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PI-MESON ABSORPTION ON THE DEUTERON

Bruce Goplen, Ph.D.

The nonradiative absorption of Positive pi-mesons by deuterons is

studied within the framework of Lagrangian formalism and the impulse

approximation. The pi-nucleon absor~tion interaction is taken to be

pseudovector; however, the reaction is believed to be dominated by pi-

nucleon scattering. Thus, the main thrust of the investigation is

directed at three different approaches to the scattering interaction.

First, the Harniltonian formalism of Koltun and Reitan is extended

to include energetic pions. An off-shell form is chosen for p-wave

scattering which at low energy reduces to the field-theoretical result

of Klein. In the second approach, the S-matrix formalism of Lazard,

Ballot and Becker is adapted for use with phenomenological nucleon-

nucleon wave functions. Here the scattering interaction off-shell is

given by the on-shell amplitudes. Finally, a pion optical model formal-

ism is presented in which scattering graphs are included through modifi-

cation of the external pion wave function. A new second-order optical

model for the deuteron is given.

In all three approaches calculations are performed using phenomeno-

logical nuclear potentials, including the Boundary Condition Model and

the Hamada-Johnston.

Calculated results for total and differential cross sections are

compared with experimental data from 2 to 240 MeV pion kinetic energy.

.

.

.

.
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The S-matrix approach and two forms of the Hamil tonian method are suc-

cessful in representing the data, while the Kisslinger optical model

produces a resonance below the experimental peak. Results are also pre-

sented for pi-deuteron elastic scattering calculations using the pion

optical model, which gives reasonable agreement with the experimental

data.

In conclusion, it does not appear possible to confirm the Galilean-

invariant absorption term with this reaction. However, differential cross

section results exhibit some sensitivity to nuclear models and to the

D-state fraction in the deuteron. An experiment now under way at LAMPF

ma,y allow selection of preferred nuclear models. while use of an on-shell

scattering Hamiltonian gives the desired total cross section, this result

is not credible since calculations show great sensitivity to the off-shell

behavior. The pi-deuteron absorption reaction offers a good means of

measuring this off-shell behavior. Finally, a separable Hamiltonian

interaction density is recommended for the investigation of nuclear

structure using pi-meson absorption.
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CHAPTER 1

INTRODUCTION

The absorption of pi-mesons on nuclei has proven a subject of con-

siderable interest, both theoretical
1-49

and experimental.
50-73 Particu-

larly important is the reaction leading to the emission of two nucleons,

according to

(l-1)

The reason for interest in this reaction is that kinematical con-

siderations indicate a sensitivity to the short-range nucleon-nucleon

interaction. For example, in the nuclear absorption of a low-energy

pi-meson, the outgoing nucleon(s) must have total kinetic energy roughly

equal to the mass of the pion. The momentum required to make this reac-

tion go cannot come from the low-energy pion, but must instead be found

within the nucleus. This momentum is greater than that generally asso-

ciated with Fermi momenta, so that single-nucleon emission is a relatively

unlikely process. On the other hand, the required momentum may be pro-

duced by a correlated pair, and is associated with a very short-range

interaction. Absorption of the pi-meson on the correlated pair then leads

to two-nucleon emission, preferentially back-to-back, from the nucleus.

This process may be represented by the equation,

?7+N+N~ A/i-N. (l-2)



Two-nucleon emission is thus, in principle, a reaction capable of

testing the nuclear correlation function. The possible utility of the

pi-meson in exploring nuclear structure was first

who noted the dominance of the reaction (l-1) and

pair hypothesis.

Of the general class of reactions (l-l), the

n++d+p+p,

would seem to be of special interests since it is

sis than processes involving complicated nuclei.

suggested by Brueckner,l

proposed the correlated

process,

(l-3)

more amenable to analy-

The solution of the

deuteron two-body problem using Schr6dinger’s equation has been much stud-

ied, often in conjunction with nucleon-nucleon scattering. Thus both

initial and final nuclear states in this reaction are relatively well

known. Of particular importance is the absence in the final state of a

residual nucleus, A* Y which is believed to distort the outgoing nucleon-

nucleon wave function.
35

Similarly, in the case of the deuteron there is

no nuclear distortion of the incident pion wave function, except by the

absorbing pair.

For these reasons it was hoped that a credible calculation could be

performed for pion absorption on the deuteron. Without an adequate treat-

ment of this process, one could not express confidence in the application

of similar techniques for the extraction of nuclear structure information.

Much

mesons on

can be related through detailed balance. Generally, we have emphasized

the absorption cross section, Oa, VS q, the incident Pion momentum in the

experimental data
62-72

is available for the absorption of pi-

deuterons and the inverse reaction, production. These reactions

.

.

.

.

2



overall-center-of-mass frame, or Ys El, the pion kinetic energy in the

laboratory frame. The first choice tends to more clearly illustrate the

q-~ behayior of the absorption cross section at low energy and to empha-

size these data. After a minimum near 20

appears to rise linearly with momentum to

centered near 140 MeY. The cross section

above the resonance.

MeV, the total cross section

a prominent resonance which is

then falls off rapidly just

The differential cross section is symmetric

overall-center-of-mass frame. In the low-energy

front-to-back in the

region the angular dis-

tributions appear nearly isotropic, while near the

tions are strongly anisotropic with peaking in the

directions. In addition to total and differential

resonance, distribu-

forward and backward

cross sections, some

polarization data are available. A recent experiment at CERN72 has

obtained differential cross sections at several higher energies. An

experiment now under way at LAMPF73 involves differential cross section

measurements at oion energies between 10 and 60 MeV.

Early experiments involving the absor~tion reaction and its inverse

helped to establish the spin and parity

of parity conservation, conservation of

nucleon antisymmetry allow selection of

of the pi-meson. Consideration

angular momentum and nucleon-

final-state quantum numbers given

the incident pion angular momentum. Table I presents allowed transitions

for the first five partial waves in the expansion of the pion wave func-

tion. These transitions may be considered to occur from either the 3S1

or the 3D1 state of the deuteron.

The proton-proton states giyen in Table I describe coordinate-space

distributions with respect to the relative momentum vector, ~. The

3



Table I

Allowed Transitions from the Deuteron 3S1 and 3DI States

Pion Partial Wave Proton-Proton State

s 3Pl

P 1s0, 1D2

d 3P1, 3P2 - 3F2, 3F3

f 1D2, 1G4

9 3F3, 3Fq - 3Hq, 3H5

experimental measurement, on the other hand, involves a distribution in 0,

which is defined as the angle between the nuclear vector, ~, and the inci-

dent pion mmentum vector, ~. It can be shown that this distribution

carries components reflecting the incident pion partial wave. For example,

the final state, 3PI, resulting”from the initial state, S-3S1, is iso-

tropic in the overall-center-of-mass frame.

We now review some of the earlier theoretical treatments of this

40
reaction. One of the first recorded is the work of TamOr, who con-

sidered the decay of a mesic atom, which consists of a negative pi-meson

bound to the deuteron by Coulomb forces. This work helped to establish

the pi-meson as a pseudoscalar or pseudovector particle, that is, one of

intrinsic negative parity. Another early calculation was that of

Brueckner?g who calculated coefficients for the low-energy expression,

.

.

“

.

4
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This form well represents the experimental absorption data below the

resonance. Physical arguments suggest that the first term is representa-

tive of the pion s-wave, while the second is a p-wave term. As will be

shown in ChaDter 2, the production and

precisely by detailed balance. At low

section is very nearly proportional to

the p

to Eq

turn.

absorption reactions can be related

pion energy the production cross

the absorption cross sec Lion times

on momentum squared. Thus for production, the expression analogous

(l-4) contains terms which are linear and cubic in the p on momen-

Many of the early efforts sought to calculate one or both of these

coefficients. The relativistic approach of D. Schiff,46 for example,

obtained reasonable agreement for the q3 behavior on the low-energy side

of the production

The majority

formalism. Since

category, a brief

First, we wish to

resonance.

of calculations, however, have been based upon Lagrangian

the new calculations to be reported here fall into this

review is given of preceding efforts of this type.

make clear the distinction between pi-nucleon operators

and the pi-deuteron angular momentum, or partial wave. This problem

arises since use is frequently made of the terms s-wave and p-wave in de-

scribing operators in the absorption Hamiltonian. These designations

refer to the effect of the operator on the pion field. Thus a p-wave

term contains a gradient operating on the pion field, while an s-wave

term contains a gradient operating on the nucleon wave function. This

latter term is also commonly referred to as the Galilean-.

The words s-wave and p-wave are also used to refer to the

pi-nucleon scattering Hamiltonian. These, too, must be d“

nvariant term.

form of the

stinguished

from pi-deuteron partial waves. Generally, the distinction will be clear

from the context.

5



who

One of the earliest Lagrangian calculations

evaluated the differential cross section for

Figure 1 shows a direct absorption graph for the

was performed by Geffen,
41

the production reaction.

production process.

1-1+

d

Fig. 1. Direct absorption graph for
the production reaction.

Geffen calculated transition matrix elements of the form,

where ~f and Vi are nonrelativistic wave functions describing the final

and initial two-nucleon states. The nuclear operator, T, was taken to be

linear in the pseudoscalar pion field; s- and p-wave operator terms were

successfully parameterized independently of energy. The initial nuclear

states, 3PI, lSO and 1D2, were obtained by solution of the Schr6dinger

equation using Jastrow potentials, while the deuteron wave function con-

sisted of a combination of central and tensor Yukawa wells. Geffen ob-

tained reasonable agreement with experimental data near threshold; his

model suggested the importance of the nuclear interaction, in particular,

a repulsive core, and inclusion of the D-state of the deuteron.

.

.

(l-5)

.

.

6



A similar calculation was performed by Lichtenberg,
42

who also cal-

culated matrix elements using wave functions of physical nucleons. He

considered a Hamiltonian linear in both pion field and pion momentum.

The lSO and 1D2 states were then used to calculate the contribution to

p-wave pions. The wave functions for the proton-proton states as well as

those for the deuteron were obtained by solution of Schrodinger’s equa-

tion us+:g the Gartenhaus potential. This calculation gave qualitative

agreement for the q3 term in the production cross section near threshold.

In a later publication, Lichtenberg 43 demonstrated the role played

by pi-nucleon scattering in the production reaction. In this calculation,

a process was included in which the pi-meson, following production at

the first nucleon, scatters off the second prior to emission. This matrix

element thus included an integral over the intermediate-state momentum of

an off-shell transition matrix for the (3,3) scattering state. The off-

shell form was chosen to reduce on-shell to the free scattering amplitude.

Results showed improved agreement with the q3 experimental term. Lichten-

berg also suggested the need for experiments near threshold to better

determine the role of s-wave pions in this reaction.

Moodruff44 performed a calculation for the production reaction near

threshold in which both s- and p-wave scattering processes were included

along with the direct production graph shown in Fig. 1. The scattering

processes included forward and backward propagation in time, as illustrated

by the graphs in Fig. 2. Meson production was considered to occur through

the static p-wave term and an s-wave term chosen to make the production

operator Galilean-invariant. Gartenhaus deuteron and Gammel-Thal,er

scattering wave functions were used. Woodruff found it possible to fit

the low-energy experimental data with the exception of the pi-deuteron

7
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IT” 1[

Fig. 2. Scattering graphs for the
production reaction. .

s-wave term. He pointed out that the Galilean-invariant contribution to

this s-wave production was inadequate at threshold, due to cancellation

of deuteron S- and D-state terms, but that s-wave pi-nucleon scatterin9

(Fig. 2) could give a contribution of sufficient magnitude.

The general approach of woodruff was also taken by Koltun and

Reitan,
45

who obtained better agreement for the pion s-wave reaction.

They considered specifically the absorption of a bound, negative pi-meson

by the deuteron. Direct s-wave absorption as well as s-wave scattering

on either nucleon followed by s- and p-wave absorption on the other were

included. Their treatment differed from that of Woodruff mainly in the

relative phase of the forward and backward terms involving propagation of

the virtual meson. This factor and use of the Hamada-Johnston potential

allowed better agreement with data at threshold. No important difference

was found, however, when the Gammel-Thaler scattering wave functions and

Gartenhaus deuteron were used. A significant contribution was obtained

from the charge-exchange scattering term. Koltun and Reitan confirmed

the approximate cancellation of the deuteron S- and D-state direct absorp-

tion graphs and thus demonstrated the dominance of scattering graphs even

at low pion energies.

.

.

.

.
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This bound-state calculation was later extended to include low-energy

48
pions by Reitan, who included s- and p-waves in the external pion wave

function along with s- and p-wave scattering. New coupling constants

were used in an attempt to gain agreement with the more recent low-energy

data of Rose.
71

Interest Dersists in the low-energy region. Cheon and Tohsaki47

have performed a calculation similar in principle to that of Geffen, using

Hamada-Johnston wave functions for the deuteron and an asymptotic form for

the proton-proton 3PI waye function. They derived a form for the pi-

nucleon scattering matrix assuming that the static approximation is appli-

cable. Cheon and Tohsaki considered the basic absorption operator to be

p-wave, and added to this an s-wave operator with a separate coupling

constant as a free parameter. Their main objective was to determine the

value of this coupling constant at low energy. They were not, however,

able to achieve agreement with experiment using the usual theoretical re-

duction of the assumed pseudoscalar interaction. Instead, their parametric

studies involving the separate coupling constant indicated close agreement

with the earlier result of Geffen, who had considered only direct

absorption,

A recent production calculation based on Lagrangian formalism has

been done by Lazard, Ballot and Becker.49 It is notable for the extent

of agreement with experiment through the resonance region. The main fea-

ture of their S-matrix formalism is the inclusion of on-shell free scat-

tering amplitudes directly in the matrix element. In their approximation

r, Lazard et al. considered only s- and p-wayes of the outgoing pion, and

calculated Born terms and then corrections to these from proton-proton

9



scattering. In approximation 11, the remaining proton-proton partial

waves were added in Born approximation. Several deuteron pole models

were used; proton-proton scattering was incorporated by modifying the

irregular part of an asymptotic wave function with an exponential cutoff.

By parametrizing this cutoff function, Lazard et al. attempted to con-

sider the effects of variation in proton-proton short-range behavior.

They found the final state interaction to affect the cross section signif-

icantly; similarly~ sensitivity was found to the choice of deuteron wave

function. They were able to compare angular distributions with the recent

data from CERN, but were unable to achieve good agreement with the cos4fl

behavior. Finally, they suggested that their calculation be redone with

wave functions determined using phenomenological potentials.

We turn now to a brief discussion of the work to be presented here.

The main points of interest in pi-deuteron absorption have been demon-

strated to involve the nature of the absorption interaction, the nucleon-

nucleon interactions, both initial and final, and the pi-nucleon scatter-

ing interaction. We generally neglect the question of the absorption

interaction and assume the correct operator to be given by the non-

relativistic reduction of the pseudovector interaction. Sensitivity to

the nucleon-nucleon interactions is explored using realistic wave functions

derived by solution of the Schrtidinger equation. Phenornenological poten-

tials used include the Hamada-Johnston and several cases of the Boundary

Condition

D-state.

of pi-nut”

separate ~

Model which represent different fractions of the deuteron

However, the main thrust of this work focuses upon the nature

eon scattering as reflected in the absorption reaction. Three

pproaches are taken to the absorption problem, each reflecting

.

.

.

.

a different interpretation of pi-nucleon scattering.

10



In Chapter 2, the method of Koltun and Reitan is extended to include

energetic pions. The p-wave scattering Hamiltonians are taken to be

separable, off-shell forms which reduce at low energy to the field-

theoretical results given by Klein. A free parameter in these forms

reflects the pi-nucleon interaction distance. Still another p-wave

Hamiltonian is created to correspond to the on-shell approximation.

In ChaiIter3 we follow the suggestion of Lazard et al. and adapt their

nuclear second-quanti zation approach to the more physical wave functions.

At lo\4energy these first two approaches will be seen to be nearly equiva-

lent. However, important differences occur in the treatment of the p-wave

scattering.

Finally, in Chapter 4 a somewhat different approach is offered in

which terms nonlinear in the pion field are deleted from the Hamiltonian.

Instead, we choose to modify the field in the remaining direct absorption

terms by means of an optical model. Thus, the problem of pi-deuteron

scattering is first solved using local, Laplacian and Kisslinger forms of

the pion optical model. A new, second-order scattering formalism for the

deuteron is offered and found to satisfactorily reproduce the elastic

scattering data. With appropriate modification the resultinq pion wave

functions are used to replace the external pion field in the absorption

problem. Direct and charge exchange processes are considered; however,

the backwards propagation graphs and the spin-flip scattering terms are

omitted.

!dithin the framework of each of these formalisms, we attempt to cal-

culate the complete matrix element. Thus, all incident pion partial

waves are included, and the treatment of the operators, angular momentum

relations and integrals is without approximation, other than that

11



associated with numerical methods. Calculated results for total and dif-

ferential cross sections are compared with experimental data from low

energy through the resonance region. ChacIter 5 summarizes the observations

and conclusions.

*

.
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THE

CHAPTER 2

HAMILTONIAN FORMALISM

This work follows closely the theoretical approach of Koltun and

Reitan,45 who calculated the rate of absorption of a negative pion

bound by Coulomb forces to the deuteron in an s-orbital. In their cal-

culation, the Hamiltonian interaction density was evaluated between the

initial pion state, In,s>, and the final vacuum state, ]0>. The

resulting transition operator was then taken between initial and final

nuclear states. Since only the pion s-orbital was considered, the 3S1

and 3DI initial states contributed only to the 3Pl final state.

We desire to extend this theory to include the absorption of ener-

getic, positive pi-mesons by deuterons. It is therefore necessary to

include higher pion partial waves; these will contribute to the final

nuclear states previously given in Table I. The direct absorption

p-wave operator must be retained, and, even for low incident pion ener-

gies, p-wave scattering terms must be added to the Hamiltonian. Several

formulations of this scattering interaction are attempted,

Following the method of Koltun and Reitan, we calculate the nuclear

transition operator,

~=i ~~,
y.o

where



and

(2-1)

Thus the Hamiltonian interaction density is evaluated between the final

vacuum state and an initial state

momentum, q. ‘f”describes direct

which contains

absorption whi”

a positive pion of

e the four other

transition operators include pi-nucleon scattering processes. In the

scattering propagator, E is the total initial energy, while H is the

total energy operator for the intermediate state.

These nuclear transition operators, TL, may be represented by

graphs of the kind shown in Fig. 3. The first graph represents the

direct absorption process, while the second and third reflect an inter-

mediate pi-nucleon scattering. The third graph is included

the virtual meson to scatter backwards in time. The labels

particle identities for direct- and charge-exchange scatter

to permit

indicate

ng

processes.

l-i+ n+

d

Fig. 3. Direct and scattering graphs

.
c1 p(n)

for the absorption reaction.

.

.

.
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The Hamiltonian interaction density for absorption is taken to be

the nonrelatiyistic reduction of the pseudovector interaction, which is

given by

(2-2)

In this equation, @i and IT,are the pion and conjugate fields, respec-
J

.thtively, evaluated at the coordinate of the j nucleon. These fields

couple with and are treated as vectors in isospin.

In this and subsequent chapters, subscripts are used to refer to

the nucleon number, while superscripts describe vector components.

Generally, use is made of tensor definitions in describing components

of vector quantities; the exceptions to this are isospin and the pion

field. CJ.,T.,X. and P. refer, respectively, to the spin, isospin,
jjj J

.th
spatial coordinate and momentum of the j nucleon. The symbol, qw,

represents the momentum operator on the pion field, while q, without

sub- or superscript, refers to the external pion momentum. The prime

superscript is used to designate intermediate-state meson and final-state

nucleon variables. The zero subscript on a momentum variable denotes the

zeroth conmonent of four-momentum, or energy. All momenta are measured

in the overall-center-of-mass frame. Finally, the svmbols ~ and M are

used

dist.

for the rest masses of the pion and nucleon, respectively. We do not

nquish the mass of the proton from that of the neutron.

The first term in Eq. (2-2) contains a p-wave operator on the pion

field while the remaining terms are s-wave in character with res~ect to



the field. The sum of the s-waye terns is comnonly referred to as the

Galilean-invariant term. The operator ordering implies evaluation of

nucleon momentum after and before absorption.

The coupling constant used in this and all subsequent chapters is

the recently obtained value,
74 ~2

= 0.077. We point out that f occurs

linearly in all matrix elements, and that the coupling constant may

therefore be viewed as an overall normalization factor in the cross

section.

ing.

used

The four remaining Hamiltonian terms describe pi-nucleon scatter-

For the s-wave interaction, we have taken forms similar to those

by Koltun and Reitan.
75

These are given by Klein as

and

The quantities, Al, are to be determined from

tudes and thus are energy-dependent. HI is a

(2-3)

the free scattering ampli-

direct-exchange operator,

while H2 contains an isospin operator and thus includes charge-exchange

terms.

It was suggested in Chapter 1 that the absorption peak is associated

with the (3,3) scattering resonance. Therefore it would seem necessary

to consider p-wave scattering. Klein has recommended the following

p-wave Hamiltonian terms for use at low energy:

16

.

.



(2-4)

The dot-cross product in H4 is understood to apply to the isospin-field

operators as well as to the spin-momentum operators.

In calculating matrix elements for the scattering graphs, an inte-

gration is performed over all values of the intermediate pion momentum,

7“ Thus it would seem desirable that the scattering Hamiltonian vanish

in the off-shell high-momentum limit. A suitable form for the off-shell

behavior has recently been suggested by several authors, including

Landau and Tabakin, 76 Myhrer and Koltun, 77 and Eisenberg, Htifnerand

Moniz.
78

We use this functional form to modify the Klein p-wave terms,

according to

and

In these equations ? u is a parameter which can be related to the pi-

nucleon interaction distance. It will be treated here as a free

17



parameter. The expressions in Eq. (2-5) are seen to be equal in the

limit as a goes to infinity to those ofEq. (2-4). They are also equal

in the low-energy and low-momentum limit (q ~< a and qw << a) where

Klein’s results are assumed valid. The forms given in Eq. (2-5) corre-

spond to a separable representation of the pi-nucleon T-matrix;

therefore we shall refer to Eq. (2-5) as the separable Hamiltonian.

The nuclear transition operator described in Eq. (2-1) is calcu-

lated using the direct absorption, s-wave scattering and separable

p-wave Hamiltonians given in Eqs. (2-2), (2-3) and (2-5). Details of

this calculation are given in Appendix I. Before stating the result,

we mention the desirability of working in center-of-mass and relative

nuclear coordinates. The transition operator is then cast as a two-body

operator. For coordinate space and momentum, the new variables may be

obtained by the transformations,

and

(2-6)

In the overall-center-of-mass frame, the total final-state center-of-

mass momentum, ~, must vanish. As demonstrated in Appendix I, use of

this fact allows a reduction in the number of final integrals which must

be evaluated. Treatment of the intermediate state is also discussed in

this appendix. The five terms of the nuclear transition operator are

given by

18





and

(2-7)

The nuclear wave functions used in these calculations are found

from a solution of Schr6dinger’s equation using semiphenomenological

nucleon-nucleon potentials. Included are the Hamada-Johnston potential

and two cases of the Lemon-Feshbach Boundary Condition Model (BCM) which

give different

the potentials

The potentials

fractions of D-state in the deuteron. A description of

as used in these calculations is given in Appendix II.

include tensor coupling terms, and these lead to coupled,

second-order differential equations. These equations are solved numer-

ically using a three point, fifth-order differencing scheme which is

developed in Appendix III.

The boundary conditions for the

techniques used to obtain eigenvalue

deuteron problem and two different

solutions are presented in Appendix

IV. The initial wave function for each orbital angular momentum state

is written as

(2-8)

.

.!
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where the angular momentum and isospin Yariables in the ket refer to

the relative nucleon-nucleon system. These variables are, in the order

given, total angular momentum and its projection, orbital angular

momentum, spin, isospin and projection of isospin. For the deuteron,

wehaveJ=S=landT =MT=O. Orbital angular momentum states

include the S-state (L = O) and the D-state

factor describes the motion of the deuteron

The proton-proton final state is dealt

reversed equivalent, the scattering state.

(L = 2). The plane-wave

as an entity.

with in terms of its time-

The boundary conditions for

the tensor-coupled case are obtained using the eigenstate parametri-

zation of Blatt and Biedenharn. This formalism along with symmetriza-

tion and time reversal requirements are

will be noted that the final-state wave

of helicity states. Thus, the outgoing

developed in Appendix V. It

function is described in terms

relative momentum vector, 7?,

becomes an important axis for integration and sununing angular momentum

components. As shown in Appendix V, a particular component of the

final-state wave function may be written as

where for the singlet and uncoupled-triplet states,

9
M’

[1

J’M
,,,(r)= ~ (2L’+fjb’’(j$” +) +
JLS S’M >

(2-9)

(2-lo)
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and for the coupled states,

The symbol ,

is a convenient notation for

idendified with the quantity

The eigenstate symbols, a, 6

these calculations Y the ma9n”

determined from

The protons are

(2-11)

.

.

I

.

the Clebsch-Gordan coefficient; it may be

(L s J hi \ L ML S MS) defined by Edmonds ●79 “

and CJ,,are discussed in APDendix v“ For

tude of the relative momentum vector is

energy conservation in the overall-center-of-mass frame.

treated nonrelativistically.
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The matrix element for the absorption reaction is obtained by

evaluating the transition operator between final and initial nuclear

states, according to

(2-12)

In this expression, the implied sums over the nuclear states include

total and orbital angular momentum, but not spins or spin projections.

Thus, for a given incident pion energy, the matrix element is a function

of initial spin projection, final spin

angle between incident pion and either

element may be written explicitly as

and its projection and 6, the

outgoing proton. The matrix

(2-13)

A=/M’-M/

The form of Eq. (2-13) is motivated by results developed in Appendix VI

and is chosen to provide the differential cross section with a functional

dependence on the angle, 0. The symbol, A, is used to denote the exter-

nal pion partial wave.

Given a matrix element expressed in the form of Eq. (2-13), the

differential cross section is obtained by averaging over the initial spin

projection and summing over the final spin and its projection, according to

(2-14)
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Since the momenta and the matrix element are determined in the overall-

center-of-mass frame, the calculated differential cross section must be

associated with this frame also. For historical reasons, it is usually

expressed as a polynomial in cose-squared, thus directly reflecting the

external pion partial waves entering the reaction. As shown in Appendix

VII, Eq. (2-14) may be written as

(2-15)

In this equation, al and df are coefficients which explicitly define the

Legendre polynomials in terms of the cosine function. Equation (2-15)

can be simplified to obtain the form,

ah z17i2‘*=0
c2@COS%9 . (2-16)

Since the differential cross section expresses the probability for

the arrival of either proton at the target, the total cross section must

be given by

(2-17)

.

.

.
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In practice, the cross section may be obtained directly from Eqs.

(2-13) and (2-14) using the orthonormalityof the spherical harmonics.

The result is

(2-18)

A=/Mwl

Alternately, the cosine-squared polynomial of Eq. (2-16) may be inte-

grated to obtain

(2-19)

The total cross section for the inverse reaction, or production, can be

shown using detailed balance to be

Idenow return to the evaluation of the

using results of A~nendix VI. The inteqral

coordinate, ~, vields onlv a delta function

(2-20)

matrix element of Eq. (2-13)

over the center-of-mass

in momentum, according to
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The matrix element is therefore determined solely by integration over

the relative coordinate, ~. The complex coefficients are broken down

into analytic

which must be

respectively.

angular integrals and one-dimensional radial integrals

pqrformed numerically. These are labeled R4and Ii,

The result is that the coefficient may be written as

C(xhh) = L“’(h’m’-’’-”g+-,; $X’ (2-22,~/ .
6 i=

The inteqrals, Riand Ii, are functions of the initial and final nuclear

quantum numbers as well as the incident pion partial wave. Thus, for

each partial wave, these integrals must be evaluated for all possible

interacting sets of initial and final two-nucleon states. These states

have previously been listed in Table I.

The angular integrals, Ri, are given explicitly in Appendix VI and

will not be repeated here since they are used in all three of the

formalisms to be presented. These integrals were found to satisfy a

Wigner-Eckart result on the Clebsch-Gordan coefficient involving con-

servation of total angular momentum,

.

.

.

.

Thus, in practice, a momentum projection set involving a nonzero

coupling coefficient was used to calculate integrals, Ri, and a reduced

26



matrix element. The Migner-Eckart theorem80 was then applied to obtain

results for all other projections.

The derivation of the integrals, Ri, leads naturally to the follow-

ing definitions for the one-dimensional radial integrals:
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,*

9 (2-23)
.

The nature of each integral is easily ascertained from the preceding

factor. The first four integrals result from direct absorption, whi Ie

the next four represent s-wave scattering processes. The remaining

28
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sixteen integrals represent absorption involving p-wave scattering pro-

cesses. The initial- and final-state wave functions are written simply

as u andg’, respectively, all other arguments being omitted. The argu-

ment of the spherical Bessel function, jA, is qr/2. Although the result

of the operator on j~ in II and 12 is analytic, we have retained the

operator form in preparation for the modified external pion wave function

to be used in Chapter 4. The limits of integration over r are zero to

infinity; in practice, the numerical integration was performed from the

nut”

gra”

eon-nucleon core out to about 20 fermis.

The variables, fti and fti, in the radial integrals represent inte-

s over intermediate pion momentum for s- and p-wave scattering,

respectively.

dimensionless

These intermediate integrals are defined by the general

forms ,

and

0

where

z
1=

3p 2-82
Y 4. .

29
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The common factor in the denominators of fti and fti is simPIY the Pro-

duct of the forward and backward scattering propagators. Two s-wave

intermediate integrals not in the form of Eq. (2-24) are recast in that

form to allow grouping of similar terms. In particular, these integrals

are

and

For pion kinetic energies below roughly 180 MeV in the laboratory

frame we have q2 < 3p2, or P: > 0. In this case, and for n +2 odd,

the intermediate integrals are unambiguously obtained by contour inte-

gration. The results are

L (P)= +’$-)n-;{f(+o-)+(-,j’h;(-jwcj

.

.

.

.

and
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(2-26)

The required integrals are given more explicitly by

(2)
--’r

{.O _Ji’e

6,:1~-&&Jg’,

(2-27)

For pion kinetic energies in excess of roughly 180 MeV, we find that

q2 > 3U2, orp~ < 0. In this case, the contour integrals are obtained

by raising the positive real pole slightly above the real axis while the
i,
negative real pole is lowered. The general results are then given by
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and

(2-28)

Explicit expressions analogous to those of Eq. (2-27) are easily obtained.

The contribution from the pole, p’,in this case reflects an outgoing

spherical wave.

We turn now to some exploratory calculations below the resonance

and present results obtained using various terms in the Hamiltonian

interaction density. At low pion energies, the dimensionless scattering

parameters, Ai, may be determined from results given by Klein. The sub-

script, 2, indicates evaluation in the two-body (pi-nucleon) frame. The

N-star term in the p-wave scattering is neqlected to obtain

(2-29)

.

●

✎

✎

I
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In writing these equations, use has been made of the approximation,

6- sin 6. The s-wave phase shifts are designated CS2f,while the p-wave

phase shifts are given by rS2X ~j. For these first calculations, the
Y

scattering parameters are not taken

instead evaluated near zero energy.

tion of McKinley, 81 the parameters,

to be energy-dependent, but are

With the phase shift parameteriza-

Ai, are 0.0054, 0.0445, -0.2407 and

0.1230. However, the energy-dependent results do not

cantly in the first 100 MeV.

Figure 4 presents results using various terms in

These calculations were performed over a pion kinetic

change signifi-

the Hamiltonian.

energy range from

2 to 100 MeV using the Hamada-Johnston potential for initial and final

nucleon-nucleon states. The experimental data in Fig. 4 are obtained

from references 62, 64-72 and 102.

In the first calculation, only direct absorption processes involv-

ing the transition operator, 7°, are considered. As shown in Fig. 4,

the direct absorption result tends nearly to vanish at low energy. This

is a consequence of the accidental cancellation of the s-wave absorption

operator terms from S- and D-states of the deuteron. This effect has

been previously noted by several authors.
44,45,49 The contribution from

the p-wave absorption operator, on the other

proportional to the incident pion momentum.

by the first curve in Fig. 4.

Addition of the s-wave scattering terms

q-~ behayior which characterizes the low-energy experimental data. This

result is shown clearly in Fig. 4. At 2MeY, a comparison may be made

directly with the bound-state calculation of Koltun and Reitan. Six of

the integrals in Eq. (2-23), when performed with the 3S1 and 3DI initial

hand, can easily be shown

This is the behavior exhibited

of Eq. (2-3) produces the
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and 3P1 final states, differ in form from their integrals only by the

factor, j.(~). This factor is nearly unity for small pion momentum,

so that numerical agreement to within two percent is obtained for all

six comparable integrals. No p-wave scattering is considered in this

calculation, and as the result in Fig. 4 shows, there is clearly no hope

of reproducing the experimental absorption resonance with s-wave scatter-

ing processes.

Next, the Klein p-wave scattering terms given in Eq. (2-4) are

added to the calculation. Equivalently, the separable forms in Eq. (2-5)

may be used with a value of infinity for U. In this case we have for the

intermediate integrals, fti-+ fti. Inclusion of the Klein p-wave terms

leads to the excessively large result shown in Fig. 4. This result would

seem to reflect the divergent nature of the intermediate integrals, in

particular, fqz.

By evaluating these integrals numerically, it is possible to intro-

duce a cutoff in the intermediate pion momentum.

Klein p-wave terms is found to improve substantial”

experiment; however, the calculation is extremely

Use of a cutoff in the

ly the agreement with

sensitive to the

cutoff value chosen. This simply reflects the divergent

critical integrals.

Several alternatives to a sharp momentum cutoff are

it is apparent that a simple reduction in the power of q’

nature of the

possible. First,

in the p-wave

intermediate integrals will have a beneficial effect. This idea suggests

that useful forms for the p-wave scattering Hamiltonians might be
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(2-30)

These forms have the property of kinematical equivalence at low energy

to the on-shell free scattering amplitudes. For this reason, we will

refer to Eq. (2-30) as the on-shell Hamiltonian. Itwill be seen that

the angular properties of Eq. (2-5) are unchanged; thus the essential

replacements in Eq. (2-23) are simply

(2-31)

The result using the on-shell p-wave Hamiltonian of Eq. (2-30) is shown

by the solid curve in Fig. 4. This curve is seen to reasonably represent

the experimental data. This result bears some similarity to that pre-
.

sented by Reitan,
48

who extended his previous calculation to 20 MeV pion .

kinetic energy with new scattering parameters to obtain better agreement

with the data of Rose. Reitan’s p-wave scattering Hamiltonians are

believed similar to those of Eq. [2-30].82

We present one other calculation of interest using the on-shell

p-wave Hamiltonian. Following a suggestion by Miller,
83

we delete the
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s-wave operator from the direct absorption term, Ho. Certain integrals

in Eq. (2-23) are therefore omitted

made to those remaining. The calcu’

result shown in Fig. 4 is obtained

Again, the small difference between

and kinematical corrections are

ation is now frame dependent; the

n the overall-center-of-mass frame.

this result and that preceding it

reflects the cancellation of the direct s-wave terms. However, the

main point is that the calculated cross section for this reaction is

relatively insensitive to the presence of the Galilean-invariant term.

Although the p-wave Hamiltonian terms given in Eq. (2-30) are

reasonably successful in reproducing the experimental data, this result

would not seem to have a firm theoretical basis. First, in the low-

energy limit, these forms do not reduce to Klein’s results given in Eq.

(2-4). It also seems reasonable to require that the Hamiltonian vanish

far off-shell, while for the forms in question, the off-shell and on-

shell properties are the same and constant.

We turn now to the p-wave scattering Hamiltonian suggested in Eq.

(2-5). These terms were created expressly to satisfy the requirements

stated above. In this approach, a is treated as a free parameter. To

permit calculation through the absorption resonance region, the scatter-

ing parameters, Ai, are taken to be complex and are determined according

to results presented in Appendix VIII rather than those given in Eq.

(2-29).

Figure 5 presents results for calculations performed with the full

Hamiltonian, including the p-wave terms of Eq. (2-5). These results were

obtained using the Hamada-Johnston potential for initial and final nuclear

states, and three different values of the off-shell

be seen, the calculation shows great sensitivity to

37
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A similar set of curves is shown in Fig. 6 for the Boundary Condi-

tion Model with 7.55% D-state in the deuteron. These results are seen

to be very similar to those obtained with the Hamada-Johnston potential

and

The

and

exhibit the same degree of sensitivity to the off-shell behavior.

fourth curve in Fig. 6 was obtained using the value, a = 300 MeV/c,

the Boundary Condition Model with 4.60% D-state in the deuteron.

As can be seen from Figs. 5 and 6, a value of a slightly in excess

of 300 MeV/c seems likely to produce a reasonable fit to the experimental

data. Previous estimates of this parameter

and 51976 MeV/c. Thus this calculation WOU”

sensitive to the off-shell parameter.

have included 230,78 33677

d seem extraordinarily

It is not difficult to see why this process is so sensitive to the

off-shell character of pi-nucleon scattering. If the initial and final

states of the nucleons are taken to be on-shell, then the intermediate

pion must propagate with an energy, qo/2 (the external pion must give half

its energy to each nucleon). The intermediate momentum is then qiven bv

(2-32)

Thus knowledge of the behavior of both the absorption and scattering

vertices is required far off-shell. It is assumed that Eq. (2-2) repre-

sents the absorption vertex correctly, although at higher pion momenta

this can be questioned. But the essential point is that the off-shell

momentum enters the matrix element through both vertices.

We turn now to angular distributions calculated using the value,

Q = 300MeY/c. Results in the following figures present comparisons
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for the three different nucleon-nucleon potentials. For the low-energy

data, we follow precedent and plot the ratio of the two leading coeffi-

cients of Eq. (2-16) vs incident pion momentum. These results are com-

pared in Fig. 7 with an experimental data compilation by Rosenfeld.63

We note that only the coefficients, Co and C2, enter our calculated

ratio. On the other hand, the experimentally determined ratios are

probably the result of forcing the data

include higher-order terms. Therefore,

to a degree-two fit, and may thus

use of this ratio may be mislead-

ing, and we would prefer comparison directly with the cross section

measurements.

In Fig. 7, the Boundary Condition Model with 7.55% D-state is seen

to give similar results to the Hamada-Johnston, which has a 7.00%

D-state. The 4.60% D-state BCM case lies considerably above the other

two, thereby implying a possible sensitivity to the fraction of D-state

in the deuteron. The previously mentioned experiment at LAMPF is

designed for accuracy sufficient, in principle, to permit selection of

a preferred nuclear model.

For higher energies, we follow the usual convention of plotting the

differential cross section vs cos2e. These results are compared with

experimental data at six pion kinetic energies in Figs. 8 and 9. The

calculated results are seen to give reasonable agreement with experi-

ment, particularly below and near the resonance.

Above the resonance, there is experimental evidence for negative

coefficients in the higher powers of cos2e. It should be pointed out

that this calculation has neglected multiple-scattering graphs as well

as the nonunitarity of the proton-proton

41
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effect is particularly large above the resonance for the 3D1 state,

which is dominant in this energy region.

On the whole, however, this calculation gives a satisfactory

representation of the experimental data. Further, the results show

sensitivity both to off-shell pi-nucleon scattering and to the nucleon-

nucleon potential.

It may be asked why the calculation which uses the on-shell pi-

nucleon amplitudes given in Eq. (2-30) works as well as it does. The

answer may lie in the following considerations. The on-shell replace-

ments substitute q2@o& in an integral which involves other functions of

~’” We have just argued that the proper replacement should be something

like ~O~(q2 + CX2)/(q: + a2), so that we need to compare the constant, q,

to q’(q2+ ci2)/(q~+ c12)over the important range of integration. The

magnitudes of these two functions are very similar in this region.

However, for the reasons stated previously, we regard the cross section

fits obtained using the constant on-shell forms of Eq. (2-30) as

fortuitous.



CHAPTER 3

S-MATRIX FORMALISM

Lazard, Ballot and Becker4g (LBB) have recently

S-matrix calculation based upon Lagrangian formalism

presented an .

for the absorption

of a positive

of an earlier

reaction ampl

pion by a deuteron. This calculation makes extensive use
.

work84 which develops the formalism for obtaining nuclear

tudes within the framework of a second-quantized theory.

Thus, in the pion absorption problem, LBB are naturally led to a plane-

wave representation of the two-proton state. This calculation is referred

to as the Born approximation. They also calculate terms for the first

two pion partial waves using a modified asymptotic form for the 3P1, lSO

and lD2 two-proton states. These terms constitute the most significant

part of the total matrix element; this calculation is referred to as

approximation I. In approximation II the reman

are included, using the Born approximation for

state.

ning pion partial waves

the two-proton final

In this chapter we recast the S-matrix formalism as a nuclear state

operator. This is done to permit use of more physical wave functions as -

well as the matrix element formalism already developed irrChapter 2. The
.

LBB formalism is briefly reviewed before the equivalent nuclear transi-

tion operator is given. Calculated results are then presented for sev-

eral wave functions and approximations.

In the LBB formalism, the S-matrix element is given in terms of

in-out formalism by

I
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(3-1)

The symbols used in this chapter will generally be defined accord-

ing to conventions established in Chapter 2. The four-momenta symbols in

Eq. (3-1) are understood to contain all isospin and sp

S-matrix element is related to the transition matrix e“

relation,

where the transition matrix element is given by

n variables. The

ement through the

(3-2)

(3-3)

In this expression, J; is the adjoint current operator of the deuteron;
d

it is expressed as

~’= )?dc<?%15)a;#. (3-4)

+ and 3~2
‘ere aPl

are single-nucleon production and current operators,

respectively. Use is made of Eq. (3-4) and the identity,
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(3-5)

The first two terms in this equation represent direct absorption pro-

cesses; these terms may be identified with the first graph shown in

Fig. 3 of Chapter 2. The third term in Eq. (3-6) contains all of the

scattering effects, and is written explicitly

It is now possible to identify these terms

in Fig. 3. Expressions for the absorption

be given shortly.

+ exchange {,@*]*

[3-7]

with the last two graphs shown

and scattering vertices will

In the LBB formalism, the deuteron vertex is given by
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where $ is the Fourier transform of the deuteron wave function:

R ‘)l-a

z=

In this equation, u and w represent the S- and D-states of the deuteron,

respectively. The tensor operator, S12 (;), is defined in Appendix II.

LBB assume that the absorption vertex is given by the nonrelativ-

istic reduction of the pseudovector interaction, or

(3-lo)

where

(3-11)
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for the forward (backward) propagating pion, and

(3-12)

for the absorption of positive, neutral and negative pions, respectively.

They choose for the scattering vertex the form,

In this expression, ~ is the total pi-nucleon on-shel 1 energy. The

partial-wave functions, f~ and fz, are specified in terms of on-shel 1

scattering amplitudes, written symbolically as L2t,2j. LBB define for

the process, IT++ p + n+ + p,

and

o
and for the process, m+ +n+m + p,

(3-14)

.

.

.
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{= G{(%- s.,)+ 3$”;(73- %?)]

and

f
.E

2 { 13 7/-%-73+% .
(3-15)

In Appendix VIII, the process amplitudes are found to differ in sign from

those given in Eq. (3-15); however, inspect-ion of the isospin operators

of Eq. (2-7) indicates that terms for this process and the one preceding

it are to be subtracted, whereas LB13add terms to obtain the absorption

matrix element.

The essential feature of this calculation is now apparent from

inspection of Eqs. (3-13), (3-14) and (3-15). That is, LBB assume that

the off-shell behavior of the scattering amplitudes is identical to

their on-shell behavior. This calculation is thus similar in principle

tc)that performed in chapter 2 using the p-wave Hamiltonian of Eq. (2-30).

Finally, LBB write the differential cross section as

where

(3-16)

(3-17)

‘fi
is the matrix element calculated in this formalism.



In reconstituting this matrix element as a nuclear operator, we

delete the internal sums over spins and the integral over the coordinate,

r. The isospin coupling coefficients and f(p’l~l) functions are evaluated

explicitly. Finally, the plane wave factor is identified as the complex

conjugate of the final-state wave function; it, and the deuteron wave

function are removed. The resulting operator is renormalized to allow

use of Eq. (2-14), which is cinematically equivalent to Eq. (3-16). All

expressions for cross section developed in Chapter 2 are then applicable.

The nuclear transition operator derived from the S-matrix formalism is

given by

T= --i(4TJ’y.11@
o

“

.

I

.
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(3-18)

In writing this expression, use has been made of an alternate form for

expressing pi-nucleon scattering amplitudes; correspondence with the

form given by LBB is obtained through the relation,85

(3-19)

We have also used the LBB symbols for various combinations of the free-

scattering amplitudes,

G,~ = 4 s’, - s,,,

G,p= E~3 - 35’

(3-20)

as well as the propagator terms,
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and

(3-21)

blhenevaluated on-shell, both the propagator terms in Eq. (3-21) are

about equal to the quantity, qo/2, used in the pole model calculation of

Chapter 2.

It is possible to make an identification of the operators in Eq.

(3-18) with those given inEq. (2-7). The direct absorption terms, for

example, are seen to be very nearly identical.

Following the procedure developed in Appendix VI, we write the

matrix element as

~ x j&f:M/

Again, the complex coefficients in Eq. (3-22)

over a product of angular integrals, Ri , and

integrals, Ii, according to

(3-22)

are calculated by summing

one-dimensional radial

.

.

I

.

I
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As stated previously, the angular and radial integrals are functions of

the pion partial wave as well as initial- and final-state quantum numbers

which must be summed over in calculating coefficients. Again, the contri-

buting states are identified in Table I of Chapter 1.

Expressions for the angular integrals, Rz, are given explicitly in

Appendix VI. The radial integrals for this formalism are now defined as

follows:
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These results maybe compared with those in Eq. (2-23).

The s- and p-wave intermediate integrals are now given by

and

(—1===M

ao.

o

co,

0

(3-25)

This choice of normalization is made to allow comparison with similar

functions in Cha~ter 2. The important difference in form, of course,

arises from

given above

Hamiltonian

the treatment of the p-wave scattering. However, the forms

correspond closely to those resulting from the on-shell

of Eq. (2-30). In the present case, the intermediate
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integrals are performed numerically; in absence of a cutoff, use is made

of the recursion relations,

{ (r) =
ml, l-l -Nlili++)fn ,0-)J

and

f o-) -’+-+--l-n,(r)./ (d--
??+4,1+1 - )

(3-26)

Several approximations for the propagator are possible in evaluat-

ing these integrals, including a pole model calculation similar to that

used in Chapter 2, the

taken to be zero, and,

initial nucleon energy

calculations of LBB in which the Fermi motion is

at the other extreme, a calculation in which the

is determined by momentum conservation at the

scattering vertex. These differences are found, however, to have only

small effect on the calculated cross section.

The full calculation outlined above includes all pion partial waves

and thus corresponds closely with LBB’s

fied their formalism to include for all

approximation II. We have modi-

pion partial waves the final-

state two-proton interaction as determined from solution of the

Schrodinger equation.

In addition to the above calculation, we have also coded approxi-

mation I of LBB. This calculation is given exp”

terms of integrals, matrix elements and angular

tion I includes only the first two pion partial

icitly in their paper in

dependence. Approxima-

waves; specifically,

twenty terms involving the 3PI, lSO and lD2 states are given. To check

58
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the formalism developed in Chapter 2 and used in similar form here (begin-

ning with Eq. (3-18)), comparisons were made directly with approximation

I calculations. In approximation I, the external pion wave function is

set to one.

necessary to

grals in Eq.

Thus to obtain agreement between the two

modify the spherical Bessel functions in

(3-24) in addition to removing about one

calculations it is

the radial inte-

hundred terms from

the matrix element (for the first two partial waves alone). However,

the two explicit calculations can be shown equivalent and are found to

give numerical agreement. Agreement is also obtained with the original

approximation I calculations performed by Lazard. 86 For this verifica-

tion work, use was made of the deuteron pole models of Gourdin 87 and

McGee88 and the final-state wave function proposed by LBB. This wave

function is given by

where kL,is the scattering absorption

multiplying the Neumann function is

coefficient, and the cutoff factor

(3-28)

In this expression 2 is the parameter used by LBB in their absorption

calculations to explore sensitivity to the short-range interaction. For

our comparisons, the Phase shifts used are MacGregor’s solution 4.89
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With regard

lowing comments.

Bessel functions

to calculations

First, we find

from the radial

the total cross section by about

using approximation I, we make the fol-

that deletion of the (pion) spherical

integrals has the effect of increasing

lo%.
-id~1

Use of the phase factor, e , in

the wave function, while not in agreement with results obtained in

Appendix V, can be shown not to affect this calculation. With use of

Eq. (3-27), we find the cross section at high energy to be dominated by

the effect of nonunitarity (ZL,C 1) in the lDZ state. As also noted by

LBB, the Born calculation gives results some 30% in excess of approxima-

tion I at the resonance. If the nonunitarity of the 1D2 is neglected

(the 3Pl is not important at high energy) so that only the real part of

the MacGregor phase shift is used in Eq. (3-27), the effect is actually

to enhance the calculated cross section over the Born term. On the other

hand, at low energy the nuclear scattering matrix is unitary, and inclu-

sion of the 3P1 phase shifts lowers the calculated values from the Born

result to near the experimental values. We also find that the shift in

the resonance seen in going from approximation I to approximation II

comes not from

operator terms

higher partial

the additional pion partial waves, but the inclusion of

which are omitted in approximation I. The effect of adding

waves seems to be an overall enhancement of the cross

section as opposed to a shift in resonance. These features will be seen

to carry over into calculations using the Boundary Condition Model and

Hamada-Johnston wave functions. We now present the results of several

calculations using these wave functions.

Figure 10 shows results obtained for approximation I. The spatial

dependence of the external pion wave function has been included in the

calculation, however, so that approximation I here refers only to a

60
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specific selection of the terms given in Eq. (3-23). The pi-nucleon

81
phase shifts used are those of McKinley; amplitudes are evaluated in

the two-body center-of-mass frame. The propagator is calculated assum-

ing momentum conservation at the scattering vertex; however, as also

noted by LBB, this makes little difference in the calculation. It does

have the effect of making the intermediate integrals converge more

rapidly. Figure 10 illustrates an effect also noted in Cha~ter 2: that

is, the percentage of D-state in the deuteron is found to have surpris-

ingly little effect on total cross section. This possibly may be ex-

plained in terms of the quadruple moment, the equation for which has

been expressed in Appendix IV. Since the first term in Eq. (IV-6) domi-

nates, an ad hoc renormalization of the D-state wave function, while

presumably having greater effect upon the absorption calculation, will

detrimentally affect the quadruple moment, which is a relatively well-

known experimental quantity. This illustrates the importance of varying

the percentage of D-state in a consistent way by changing potential or

boundary terms used in

course is followed for

A second observat

beyond the resonance.

solving the Schrtidinger equation. The latter

the Boundary Condition Model.

on involves the extent of agreement with experiment

The wave functions used to obtain the results

shown in Fig. 10 are, of course, unitary. This behavior thus differs

markedly from that previously described involving the use of Eq. (3-27).

The effect of possible uncertainties in the pi-nucleon phase shifts

is explored by also using the CERN 1 theoretical-fit data.
90

For this

calculation, the numerical data are spline-fitted in momentum to allow

interpolation between points. Below 10 MeV, forms of first and third

degree appropriate to the phase shift are used; otherwise the form is

62
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taken to be a degree-three polynomial. Results for this calculation are

compared with those using the McKinley parameterization in Fig. 11. In

both cases the Boundary Condition Model with 7.55% D-state is used. The

CERN phase shifts appear to slightly improve the fit for approximation I;

however, the difference does not seem significant. This conclusion may

be generalized to include all results obtained in Chapters 2 and 3. The

CiilCUl?itiOn in Chanter 4 shows more sensitivit)f to the phase shifts due to

their use in a pion optical model.

Figure 12 presents results for the full calculation using all terms

in the expression (3-23) and all pign partial waves. In practice, it

was found that the fifth partial wave had insignificant effect upon

either total cross section or angular distribution; thus calculations

were usually terminated with the fourth partial wave, A = 3. The general

effect previously noted for the inclusion of missing terms and higher

partial waves can be seen by comparing these results with those in Fig.

10. The full calculation does not appear to compare favorably with

approximation I in agreement with experimental data.

The next three figures present differential cross sections obtained

for the full calculation. Following the convention established in Chapter

2, we calculate the ratio of the two leading coefficients in Eq. (2-16)

to illustrate angular dependence at low energy. These results are shown

in Fig. 13. Comparison may be made with results shown in Fig. 7 for the

off-shell Hamiltonian. We find a similarity in these results, particular-

ly regarding the apparent effect of the D-state fraction in the deuteron.

Angular distributions at six higher energies are shown in Figs. 14

and 15, which make evident the necessity for considering higher pion

partial waves. It is found that inclusion of the third partial wave
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does, indeed$ proyide a negatiye cos”O coefficient at higher energies,

thus better fitting the experimental data. HoweYer, when the fourth

partial waye is added, the coefficient becomes overwhelmingly positive,

and this is illustrated clearly in Fig. 15. Thus the angular distribu-

tions seem slightly worse in this respect than those given previously

by LBB for approximation 11.
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CHAPTER.4

OPTICAL MODEL FORMALISM

In

sented -

optical

this chapter, a new approach to the absorption problem is pre-

n which scattering graphs are incorporated through a pion

model. In this calculation, only those terms in the Hamiltonian

which are linear in the external pion field are retained. The incident

pion plane wave is then modified using a pi-nucleus potential to reflect

the scattering effect.

First, the general pion optical model formalism is developed; vari-

ous forms and kinematical transformations are presented. The deuteron

density function is obtained from the nucleon-nucleon S-state wave

function, taking into account the pi-nucleon interaction distance as a

free parameter. Results for the scattering problem using this formalism

are presented, Next, a second-order formalism for the deuteron is devel-

oped in anticipation of absorption calculations. Scattering calculations

show an improvement over those obtained with the general formalism.

Finally, the absorption problem is considered using this second-order

scattering formalism; identification is made with previously given graphs.

Great sensitivity is shown to various optical model parameters.

We briefly review multiple scattering theory, which provides a

fundamental basis for the pion optical model. The total Hamiltonian for

the pi-nucleus system is gi~en by

H =ff’-w> (4-1)

.

.

.

.
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where the pi-nucleus potential, V, is assumed to be a sum of two-body

(pi-nucleon) interactions:

The other term, Ho, is written as a sum of two parts,

Ho = A“+T*,

(4-2)

(4-3)

where ffAis the total nuclear Hamiltonian and Tm is the pion kinetic

energy operator.

The pion wave function can be separated into plane wave and scattered

components:

The Schr6dinger equation then can be written as

(4-4)

(4-5)

where E is the total energy of the system. It is understood that Eq.

(4-5) operates upon the nuclear waye function. It can then be shown

that Eq. (4-5) leads to the result,
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where the propagator, a, is given by

(2= E- He+i& .

(4-6)

(4-7)

From Eq. (4-6), it can be seen that the pi-nucleus scattering matrix is

a solution of the Lippmann-Schwinger equation:

v
T=—

I-zfv ●

(4-8)

A formal solution for the problem of pi-nucleus scattering is given

by the Watson multiple scattering series.91 This series is of the form,

(4-9)

In this expression, t’is the pion bound-nucleon scattering amplitude.

Restrictions on the indices prevent sunminq successive scattering on

the same nucleon; howeyer~ all other combinations are allowed. The matrix

element for elastic scattering from the nuclear ground state is then of

the form,

.

.

.

.
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In this equation, the propagator natrix element is diagonal. In any

case? virtual nuclear states are to be neglected in the coherence approxi-

mation, so that Eq. (4-10) becomes

(4-11)

Use has been made of antisymmetrized nuclear wave functions to obtain a

result used above:

(4-12)

The amplitude, ~, therefore includes a suitable average over isospin.

The impulse approximation consists here of the assumption that the

pi-nucleon free scattering amplitudes are not modified in the presence

of nuclear matter. That is,

t =/, (4-13)
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where t is the free scattering amplitude. The series in Eq. (4-11) can

be summed to obtain

(4-14)

Multiplication of this expression by the factor, (A-1)/A, allows identi-

fication with the potential in Eq. (4-8). This result is

@/ v/o) = (A-1)E .

For large nuclei (A>>l), one can make the approximation,

{0/V/0) = A;.

(4-15)

(4-16)

This is the usual pion optical mdel result. In effect, the multiple

scattering problem is reduced to a two-body (pi-nucleus) potential

problem.

We next develop several

momentum space, the two-body

connnonforms of the pion optical model. In

potential of Eq. (4-16) is given by

.

.

.
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This expression is seen to explicitly include terms for the first two

partial waves of pi-nucleon scattering. Spin-flip terms shown in Appen-

dix VIII may be excluded for elastic scattering frum a spin-zero nucleus.

An expression for the nuclear form factor is given by

(4-18)

where the nuclear

ized according to

J&p(r)

density is assumed spherically symmetric and is normal-

= /. (4-19)

ldeultimately desire the potential to operate on a coordinate space wave

function, and hence need the result

(4-20)

The exact form of the pion optical nndel is determined by the treat-

ment of the p-wave scattering amplitude. For the local optical model,

the zero-angle approximation is chosen, yielding

75



(4-21)

In this case, Eq. (4-20) yields the result,

In the Laplacian model , the amplitude is assumed to depend upon the

momentum transfer according to the prescription,

Now the potential is given by

where the Laplacian operates only on the nuclear density function.
.

Kisslinger, 92 on the other hand, solved Eq. (4-20) to obta~n the nonlocal

result,
.

The local , Laplacian and Kisslinger potentials are summarized in the

following equations:
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and

(4-26)

The quantities, bO and bl, in Eq. (4-26] de~end on the transformation

chosen in going from the pi-nucleon frame to that of the pi-nucleus.

We first make use of the results of Appendix VIII, and summing over

isospin, find the average scattering amplitude (for a positive pion) in

the pi-nucleon center-of-mass frame to be

where

and

(4-27)

The subscript, 2, refers to the two-body [pi-nucleon) frame. In keeping

with the models just discussed, spin-flip terms have been neglected in

writing Eq. (4-27). The symbol, a. is defined by
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(4-28)

where 6 is the phase shift. The single subscript, 2Z, refers to the

s-wave, while 2t,2j denotes a p=wave term.

In his original calculation, Kisslinger
92 neglected the trans-

formation from the pi-nucleon frame to that of the pi-nucleus. He thus

obtained

Aaerbach,
93

et al, have preferred a transformation diagonal in the

partial wave amplitudes. They use

and

(4-29)

(4-30)

Dedonder,
94

on the other hand, suggests a nondiagonal transformation?

and finds

.

.

.

.
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where

(4-31)

This form is also preferred by Wilkin.g5

After Auerbach, et al, we solve a Klein-Gordon equation in which

the optical model and Coulomb potentials are introduced in the fourth

component. The square result of each is neglected, so that the Klein-

Gordon equation becomes

(4-32)

This form has the advantage of reducing to the Schr6dinger equation at

low energy.

As given above, the Kisslinger model potential is nonlocal.

HoweYer, it has been shown by Krell and Ericson96 that an equivalent

local form may be obtained with the substitution,

(4-33)

In this case, the Klein-Gordon equation becomes
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(4-34) .

Here the gradient is understood to operate only upon the density func-

tion.
.

Following the usual procedure, one-dimensional equations for the

partial waves are obtained. Then the Klein-Gordon equations for the

local, Laplacian and Kisslinger forms are given, respectively, by

+(%.+b,jf)p(~) + -f b,(J+@

(4-35)

In these equations the Coulomb potential has been written as a

point interaction.
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To solve these equations, a general optical model code was written

which incorporates the foregoing forms and transformations. The inte-

gration technique has been described in Appendix III. In the calcula-

tion, the scattering matrix is determined by matching trial wave func-

tions to Coulomb functions at T and r-s. The elastic cross section is
97

then given by

while the total cross section is obtained from

~=-z :Z( ZA+I)(I- Re (Sh)) .
A=o

The angular distribution is given by

(4-36)

(4-37)

(4-38)

The nuclear density function for this study is obtained from the

deuteron S-state wave function, taking into account the pi-nucleon

interaction distance through a Gaussian form, Thus the optical model

density is given by
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where 02 is a measure of the

argument of the S-state wave

pi-nucleon interaction distance. The

function reflects the nucleon-nucleon

(4-39)

separation. Since u(2r’) is a spherically synmetric function, the

integral above is easily shown to be

This integral is obtained numerically making use of polynomial expan-

sions for the exponential terms in r’, The result is

where

(4-41)

Finally, the density function is normalized according to Eq. (4-19).

Plots of this optical-model density for several values of 02 are shown
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in Fig. 16. Since the density function is spherically symmetric, use is

made of the relations$

. . . . . . . . . . . . .
In numerically evaluating theSe terms In the potential.
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Fig. 16. Deuteron density functions for the pion
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Figure 17 shows results of total cross section calculations using

the local, Laplacian and Kfsslinger forms compared with experimental

data 69,98-103
s The Auerbach kinematical transformation and the inter-

action distance parameter, 02 = 0.5f2, are used. Calculated angular

distributions and experimental data
69,102,103

at three energies are shown

in Fia. 18. The Kisslinqer and LaDlacian models are seen to qive very

similar results. The pronounced minima near ninety degrees may be

associated with omission of spin-flip terms in the scattering amplitude.

Since this term vanishes at forward and backward angles, results at

these angles are felt to be a better measure of the adequacy of this

Calculation. The local optical model, on the other hand, exhibits its

usual behavior in that its minimum lies at a larger angle.

We turn now to a second-order optical model formalism for pi-

deuteron scattering. Use of the approximate result of Eq. (4-16) can

be shown equivalent to elimination of the sum restrictions in Eq, (4-9).

This approximation seems plausible for large nuclei. For the deuteron,

however, Eq. (4-16) would result from the multiple scattering series,

T= tp+ tn+ tpdtp + $Jrtn+ tndtp+t nci’hn+””” ,

(4-43)

which represents significant error in second order. We write the wave

function obtained using the above series symbolically as o(.tp+~).

Results presented up to this point were obtained using this calculation.

On the other hand, the desired result, to second order, is giyen by

.

.

.

.

I

.
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T= tp + t“ + tpdtn+ tndtp+ ““” . (4-44)

This series can be summed by assuming the following linear combination

of scattering operators:

/+r = I + (I+q)- (1+~)-f-(1+~) -(1+~) .

(4-45)

The potentials corresponding to

a linear combination of neutron

the wave function,

+ = (f+LifT]4,

these operators are in turn given by

and proton scattering amplitudes. Thus

(4-46)

can be written as

(4-47)

The prescription now to obtain the waye function is to solye the Klein-

Gordcn equation for each of the potentials in Eq. (4-47), then to take

the indicated sum of the resulting functions. Use is made of the fact

that V3 = VI; however? spherical Bessel functions or Coulomb functions
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are most easily generated with the Klein-Gordon equation and zero

potential. Thus, in practice, four integrations are required. The

S-matrix element is easily seen to be

SA= f + 2S,A – S.A - &A . (4-48)

Calculations were performed using this second-order formalism with

the previously described forms and transformations. Figure 19 illus-

trates total cross sections obtained using the kinematical transforma-

tion of Dedonder and an interaction parameter of 02 = 0.5f2. This

result is seen to offer improvement over that of the general formalism

at higher energies. An additional interesting effect is the apparent

model independence. Angular distributions obtained from these calcula-

tions are shown in Fig. 20. Again an improvement is noted, here in the

back-angle scattering. Roughly half of this improvement can be attri-

buted to the second-order formalism; the remainder is due to use of the

Dedonder transform.

Figure 21 presents the results of an investigation of pi-nucleon

size using different values of the interaction distance parameter, 02.

Reasonable agreement at back-angle is obtained using 02 = 0.3f2, a

result comparable with the off-shell ~arameter value, a = 300 MeV/c,

obtained in Chapter 2. This value of a2 is therefore used in the absorp-

tion calculations to be presented here. The scattering

Fiq. 21 are obtained usinq the Kissinger optical model

transformation. It is ~erhaps worth noting that if one

results shown in

and the Dedonder

had confidence

in the validity of the calculation, this technique could be inverted and

88
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the pi-nucleon interaction distance thereby determined. However,

the intent here is simply to establish the credibility of these second-

order pion wave functions for use in the absorption problem, to which

we now turn.

In the two preceding chapters, pi-nucleon scattering has been

demonstrated to dominate the reaction, n+ + d + p + p, throughout the

energy range. Now the essential idea will be to incorporate this

scattering through an optical model. Formally, this corresponds to

modification of the pion field in the Hamiltonian, as opposed to the

usual procedure of adding terms to the Hamiltonian. Specifically, we

retain in the Hamiltonian presented in Chapter 2 onlv those terms linear

in the pion field. Then the nuclear transition operator is given by the

direct absorption operator, To, of EQ. (2-7]. This result is repeated

here for convenience:

(4-49)

It is now apparent that ~ (as wel1 as ~) must be cast as an operator.

The partial wave expansion of the external pion field remains valid;

thus the essential replacement in the integrals in Eq. (2-23) is that of

(4-50)
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The four required integrals are then given by

and

(4-51)

and the matrix element coefficient by

The angular integrals, RL, are unchanged from the result given in

Appendix VI. From Eq. (4-49) onward, the symbol, r, refers to the

nucleon-nucleon separation.

For the absorption calculation, we write the pion wave function in

terms of three components:

(4-53)
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The plane wave component is easily identified with the direct absorp-

tion graph shown on the left in Fig. 22. In the remaining terms and

figures we differentiate between the processes of direct- and charge-

exchange scattering.

.

Fig. 22.

Using the

scattered

dn dp

Absorption processes in the optical model formalism.

second-order method previously given, the direct-exchange

wave function is found to be

f = +(%!)- +(-V?. (4-54)

The center graph in Fig. 22 is taken to be symbolic of this multiple-

scattering process. For the remaining scattered component of the wave

function, $e, a charge-exchange amplitude, te, is required. This has

been evaluated in Appendix YIII. The scattered wave function is given

correctly to second order by

(4-55)
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In Eq. (4-53), this component has been reduced by a root-two factor to

reflect a reduced amplitude at the absorption vertex for this process.

By incorporating the above results in Eq. (4-53), we obtain

(4-56)

It should be noted that, while scattering has been included to second

order, the backward-scattering graph shown in Fig. 3 has been completely

omitted. In the pure I-!amiltonianformalism, of course, the meson is

virtual, while in the present optical model formalism the interpretation

must reflect a physical pion.

Using the pion wave function of Eq. (4-56), calculations were per-

formed as outlined above for the absorption reaction. Figure 23 pre-

sents results obtained for the local, Laplacian and Kisslinger forms of

the optical model. In all three forms, the Dedonder transformation and

a value, CJ2= 0.3f2, are used. Four partial waves in the pion wave

function are included. Pi-nucleon amplitudes are evaluated according

to previously given relations using the phase shifts of McKinley.

We find the interesting result that the optical model formalism

does succeed in predicting an absorption resonance. (The Laplacian

resonance occurs at very high energy. ) For contrast, the plane wave

result preciously shown in Fig. 4 is reproduced in Fig. 23. The

effect introduced through the pion scattering is now made more apparent.

The local model is observed to give the best position for the resonance,

although its magnitude is not sufficient. Use of the Auerbach trans-

formation enhances this result. Also notable is the difference
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obtained between the Kisslinger and Laplacian mdels. This is especially

surprising in light of the similarity of the scattering results. Exami-

nation of the Kisslinger wave functions, howeyer, indicates an oscil-

latory behavior at short range which contributes significantly to the

integrals. The local model wave functions seem to bear the closest

resemblance to the spherical Bessel functions. The divergence in the

case of the Laplacian model, however, is associated with the lowest

partial wave. Angular distributions obtained from the local and

Kisslingertnodels appear qualitatively reasonable, having large COS28

components in the vicinity of the resonance.
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CHAPTER 5

CONCLUSION

The nonradiative absorption of positive pi-mesons by deuterons has

been studied within the framework of Lagrangian formalism and the im-

pulse approximation. Pion absorption on the deuteron is dominated by

pi-nucleon scattering, and this investigation has focused mainly upon

different approaches to scattering processes in the absorption calcula-

tions.

Our first approach to the absorption reaction involved extension

of the Hamiltonian formalism of Koltun and Reitan to include energetic

pions. The main modifications to this formalism are the addition of

graphs for p-wave pi-nucleon scattering and the inclusion of all partial

waves of the incident pion. At low energy, for which only s-wave scat-

tering and direct absorption terms are significant, good agreement is

obtained with the original bound-state results of Koltun and Reitan.

The well-known cancellation of deuteron S- and D-state direct terms

emphasizes the importance of pi-nucleon scattering even at low energy.

At very low energy, the cross section is dominated by s-wave scattering

graphs, and reasonable agreement with experimental data is obtained.

However, the s-wave scattering result falls off with increasing energy,

while experimental values increase after 20 MeV up to the resonance.

It is therefore necessary to include p-waye scattering graphs even at

low incident pion energy.

Several forms of the p-wave scattering Hamiltonian were examined,

including the low-energy result given by Klein. Use of this p-wave

98
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Hamiltonian leads to calculated cross sections greatly in excess of

the experimental data, e~en at low incident pion energy. The inter-

mediate state includes integrals over all momenta of the virtual meson;

the Klein low-energy form tends to overemphasize high-momentum compo-

nents in these integrals. Attempts to reduce high-momentum contribu-

tions by means of momentum cutoffs in the intermediate-state in~egrals

are unsuccessful because of sensitivity to the cutoff parameters.

As an alternate means of reducing high-momentum contributions, an

ad hoc alteration of the Klein p-wave Hamiltonian was proposed. This

alteration consists of a reduction in power for the momentum operator

of the virtual meson. The resulting Hamiltonian is asymmetric; however,

it is seen to be equivalent below the resonance to the on-shell scatter-

ing amplitude. (This calculation is therefore similar to that obtained

from the S-matrix formalism of Lazard, Ballot and Becker. ) Calculated

total cross sections Up -to100 MeV show good agreement with experimental

data.

In all approaches to the absorption reaction, a Galilean-invariant

absorption Hamiltonian is assumed. However, using the on-shell calcu-

lation, we find that Galilean invariance cannot be confirmed using the

pi-deuteron absorption reaction. Agatn, this directly reflects the

accidental cancellation of S- and D-state direct absorption terms.

For problems iwolying high-momentum off-shell processes, neither

of the scattering forms discussed above has a sound theoretical basis.

First, the low-energy result of Klein does not Yanish in the high-momentum

limit. The on-shell Hamiltonian also suffers from this defect and, in

addition, does not reduce to Klein’s result at low energy. On the other
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hand, the separable form of the p-waye Hamiltonian given in Eq. (2-5)

has these desired propert~es, and is thus felt to be more suitable for

investigation of the absorption reaction. Calculated cross sections

obtained with this Hamiltonian show great sensitivity to the off-shell

parameter, a. Good agreement with experimental data is obtained with

a value, a = 300MeY/c, which lies midway in the range of values sug-

gested by other investigators. The sensitivity of calculated results

to this parameter is due in part to the form of the p-wave absorption

Hamiltonian, which brings an extra power in intermediate pion momentum

into the matrix element. For this reason, pi-deuteron absorption offers

an excellent means of studying the off-shell behavior of pi-nucleon

scattering.

It is also interesting that some sensitivity to the nuclear wave

function is retained in this calculation. Differences between poten-

tials show up mainly in the angular distributions, and seem significant

enough to allow one to select a preferred nx)del given better experimental

data. The calculations performed indicate a sensitivity to the fraction

of D-state in the deuteron. This possibility might be confirmed with

calculations using other potentials. Given the magnitude and approxi-

mate cancellation of S- and D-state direct terms, it is somewhat sur-

prising that calculated results are notnmre strongly dependent upon

the fraction of D-state. This effect may be explicable in terms of the

deuteron quadrupole moment, and it is worth noting that this quantity

is well represented by all of the deuteron wave functions used here,

including the pole models. All are similarly seen to reasonably repro-

duce the experimental absorption data.

.

.

.

/.
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In our second aoproach to the absorption problem, the S-matrix

formalism of Lazard, Ballot and Becker was modified for use with physi-

cal wave functions. A dominant feature of this formalism is the direct

inclusion of on-shell scattering amplitudes in the matrix element.

This calculation therefore bears much similarity to the on-shell

Hamiltonian approach. The similarity may be observed term-for-term by

contrasting coefficients of the integrals of Eq. (2-23) with those of

Eq. (3-24). Below the resonance, differences arise from the kinematical

factor, ~/~ , which appears in all scattering terms, and from the

evaluation of isospin contributions to s-wave scattering. These factors

are more important than the more precise calculation of propagator

terms, and an improvement in low-energy results over those for the on-

shell Hamiltonian is noted.

Total cross sections calculated using LBB approximation I and

physical wave functions give good agreement with experimental data

throughout the

operator terms

Further, these

energy range. The agreement appears worse when all

and pion partial waves are included in the calculation.

results show positive coefficients for higher order

terms in the angular distribution. This problem may be related to

nonunitarity in the 3PI and 1D2 proton-proton states at higher energy.

(Also noteworthy is the importance of nonunitarity in the original LBB

calculations in reducing calculated cross sections to experimental

values. bJaYefunctions calculated from real, phenomenological poten-

tials are, of course, unitary; yet an equivalent reduction in cross

section using these waye functions is obtained. ) It should be pointed

ont that we are using these nucleon-nucleon potentials at energies in

considerable excess of those for which they were constructed. S-matrix
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calculations in which the two states in question are simply renormal-

ized show considerable impromnent in the angular results. However, in

keeping with the spirit of these calculations, a correct approach would

involve the inclusion of imaginary terms in the nucleon-nucleon

potential.

In addition to the nuclear absorption difficulty, there are other

problems at high energy associated with both the Hamiltonian and S-mtrix

approaches. These include pi-nucleon scattering contributions from

terms higher than p-wave, contributions from multiple scattering graphs,

and questions related to the credibility of basic operators, such as the

off-shell behavior of the direct absorption Hamiltonian. These compli-

cating factors should promote renewed interest in the low-energy region

where the situation is somewhat more clear. In this regard, we again

point out the proposed experiment at LAMPF, and note that the angular

distributions to be obtained may allow selection of a preferred nuclear

model (Fig. 7). It is interesting that the S-matrix formalism provides

a very similar result (Fig. 13). This particular similarity occurs

because of the nearly equivalent treatment of s-wave scattering, which

dominates the reaction at low energy. However, there is no reason in

principle why the s-wave Hamiltonian of Eq. (2-3) should not have off-

shell dependence similar to that of the p-wave term. Such dependence

would be expected to show less sensitivity to an off-shell parameter

simply because of the lower powers of momentum found in the s-waye

intermediate integrals. A mOre difficult problem at low energy in-

volyes contributions from p-waye scattering which in the present formu-

lations vanish in the zero incident-momentum limit. Such p-wave contri-

butions arise fro-mFermi motion of the nucleons, and are nonvanishing

.

.

.

.
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even for the bound pion case. This effect miqht amount to as much as

25 percent at low energy.

The general optical model formalism has been applied with reason-

able success to the moblem of pi-deuteron scattering, and results

exhibit many characteristics deriyed for scattering from larger nuclei.

The second-order formalism developed for the deuteron is also success-

ful in reproducing the scattering data, and further seems to give greater

model independence. Minima in the differential cross sections have

been associated with omission of the spin-flip terms from the scatter-

ing amplitudes. Satisfactory back-angle scattering results are achieved

with a reasonable value of the parameter characterizing pi-nucleon

range. It has been noted that, in principle, the scattering result

could be used to determine this parameter.

There is little evidence that the optical model formalism offers

a fundamental calculation for the pi-deuteron absorption problem. It

remains interesting, however, for several reasons. First, a moderately

successful representation of the absorption data (i.e., a resonance) is

achieved using a physical meson in the intermediate state. We contrast

this with the Hamiltonian and S-matrix formalisms in which the scattered

meson is highly virtual. Also, second-order scattering graphs are in-

cluded in this absorption calculation. Such a graph consists of a

coherent scattering on the first nucleon, followed by an incoherent

scattering on the second [leading to breakup) and absorption on the

first nucleon. In addition, the optical model formalism offers a

simpler absorption calculation in that all intermediate momentum inte-

grals andrnost of the tedious angular and one-dimensional radial inte-

grals are eliminated. Finally, because of the sensitivity exhibited to
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optical model parameters, the absorption calculation may provoke some

new insight into the pion optical model. In this regard we note the

dissimilarity in results obtained with the Laplacian and Kissinger

models, as well as sensitivity to parameters such as the kinematical

transformation and the pi-nucleon interaction distance.

In conclusion there are several points to be emphasized. The

first is that calculated results, and in particular angular distribu-

tions? show sufficient sensitivity to nucleon-nucleon wave functions to

allow selection of a preferred potential model. Such sensitivity may

extend to a determination of the D-state fraction in the deuteron.

We have also demonstrated the extraordinary sensitivity of calcu-

lated cross sections to the off-shell pi-nucleon scattering behavior.

We suggest that the pi-deuteron absorption reaction offers an important

means of investigating these off-shell effects.

Finally, there remains the question of whether pion absorption

reactions can be useful in the investigation of nuclear structure. In

this regard it seems important that a reasonable representation of the

pi-deuteron data can be obtained using realistic wave functions and

credible forms for the interaction Hamiltonian. This would seem to

offer hope for the use of similar techniques in the investigation of

the more complex nuclei. Since the pi-deuteron reaction ~s dominated

by scattering processes, it seems likely that such processes also play

an important role in the general nuclear case. For such nuclear struc-

ture inyestigations~ we recommend use of the p-wave Hamiltonian of Eq.

(2-5).

.

.

.

.
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APPENDIX I

THE NUCLEAR TRANSITION OPERATOR

The nuclear transition operator, T, is evaluated using the

Hamiltonian interaction densities discussed in Chapter 2. We have estab-

lished the convention of using subscripts for the nucleon numbers and

superscripts for tensor components of vectors. However, the isospin and

pion-field components differ in sign from the usual tensor definition;

this exception is necessary since Mandl104 uses the form,

Mandl’s expressions for pion field and conjugate are given by

(I-1)

(1-2)
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In these expressions, a, b and care creation (+) and destruction (-]

operators for positive$ negative and neutral pi-mesons, respectively.

The superscript stating the field component thus also reflects the effect

of the field upon total meson charge. (The superscript, three, might

also be written as zero.)

We begin by considering processes involving direct absorption.

The nuclear transition operator is given in Eq. (2-1) as

(I-3)

We first consider the process of direct absorption on nucleon (l), as

represented by the graph in Fig. 24. In this appendix, graphs will be

labeled to indicate the four-momenta of the particles.

%———

d%~
Fig. 24. Graph for direct absorption

on nucleon (l).

.

Subscripts on the transition operator symbol will be used to denote the

particular process under consideration. In this case, for example, we

have

106
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We may also replace the pion momentum operator in the absorption

Hamiltonian in EQ. (2-2) with a gradient operator on the pion field,

according to

f
‘ ‘A”v

r Tl”

Making use of the above relations and Eq. (2-2), we can write

(I-5)

(I-6)

The isospin-field dot products can be expanded into vector or tensor-

like components, and are of the form,

or

(I-7)

The field in ~i is seen to be linear. Thus all terms not containing

Z+@- or T+m- vanish, and in these, only terms ‘involving positive meson

destruction can contribute. The operator T! is therefore given by

107



{ ---

or

(I-8)

once the indicated meson operations have been carried through.

Conservation of momentum at the absorption vertex gives the

relation,

(I-9)

which allows the elimination of either ?l or ?l in Eq. (I-8). As stated

in Chapter 2, the nucleon coordinates can be written in terms of center-

of-mass and relative coordinates, according to

C=+p,

.

.

.

.

(1-10)
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The corresponding momentum operators are

(1-11)

We desire to minimize the number of final integrals which must be done,

and note that ~vanishes in the overall-center-of-mass frame, so that

(1-12)

Therefore, a good choice is to retain 71 in Eq. (I-8) and ultimately to

evaluate the momentum operator on the final proton-proton state. Sub-

stitution of Eq. (I-9) into Eq. (I-8) then gives

(1-13)

The transition operator for direct absorption on nucleon (2) is

obtained through the substitution, (1) z (2), in Eq. (1-13). The

result is

(1-14)
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Finally, the full transition operator is obtained by adding Eqs.

(1-13) and (1-14) and making use of the transformations (1-10) and

(1-12). The nuclear transition operator for direct absorption is then,

upon rearrangement, given by

.

.

(1-15)

The transition operator involving the first s-wave scattering

Hamiltonian, HI, is designated T1. We first consider the process for

scattering on

mediate meson

sented by the

nucleon (2), forward propagation in time for

and absorption on nucleon (l). This process

graph in Fig. 25; the corresponding operator

Fig. 25. Graph for absorption on nucleon
(1) preceded by scattering on
nucleon (2).

the inter-

is repre-

is labeled T~z+.

.

.
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According to Eq. (2-l), this operator may be written as

or, making use of the first expression in Eq. (2-3), as

T’
/2+ ‘ (W47T)?7L

(1-16)

(1-17)

The expansion of$~~, by analogy with that of ~=$in Eq. (I-7), is given

by

(1-18)

In the matrix element, the +3$3 term represents a self-energy effect

and should be omitted. The remaining creation and destruction operators

couple as follows:

atQ-+ a+b++b-a-+ b-b++Q-d+ a-b-+ b+a++ b+b-.
(1-19)
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In operating upon the initial state with Eq. (1-19),

and eighth terms vanish, the second and seventh lead

states and the fourth represents a self-energy term.

the third, sixth

to three-meson

Therefore, only

the first and the fifth terms can contribute here, so that we may write

.

.

(1-20)

By dropping one self-energy term and a Bose term, this result c% be

written as

(1-21)

The propagator for the intermediate state is obtained by evaluating

initial- and intermediate-state Hamiltonians with reference to Fig. 25.
.

The incident-pion energy, QO, must be equally shared W the two nucleons”

If the b“

qlected,

ridingenergy of the deuteron and nucleon mass differences are ne- .

then the propagator for intermediate-meson energy, X’OS is given bv

or

112 ~
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(I-22)

Since the intermediate state contains a positive meson, only those

terms in H: which are linear in a- can contribute. The transition

operator is therefore given by

Upon completion of the meson operations and use of Eq. (I-9), the final

result becomes

(I-24)

In writing this expression, the sum over discrete momentum, q’,has been

replaced with an integral over the continuous variable by the substitu-

tion,
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(I-25)

The case for backward propagation in time, as represented by the

‘ graph in Fig. 26, is easily obtained from the Lagrangian specification

by considering a negative pi-meson in the intermediate state. Since

H: does not contain an isospin operator, only b+ terms can enter from

H:, and”we can set

H. - a-b- + b-a-.

Fig. 26. Graph for absorption on nucleon
(1) followed by scattering on
nucleon (2).

(I-26)

According to our convention, the transition operator for this process

is written symbolically as T~2-. It can be expressed as

(I-27)

.

.

.

.
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or

(I-28)

The propagation factor in this case is given by

or

Through use of this expression

Eq. (I-28) may be written as

(I-29)

and from considerations discussed above,



However, conservation of momentum at the absorption vertex is now

expressed by

(1-31)

.

.
so that the operator for the process depicted in Fig. 26 becomes

(I-32)

This can be put into a form similar to that of Eq. (I-24) by substitut-

ing ~’+ -~for the variable of integration. The transition operator is

then given by

next add the graphs shown in Figs. 25 and 26 to obtain the tran-We

sition operator for scattering on nucleon [2) through HI and absorption

on nucleon (1)0 Equation (1-24) is thus added to Eq. (I-33) to obtain

.

.
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(I-34)

The nuclear transition operator for scattering on nucleon (1) and

absorption on nucleon (2) is obtained through the substitutions,

(1) Z (2) and ~+ -~, in Eq. (I-34), yielding

(I-35)

Finally, we add Eqs. (I-34) and (I-35) to obtain the total nuclear

transition operator involving scattering through the Hamiltonian term,

ffl. In writing this expression, use has also been made of the coordinate

transformations (1-10) and (1-12). The final result is

-.

(I-36)
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We turn now to the transition operator involving the s-wave

scattering term, I@, and again consider the process involving scatter-

ing on nucleon (2), forward time propagation of the intermediate meson

and absorption on nucleon (l). Then the graph in Fig. 25 also repre-

sents this process. The transition operator is given by

(I-37)

or, making use of Eq. (2-2) and the second expression in Eq. (2-3), by

(I-38)

The isospin-field product in H2 can be written as

?.@T = +(+’rr’- #3rTy + #(#’lT’- @’&’ + ~’(~’n~ 42+),

or, in terms of tensor-like components> as

p.f?5x77 = i{ ?’(4-2-#’n->+F(&p’fl--4%’)+#@T---@#’ ,
(1-39)
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On the other hand, terms in the operator, Ho, go as the expression in

Eq. (I-7). Thus, matrix elements involving the third and fourth terms

(T;) in Eq. (I-39) vanish, as do those of the form of the second term

(T;) in Eq. (1-7]. The operator, T~z+, can therefore be written as

or

T2 =12+

119
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(1-41)

In writing this equation, use is made of the propagator result in Eq.

(I-22); expressions for the contributing field components are obtained

fromEq. (I-2). Upon carrying out the indicated operations, we get the

result,

also been made of the momentum relationship in Eq. (I-9).Use has

The transition operator for backward time propagation, T~2-, is

obtained by arguments similar to those used in the derivation of T~2-.

The operator is defined by

T2 = (o/ Hz2(E-H+i6j’H;/~, c=+l>.
lz-

It is given in terms of its nonvanishing field components by

120

(I-43)

●

✎
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With use of the appropriate terms of these field components and the

propagator result given in Eq. (I-29), the transition operator becomes

r2 =12-
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After performing the indicated meson operations, and making use of the

momentum relation of Eq. (1-31)

operator can be written as

●

~;- = - AZ (4J$Z3ge

The full transition operator for scattering on nucleon (2) through

ff2and absorption on nucleon (1) is obtained by adding Eqs. (I-42) and

[1-46). The result is

The case for scattering on nucleon (1) and absorption on nucleon

(2) is obtained through the substitutions, (1) 1 (2), and ~’ + -~’ .

This result is given by
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The total transition operator involving the Hamiltonian term, ff2,

is obtained by adding Eqs. (I-47) and (I-48). Use is also made of the

coordinate relations in Eqs. (1-10] and (1-12) to gain the result,

We next consider the transition operator involving the first

p-wave scattering Hamiltonian given in Eq. (2-5). The dot product in

tf3refers to the fields as well as the pion momenta, and therefore the

derivation of T3 follows closely that of T1. We consider the process

for scattering on nucleon (2) and absorption on nucleon (1) with forward

time propagation, and Fig. 25 is once again applicable. This operator

is given by

(1-50)

or
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By analogy with the derivation of T12+~ this operator is easilY shown

to be

(I-52)

or, in final form,

The operator for backward propagation, as represented by the graph

of Fig. 26, can be obtained by inspection. The result is
.

.
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Following the usual procedure, Eqs. (I-53) and (I-54) are addea

to obtain the transition operator for scattering on nucleon (2) and

absorption on nucleon (l):

Again through the substitutions, (1) ~ (2) and ~ + -~ , we obtain

the operator for scattering on nucleon (1) and absorption on nucleon

(2), which is

Addition of Eqs. (I-55) and (I-56) then gives the full transition

operator involving scattering through the p-wave term, H3. The result is
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Finally, the transition operator is

scattering through H4, the second p-wave

previously stated, the dot-cross product

developed which involves

Hamiltonian in Eq. (2-5). As

in ffqrefers to the isospin-

field vectors as well as to spin-momentum. This derivation then closely

parallels that of T2. For example, use is made of an expression similar

to Eq. (I-39) to write the transition operator defined by

(I-58)

as

(I-59)

●

✎

✎

✎

This transition operator is given fully in potentially contributing

terms by
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T+ =iz+

(1-60)

The indicated operations are carried through to obtain

Using techniques similar to those previously employed, the backward

scattering result can be shown to be
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(I-62)

Once again, the forward and backward propagation terms are added

to obtain the operator for scattering on nucleon (2) and absorption on

nucleon (1). The result is

and

and

(I-63)

We next get the transition operator for scattering on nucleon (1)

absorption on nucleon (2] through the substitutions, (1) ~ (2)

? + -?3 yieldin9

.

.

.

(I-64)



Finally, the total transition operator involving scattering through

the Hamiltonian term, H+, is obtained by adding Eqs. (1-63) and (I-64).

The result is written as

According to Eq. (2-1), the complete transition operator, T, is

the sum of

in several

purposes.

Chapter 2.

Eqs. (1-15), (1-36), (I-49), (I-57) and (I-65). However,

calculations, certain terms will be omitted for illustrative

For convenience, the required equations are repeated in
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APPENDIX II

PHENOMENOLOGICAL NUCLEON-NUCLEON POTENTIALS

The Hamada-Johnston mode1105 is an enerq,y-independent potential con-
.

sisting of polynomials in Yukawa terms. The free parameters have been

fixed phenomenologically using deuteron and scattering data. The central -

and tensor terms reduce to one-pion exchange (OPEP) at large radius.

Prominent features include a hard

culations is taken to be 0.485345

v= vc+q$2+ yJV

core at radius, r~, which in these cal-

fermis. The potential is given by

-f- ~LL,2 > (II-1)

where the subscripts imply central, tensor, spin-orbit and quadratic

spin-orbit terms. These are defined as follows:

~ = 0.08($p) f.~~=~ Y&r]{ J+ ~ y’j~j+ ~ y$~l] ,
c

VT = 0.08 ($/) ~“~ E~r> {/ + ~, Y~) + b. Y&P)] ,

v=1s P %s Y&”) {1+$. K@’)’
and

~,= p Gti@Pj’z@)p + ~uyp~) + bu Yh”)]. (1,-,)

The quantities Y(r) and i!(r) are given by

@P

Y’@r} = ~—j=
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and

——
LOS is the usual spin-orbit product, while the operators LIZ and S12 are

defined by

and

(II-4)

The pion mass is taken to be P = (1.415f)-1. The parameters determined

by Hamada and Johnston are given in Table II.

Table II

Parameters of the Hamada-Johnston Potential

State a b
‘? bT ‘Ls

b
c c 1S ‘LL aLL bLL— — — —— ——

singlet even 8.7 1006 -0.000891 0.2 -0.2

triplet odd -9.07 3.48 -1.29 0.55 0.1961 -7.12 -0.000891 -7.26 6.92

triplet even 6.0 -1.0 -0.5 0.2 0.0743 -0.1 0.00267 1.8 -0.4

singlet odd -8.0 12.0 -0.00267 2.0 6.0

The Schrodinger equations obtained with this potential are, for the sing-

let and uncoupled triplet states, respectively,
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while the equations for the coupled triplet case are given by

/
+ (J+2)M Vu(r) W&) -

II, solution of the coupled differentialWith the parameters of Table

equations for the deuteron using the method of Appendix III results in an

energy eigenvalue of -2.2688 MeV instead of the -2.226 MeV value stated

by Hamada and Johnston. This higher value is confirmed by Humberston and

Wallace, 106 who obtained better agreement with experiment by varying

either the pion mass or the hard core radius. For the absorption calcula-

tions, the original Hamada-Johnston parameters are used.

In the Boundary Condition Model (BCM),’07 the potential interaction

is determined largely from field-theoretic forms involving one and two

pion, p, u and q meson exchange adiabatic local potentials beyond a

.

.

.
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.

radius, ro. Thus, beyond ro, the interaction is represented by a local,

energy-independent potential. Within ro~ the interaction inyolyes many-

particle exchange, and is strongly nonlocal. This nonlocal interaction

is approximated with an energy-independent boundary condition on the

logarithmic derivative of the wave function at ro.

The Schr6dinger equations for r > r. are, for both the singlet and

uncoupled triplet cases,

and for the coupled triplet case,

and

The nuclear potential function is defined by

v= <r + S,2Vr = ~+~++$+%+~)
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where

and

The functions, R~, used in Vq are defined by

● (11-7)

.

.

I
.

.
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and

(II-8)

The boundary conditions are given, in the uncoupled case, by

and in the coupled case, by the matrix equation,

(II-9)

By varying parameters in the Boundary Condition Model, Lemon and

Feshbach were able to define different cases which satisfied the theo-

retical requirements. In these calculations we consider mainly cases 1

and 15, which correspond to deuteron D-state fractions of 4.60% and 7.55%,

respectively. The parameters and constants defining these two cases are

given in Table III, with the values for case 15 given in parentheses. The

values of p and M are determined by the process considered. A natural
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Table III

Parameters of the Boundary Condition Model Case 1 (15)

92 = (992 = 14.94 (14.95) A= 0.9343 (0.9338)

c= 0.745 (0.755) r = o.51373 p-1
o

= 135.OMeV
.

‘P
PI = 137.98

‘o
= 139.0

M(PP) = 938.2 M(np) = 938.8 M(nn) = 939.6

/2 = 0.65

($)2 = 1.3

9;=1

T=l

Uncoupled

f

(f)

Coupled

‘J-1

‘J+l

fJ

T=O

Uncoupled

f

(f)

Coupled

‘J-1

‘J+1

~

9“ = 1.83 = 765.OMeV
‘P

9s = -0.06 mu = 782.8

m = 548.7
n

lsO 3P0 3Pl 1D2 3F3 lGq 3H5

1.8756 510 6.1 4.3 200 175 -4

(460) (6.9) (3.8) (300) (125) (4)

3Pz - 3Fz 3F4 - 3H4

0.352 ( 0.342) 40

20.9 (22.9)

-0.9 (-0.5)

lP1 3D2

-1.38 600

(-1.15)

3s1 - 3DI

0.27057 (81.106)

150 ( 150)

0.3 (-110)

136

-2.07 ( -2.01)

-10.83 (-11.02)

.

.
1F3 3G4 lH5 .

45 195 200

(35) (145) I

3D3 - 3Gs 3G5 - 31~ I

10.7 (11.4) 10

-0.4 (-0.6) 10

6.4 ( 6.2) 10



unit for use in the absorption study is the fermi. Thus, a single core

radius, ro, given in units of inverse pion mass, goes over into three

distinct radii in fermis. Additional constants used are e = 1.60206 x

10-19 coulombs, Ii= 1.05443 x 10-34 joule-seconds and c = 2.99793 x 108

meters per second.

The hyperbolic Bessel functions, KO and Kl, are obtained from poly-

108
nomial approximations.

It is found that use of the stated case 15 parameters gives good

agreement with scattering results, but a very poor value for the deuteron

binding energy. This contrasts markedly with five other BCM cases in

which excellent eigenvalues are obtained. Use of the case 1 values for

g2, A and E together with the case 15 boundary conditions gives the

desired result; these parameters are used to calculate the case 15

deuteron used in the absorption studies.

The Boundary Condition Model at first exhibited sensitivity to the

radial spacing near the core. This was found related to our neglect of

the second-order term in calculating the wave function at r. + E prior

to using

the wave

ing to

the integration technique described in Appendix III; that is,

function at r. + s can be expressed as a Taylor series, accord-

Cf
U()--e)

~’ <
= ‘(@+ %=u(~)+ u(c) +“-”

2! cj.rz
.

(II-1o)

The first derivative is given exactly from the boundary condition. How-

ever, the second derivative is also given exactly in this case from the
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Schr6dinger equation. Inclusion of this second-derivative term in the

calculation significantly reduces sensitivity to the radial spacing.

For the absorption calculations, vacuum polarization and Coulomb

effects are neglected. The wave function inside the core radius, ro,

is taken to be zero. 109 .

.

.

.

I
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APPENDIX III

NUMERICAL SOLUTION OF THE TENSOR-COUPLED SCHRODINGER EQUATIONS

Nucleon-nucleon potentials containing tensor terms lead in general

to coupled differential equations of the form,

and

&+h(r)u+g(t-)u= o .
&2

(III-1)

Here u(r) and w(r) are wave functions of orbital angular momentum number,

L =JT1. In this appendix we will use abbreviations typified by

(III-2)

The quantities, u+ and u-, may be expanded in Taylor series about r to give

139



Adding the two

six and higher

be written as

expressions in Eq. (111-3) and dropping all terms of order

gives an expression correct to fifth order in c. This can

E4 4
U++ U-”2U =e2u2 +-# . (III-4)

An exact expression for the second derivative term, U2, is given by Eq.

(III-I). The fourth derivative term, UQ, may be obtained by a Taylor

series expansion of the second derivative function, U2, about r. This

result is:

4
{

E2 &_...
u = fzz )

U+ztuz-d -~ . (III-5)

By dropping terms of order six and higher and making use of the definition

for U2 in Eq. (III-l), an approximation for U4 can be written as

Substituting Eq. (III-6) and the first expression in Eq. (III-1) into Eq.

(III-4) and rearranging gives the result,

.

.

.

.
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From the syrmnetryof Eq. (111-1) a similar result is obtained in w:

Now, assuming an outward integration, Eq. (III-8) is solved for w+, and

the result substituted into Eq. (III-7), which upon rearrangement becomes

(III-9)

Useful abbreviations are now seen to be

u
E2 h“+z ‘

F =/+~2$

and

G=—’ ;9” (III-1o)
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Equations (III-9) and (111-8) are rewritten using these abbreviations to

give the final result,

L

{
+ 12H+ - JO(FH+ - G+G)] u -{i2 G+- /O(6+H - GH+~j~j

and

(III-11)

The expressions in Eq. (111-11) are meant to be solved sequentially,

first for u+ and then for w+, and represent a fifth-order, three-point

solution of Eq. (III-l). The functions, F, G and H, are easily calculable

given a potential function. The uncoupled scattering case is solved

using the degenerate form of Eq. (111-11), as is the Klein-Gordon equation

used for the pion optical model in Chapter 4. In the latter case, the

function, f, and therefore the wave function, u, are complex.

.

.

.

.
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APPENDIX IV

THE DEUTERON EIGENYALUE

Deuteron wave functions are obtained from phenomenological potentials

by solving Schrddinger’s equation while systematically varying the binding

energy until the boundary conditions are satisfied. The outer boundary

conditions for

potential as

U(r> -

the S- and D-orbitals can be expressed outside the nuclear

&-

and

The inner boundary conditions depend on the potential model chosen.

wave function vanishes at r. in hard-core models such as the Hamada-

Johnston, while the Boundary Condition Model derives its name from a

(IV-1)

The

matrix logarithmic-derivative

Two different techniques

values, The first is limited

representation.

were developed to search for energy eigen-

to hard-core models. An initial guess is

made for the eigenvalue, and two independent ratios of the boundary con-

ditions expressed in Eq. (IV-I) are chosen. The differential equations

are numerically integrated inward to obtain two linearly independent

solutions, (Ul,Wl) and (U2,W2). These wave functions are temporarily

normalized. A function, defined by

(IV-2)

143



is then calculated, with the coefficient, a, chosen to minimize the value

of (s. The approach is then to drive 6 to zero by a systematic variation

of the binding energy, thus satisfying the inner boundary conditions.

Following convergence to CS< s’,the linear combination,

(up’-’ = (U,,q) -f-d?.)o,

is taken and normalized according to

co

The D-state fraction is then given by

00

o

(IV-3)

(IV-4)

(IV-5)

while an experimentally better-known quantity, the quadruple moment, is

obtained from

J
o

(IV-6)

.

.

.

.

A second and more general technique involves outward integration

beginning with two independently chosen sets of inner boundary conditions.
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At some radius beyond the nuclear potential, the two trial wave functions,

(U~,ti) and (U2,U)2),can each be written as a linear c~bination of

increasing (f~) and decreasing (f;) exponential functions. The total

wave function is in turn made up of a linear combination of the two trial

wave functions. We therefore have

or, rewriting this last expression,

The boundary conditions expressed

increasing exponential components

or equivalently, that

IIq,B,, _*
B2, B22 - “

in Eq. (IV-1) will be satisfied if the

vanish. This requires that

(IV-8)
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Thus the binding energy value is systematically Yaried to drive the

determinant of the B-matrix to zero. The A- and B-matrices are found by

matching the asymptotic forms to the trial wave functions at r and r - c.

Equations (IV-4) through (IV-6) are again applicable.
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APPENDIXV

THE FINAL-STATE WAVE FUNCTION

In this appendix the final state wave function, v;, for the reaction

~+ + d + p + p is obtained. First the nucleon-nucleon scattering process

is considered, then symmetrization is used to take into account the iden-

tity of the two protons, and finally the desired result is obtained by

process equivalent to time reversal.

The basis used in the solution of the Schr6dinger equation is the

spin-angle function, &L~. Theexpansion of thewave function is done

helicity states; that is, angular momentum projections are measured in

a

in

the direction of the outgoing momentum vector, ~.

centrifugal barrier is denoted by the subscript, r

the centrifugal term is not negligible but the nut”

The region beyond the

+ m. The region where

ear potential has

essentially vanished is designated by V(r) - 0. Finally, absence of a

subscript indicates a function correct throughout the space.

The scattering wave function for two spin one-half particles in the

absence of interaction may be written as a product of plane wave and spin

function, according to

where the spin function is defined in terms of its components by

x HS/w
M = ~ s,q /w,s2%’.s

M,MZ Sj M“

(v-1)

(v-2)
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In this case we have S1 = Sz = 1/2. The spin-angle function is defined

by the relationship,

By expanding the plane wave into partial waves and making use of the

relation,

we obtain the expression,

The spherical Hankel

Neumann functions by

*

(v-4)

Hf‘{h:(r) +h:(krff: LJ;,.fi~ (2L+I A
MJ~L s M“

(v-5)

functions are given in terms of spherical Bessel and
.

.

h~(kr) = h~(kr) = ~(kr) +~~k(kr) ,

or, in the limit, r +m, by

(V-6)
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(v-7)

In this case Eq. (V-5) can be written as

Therefore the spherical Hankel function, h~ (hi), may be identified with

incoming (outgoing) spherical wave. In the absence of tensor coupling

and for a real Hamiltonian, an asymptotic form for the wave function can

be obtained by inserting a unitary factor to multiply the outgoing

spherical wave. With tensor coupling, however, orbital angular momentum

is not in general conserved, and an incident wave of pure angular momen-

tum, L, may result in several outgoing waves, L’. Thus a correct expres-

sion for the asymptotic wave function must be

an

{

-i(4v=.)TL/’2] M
e

9

+ i(kr- ?TLjz) M

Jls - Sr,,,s e Y)n’s .
(V-9)
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The total angular momentum, J, and component, M, are conserved

absence of external interactions. The spin quantum number, .S,

conserved. For the triplet (S = 1) case, possible values of L’

in the

is assumed

include

J- l,JandJ+l. If the nuclear force conserves parity, however, only

the J - 1 and J + 1 orbitals may be coupled. Therefore, both the triplet

with L = J and the singlet (S = O) states are uncoupled (the tensor oper-

ator even vanishes on the singlet state), and a component of either can

be written simply as

e ~z ,L+/
+ =

‘MLS P+CQ
~ (2L+I) A

{

-@t--K@

![ ]J
+i(~~-z~’>~M ~ M

e -s’6? LO
JLS “

(v-lo]
SM

The unitary factor, SL, is written as

2iSL
~ =(s, (V-n)

where 6L is the phase shift. We desire the wave function, UL, to be real

and normalized according to the asymptotic relationship,

Uk(r) = AA?z(k-77L/2+~) . (V-12)
r–pa

Then the uncoupled wave function correct over all space may be written as

+
Zti

[1

tiak i~ JM UL6-) ~= — 2L+I)L e ~o ~//( Y (V-13)
Jtiks SM J&s “

.

.

.

.
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In pri3Ct.i Ce, a rWt’EriCi31 fUnCti On, ;L, is calculated by inteqratinq

Schr6dinger’s equation using the method presented in Appendix III. The

desired wave function, UL, is obtained by matching the calculated function

to the asymptotic form. For increased accuracy, this matching is done

within the centrifugal barrier. In this region, the asymptotic form

analogous to Eq. (V-12) is

(V-14)

The phase shift is then determined from the relationship,

With the phase shift known, the normalization constant relating UL and ~L

is obtained directly from Eq. (V-14).

The remaining triplet L = J f 1 case involves solution of coupled

differential equations. The asymptotic form is contained within Eq. (V-9)

and can be written, for a particular value of J, as

/

-i(’kr - V(S-f)/Z)
/9

+i(jb-- fl[T-t)/2> M
a’e – (q,u’+ Sab’) e JJ-II

{

I -i(kr- n(J+f)/2)
+ he ]9+i(kr-7@+N2) M

- (~,2a’+S~b’) e ITcF+J1 >
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where

and

(V-16)

This asymptotic form could be used directly for matching and normaliza-

tion; however, the resulting function would be complex, and what is even

more objectionable, dependent upon the projection, M, through the Clebsch-

Gordan

A

define

coefficients.

more useful parameterization is that of Blatt and Biedenharn, 110
who

eigenstates of scattering for which the ratio of outgoing spherical

waves equals the ratio of incoming spherical waves. Such states are

characterized by the absence of mixing of partial waves, and hence by an

equivalent phase shift for each. The two partial waves associated with

L = _7T_ 1 in Eq. (V-16) may be written, respectively, as

-i (kr- v(J-f)iZ] t i(kr- ro-w
u = Ale -qe

r+ 00

and

.

.

●

✎
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where

q = S,, A, + S,zAt

and

q = S&A, + Szz& . (V-17)

The S-matrix must be symmetric and unitary, and can be expressed as

s=

In this expression, u and 6 are the eigenstate phase shifts, and CJ

is commonly referred to as the mixing parameter. The previously given

definition of an eigenstate evidently requires either that

or that

A2 = -A, co@

<yielding, respectively,

or

(V-19)
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Making use of Eqs. (V-17), (V-18) and (V-19), the eigenstate wave func-

tions are defined to be

and

A linear combination of these eigenstate wave functions is now

required to satisfy Eq. (V-17). Firstwe consider an incident spherical

waveoff.=J-l. From Eqs. (V-17) and (V-18), the resulting wave

functions must be

Similarly, for incident wave of L = J + 1, the wave functions are

(V-22)
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These are then the required results, once normalization is provided by Eq.

(v-16). The wave function is a linear combination of Eqs. (V-21) and

(V-22); in terms of theeigenstate results ofEq. (V-20) it is given by

There remains the detail of the calculation of U, B, ST and the
2

eigenstate wave functions. In the presence of the centrifugal’

the a eigenstate functions can be written as

and

barrier,

. (V-24)

Using two different sets of boundary conditions, two linearly
.-

independent functions, (U1,W1) and (~2,~z), are obtained by integration

of the Schrbdinger equation. A linear combination of the two solutions

is taken and matched to (Ua,Wa) at an outer radius, r, and r - E. The

four resulting equations which contain four unknowns are
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A solution to these equations is

which results in two expressions

These expressions are

found by elimination of c1 and c2,

involving the tangents of a and Cj.

.

.

●

✎



*

QJ =

(24 =

a5 =

a.. =

a7 “

and

Equating the two expressions for Sj yields a quadratic in the tangent of

a, which is given by

where

ad = a2u, - a4a= )

h = ZZIQ*+ L2207 -Q.dQ6 -Q4Q&d

and

(V-27)



The apparent ambiguity of this equation is resolyed when it is remem-

bered that the mixing parameter normalization of the a and B eigenstates

is arbitrary; that is, we could have written the 6 eigenstate using

cosc~ and sinc~ instead of -sinsJ and COSSJ, where s> = SJ - ~/2. There-

fore the roots of Eq. (V-27) give both a and 6.

The usefulness of the eigenstate parameterization for numerical work

is evident; however, experimental values are usually quoted using one of

several other systems. An identification is easily made with the U-matrix

formalisml11 through the relations,

0- + 6+ = (z+ >P
q e- - @+)= G9d2t @74-)6)

and

P = &2t@a4x-/6) . (V-28)

Similarly, the nuclear bar parameters112 are obtained in turn from the

relations,

and

-d&tZz = .P

I

(V-29)

It is yet necessary to symmetrize the wave functions, taking into

account that the spin one-half particles in the final state are identical,
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and thus dynamically equivalent. The symmetrized wave function is

obtained from the unsymmetrized function by taking113

$ =@-x?+,

where the symmetrization operator is

The permutation operator is easily shown to give

(22$%) x~%= F-m%wx~~,

(V-30)

(V-31)

(V-32)

while for Fermi-Dirac particles, 6%2=-1.

Finally, the wave function must be obtained for the inverse of the

114
scattering process. This may be obtained formally through the expression,

(v-33)

where T is the time reversal operator. The same result may be obtained

in a more straightforward manner by considering Eq. (V-IO) and the inverse

process. In this case, it is the incoming spherical wave which must be

modified by a phase change. Equation (V-1O) now should be written as
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The Schr6dinger equation which we solve, however, is time-independent.
-

To recover the form of

~, + g% .

Eq. (V-12), we simply let

(v-35)

The result for the singlet and triplet uncoupled cases is

4- Z!fi J’
12 .L -isLH‘M u’(~>

= --#2L+I .4 e L o ~ ~=~ (V-36]
J-MLS

6M <

A similar result is found for the coupled triplet case.

With these results, and those required for symnetrization, the wave

function used for the final state becomes, for the singlet and uncoupled

triplet case,

and for the coupled triplet case,
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#- where

fp (2J-I’2L “

H

Jh4

a= J-1 O
JM

and

—-

(Y-38)

L 4.

.

*

,
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APPENDIX VI

EVALUATION OF THE MATRl_X ELEMENT

In this appendix the matrix elements for the nuclear transition

operator defined in Eq. (2-7] are given. The evaluation is carried out

in detail for a typical term, in particular, the p-wave scattering,

s-wave absorption portion of T4. Results are then simply stated for

the remaining angular integrals. These angular integrals, RZ, are

common to the formalisms developed in Chapters 2, 3 and 4. Differences

in the formalisms are limited to the radial integrals, Ii, which are

therefore stated explicitly in the appropriate chapters.

Before the evaluation of this term in the matrix element, some

general results and definitions are stated. The isospin variables in

the transition operator, T, have been left as single-nucleon operators.

Therefore the isospin contribution to the matrix element is obtained by

expanding the initial and final isospin states in the bracket, according

to

The

(VI-1)

choice of overall signs for the pion field components given in Eq.

(1-1) forces use of the definition,
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(VI-2)

The components, -rZ,are the Pauli matrices. The isospin matrix elements

are then easily evaluated using Eq, (VI-1). The particular results

required are

(1,1/?:/0,0>= -1,

0,~1~:l%o>= +I ,

(J,my-o,o>=-J

and

</, //?y/o,o) =+/ , (VI-3)

All other vector operators are written as spherical tensors, which

are understood to be of rank one. The subscript is then free to be used,

wherever convenient, as a nucleon label, while the superscript denotes

the tensor component. The usual spherical tensor definitions are

and

A* = A%. (VI-4)

163



These components can also be written in terms of the spherical har-

monics:

(VI-5)

By analogy with Eq. (VI-4), components of the gradient operator are

given by

and

v“= v? (VI-6)

However, only the z-component will be required due to use of the Wigner-

Eckart theorem.

The dot product of two vectors can be written using tensor com-

ponents as

a-ad

To describe the dot-cross product, we define a

the permutation indices.
115

The definition is

(VI-7)

tensor, cam, in terms of
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6-1-/0 = 6.,-, = <,., = + I ,

(5
/0-/ = 6-,/0 = Eo-,, = - I

and

(vI-8)

otherwise. We note that this tensor can also be written as a Clebsch-

Gordan coefficient:

(VI-9)

By making use of the definitions in Eqs. (VI-4) and (VI-8), it is easy

to show that the vector dot-cross product is given by

———
A.BxC =

&O&
-AZ(S
N/A& %-*8C “

(VI-1O)

It is convenient to define two new symbols to describe certain spin

matrix elements. The first is

(VI-11)
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Equation (YI-11) can be evaluated by defining spin sum and difference

operators and using the ldigner-Eckart theorem directly. As an alterna-

tive, the spin states are expanded into products of single-nucleon

states, and the Wigner-Eckart theorem is applied to each. This result is

(VI-12)

The second matrix element of interest is defined by

(VI-13)

Evaluation of

to obtain Eq.

this term is accomplished by means similar to those used

(VI-12). The result is

(VI-14)

To illustrate the evaluation of the transition operator matrix ele-

ment, a detailed calculation is given for the component involving p-wave

scattering through H“ and s-wave absorption through the Galilean-invariant

term of Ho. This nuclear transition operator is given by part of the last

expression in Eq. (2-7) and will be designated T4’. It can be written as
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With use of Eq. [VI-10), the vector product of nucleon spin and

pion momenta in Eq. (VI-15) can be written in tensor components as

(vI-16)

The nucleon spin-momentum dot product can be expressed, using Eq. (VI-7),

as

so that Eq. (VI-15) involves terms of the form,

(VI-17)
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Use is then made of Eq. (YI-5) to wrtte the tensor component of the

intermediate pion momentum, ~, as a spherical harmonic. The angle is

to be measured from the outgoing proton vector, k’,so that

(VI-19)

With these results, Eq. (VI-15) becomes

We shall now evaluate the integral in Eq. (VI-20). The intermediate-

pion wave function is expanded into partial waves, so that the integral

becomes
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The angular integral implied in d~is obtained from orthonormality of

the spherical harmonics, from which Eq. (VI-21) becomes

This result can now be identified with the intermediate integrals

defined in Eq. (2-24). We have “

The final-state nuclear momentum operator is given by

(VI-24)

Tensor components of this gradient operator are identified by Eq. (VI-6).

We make use of Eqs. (VI-23) and (VI-24) to write the transition operator

in Eq. (VI-20) as
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(VI-25)

The external pion wave functions can be expanded into partial waves

through the relationships,

Then the factor in Eq. (YI-25) which contains the spin operators can be

written

(VI-27)

We need also to express the term, q~/p, in Eq. (YI-25) as a spherical

harmonic; according to Eq. (YI-5), the required relationship is
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(vI-28)

This spherical harmonic must be contracted with that of similar argument

in Eq. (VI-27), This product can be written as

In obtaining this result, we have also made use of the relationship,

Y:(m) = Gf)m’<q@).
I

(VI-30)

The product of two spherical harmonics may be contracted through use of

the expression,

(VI-31)

Equation (VI-29) can therefore be written as
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I

(VI-32)
.

Using this result, the productof q~/v and Eq. (VI-27) can be written

as

(VI-33)

Use has again been made of Eq. (VI-30) in obtaining this result.
.

We desire to retain the quantum numbers, ~ and A, on the spherical
AA

~ and A. From applica-

coefficient, it is seen

harmonic of argument, (q,k’),and therefore interchange the order of

evaluation of the sums on ~ and A with those on

tion of the sum rule to the last Clebsch-Gordan

that only the projection, ~ = ~ + y, can contribute. By the triangle

rule, the sum over A need include only the values, A-1, A and A+l. The

three required zero-projection coupling coefficients are

.

.

.
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H~o
~-lo =

10

HAo
AQ=

10

F2A-1 >

0

and

[+j’‘-i%%. (VI-34)
L -1

Making use of these results, Eq. (VI-33) can then be written as

(VI-35)

The transition operator in Eq. (VI-25) is therefore giyen by
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(VI-36)

*

‘(~,;’),hasIn Eq. (VI-36), the argument of the spherical harmonic,Y ~

been reversed by use of the expression,

fYAm(f2)= ~,) 2’y-y.n) .
I 8

(VI-37)

This spherical harmonic provides the matrix element with a functional

dependence on the angle between either outgoing proton and the incident

pion.

We are now ready to evaluate the matrix element, which will be

called M4’. The initial state wave function is given b,yEq. (2-8), while

the final state function is qiven bv Eq. (2-9). Roth are of the form,

.

.

.

.
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(VI-38)

Both states are thus assumed to be of aood quantum numbers,.J, M, 1-,.S,

T and MT, Final state variables will be designated with prime super-

scripts. The state functions will be written symbolically as

(VI-39)

From Eq. (2-12), the component of the matrix element being calculated is

‘7?74’=< J%’LS’T’h; Y’K’/ T4~ tJML S TM. u K> . (VI-40)

As stated previously in Chapter 2, the integral over the center-of-mass

coordinate, ~, simply yields a delta function in momentum, according to

Total momentum is conseryed in the calculation. The matrix element is

evaluated in the overal l-center-of-mass frame, for which )? = 0.

Evaluation of the isospin matrix element is also straightforward,

using the results in Eq. (VI-3). The isospin contribution from T’”is
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(VI-42)

In performing the integration ouer the relative coordinate, ~, we

obtain the matrix element associated with a single spherical harmonic,
*

Y ;(; ,;). This provides a term with definite functional dependence on

e, the angle between outgoing proton and incident pion. The full matrix

element (for the indicated nuclear states) is then determined by summing

over the quantum number, A. The projection, p, is found to be constrained

by the projections, M and M’. The required sums over these projections

will be performed in the evaluation of the cross section. The matrix

element under consideration can now be written as

(VI-43)

All momentum variables within the bracket in Eq. (VI-43) are measured

with respect to the vector, ~. For brevity, these arguments will be

dropped in subsequent equations.
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Next, the Initial- and final-state vectors are expanded into com-

ponents, according to

(VI-44)

It is then possible to make an identification with the spin matrix ele-

ment defined in Eq. (VI-13). The spin contribution in Eq. (VI-43) is

(VI-45)

Calculation of this term is performed using Eq. (VI-14). With the

above results, Eq. (VI-43) can be written as

+ . z GLJ’yp-’ga +’A+’Y:6U)
A/u
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(VI-46)

The gradient, fir,, is meant to operate on the final nuclear state.

Therefore it is necessary to contract the initial-state orbital angular

momentum with two other spherical harmonics in the operator. This is

accomplished by repetitive use of Eq. (VI-31). The result for the first

bracket in Eq. (VI-46) is

.

(VI-47)

Making use of this relation and Eq. (VI-30), the first bracket in Eq.

(VI-46) can be written as

.

.

●
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It is now possible to make use of the Wigner-Eckart theorem
80 to evaluate

this bracket. The gradient is a spherical tensor of rank one, so that

the general result needed is

The reduced matrix element is determined by evaluating the left-hand

side of this equation for the case, g = ml = WIZ = O. The reduced matrix

element is then given by

(VI-50)

The required matrix element in Eq. (VI-50) can be written in integral

form as

(% O/ V“/ J, O> = /d-~ Y“<”
2 J“

In spherical polar coordinates, the gradient operator is given by

v’ :$+~+g+$+$ ,

(VI-51)

(VI-52)
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so that the component in the z-direction is just

Flaking use of this relation and the identities,116

and

(VI-53)

(VI-54)

the integral in Eq. (VI-51) is finally obtained by orthonormality. The

result is

/
da ~;VoY” =

1,

8
4,441 4(“+’ (L-+) + sz.,+ I)(24 +3) dr J.,t,.,J?&)(k+%!).

(VI-55)

The required Clebsch-Gordan coefficients in Eq. (VI-50) are
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and

~“fj=-4%- (vI-56)

With the results of Eqs. (VI-55) and (VI-56), the reduced matrix element

in Eq. (VI-50) becomes

Use is made of this general result to write Eq. (VI-48) as

(YI-58)
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A similar result is obtained for

in Eq. (VI-46),

Finally, the matrix element

the second bracket (involvim Y~~~)

is obtained by use of Eq. (VI-58] in

Eq. (VI-46). Upon rearrangement, the result is

.
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(VI-59)

With the definition provided in Eq. (2-22), the top line in Eq.

(VI-59) is common to all matrix elements. The remaining factors (in

square brackets) are divided into Clebsch-Gordan products, Ri, and

radial integrals, Ii. In particular, the matrix element defined in

Eq. (VI-59) is represented in this scheme as integrals 21 through 24.

That is, this component of the matrix element can be written as

where Ri and 11 are, of course, also functions of M

183



form that motivates Eqs, {2-13) and (2-22). The projection of the

spherical harmonic in Eq. (2-13) is the ultimate result of angular

momentum conservation.

The radial integrals, Ii, depend on the Lagrangian formalism;

therefore different integrals are defined in Chapters 2, 3 and 4. The

angular coefficients, Ri, are common to all three formalisms, and these

results are summarized below. All coefficients have been found to

satisfy a Wigner-Eckart result involving conservation of angular momentum

for the absorption process. The coefficients have been evaluated numeri-

cally over a large set of quantum numbers without a violation of this

result. Projection and principle sums in the coefficients are stated

explicitly (or omitted); in practice, these were reduced wherever practi-

cal with the sum and triangle rules. The coefficients are:

l?, = + (+A

-.

/ HA-1o
FT ;; ,
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/?5= /?7 = 6-dAR3, R6 = RB = d f?+ ,
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7?
L+l~L’+J)(~+fxZh+3)i ~ ~

/5 M (ZA+1) 2Lr+3 -u

s-u
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and

Rz*=-~

.

(VI-61)

.

●
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APPENDIX VII

THE ANGULAR DISTRIBUTION

The matrix element expressed in Eq. (2-13) is cast as products of

complex coefficients and spherical harmonics.

The differential cross section is proportional

matrix element, or

The exact expression is

. (VII-1)

to the square of the

(vII-2)

Making use of Eq. (VII-l), we get

The product of spherical harmonics can be contracted, yielding

Y;:%) $%?) =

(vII-3)

(VII-4)
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The single spherical harmonic can be written as a Legendre polynomial:

yj~j) = J% f (Cd’ue) . (VII-5)

It is in turn easilv converted to a polynomial in cose through the

relationship, 117

-, 1

g62?@3) = Q4 z Cf’jnm%,
n=o

(vII-6)

With the use of Eqs. (VII-4), (VII-5)

the differential cross section in Eq.

and (VII-6), the expression for

(VII-3) can be written as

This equation expresses the angular distribution as a polynomial in

Cose .
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APPENDIX VIII

PI-NUCLEON FREE SCATTERING AMPLITUDES

The wave function for pi-nucleon scattering is given by

where x is the nucleon spin function and

In this expression, the quantities, f
l,j,x’ are considered

(vIII-1)

(VIII-2)

to be func-

tions of orbital angular momentum, l?, total angular momentum, j = Z *%,

and isospin, t. Identification may be made with the phase shifts through

the relationship,

f
iC$= ~ ‘+t AA$”$~ “

Qdfi (vIII-3)

In Eq. (VIII-2), Tt is a projection operator for isospin, ,t, while A
J3j

is an angular momentum projection operator, given explicitly by

A 1+/ +FF
%,A+fi= 2!+1

(VIII-4)
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The angular momentum operator is easily shown to be

(vIII-5)

An explicit sum over the first two partial waves and all possible

values of j in Eq. (VIII-2) gives the result,

(VIII-6)

!dhen the indicated operations on the Legendre polynomials are carried

out, this equation reduces to

(VIII-7)

In writing Eq. (VIII-7) use has been made of the symbols,

(vIII-8)

Initial and final isospin product-states may be expanded in states of

good total isospin by writing

i

.

f
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(vIII-9)

Finally, the desired expression for the amplitude operator is obtained

from the isospin matrix element,

In particular, results are obtained for the following processes:

+
m +p+l’r +

+ P9

andm++ n+m+ i-n,

(vIII-10)
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