V/T is obtained

by dividing the volume element V by the effective

target area A. (V/T)S replaces uS/a inEq. (3.12) if

o =U = o.

Because a often varies a great deal, and ir-

regularly, with particle velocity and material compo-

sition (hence with position in space), it is fre-

quently impossible to construct a mesh so that u is

sufficiently small everywhere for all velocity

groups and all beam directions. Therefore, in find-

ing numerical solutions, one must be prepared for

large as well as small u dimensions.

The source uS/cland sink UN terms in Eq. (3.12)

can clearly be decreased (or increased) by the same

amount with no real change to the equation, which

points to an ambiguity in the transport equation.

The magnitude of this depends in general on x and V,

may vary irregularly, and may be difficult to define

in any precise manner. However, when present, the

ambiguity can be used to advantage to decrease u, by

decreasing uN, to obtain an effective optical thick- _

ness u’. If one permits a negative u’ but not a

negative modified source, UN can be decreased by as

much as uS/a. Performing the maximum subtraction,

one obtains

as a

With

N- S/a
‘hti ‘N&%+u N

N=O

replacement forEq. (3.12). On

some means for estimating N, u’

(3.15)

this basis, and

may be defined by

9



~l=u N - Sfa
N“

Further, u’ may be written

(3.16)

u’ = G’vpr, (3.17)

thus defining u’, the effective removal probability.

Two derived functions, the scalar flux ~ and

the current or net flux I, are of particular import-

ance in transport theory. They are defined by

1

Ii(x)= + J N(x,P)dU

-1

and

1

I(x) = %
~

N(x,P)PdU.

-1

(3.18)

(3.19)

Associated with these functional are two derived

equations, the balance equation and the net flux

equation, given by

& I(x) + U(X) K(X) = S(X) (3.20)

and

~ti(x) + 3u(x) I(x) = O. (3.21)

The derivation is by integration of Eq. (3.1) over

p from -1 to 1 after multiplying the terms by $dp
3

and ~dp, respectively, and by usin~ in the second

integration, the diffusion approximation to N(x,p).

N(x,P) ‘E(X) + 3P1(x). (3.22)

In the finite difference case, the correspond-

ing functional and equations, consistent with the

analytical formulas in the limit of small Ax and Ap,

are

ii-ZwNm m m,i’ (3.23]

Ii=EWPN
m m m m,i’

(3.24)

=i+% - Ii-+
+ aiAxizf = Axfsi, (3.25)

and

ii. -ii + 3aiAxiIL = O
1++ i-$?

with the approximation

N = tii+ 3UmIi
m,i

(3.26)

(3.27)

used withEq. (3.26).

Physically, the flux functions Nm, ~, and I

should be continuous in x, also in p with some ex-

ceptions. In the numerical work, Nm is sometimes

made discontinuous at a cell boundary just after the

psrticles it represents have crossed the boundary.

Nevertheless, continuity of ~ and I can be maintained

if, in formingfi and I at a boundary, values of Nm

just before (or at) the boundary are used. The con-

sistency of the above finite difference equations

with their analytical counterparts depends, in the

first place, on making sure that ~ and I are con-

tinuous and, in the second place, on the quadrature

conditions [Eqs. (3.4) through (3.6)].

The consistency of the analytical and finite

difference formulations is important for the proper

convergence of the solutions with n, the order of

directional approximation, and for obtaining high

accuracy for relatively low n, say for n = 4, 6, and

8. The second consideration is important because

convergence as n is increased tends to be slow. As

seen above, consistency for plane geometry is readily

established. For spherical and cylindrical geometry,

however, consistency is somewhat more difficult to

achieve and has a definite effect on the method of

numerical solution.

Equation (3.12) is solved numerically by using

the weighted diamond scheme, a simple difference

scheme, given by

‘h#< = ‘1

which may also

‘P)N - ‘Nh-%’
(3.28)

be written

(3.29)

-where P is a parameter, O s P < 1. The auxiliary

relation [Eq. (3.28)], together with the main equa-

tion [Eq. (3.12)], gives two equations for obtaining

the two unknowns: the midcell flux N and the extra-

‘O1ated ‘1ux Nh4j”
In the modified diamond scheme

(MOS), P is set to unity for small intervals and

10



computed from a given formula for large intervals.

The use of P = 1 (the DS scheme) assumes that N b

linear in x in the interval (xi_%, x. ). Physical-
1+5

ly, P = 1 means that the situation may be regarded

as elliptic, or mildly or moderately hyperbolic and

p < 1 means that the situation is decisively

hyperbolic.

The weighted diamond scheme, also called the

sloping step scheme, may be given the interpretation

illustrated in Fig. 3.1.
‘ne ‘inds ‘i--%’‘he past-

crossing value of N
h-~’

to be

‘i-+ = 2Nh - ‘h++ ‘ ‘1 - ‘)Nh ‘pNh-Lj’
(3.30)

and, for the discontinuity Nh_% - N~_% at \_%,

%-+ - ‘h-% = ‘1 - p)(Nh - Nh-%). (3.31)

Note that continuity of N requires that P be unity.

Substituting Eq. (3.28) with P = 1 in

ference equation [Eq. (3.12)], and solving

one obtains

2N
h-%

+ Usjo
N=

2+U ‘

and, from this, the extrapolation

the dif-

fer N,

(3.32)

(2- u)Nh_%+ 2us/o . (3 33)

‘hti = 2N - ‘h-% = 2+U
.

For the general case of arbitrary P, one finds

(1 +P)Nh-4+US/U
N=

l+P+U
(3.34)

and

\A
\—

1‘
Discontinuity

\ <N(x)

Nh.~
I

\\

1 ?El

----
N;-+ --_

Nh T
NII+~

~

xh-+ th x+ xh+~

Fig. 3.1. Interpretation of difference schenc.

N
h+%

= (1 +P)N - PNh_4

(l+P - uP)Nh_%+ (l+P)uS/U
.

l+P+U
. (3.35)

Here, one notes first that Eqs. (3.32) through (3.35)

represent weighted averages of N , and S/0 with
h-+

weights that sum to unity. Second, one notes that

the coefficient
‘f ‘h-+

in Eq. (3.35), which ana-

lytically should equal the penetration probability
-u
e,

-u
is an approximation to e . Expanding for

small u one obtains

I+P-UP=l_ u
l+P+U

I+&

2’U3
+

‘1-U+%-— ... .
(1+P)2

(3.36)

This is accurate to second-order terms for all P

and to third-order terms for P = 1. The ratio is

clearly not a good approximation to e-u if u ia so

large that it becomes negative, that ia, if

u>(l+P)/PorP>l/(u -1).

Further, from the numerical solutions, one ob-

serves that the sequence of fluxes, Nh-$~ ‘hs ‘h+~$

is monotonely increasing if S/0 > Nh_% (the growth

caae), and nonincreasing if S/o s Nh_% (the decay

case). Also, byusing Eq. (3.34), Eq. (3.31) for

the discontinuity can be written

N;_+ -

which shows

x = ~-g is

u(1 - p)(s/IJ-Nh-+)
‘h-+ = li-P+u , (3.37)

(if P < 1) that the discontinuity at

positive in the growth case and nega-

tive or zero in the decay case.

solution (DS) for N, one deduces

u’.

u’ =

and, from

(u -

and

uN- S/0 . ‘h-+ - N
N *’

these equalities,

u’)N = uS/13

‘h-%
= (l+%u’)N.

Hence, in terms of N ~ and u’,
h-~

Using the d%amond

a second form for

(3.38)

(3.39)

(3.40)
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‘h-%
N=l+kt, (3.41)

and

(1 ‘%U’)Nh-+=~~_~t)N.

‘h+% = 1+%’
(3.42)

The weighted diamond scheme has two primary

virtues. First, it is arithmetically simple, espe-

cially for P = 1, snd is therefore economical with

computer time. Second, it is invariant with respect

to the source/sink ambiguity in the transport equa-

tion. This makes it very accurate, basically to

second-order terms in u’ rather than in u as one

would first expect. The invariance of the scheme

is established in Theorem 3.1 below. Note that U’

is often substantially smaller than u and may, in

high-scattering situations, be smaller by one or

more orders of magnitude.

The modified diamond scheme (NDS) can now be

more precisely defined. One first computes values

for N and Nh+% from Eqs. (3.32) and (3.33) based on

P = 1 and then u’ from Eq. (3.38). These values

constitute the final solution for the interval un-

less u’ is greater than u;, where u; ia a given

parameter, u’ - 1.
0

If U’ > u:, which presumably

would be infrequent, N and Nhti are recalculated US-

ing Eqs. (3.34) and (3.35) and a given formula for

P, P =P(u’). Cofltinuityof P(u’) at u’ = u: is

assumed so that P(u~) = 1. A simplified version of

the MDS method, the limit version, will be defined

and discussed later.

Theorem 3.1. The solution of Eq.
(3.12) by the weighted diamond scheme,
using a constant P, is independent of
the sourcefsink ambiguity in the equa-
tion, that is, of any equal reduction
in the source and sink terms.

Here, assuming a reduction of the source

by quS/o and an invariant solution, one wants

that the sink term is alao reduced by quSja.

Eq. (3.34), without reduction, one has

(l+ P+u)(N-Nh~) ‘u(S/U-Nh-%).

With the source reduced and u replaced by u’,

ing the same solution for N, one has

term

to ahow

From

(3.43)

assum-

(1 + P + u’)(N - Nh_%)

=u’[(1-q)s/u’ - Nh-%]. (3.44)

Subtraction of Eq. (3.44) from Eq. (3.43), noting

that U/CJ = u’/O’, gives

(u - u’)(N - Nh_%) = quSf~ - (U - U’)Nh-%.

Consequently,

u’N = u(N -

(3.45)

qslu), (3.46)

UN is also reduced by quS/~.

provides a reasonable basis for

which shows that

Theorem 3.1

using Eqs. (3.16) and (3.38) to estimate the effec-

tive optical thickness u’. The estimate appears to

be on the low side. It does not seem worthwhile,

however, to iterate on N.

Theorem 3.2. If P = P(u’) is chosen
sothat P=l foru’ < 2andP~l/(u’ -1)
for u’> 2, then, on the normal assumption
that u, Nh-~, and uS/U are nonnegative,
Nh% is alSO UOIMiegCitive.

This theorem is verified by first writing Eq.

(3.35) as follows and by adding and subtracting

equal terms.

(l+P-u’P)Nh-%- (u-u’)PNh_%+ (l+P)uS/U
.

‘hi% = l+P+U
(3.47)

By application of Eqs. (3.39) and (3.40), this is

simplified to

(l+P-u’P)Nh_%+ (1-%u’P)uS/U (3.48)

‘h% ‘ l+P+U

Clearly, if P = 1 and u’ 5 2, Nhti iS nonnegative.

Also, if P s lI(U’ ‘1)’ ‘he coefficient ‘f ‘h-% ‘s
nonnegative. With this restriction on P, and with

u’ > 2, one can write

(3.49)

Therefore, the coefficient of S/~ is alao nonnega-

tive, which completes the proof. Note that if P

approached I/u’ for very large u’, Nhti approaches

%S10.
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Theorem 3.3. If P satisfies
P s I/u’ < II(U’ - 1), then, in the decay
case, Nh~ is limited from below by ~S/o.

To prove this, one observes first, by using Eq.

(3.40), that

‘h-% = (l+%u’)NJ (l+%u’)S/CS. (3.50)

After using this in Eq. (3.48) to put Kh-% in terms

of S/0 and decrease the numerator, it remains to

demonstrate that

(l+ P- u’P)(l+lfu’)

+(1- J!iu’P)u2%(l+P+

Solving this inequality for P,

U+u’+1
P<

U’(u+u’+l) -l’

u). (3.51)

one obtains

(3.52)

which is satiafied by P S I/u’.

It seems reasonable, in view of the above, to

complete the MDS scheme by taking u; = 1 and using

P(u’) = I/u’ if u’ > u:. An acceptable generaliza-

tion of this is to use

u’ + (1 - 2U:)
P(u’) = . -.

(U’)z + (1 - 2U;)U’ + (u’ - 1)~ ‘o
(3.53)

u—

0.5

1.0

1.5

2.0

2.5

3.0

4.0

5.0

1.0000

0.6667

0.5000

0.3333

0.2500

valid for O < u: < 1 where P(u~) = 1 and

P’(u’)u,=u, = 0, (3.54)
o

u! < 1. This reduces to P = l/u’ for u’ = 1 and to0 0

P(u’) =u’/[(u’)2+l/4] (3.55)

for u’ = l/2. Table 111-1 gives some comparisons
o

for P.

Many other possibilities exist for choosing

P(u’) for u’ > u;. For example,

u’ + 2(1 - u:)
P(u’) =

(U’)2 + (1 - 2U:)U’ + (u: -
9

1)2 + 1

(3.56)

O S u: S 2, with P(u~) = 1 and Eq. (3.54) is satis-

fied for u;<2. For u: = 2, 1, ~, Eq. (3.56) gives

P(u’) = 1(/(u’ - 1), (3.57)

P(u’) =u’/[(u’)2 - u’ + 1], (3.58)

and

P(u’) = (U’ + 1)/[(U’)2 + 1.25], (3.59)

respectively. It is not clear here if, for some

sufficiently small Uo, the relation Nhq~ 2 @/a holds.

Assuming a constant source S over the internal

(~_~, ~%), one can ~erive an analytical expression

TAELE III-1

VALUES OF P FROM FORMULAS AS GIVEN

M!@l ul(u2+l/4)

1.0000

0.8000

0.6000

0.4706

0.3846

0.3243

0.2462

0.1980

llu

1.0000

0.6667

0.5000

0.4000

0.3333

0.2500

0.2000

Eq. (3.63)

0.8467

0.7183

0.6115

0.5232

0.4505

0.3907

0.3010

0.23g5
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for N~++ by integration, obtaining the

tration

‘h+% “ ‘h-% e
‘u + (1 - e–u)S/cl,

total pene-

(3.60)

where u = CTV/T. Substituting this in Eq. (3.12),

an analytical expression for N is found.

N ‘ ‘h-%
(1 - e-u/u)

+ [1- (1 - e-u/u] S/U. (3.61)

Here, as in the case of Eqs. (3.34) and (3.35), one

observes that N and Nh~+ are weighted averages of

‘h-~
and S/0. One also notea that N and Nh~ are

limited by S/5 as u becomes very large. In the

growth case, S/0 is an upper limit and in the decay

case, it is a lower limit. By solving the equation

l+P-uP=e-u
l+P+U ‘

(3.62)

(3.63)

one finda the following formula for P.

P=l-(l+u)e-u
,

u -l+e-u

with

PZ1-U13 (3.64)

for small u and

P=l/(u- 1) (3.65)

for large u. Also, P can be shown to be monotonely

decreasing.

For several reasons, the exponential method Is

not a good method to use. Constant S in each in-

terval is a rather crude approximation. Also, it

is time consuming to compute e-u and then P from Eq.

(3.63), especially since this has to be done for

every interval. Finally, the error in the method is

controlled by u rather than u’ which is not good be-

cause often u? << u in much of the mesh. To some

degree, the same disadvantages apply to P based on

high-order approximations to e-u, Pad&-type or

other types. Note that in

with u so that Theorem 3.1

all these cases

does not apply.

P varies

The limit version of the modified diamond

scheme is defined as follows.
N and ‘h++ are cOm-

puted from Eqs. (3.32) and (3.33) with P = 1. In

most cases these are final values for the interval.

‘Ut ‘f ‘h+%
> (2 - f3)S/Uoccurs in the

‘h+%
is se; by Lh~, the limit used in

‘hi% = ‘hi+j’

and N is computed from

N = ’10 + ‘Nh-% - ‘h+%)’u’

whereupon P, if neede~can be computed

P=

.

*

The

decay case,

the teat.

(3.66)

(N- Nhh)l(Nh_+ - N)

(Nh_k- L) +u(S/fJ- L)

(u---‘l)(Nh_%- L) - u(s/Cl - L)

(3.67)

from

‘h-%
+uS/C-(u+l)L

(u - l)Nh_% - uS/U+L

most restrictive limits

Eqs. (3.60) and (3.61), that is,

. (3.68)

are those based on

on setting 6 = 1.

It was shown earlier that f3can be relaxed to f?= $

in the decay case. l%is ia the motivation for in-

troducing the coefficient 6, and for using 2 - @

in the growth case. In the zero fix-up scheme, a

limit scheme used a greet deal in the past, 6 is

set to zero. This scheme, however, is in clear

violation of the physics, which probably explains

why it sometimes failed to control adequately oscil-

latory tendencies in the numerical solutions.

A way to compare the MOS method with other

methods is to examine how well exponential decay

is approximated when S/0 = O (u’ = u). A few ap-

proximations are listed in Table III-2.

In some situations it may be useful to accept

negative Sla and, as a result, also negative N
h-%“

In moat cases, this would occur for a few intervals,

directions, and groups. This is not in any way up-

setting in the MM methods.
lf both ‘h-% and ‘la

are negative in an interval, the procedure is not

changed, the same formula for u’ is used, etc. If

one of these quantities is negative and the other

positive, the only change is that u’ may be larger

than u, which is quite acceptable. If N from the

14



TAELE 111-2

APPROXIMATION TO e-u IN VARIOUS METHoDs

Ooodin Positivein
Scheme

e-u
~ Ammoximation u Sange u Sange

Diamond 1 ~
l+%J (0,1) (0,2)

StepScheme O ~
l+U (0>%) (o,-)

[

1-%l,US1 ~
ms 1 (0,2) (0,=)

1MI*U >1

DS calculation

1

1+U+U2–J

is equal to zero, one sets P = O.

Growth and decay of flux are interpreted as increase

or decrease in magnitude.

In conclusion, therefore, the modified diamond

scheme (MOS) seems to take care of the difficulties

of the past, those encountered with the straight

diamond scheme (DS) or with improperly defined MDS

schemes. It does not increase the requirements for

computer storage and, although the computing time

per cell is increased slightly, the total time is

likely to be less because of the decreased inter-

ference with the inner iteration convergence result-

ing from the smoother MDS solutions.

Iv. SOLUTION IN SPHERICAL GEOMETRY

The solution of the transport equation in curvi-

linear geometries, compared to solution in rectangu-

lar casea, is more involved. Here, starting with

spherical geometry, the partial differential equa-

tion is given by

M&A(r) N(r,p) +A’(r) %$(1 - 1.12)N(r,p)

+ U(r) A(r) N(r,p) = A(r) S(r), (4.1)

where

A(r) = 4mr2

and

This

tion

(4.2)

A’(r) =&A(r) = 8~r. (4.3)

represents the conservation form of the equa-

because the coefficients u and A*, respectively,

~ and ~ are independent of the variables ofof ~r av
differentiation. Transformed to the regular form,

with terms in & N and & N, Eq. (4.1) becomes

14&N(r,P) ++(1- P2)~N(r,P)

+ U(r) N(r,p) = S(r),

where the ljr coefficient comes from

(4.4)

is

$A’(r)/A(r) = I/r. (4.5)

In the discrete ordinates formulation, Eq. (4.1)

written

IA(r) Nm(r)
‘m ar

+% [~N+Nm%(r) -am_% Nm_%(r)l
m

+ U(r) A(r) Nm(r) = A(r) S(r), (4.6)

where Wm =~~pmandam-%, m=l, 2, .... n+l, are

coefficients to be determined.

with

- 1,

am-+ z +1 - !Jm-+2), (4.7)

equality specified for m = 1, for which p , =
m-+

and hence

~ . -& - @ = o. (4.8)

The terms in a and a have the meaning of loss-
m+ m-%

es and gains, respectively, to the mth discrete ray,

or bundle of particles, in the course of streaming.

Aa a consequence of streaming, such changes can

occur in a system described by curvilinear coordin-

ates. In such streaming, the value of u associated

with the ?oving particle depends on r and ia mono-

tonely increasing.

The differential operator in Eq. (4.6), aa in

Eq. (4.1), must clearly vanish in any situation

with constant N. This condition on the derivative

t~irnsyields the following recursion for a.

w. -0.
m+% m-% ‘ -

Wm lJm. (4.9)

‘ierefore’ a3/2 = - ‘1 ‘1’ ‘here ‘1 ‘s ‘he ‘iacrete

15



p that is closest to v = - 1, and am~ 2 0 for all

m. Summing both sides of Eq. (4.9) over m, one de-

rives

a
-%

.-Emwmp =0
n++ m

where the second equality comes

the last a, a
n*

, equals zero.

defined by

lx
m =+(a++ am-%).

(4.10)

from Eq. (3.5) and

The midpoint a ism

(4.11)

Note that if the quadrature is symmetric in the

sense discussed in Sec. III, the coefficients are

also

cl
n-1

n%=y=09~n=als~n%=~312,symmetric, a

= ‘2’
etc., with

(4.12)

In solving Eq. (4.6) numerically, the progres-

sion is clearly from smaller pm toward larger urn,

and is, as in the infinite plane case for x, in the

r direction indicated by the sign of P, that is,

inward for negative v and outward for positive p.

The first ray equation (m = 1) possesses no stream-

ing source, since ~= O, and the last ray equation

(m = n) no streaming sink, since an% = O. However,

because N~ is obtained by extrapolation from Nm

and ‘m+%’
values for N for an initializing ray are

+
needed. The equation for N%, obtained from Eq.

(4.4) by setting U= -1, is

‘N- ar ~(r) + u(r) N%(r) = S(r).

Next, by a process of adding and

terms (shown in detail later), and by

Nm(r) ‘+[Nm-%(r) + N+(r)],

(4.13)

subtracting

setting

(4.14)

Eq. (4.6) can be put in a regular form, as follows.

2a
‘N(r)+%

‘m h m
[Nti(r) -Nm-+(r)]

m

+ U(r) Nm(r) = S(r). (4.15)

The balance and net flux equations for contin-

uous and discrete p, respectively, are obtained on

the basis of the definitions

16

1

=(r) = + J N(r,p)dU = .ZmWm Nm(r) (4.16)

-1

and

1

I(r) =+
J

N(r,u)Pdu = Zm Wm UrnNm(r),

-1
(4.17)

and the quadrature operators

1
1
7

J
dv( ) =Xmwmo (4.18)

--1

and

1
3

J
7-

Uduo=3Zmwmvmo. ”

-1

(4.19)

The operators in Eq. (4.18) are applied to Eqs.

(4.1) and (4.6), respectively, and the operators in

Eq. (4.19) to Eqs. (4.4) and (4.15). In applying

Eq. (4.19) to the continuous and discrete cases,

respectively, the diffusion approximations

N(r,).1)= =(r) -1-3uI(r) (4.20)

and

Nm(r) = ~(r) + 3ymI(r) (4.21)

are also used.

In applying Eq. (4.18) to Eq. (4.6), the terms

in a vanish since

A’(r) Z (a =0
m m++ ‘m+ - am-+ ‘m-%)

(4.22)

because of cross cancellation and an% = ~ = O.

Also, after applying Eq. (4.19) to Eq. (4.15), the

terms in a in that equation vanish since

(6/r) Em umam(N&4-Nm-+) = 0, (4.23)

first because, by using Eq. (4.21), the difference

of the N’s is replaced by 6WmI and second because

am, like wm. is an even function In P. As a result

of the above, the balance and net flux equations

are given by

&A(r) I(r) + a(r) A(r) ~(r) = A(r) S(r)

(4.24)



and

~~(r) + 3U(r) I(r) = O (4.25)

for the discrete ordinates aa well as the analytical

case. Note that the construction of unsymmetric

quadrature sets is not simple since pm selections

must satisfy the condition

Zmwmvma =0,
m

(4.26)

with ~ depending on us, s 5 m, through Eqs. (4.9)

and (4.11).

The finite cell formulation of the transport

equation for sphere, derived independently of Eq.

(4.6), is givenby

u(r)Nm(r), and (2/r)Nm(r), respectively, over inter-

vals (r~-%, ri%).

To arrive at the correct net flux equation, Eq.

(4.27) is also needed in the regular form. By add-

ing and subtracting terms in Eq. (4.34), that equa-

tion becomes

p(V/Ar)(Ni~ - Ni_%) + (Ca/W)(Nmp+- Nm-%)

+ P(Ai~+ - V/Ar)NiP+ + u(V/Ar - Ai-%)Ni_+

- $LI(N&~ + Nm_%)+ UVN=VS. (4.35)

‘m(Ai#+ ‘m,i*
-A

i-% ‘m,i+ ) + (ci/wm)(a@+

where

A = 4rr
2

i% i-% ‘

Ai ‘~(Ai@++ Ai-%) = 4?@2 + ~riz) ,

=A‘i i% - ‘i-~ = 8~~iAri,

and

3 3
‘i = (4n’3)(ri+% - ‘i-% )

= 41r(r‘iz + ~r12)Ari,

with

Ari = riq~ - rf~

and

—
r.
1
= ~(ri_% + ‘i++)”

N
mi+j,i

~-%,i) +OiViNm ~ =Vi Si,-alN
m--j

(4.27)
,

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

In simplified notation, Eq. (4.27) is written

P(Ai% Ni~ -A
i-% Ni_%) +(C/W)(a -Ci

m+ ‘m+% m-+

In the finite cell equation, Si, N CTfNm~, andm,i’
CNi ~,i represent volume average of S(r), Nm~r),

Here the relations

/w = amjwm -~m
an#+ m

(4.36)

and

am_%/wm = amjwm +~m (4.37)

were used. For further simplification, the follow-

ing formulas are useful.

‘i+
-V/Ar=~+(A- V/Ar) (4.38)

and

V/Ar - A
i-+

=~-(A- V/Ar). (4.39)

To obtain the desired consistency between Eqs. (4.15)

and (4.35), the terms in the second line of Eq. (4.35)

plus the term in - %CU, must vanish. This leads to

the following difference relation.

m-%) +UVN=VS.N (4.34)
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+(Nmh +N ) = (~+ Ar/12~)Ni%
m-%

+ (+ - Ar/12~)Ni_%,

where the coefficient Ar/6~ comes from

(A-V/Ar)/C = Ar/12~,

which has its maximum value of 1/6 for

interval (O,Ar). With this difference

Eq. (4.35) simplifies to

w(Ni~ - Ki-%) + (CaAr/Vw) (N+ -

+ ciArN= ArS

(4.40)

(4.41)

the firat r

relation,

N
m-k)

(4.42)

as the finite cell equivalent to Eqs. (4.4) and

(4.15). If one multiplies the terms by w and takes

Arw as the volume element, Eq. (4.42) may be regard-

ed as the rectangularizedversion of Eq. (4.27).

For the special straight-in direction, P = - 1, with

a = O erasing the a term in the equation, the re-

sult is a planar-type equation.

- (Niti - Ni_4) +aArN = ArS, (4.43)

corresponding to Eq. (4.13). The same equation is

obtained from Eq. (4.34) by setting N&5 = Nm_$,

amblw = 1 (the correct limit for a small p inter-

val near p = - l), and a = O, and then elimina-
m-%tingN++bymeans of Eq. (4.40).

The above analysis shows that there are spe-

cial restraints on the difference relations in

curved geometries. In the spherical case, one can

select one difference relation in the usual manner,

joining this with Eq. (4.40), the principal rela-

tion. Subsequently, upon substitution of these re-

lations, Eq. (4.42) can be solved for its three un-

knowns, N, N&%, and Nh~, where Nhq+ = Nih for

v > 0, and Nh~+ = NL_% for v < 0. Truncation error

analysis (as made in Refs. 2 and 3) suggest the

following scheme as a supplement to Eq. (4.40).

N = (~+ Ar/12~)NiP+ + (~- Ar/12~)N~_k, (4.44)

a weighted scheme, which in combination with Eq.

(4.40) gives

N.

.

*(N& +Nm-%)

(~+ Ar/12~)Ni~+ (~- Ar/12~)Ni-&, (4.45)

where, moreover, the first equality is consistent

with Eq. (4.14). This total scheme may be completed

for P < 1 by replacing N in the above by

+(1 +P)N+~(l - P)Nm-%. (4.46)

The scheme defined by Eq. (4.44), involving unequal

weights, does not seem proper, however, for the

straight-in case, Eq. (4.43). It seems that the

total scheme should be replaced, in some way, by

1
N =#Ni++ Ni-%) ++(N++Nm_%). (4.47)

By a slightly different procedure, partly em-

pirical but in other respects like that used to es-

tablish Eq. (4.40), one can indeed (as shown in Ref.

1) terminate byEq. (4.47). This involves there-

placements

uAAr/V + u (4.48)

and

S/0 + (AAr/V - 1)=+ S/a. (4.49)

This method, which manipulates the source and sink

terms so that the number of particles is preserved,

is not perfect as applied to Eq. (4.43), but it is

probably better than the method based on Eq. (4.45).

Some of the earlier methods for coping with the dif-

fusion condition should be mentioned. These methods,

which were unsatisfactory for other reasons, involved

the manipulation of area and volume elements, com-

puting’ ‘or ‘xmple’ ‘i+% ‘rem ‘he ‘Xact ‘i ‘sing
the recursion

‘ii% = 2vfAr - ‘i-%
(4.50)

so that AAr = V, or computing V from the exact A’s

by

V = AAr. (4.51)

The method of characteristics resolves the above

problem very nicely, at least analytically. Final

judgment on this approach must be reserved until a

18



number of numerical testa have been made. In char-

acteristic from, Eq. (4.34) is written

(Nh~ ‘Nh-+i) ‘w ‘u ‘lo’
(4.52)

where

u = OVIT. (4.53)

Here T has the meaning of total effective outflow

area (equal to inflow area) of the cell, being the

sum of the individual areas (in this case lvIAi%

and ca&* [w) and is givenby

T = lUIAi% + Cam~/w

= lPlAi_%+Cam_4/w

= luIA+ca/w. (4.54)

These expressions, and those below, are foi positive

U; for negative P, i#+ is replaced by i-~ and i-~

by i++. Also, if Eq. (4.52) is to be equivalent to

Eq. (4.34), NhP$ and Nh-%, the average oatflow and

inflow for the cell must be defined by

TNh~= lPIAiA+Ni~+

and

respectively.

the difference

‘h++ = ‘1

To solve Eq.

relation

+ P)N - PN
h-%

(camq@Nti (4.55)

(CUm-#?)Nm_%, (4.56)

(4.52), one introduces

(4.57)

and proceeds as in Sec. III to obtain P, N, and

‘hi%“
Then to detail the output, given N

h~’ ‘ne
uses the definition of N

h~
in terms of N. and

1%

‘m-l%‘r ‘i-+ and ‘m++’
as the case may be, plus the

difference relation Eq. (4.40). The straight-in

caae is handled somewhat differently because Eq.

(4.40) implies Eq. (4.43). Therefore, in this case

u = uAr/T, (4.58)

with T = 1, N
h++

= Ni-%, and N
h-% ‘ ‘i+%”

Detailing of outputs ia done as follows. For

the straight-in direction it remains to calculate

‘&,i
, the initial function for extrapolation in p.

N% = (~+ Ar/6~)Nh-% +

For the case of negative p,

‘Nh+J+‘ - ‘i-~ ‘i-~ +

combined with Eq. (4.40) to

(~-Ar/6=)Nh+%. (4.59)

(Camq+/w)Nti, (4.60)

‘liminate ‘d<’ ‘ives

‘h%
+ (Cati/Tw)[Nm_4- (l+Ar/6Z)Ni%l

N
i-~ = (Ca~+/h)(Ar/6~)

.
1-

(4.61)

Since for i = 1, the factors in the denominator equal

1 and 1/3, respectively, the equation simplifies in

this case to

N
m,%

= $(Nh~

For the positive p

~h~ = @i+%

combined with Eq. (4.40) to eliminate N&5,

(4.62)

(4.63)

gives

‘h~ ~/Tw)[Nm_%
—

+ (Ca - (I - Ar/6r)Ni-%] -r

‘i+% = ~/Tw)(Ar/6~)1 + (Ca

(4.64)

For m = n, in which case a
m+%

= O, this reduces to

‘i++ = ‘h-%.”
After the extrapolation in the r-direc-

tion has been done, N
m-l%

is calculated from

‘m+%
= (1 + Ar/6~)N1~+ (1 - Ar/6~)Ni_%- Nm_%.

(4.65)

The final step in the calculation is the correction

for skewing as described in Sec. 11.

v. SOLUTION IN CYLINDRICAL GEOMETRY

In infinite cylindrical (r) geometry with two

variables for direction, the radial and axial com-

ponents p and ~, the transport equation is given by

P&A(r) N(r,P,C) - A’(r) ~n N(r,P,C)

+ U(r) A(r) N(r,~,~) = A(r) S(r), (5.1)

where A is the area element
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A(r) = 2mr, (5.2)

with A’(r) = 21r,and where $ and TIare related to v

and ~ by

and

with

that

of S1

Note

A=-7CCMI$

.=- simj,

n2~ZOand05C

-lSpSlandOS

is comprised of two

that ff N(r,?d,E)is

(5.3)

(5.4)

.S1. It follows from this

TI5 1, and that the domain

octants of the unit sphere.

constant, the differential

operator in Eq. (5.1) vanishes because

(5.5)

As in the spherical case, the discretization

of Eq. (5.1) is accomplished by means of quadrature

methods and difference schemes. Numerical quadra-

ture combines with finite intervals in v and ~, and

difference methods combine with finite intervals in

r. The construction is such that in the limit of

small intervals the discrete and analytical equa-

tions are consistent. An intermediate step in the

construction is the discrete ordinates formulation

where the treatment is discrete in p and E and con-

tinuous in r.

A number of equations are involved in the con-

sistency arguments: first the conservation equation

[Eq. (5.1) and its alternate, regular form, Eq.

(5.6) belovj,second the basic derived equations,

the balance and net flux equations [Eqs. (5.7) and

(5.8) below], and third the associated diffusion

approximation [Eq. (5.9)1 used in the derivation of

Eq. (5.8). These equations are given by

and

20

‘N(r,p,c) - (n/r) ~
p ar

+ U(r)

& A(r)

N(r,i.J,C)= S(r),

I(r) + u(r) A(r)

N(r,U,<)

(5.6)

~(r) = A(r) S(r),

(1/3) ~ii(r) +U(r) I(r) = O.

(5.7)

(5.8)

N(r,p,E)Sfi(r) + 3P I(r).

In the above, the scalar flux ~(r)

two functional of N(r,p,~) msY be

result of

‘o =

and

F1 =

applied to N(r,p,~).

(5.9)

and current I(r),

defined as the

(5.10)

(5.11)

Equation (5.6) is found by continued differen-

tiation in Eq. (5.1); Eq. (5.7) by aPPIYing the

first operator [Eq. (5.1O)], term by term tO Eq.

(5.1); and Eq. (5.8) by applying the second opera-

tor after substitution of Eq. (5.9). However, Eq.

(5.8) is more readily obtained if the second opera-

tor [Eq. (5.11)] is applied to Eq. (5.6) rather than

to Eq. (5..1).

In constructing the discrete ordinates formula-

tion, one starts with

‘A(r) Nl,m(r)‘!t,mh

+

+

where E

with ~)

ties pk
,

A’(r)

[%,ln.1%‘E,m+%
(r) -akm_%Nk,m-% (r)]

‘l,m ,

o(r) A(r) Nt,m(r) = A(r) S(r)> (5.12)

is the level index (the index associated

and m the p (or ~) index, where the quanti-

~ are discrete values of u depending on C

as well as $, and where the second term approximates

the term in Eq. (5.1) with the $ derivative. The

meanin~ of N~m(r) is
9

‘I,,m
(r) = N(r, p~,m, Cg,m) (5.13)

and weights wR,m, together with the points or nodes,

‘V.L,ms ng,ms ~Lm) constitute the quadrature set.

By requiri~g that the differential operator in

Eq. (5.12) vanish in the case of constant N, as for

the analytical equation, the following recursion

formula for a is obtained.

%,m+%’ - al,,m-4= - ‘k,m ‘E,m’
(5.14)



which can be used to compute CYbecause a
k,+

can be

set to zero as seen later.

In the following, the point weights Wg m are
9

assumed to be equal.

and also ‘hat al,,m
is an even function of pE m for

s
each l.. As a consequence,

x
!L,m‘.l,m‘Y.,ma!?,,m

= o. (5.24)

w~,m : w = 4/n(n+2) (5.15) As in the spherical case, the basic quadrature

set Is augmented by special zero-weight pointa, one

for any given order n of approximation, n = 2, 4, for each ~ level, say for m = 1. This changes the

msequence tom= 1, 2, .... n= 2f.+ 3 and the. . . . The associated nodes (P2 m, qk m, ~k m) are
, , ,

assumed to be arranged in a triangular fashion on

h levels with n = 21+ 2 nodes on level 9.,m = 1,

2, .... n-21+2, 1,= 1, 2, .... ~. This yields

a total of n(n + 2)/4 nodes, with n(n + 2)/8 per

octant. From this, with the level weights Wk de-

fined by

totality of pointa to n(n + 4)/4. For the special

points one hsa Wg ~ = o, Tll,l< 0, CL,l = ~,
$ ,

‘nd a3/2 = al = al/2 = 0“ ‘he ‘ndices ‘or ‘he
nodes with negative p are m = 2, 3, .... ~ - E + 2.

Returning to the discrete ordinates formulation,

‘ne ‘bservs ‘hat ‘9.,m
can be related to A~ by

W%= Zmwkm=(n-2$?,+2)w,
,

(5.16)
‘Q,,m

= - (WEIT) A+. (5.25)

the normalization is Therefore, if Eq. (5.12) is to be consistent with

Eq. (5.1), the a coefficients

(5.14) must satisfy

as computed from Eq.

‘z
!?,,m‘L,m ‘ZEWE=l” (5.17)

It is further assumed that the nodes are chosen so

that

(5.26)

as well as
2
+ ‘9.,m2 + Ck,m

2
‘k,m

=1 (5.18)

and

z
2
=x

2
k,m ‘1.,m‘.t,m t,m ‘R,m ‘m

= 1/3, (5.19)
and do this with increasing

In the one-dimensional case

responding relations are

accuracy as n increases.

for spheres, the cor-

(5.28)

(5.29)

m=l,2 , ..., n -2!L+2, !?.=1, 2, .... ~, from

which it follows that

E
2

k,m ‘L,m ‘!Z,m
= 1/3. (5.20)

and

ams *(1 - pm2).Defining the level cosines ~k by

Note that for the special points in which case

~!l,+
= O, Eq. (5.26) justifies that a~ ~ be set to

s
zero.it also follows that

The accuracy of the relations of Eqs. (5.26)

ZLWEZ: = 1/3. (5.22) and (5.28) are tested in the next section in the

Finally, it is assumed that if (p~mnkmc~m)

a node in the set, so tS (- PE,m, ;E,ms ‘Ck m;.

this sign reversal symmetry and equal weig~ts,

follows that

z
!L,m‘kl,m‘f,,m=

o

case of ESn quadrature, an easily constructed quad-

rature defined and tabulated in that section.

To put Eq. (5.12) in the regular form, the

first term is differentiated with the result

is

With

it

a
‘(r) ‘!L,m37Nl,m (r) +PL,m A’(r) Nt,m(r) (5.30)

(5.23)
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where the first term is the desired term. Second,

the terms in a can be written

A’(r)

[
(r) -NLm_+ 1 A’ (r)

a!?,,m‘E,m+% [ 1(r) + (a$,& - Ug,m_%) ~ Nl,w+(r) + Nk,m+(r) .
‘L,m *

,
(5.31)

Here the first term with the factor at m is the de-
,

sired term. Noting that (aL,M+% - afl~_%) in the
s

second term can be replaced by
- ‘P,.m‘!t.m’

that
. .

term can be made to cancel the second term in Eq.

(5.30) by assuming the difference relation

‘.t,m(r)

In this way,

a
‘k?,mZ

= +Jt,mh (r) +NL,m_%(r)l. (5.32)

Eq. (5.12) is put in the regular form

Ai . ~(Ai++ + Ai_+) = 27 ‘is (5.39)

Ci=A
i-% - ‘i-+ = ‘r A ‘f’

(5.40)

and

Vi = n(r
2

2, =2r~iAr1=AiAri.
ii+j - ‘i-%

(5.41)

(r) +
a!t,m

‘!?,,m [NL,~Jr) - ‘g,m-+(r)] +a(r) N~m(r) = S(r),
r ‘L3,nl 3

(5.33)

consistent with Eq. (5.6).

Next, defining the discrete operators corre-

sponding to Eqs. (5.10) and (5.11) by

and

R(r)

FO=Z
L?.,m‘L,m

(5.34)

F1=Z
E,mwk,m’ ‘g,m (5.35)

and I(r) may be defined as the result of these

operators operating on Nl,m(r). Furthermore, on

the basis of the properties assigned to the quadra-

ture Set,the operators Eqs. (5.34) and (5.35) ap-

plied to Eqs. (5.12) and (5.6), respectively, yield

exactly Eqs. (5.7) and (5.8). In arriving at Eq.

(5.8), Eq. (5.24) and the following

sfon of Eq. (5.9) are used.

discrete ver-

(5.36)

For the final step in the discretization, Eq. (5.12)

is first written as a finite cell conservation law.

The correct

A
iiJ*ii+% -

balance equation,

Ai-k Ii-k+ ‘i ‘i
tif= Vi Si, (5.42)

is obtained by applying the operators Eqs. (5.34)

and (5.35) to Eq. (5.37). In this case ~i and Ii

are defined by

Ni=E .%,mwl,,m‘k,m,i
(5.43)

and

Ii=~
!2,m‘1.,m‘f,,m‘1.,mi’

(5.44)

respectively. To obtain the correct net flux equa-

tion,

(1/3)(fii%-~i-%) +Ui Ari Ii = 0, (5.45)

one uses Eq. (5.37) put in a regular form together

with the diffusion approximation

i- (C1/I.I~,m)(a$,m&‘E,m++si~!t,ln‘i+ ‘k,ln,i+-+1- v~,mAi-+ %,ln,i+ - al.,m-+‘$,m-~,i)

where

‘i*
=271r

ii+l‘

+ CJi vi

(5.38)

‘1.,m,i= ‘i ‘i’
(5.37)
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%,lll,i
= ~i + 3 LIg,mIi.

The regular form of Eq. (5.37)

and subtracting equal terms in

taining

(5.46) h- k-l-l

IJ2,1= -
z

Wn, (5.51)

is found by adding ~=~

that equation, ob-
and in a third method only one special direction is

‘“(Nf,,m,i-P* ) +~vE,m (Ai&-Ai-~‘R,m ~ - ‘l,m,i-% ‘(N!Z,,m,i*+ ‘I,m,i-%?

+ (Ci ~fi,m/w%,m)(Nk,&5,i- ‘k?,m-%,i)
+N ~m_+,i) +Oivilitmi=v isi. (5.47)

‘ip!t,m ci(Nk,m*,i , ,$

Here the first and second terms equal

terms in Eq. (5.37) and the two terms

the term in Ci in Eq. (5.37). If the

ference is introduced,

%>+,i +N
TL,m-%,i)

= i(Nl,,m,i* + ‘$,m,i-$)’

‘he‘Wo ‘ems ‘n ‘!?,.m
in Eq. (5.47)

the first two

in C~ equal

following dif-

(5.48)

cancel be-

cause C
i = ‘i+% - ‘i-%’

and the proper regular dif-

ference equation, consistent with Eqs, (5.6) and

(5.33), is obtained.

‘.L,m(N!2,m,i*-

Ari afim

‘.P.,m,i-*)‘~ ‘ (NW,i-
WA

1. x,m

after dividing through by Ai noting that Ci/Ai =

A ri/~i snd Vi/Ai = A ri. Equation (5.49) corres-

ponds to Eq. (4.40) in the spherical case. Note

that the relation is simpler in cylindrical geometry

because V. = Ai A rL.1.
The remaining steps in find-

ing solutions in the cylindrical case by the method

of characteristics parallel and are almost identi-

cal to the steps in spherical geometry. These are

described in Sec. IV beginning with the paragraph

ofEq. (4.52). The difference in the equations is

that the terms in A r/6~ in the spherical case are

not present in the cylindrical case.

For the choice of special directions, more

than one method is available. In a firat method,

l’!t,l
is computed from

(5.50)

used, Pl,l = - 1.0. In this case, for I > 1, one

sets

VI.

used

Nt,l(r) = ‘&l,5/2(r)”
(5.52)

ESn MECHANICAL QUADRATURE

The requirements on numerical quadrat~re as

in transport calculations have been discussed

in previous sections as well as in several earlier
4,5

reports. In this section a simple quadrature

methcd labeled ESn is described based on equal point

weights and on approximating rather than precisely

(5.49)

satisfying a set of moment conditions. The simplic-

ity comes from the fact that no solution of a system

of nonlinear (or linear) equations is involved.

Here n controls the accuracy of the quadrature, n =

2, 4, ... . The basic ESn quadrature sets are de-

fined on the interval (0,1) in the one-dimensional

case and on the principal octant in the two-dimen-

siond case. In the first irstance, $n nodes pm are

placed on the’p-interval (0,1), m = 1, 2, .... M =

~, with weights Wm whfch are sums of (%n – m + 1)
,

point weights, and in the second instance M(n) nodes

.QmE (pm,rIm,~m)on the principal octant (where the

components of 0 are positive), m = 1, 2, .... M =

n(n+2)/8, with equal weights Wm,

w
m

=w=8/n(n+2). (6.1)

in a second, from

Here Qm may also be written (lJL,m,rIt,m,~R,m)in

terms of a p-index m, m = 1, 2, .... ~-l,+l,and
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a ~ or level index

ponents are asaumed

!L,E=1,2, .... %n. The com-

to satisfy

(:,m = 1. (6.2)

In the two-dimensionalcase, as indicated above,

the octant ia covered by a triangular pattern of e-

qual areas *L m =
9

z
R,mw.l,m = 1“

The one-dimensional

level weighta, that

level

%TW, n(n+2)/8 in number, so that

weights Wm may be

is, sums of point

wm = ‘kw.t,m
=($in-m+l)w.

(6.3)

regarded as

weights by

(6.4)

Here %TWm correspond to areaa of latitudinal bands

on the octant. The weights given by Eq. (6.4) do

not differ greatly from the ordinary Gauas quadra-

ture weights.

The quadrature nodes (or points) are alao

placed in a triangular fashion on the octant with one

node per point weight and %n - 1.+ 1 nodes per level.

They are placed in a symmetric pattern with respect

to the three axea so as to form a closed aet with

respect to permutation of the components. There-

fore, i: (p,q,&) is a node in the set so are

(P,~,TI),(TI,E,l-1),(TI,P,E),(E,v,rl),and (5,TI,u).

Such groupings may consist of leas than six points,

three points if two of the components are equa~and

one point (fi/3, 6/3, 6/3) if all three are equal.

Altogether one can count [(nz + 8n + 28)/48] group-

ings and [n(n + 2)/24] independent components.

In E% quadrature, based on certain assumptions

discussed in Ref. 5, one is able to reduce the num-

ber of independent components to [n(n+ 12)/48].

By correlating these with the same number of inde-

pendent .ver,moments ~,j, k+j <n, .necanset

up a system of nonlinear equations foi determining

the E% aet for any n.

Because of the triangular symmetry, flmcan be

written (Pl,m, Vt,k, Pm,l) where k = k - ~ - m + 2.

The permutation invariance combined with Eq. (6.2)

implies that the 142~ moment condition is satisfied.
9

~

‘2,0= x.t,mwl.,m‘1.,m
L = 113. (6.5)

Extension of the basic quadrature from (0,1) to

(-1,1) or from one to two, fuur, or eight octants,

as a given problem may require, is defined in terms

of symmetry about coordinate planes with the appro-

priate sign changes in direction cosines. Because

M changes from ti to n or from n(n + 2)/8 to

n(n + 2)/4, n(n + 2)/2, or n(n + 2), respectively,

the weights are renormalized so that their aum re-

mains at unity.

The one-dimensional ESn sets may be generated

independently of the two-dimensional ones. This

gives us simple means for describing the steps in

the construction and examining some of the mGre im-

mediate consequences.

are selected, here

wm =(~-m+l)

In the second, certain

In the first step the weighta

[8/n(n+ 2)].

p coordinates

(6.6)

are computed,

the lower ~-interval boundaries vm-~’

(6.9)

‘m-+ = 1 -*(kn -m+ 2)wm, (6.7)

—
and the interval midpoint valuea pm,

Tm = Pm_+ + &wm ‘ 1 -*(% - m + l)wm. (6.8)

Here p% = 0, V3J2 ‘“1’ ‘5/2 ‘WI ‘W2’ ‘tC”’ and
?JI=%71, P2 =W1 +%2, etc.

In the third step, a scaling process is applied

to Em. In method I pm is written

Pm = REm,

with R determined so that

Em “m llm2= 1/3. (6.10)

For transport work, a slightly different method (II)

is considerably better. Here pm is written

Pm =Rv + iim,
m-%

(6.11)

with R determined ao that Eq. (6.10) is satisfied.

l%is is the method selected here and the one exam-

ined below. Table VI-1 gives values of R, R = R(n),

for a sequence of n. For large n, R appears to be-

have as l/n2. The one-dimensional ESn sets, based
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TARLE VI-1

VALUES OF THE SCALE FACTOR R VS n

n R n R— —

4 0.0128757 24 0.0017172

6 0.0287804 28 0.0012627

8 0.0157065 32 0.0009675

10 0.0099458 40 0.0006200

12 0.0068776 48 0.0004310

14 0.0050444 56 0.0003169

16 0.0038600 64 0.0002428

20 0.0024709

on method 11, n = 2, 4, .... 16, are included in

Table VI-8.

In a first test of the quadrature, the linear

extrapolation length Z. is obtained as a function

of no The accuracy of this quantity is importanz

to the accuracy of the results to a number of bench-

mark problems in transport theory. The exact value

of Z. is known to be 0.71044609. For finite n, z
o

may be obtained as the sum of the poles minus the

sum of the zeroes of the following equation.

w
z m

-1=0. (6.12)
m 1 - vm2/L12

The poles are clearly located at the quadrature

nodes. There are h - 1 zeroes. For n = 4 one

finds p = &p1V2 to be the single zero, hence for

n=4

zo = P1+P2 - AP1V2. (6.13)

Values of z. for several sequences of n are given

in Table VI-2. The errors in the ESn-based values

behave approximately as -0.09/n2. Here ESn by

scaling IT represents a significant improvement

over Gausa quadrature which, for n = 4, 8, and 16,

gives 20 = 0.694025, 0.706918, and 0.709609, respec-

tively. ESn by scaling I gives similar values.

Incidentally, Gauss quadrature can be very

closely simulated by the ESn technique with scaling

I using in the first step either the exsct Gauss

weights or approximate values from w =m Pm* -

pm_% where

TABLE VI-2

THE EXTRAPOLATION LENGTH Z. FOR C = 1 AND

ESn QUADRATURE

z
n 0
—

4 0.706075

8 0.709205

16 0.710116

32 0.710359

64 0.710424

lU 0.709636

20 0.710231

40 0.710390

z
n o—

6 0.708304

12. 0.709874

24 0.710295

48 0.710407

14 0.710020

28 0.710334

56 0.710417

Exact 0.710446

In a second test, the moments %
from the ESn data and compared to the

are computed

exact values,

~=l/(k+ l), for a sequence of k for several val-

ues of n. For k = O and 2 the ESn data give correct

values by construction. Table VI-3 gives values of

~fork=4, 6, 8, 12, and 16, and n = 4, 6, 8, 12,

16, 32, and 64. The errors for large n behave as

~/n2 where A4 s1.35, A6Z 1.94, A8Z 2.26, and

’16
z 2.80. The coefficients ~appear to be bound-

ed with respect to k. In this test, Gauss quadrature

is clearly superior giving exact values by definition

for ~ for even k to k-= 2n - 2 inclusive. However,

in Sri-typetransport calculations, as far as has

been observed, exactness for k > 2 appears to have

no clear advantages over I/n or faster convergence.

In a third test, values of the coefficients

2am_5,, of special importance in spherical geometry,

are computed using

2ct =2Z
‘m

m-% km ‘k ~k’

and compared to the exact values from

2ct = 1 - Em_%2.
m-%

(6.15)

(6.16)

As can be seen from the data In Table VI-4 and also

confirmed analytically, there is rapid convergence

of 2a as obtained from Eq. (6.15) as n increases.
m-%

‘m-% /
?T 2(m-1) ‘lln

= siny n~ -— .sin z n~ (6.14)
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Moment

n

4

6

8

12

16

32

64

Exact

~=4

%

a3/2

n=8

%+

a3/2

a512

a7/2

0.209877

0.204154

0.202293

0.200998

0.200554

0.200135

0.200033

0.200000

ALw!?3
1.0324

0.5879

1.0110

0.8510

0.5172

0.1928

TABLE VI-3

ACCURACY OF MOMENTS FOR ESn QUADRATURE

(zeroeth and second moments exact)

6 8

0.157750

0.148843

0.146140

0.144286

0.143651

0.143051

0.142905

0.142857

0.117595

0.114841

0.112766

0.112035

0.111337

0.111167

0.111111

TAELE VI-4

VALUES OF 2ci FOR SELECTED n
u+

Exact n=16

1.0000
%

0.5556 a3j2

a5/2

1.0000
a7/2

0.8400 ‘9/2

0.5100
‘11/2

0.1900
a13/2

‘15/2

The two-dimensional ESn quadrature sets are

also obtained by a three-step method as follows.

1. The principal octant is divided into

n(n + 2)/8 mesh cells of equal area located in a

triangular and symmetric manner as discussed earlier.

The associated mesh points, also invariant with re-

spect to permutation of components, can be deter-

mined from certain trigonometric equations. The

mesh division is illustrated in Fig. 6.1 for n = 16.

Note the successive [(n+2)/6]annular regions con-

taining 3(~ - 1), 3(4n - 4), .... equal areas.

2. The midpoint coordinatesTm, ~m, and Zm

are computed for each mesh cell. These coordinates,
—

which may also be written ~k,m, ~k,k~ and Pm,k

(k=%n -k- m + 2), can also be found from analyt-

12

0.080968

0.078794

0.077979

0.077184

0.076987

0.076923

A13??2L
1.0033

0.9539

0.8293

0.6621

0.4802

0.3067

0.1603

0.0550

f

16

0.060774

0.059940

0.059102

0.058892

0.058824

Exact

1.0000

0.9506

0.8264

0.6597

0.4784

0.3056

0.1597

0.0548

Fig. 6.1. Mesh division for n = 16.
ical formulas.
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The midpoint coordinates are scaled using

—

= R ‘m-+ +pt,m
(6.17)

from Eq. (6.7) and R determined for each

grouping of pointa so

(R Pm_+ +~1,m)2

that

+ (R Pk-%+~t,k)2

+ (R V&_+ +flm,2)2=1. (6.18)

The formulaa and procedure in E.Snquadrature

will be discussed in more detail in a future report.

As a first test of two-dimensional quadrature,

ase’ection ofmoments%,o ‘scalcdatedandpre-
sented in Table VI-5 to be compared to data in

Table VI-3. Aa shown, the agreement with ex-

act values is better in the two-dimensionalcase.

In a second test, comparison of three varia-

tions of ESnwith E~ are made. Table VI-6 gives

Ut m for n = 4, 8, and 16 for a previous version of

ES: (A) and the present version (B) with scaling T.

as well as for (B) with scaling II. In all cases

the agreement is very close which may be taken as a

confirmation of the reasonableness of all these

quadrature, E% included.

Method A is based on a simple half-symmetric

division of the octant, splitting bands defined by

(&l_~, ~g~)j 1=1, 2, .... +0, into +in-1+1

equal sectors for a total of n(n + 2)/8 sectors

(mesh cells) where the ~’s are taken from Eq. (6.7).

After computing the midpoint coordinates FL m,
Y

k—

n

4

6

8

12

16

32

64

Exact

0.209241

0.203230

0.201376

0.200632

0.200325

0.200077

0.200019

0.200000

TABLE VI-6

‘ALUES ‘F ‘E,m
FOR VARIOUS NETHODS

~
-l

1

~b

3

3

2

1

fi8

7

6

5

7

6

5

4

6

5

4

5

4

3

‘4

3

3

2

2

1

:
1
2

1

1

2

3

4

1

1

1

1

2

2

2

2

3

3

3

4

6

4

s

5

6

6

7

8

‘%
~
0.3500212

0.8688903

0.1971380

0.2133981

0.5512958

,. . . . . . . .

0.806S570

0.9603506

0.1050159

0.1152880

0.1152880

0.1152880

0.3016701

0.3284315

0.3332906

0.3332906

0.474352S

0.5107319

0.5215631

0.6327389

0.66 G677&

0.6732671

0.7657351

0.7923089

0.8727536

0.8855877

o.9f,64 ,63

0.9889102

ES
n

He;h.d A !lech.d B !lethod B

Scallng 1 Scaling 11

0.3505622

0.8684340

0.1964296

0.2137991

0.3 G73098

n .,,, .”.

0.8091612

0.9614563

0.1029811

0.1130805

0.1160605

0.1172276

0.3009446

0.3238564

0.3329597

0.3355668

0.4774090

0.5085062

0.5210090

0.6329970

0.6661117

0.6760911

0.7652271

0.7940776

0.8709825

0.8889657

0.9&69135

0.9893381

Scalinp, 1

0.3496826

0.8691629

0.1957928

0.2103019

0.5503087

. <77..CI.

0.8080630

0.9609008

0.1040726

0.1137610

0.1145198

0.1165198

0.3005’210

0.3266520

0.3315867

0.3325955

0.6750315

0.5121306

0.5205894

0.6321S97

0.6668509

0.6767373

0.765303S

0.792321L

0.8726851

0.8869030

0.9 L6966S

0.9891096

0.33&4052

0.8811052

0.1932356

0.2075330

0. S497634

n, 577?V33

0.8091296

0.9619356

0.1016946

0.1133421

0.1140938

0.11409SS

0.3002897

0.3263778

0.331321S

0.3323335

o.4749&05

0.5120317

0.5205236

0.6321909

0.6669162

0.676S386

0.7663660

0.7926957

0.8725902

0.8871049

0.9470901

0.9 S91890

—
Zk m‘1.,m’ , for each cell, the following synnnetrizing

operation is performed before scaling

(6.19)

As a third test, the values of ~
k,%

are deter-

mined, of special significance in cylindrical geom-

etry, where

TABLE VI-5

ACCURACY OF MOMENTS~,o for ESn

g ~

0.156904

0.147185

0.144602

0.143655

0.143266

0.142954

0.142881

0.142857

TWO-DIMENSIONAL

0.115398

0.112958

0.111954

0.111552

0.111217

0.111137

0.111111

CASE

12—

0.078808

0.077764

0.077390

0.077038

0.076952

0.076923

16—

0.059632

0.059295

0.058943

0.058854

0.058824
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h,% = (T12W%)UE,%, (6.2o)

given exactly by

with Pk2 obtained from

(6.21)

and

Pm2 (6.22)= (zkwk,m PL,m2)lwn,

given approximately by

(6.23)

The differencesbetween approximate and exact

values for~k ~ are given in Table VI-7 for n = 4, 6,

.... 16, and’t= 1, 2, .... k. Also, in the first

column, the average absolute error is given, a

weighted average with

have been constructed

ing similar results.

‘k as weights. Similar tables

‘or ‘L,312’ ‘!L,5/2’‘tC”’ ‘iv-

Table VI-7 is only mildly reassuring in regard

to convergence with n. However, this is not as

much a test of the quadrature as a test of the num-

erical procedure for handling direction-to-direction

n—

4

6

8

10

12

14

16

Average
Error

0.0256

0.0143

0.0091

0.0062

0.0046

0.0038

0.0036

1=1

0.0122

0.0089

0.0076

0.0066

0.0059

0.0054

0.0049

transfer by streaming in cylindrical geometry. The

procedure is built on the assumption of within-

level transfer only,the basis for Eq. (6.23). Fur-

ther tests are indicated here.

Table VI-8 gives one-dimensional and two-dimen-

sional ESn quadrature sets for n = 4, 6, .... 16.

In the one-dimensional case Wm and two sets of nodes

pm are given,

second on Eq.
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TABLE VI-7

‘moR ‘N h,%
FOR ESn AND SELECTED n

9.=2 E=3 k=4 E=5 1.=6 9,=7 ?.=8— — — — — — —

0.0524

0.0104 0.0384

0.0055 0.0071 0.0303

0.0045 0.0021 0.0057 0.0249

0.0048 0.0009 0.0006 0.0049 0.0212

0.0053 0.0011 -@.oo12 -0.0001 0.0043 0.0184

0.0057 0.0016 -0.0013 -0.0021 -0.0003 0.0039 0.00162
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TAELE VI-8

Esn QUADRATURE SETS

lu—

~.4—

w
m

Pm

Pm

‘2,m

‘l,m

~=6—

w
m

Pm

urn

‘3,m

‘2,m

‘l,m

~=8—

w
m

?.lm

Vm

‘4,m

‘3,m

‘2,m

‘l,m

n=10

w
m

Pm

Vm

‘5,m

~4,1u

‘3,m

‘2,m

‘l,m

&

0.6666667

0.3344052

0.3333333

0.3344052

0.3344052

0.5000000

0.2500000

0.2508939

0.2455325

0.2612869

0.2455325

0.4000000

0.2000000

0.2005118

0.1932356

0.2075330

0.2075330

0.1932356

0.3333333

0.1666667

0.1671001

0.1590747

0.1717616

0.1732011

0.1717616

0.1590747

~

0.3333333

0.8819171

0.8819171

0.8811052

0.3333333

0.6810569

0.6825427

0.6825427

0.6825427

0.3000000

0.5562826

0.5591103

0.5497634

0,5773503

0.5497634

0.2666667

0.4699819

0.4717345

0.4567603

0.4862478

0.4862478

0.4567603

0.1666667

0.9406503

0.9377780

0.9377780

0.2000000

0.8109946

0.8091294

0.8091294

0.8091294

0.2000000

0.7059675

0.7064294

0.6964199

0.7260345

0.6964199

0.1000000

0.9641359

0.9619356

0.9619356

0.1333333

0.8746233

0.8728505

0.8728505

0.8728505

0.0666667

0.9759494

0.9743667

0.9743667
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TABLE VI-8 (cent)

n—

n=12

w
m

Pm

Pm

‘6,m

‘5,m

~4,m

~3,m

‘2,m

‘l,m

n=14

w
m

Pm

Pm

‘7,m

‘6,m

‘5,m

‘4,m

‘3,m

~2,m

‘l,m

n=16

w
m

Pm

Pm

‘8,m

‘7,m

‘6,m

‘5,m

‘4,m

‘3,m

‘2,m

‘1,m

1—

0.2857143

0.1428571

0.1432328

0.1350855

0.1465973

0.1476756

0.1476756

0.1465973

0.1350855

0.2500000

0.1250000

0.1253259

0.1173407

0.1278521

0.1287323

0.1287323

0.1287323

0.1278521

0.1173407

0.2222222

0.1111111

0.1113942

0.1036946

0.1133421

0.1140958

0.1140958

0.1140958

0.1140958

0.1133421

0.1036946

2—

0.2380952

0.4067269

0.4082299

0.3896334

0.4185322

0.4234281

0.4185322

0.3896334

0.2142857

0.3584040

0.3596677

0.3392997

0.3669064

0.3719382

0.3719382

0.3669064

0.3392997

0.1944444

0.3203022

0.3214668

0.3002897

0.3263778

0.3313218

0.3323335

0.3313218

0.3263778

0.3002897

~

0.1904762

0.6226502

0.6231948

0.6053009

0.6405890

0.6405890

0.60530C9

0.1785714

0.5559135

0.5573845

0.5329202

0.5709843

0.5773503

0.5709843

0.5329202

0.1666667

0.5016083

0.5028882

0.4749405

0.5120317

0.5205236

0.5205236

0.5120317

0.4749405

&

0.1428571

0.7906269

0.7902040

0.7821782

0.8060158

0.7821782

0.1428571

0.7175286

0.7167122

0.7012232

0.7318735

0.7318735

0.7012232

0.1388889

0.6550294

0.6552855

0.6321909

0.6669162

0.6768386

0.6669162

0.6321909

~

0.0952381

0.9106570

0.9092277

0.9092277

0.9092277

0.1071429

0.8432492

0.8425374

0.8363158

0.8548447

0.8363158

0.1111111

0.7805655

0.7795403

0.7663660

0.7924957

0.7924957

0.7663660

&

0.0476190

0.9827406

0.9815823

0.9815823

0.0714286

0.9330754

0.9319493

0.9319493

0.9319493

0.0833333

0.8782166

0.8774551

0.8725902

0.8871049

0.8725902

7—

0.0357143

0.9870071

0.9861350

0.9861350

0.0555556

0.9479828

0.9470901

0.9470901

0.9470901

0.0277778

0.9898639

0.8981890

0.9891890
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