
r -..

..-. 28 —. --
i@=!=————

.—p—

LA-3415 CIC-14REPORT COLLECTION &-

REPRODUCTION
c. 3 COPY :-—

LOS ALAMOS SCIENTIFIC LABORATORY
of the

University of California
LOS ALAMOS ● NEW MEXICO

Computation of Fast Neutron Penetration

in Air by the “Sri-Method”

with Special Emphasis on the Use

of “Multitable-Multigroup Cross Section Sets”

— ——.—

UNITED STATES
ATOMIC ENERGY COMMISSION
CONTRACT W-7405-ENG. 36



,-

~LEGAL NOTICE-—[
This report was prepared as an account of Government sponsored work. Neither the United
States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accu-
racy, completeness, or usefulness of the information contained in tbls report, or that the use
of any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the
use of any information, apparatus, method, or process disclosed in this report.

As used in the above, “person acting on behalf of the Commission” includes any em-

ployee or contractor of the Commission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee of such contractor prepares,
disseminates, or providea access to, any information pursuant to Ids employment or contract
with the Commission, or his employment with such contractor.

This report expresses the opinionsof the author or
authorsand does not necessarilyreflectthe opinions
or views of the Los Alamos ScientificLaboratory.

Printed in USA. Price $3.00. Available from the Clearinghouse for

FederslScientificand TechnicalInformation,NationalBureau ofStandards,
United stdHf Department of Commerce, Springfield, Virginia

*



LA-3415
UC-34, PHYSICS
TID-4500 (45thEd.)

LOS ALAMOS SCIENTIFIC LABORATORY
of the

University of California

LOS ALAMOS ● NEW MEXICO

Report written: August 1965

Report distributed:November 17, 1965

Computation of Fast Neutron Penetration

in Air by the “Sn-Method”

with Special Emphasis on the Use

of “Multitable-Multigroup Cross Section Sets”

by

H. A. Sandmeier
G. E. Hansen
R. B. Lazarus

R. J. Howerton*
I

*Lawrence Radiation Laboratory.

1

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov




.

?,

.

“



ABSTRACT

Much theoretical work has been done in the past to represent the

angular dependence in the scattering source term of the Boltzmann equa-

tion by means of Legendre or other series expansions. However, rela-

tively little work has been done to feed this information into our pres-

ent day Sn codes. The Sri-transportcodes at IASL allow a representation

of anisotro~ in the scattering-sourceterm by means of multitable cross

section sets, and we develop here a formalism to generate these sets.

The numerical evaluation of Sn cross section entries for these multi-

table sets has been computerized by one of us (R.B.L.).

Deep penetration calculations (3000 meters) of high energy neu-

trons in homogeneous air are presented. These calculations used re-

cently evaluated basic cross section data for nitrogen and oxygen from

the LRL-IASL Library (Howertontape).

The variations in the neutron flux due to different approximations

are discussed as are also the expected variations in the flux due to in-

accuracies in cross section data.

*
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1. INTRODUCTION

The effect of anisotropic elastic scattering upon deep penetration

of high energy neutrons in homogeneous air is exemined. At large dis-

tances (3 - 4 km) considerable discrepancies have been observed in

Monte Carlo calculations of the biological prompt-neutron dose due to

a monoenergetic 14 MeV pint source. Monte Carlo calculations allow an

exact representation of the measured anisotropies but suffer from poor

statistics at large distances.

Sri-transportcodes at LASL allow the insertion of multitable cross

section sets to represent anisotropies in the source term of the Boltz-

mann equation. Much theoretical work has been done in the past to rep-

resent the augular dependence in the source term by means of Legendre

and other series e~sions.

However, relatively little work has been done to feed this infor-

mation into our present day Sn codes. This anisotropy representation

requires multitable cross section sets. Provided that the computer

memory is large enough to carry a sufficient number of space points

to insure a good convergence on the flux and provided that a suffi-

cient number of cross section tables to represent the scattering an-

.
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isotropies is available, we should expect good results from an Sn-

calculation. It is the purpose of this paper to present a consistent

formalism to generate these multitable-multigroup cross section sets.

me solution of the Boltzmann trausport equation by means of Le-

gendre series expansion of both the flux and the anisotropic scatter-

ing source term is the most convenient link with multigroup Sn solu-

tions. For plane geometry, the time Itiependent Boltzmann transport

equation is shown in Eqn. I-1.

a 1 (z)+m@m-l (z)

z 2W1
‘g 1

z
+Zg(O&(z) = ~m,g,%(rn)@m,g,(z)

g

m = 0,1,2...... EXJNI-1

where

Om,g(z) =
f

Om(e,z)dE
g

J

+1
where @m(E,z) = @(E,W,Z)Pm(U)d+A

-1

Zg(m) =
J

@m(E,z)~(E)dE
/1

Om(E,z)dE
g g

zn,g,+g(m) =
L, a’ ~

dE@m(E’,z)~n(E‘-E)
/J

Qm(E’,z)dE~
g’

Where ~n(E ‘-E) =
J

+1
Z(E’-E,K)pn(V)*

-1

10
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On the other hand,

equation solved in

the mathematical form of the multlgroup-multitable

the Sn codes is

IJ + %&, z) =~z (1)
32

~,+g Po(p)oo,g,(z) -t

g’

EQN :[-2

We note that there is only= collision cross section~g in Eqn. 1-2

as opposed to an infinite number of ~g(m) in Eqn. I-1. Here the vari-

able (m) indicates that each collision cross section is averaged with a

different Legendre spectral component Om(E,z). The superscripts (1),

(2) .*...*. (k) for the transfer coefficients inEqn. I-2 characterize

the order of scattering anisotropy. Therefore, ifwe truncate the RHS

of

we

we

Eqn. I-2 at k = 2, we need two tables

need 3 tables; etc.

Since the mathematical form of Eqn.

of cross sections; for k=

I-2 is different from Eqn.

3

I-1,

are confronted with the problem of choosing values for the collision

cross section ~g ad the transfer coefficients~ (1) @ #k)
g’-& g’% “=””” g%

so as to make the solution of these two equations as nesxly equivalent

as possible. These numerical quantities are the only information we are

able to furnish to the Sn machine calculation. In the following we de-

scribe two recipes for obtaining the k-table cross sections a~earing in

Eqn. I-2 as well as two special.cases.

11
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II. ‘EIEORY

The general.ttxueinde~dent ‘Boltzmanntransport equation is

Equation II-1 states that

O(E,~,~) in the direction

duced (in that direction)

rate of removal (2nd term

The RHS of Eqn. II-1

+ S(E,ti,i?) EQN II-1

the total derivative of the time independent flux

R equals the rate at which neutrons =e intro-

represented by the RHS of Eqn. 11-1, less the

LHS) by collision.

contains two source terms, the first or homo-

geneous term being a linear function of the flux and the second or in-

homogeneous term S(E,~,i?)being independent of the flux. In neutron

penetration problems, the hcxnogeneousterm
JJ

Q(E’,ti’,fi~(E%E,@q?~’@’
E! @

can be decomposed into contributions from (a) elastic scattering (n,n);

(b) inelastic scatteriu (n,n’), (n,2n), etc.; and (c) fission. The gen-

eralized macroscopic differential scattering cross section x(E’+E,k?),

therefore, includes all productive events such as (n,n’), (n,2n) fission,

etc. This cross section depends on energy E and direction @of the

.

.
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“emitted” neutrons as well as on Et and @ of the “incident” neutrons.

For simplicity, we reduce the variables in the flux to correspond

to one-dimensional.slab geometry

Here v = ~ofi(i.e. cosine of the angle between

and the ~-axis). For this we have to make two

is the plane geometry assumption with variable

tering assumption ewessed in Eqn. II-3.

EQN II-2

the neutron direction R

assumptions. The first

z and secondly, the scat-

Z(E ‘-dz,?’-d?)= Z(E ‘dE,@ ●?) = Z(E’~E,Bo) EQN II-3

Here I.Jo = @*?the cosine of the scattering angle, that is, the angle

between the incident and scattered or emitted neutron direction. I%ysi-

cally this is true for materials in which the scattering does not depend

on the incident direction. For crystalline materials with a distinct

layer structure, this assumption would, however, not be valid at low

neutron energies.

The cosine of

variables} i.e. u!

IJo= w’

the scattering angle V. in II-3 is a function of four

and v and the azimuthal angles q’ and cp.

+ R @ cog ‘~-’)
EQN II-4

We now expand ~(E’A,vo) into spherical harmonics

X(E’~E,Iio)= ~ 2+ Zn(E’~E)Pn(Vo)
n=o

w II-5

13



where

J
+1

~n(E’-@ = 2X X(E ‘-+E,I.Lo)pn(vo)@o
-1

EQN II-6

To permit the integration of the homogeneous

we must express Eqn. 11-5 as f’(v’~v}cp’~cp)by

for Legendre polynomials.

source term in Eqn. 11-1,

using the addition theorem

n (n-m): (m) (dPnbo) = Pnk)pnb’)+ 2 ~ ~pn (l.L)pn (k’)cosm(cp~’)
ml n+m .

In Eqn. II-1 we have to integrate the homogeneous source

= d+J’~’. By integrating Eqn. II-7 overcp’ we note that

will become zero. Therefore,

2a

J
Pn(llo)acp’= 2atPn(lJPn(11’)+ o

0

llQNII-7

term over dfl’

the cosine term

EXJNII-8

We now insert Eqn. 11-5 into Eqn. 11-1 and integrate over &p’ to obtain

JM(E,v,z)
32 +~(E)@(E,P>z) =

= +pJ’’)L~ “ L’o(E’~’’Jz)x& o

x Zn(E’+E)pn(V’)dV’ + S(E,M,Z) JKINII-9

?~inEqn. Ii-9The first term on the IHS of Eqn. II-1 becomes v 3Z

14



.
since v is the cosine of the angle between the neutron direction F and

tie vector in the z-direction. In Eqn. II-9 we have assumed Mat we can

represent the inhomogeneous source S(E,p,z) in the same way as the homo-

geneous source. Consistent with the expansion of the scattering source,

Eqns.11-5 and II-6, we now expand the flux also in a series of polyno-

mials

O(E’,p’,z) =
“ 2n+l

&
~ ~ pn(@)Qn(E’,z)

with

I
+1

Qn(E’,z) = 2X
-1

Similarly we could write the

@(E’,@,z)Pn(@)du’

inhomogeneous source term as

where

Since

multigroup

J-J.

the Inhomogeneous source term plays no role in

cross section representation, we shall however

INJ’J11-10

IX/NII-n

EQN 11-12

E%2N11-13

the multitable-

no longer carry

this term explicitly.
.

.
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Insert Eqn. II-n into Eqn. II-9

~ ?Y3(E, * 2n+l
az
“z) +~(E)@(E,v, z) = ~ ~Pn(w)

{
dE’Xn(E’~E)On(E’,Z)

n=o E’

m 11-14

Multiply Em. 11-14 by Pm(p) and integrate over v

J~ ‘1
az q

I.LPm(IJ)O(E,p, Z)d+.I + Z(E) Ibm(E,Z) =

J
+1

Pn(ll)l?m(ll)dtl/ E, zn(E’aE)Qn(E’,z)dE’ EX?jN11-15
-1

(m+l)PwJt_J + mpm-l(~)

2m+l

J
+1

Pnmm(ll)ql “ &6m
-1

EQN 11-16

EQN 11-17

.

.

we arrive at the standard polynomial representation of the transport

equation

16
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(*l) OW1(E, z)+m@m-l(E,z)

1
+ Z(E)Om(E,Z) =2ml-1 I

Xm(E’~E)Om(E’,Z)dEt
E’

where OJE,z) u
i-l

o(E,~, z)Pm(p)@
1

J
+1

~m(E‘qE) = Z(E’qE,Vo)pm(wo)*o
-1

m= 0$1,2....e

Ex2N11-18

.—

Explicitly,

(m=O)

(m = 1)

.

.
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~ {3
3@ (E,z)+201(E,z)

az 5
1

+ X(E)@2(E,Z) =

● ●

✎ ✎

● ✎

● ✎

We now introduce a multigroup notation, i.e.

●

✎

✎

✎

subdivide the energy range

into groups and integrate Eqn. 11-18 over the g group energy interval.

~
az awl m,g(z) ‘Zzm,g>g(m)@m,g\(’)i- Xg(m)@

6’

m = 0,1,2......

where O a
m,g 1

Om(E,z)dE
g

Xg(m) =
/

Om(E,z)~(E)dE
/J

@m(E,z)dE
6 6

Ex?JJ11-19

.

.

.

.
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Eqn. 11-19 is, of course, still an exact representation of Eqn. II-1,

the original Boltzmann transport equation. The index (m) in~g(m) and

z~,gtag(m) in Eqn. 11-19 refers to the order of the flux @m(E,z) wed

in the cross section averaging scheme.

The mathematical form of the multigroup-multitable transport equa-

tion solved in Sn codes is

EQN 11-20

The superscripts (1) (2).....(k) for the transfer coefficients inEqn.

11-20 characterize the order of scattering anisotro~. Therefore} if

we truncate the RES of Eqn. 11-20 at k = 2 we need *o tables of cross

sections; for k = 3 we need three tables; etc.

The e~sion of Eqn. 11-20 in Legendre Wlynomials gives a set of

equations somwhat different from Eqn. 11-19; nemel.y,

I~ (m’l-l)@wl
az 2W1

‘I

+X4 . ~ @H’l)a
gm,g g, g’+ m,g

; m = 0,1,2...,1-1

a I(m+l)9W1 g+m@
m-1

E Wl
‘1

+Zo o;g m,g =

19

m= k,k+l,.....

W 11-20a



We

as

note that there is only ~ collision cross section ~g in

opposed to an infinite number of ~g(m) in Eqn. 11-19.

Since the mathematical form of Eqn. 11-20a is different

11-19, we are confronted with the problem of choosing values

Eqn. 11-20a

.

frcm Eqn.

for the

collision cross section ~g and the transfer coefficients ~ (1) @
6’*’ 6’*

● ✎ ✎ ✎ ✎ ✎~(k) so as to make the solution of these two equations as nearly
g‘+g

equivalent as possible. These numerical.quantities are the only in-

formation we are able to furnish to the Sn machine calculation. In the

following we describe two recipes for obtaining the k-table cross sec-

tions appearing inEqn. 11-20.

.

.
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~ k-~m “CONSIS- Pk ~“ RECIPE

[ 1Byadding ~g(o)-~g(m) Qm,g(z) to both sides of Eqn. 11-19 we ob-

tain formal agreement with Eqn. 11-20a for m u 0,1,2....k-l under the

identifications

Zg = q(o)

The first error in this identification appears at

the magnitude of

IQN 11-21

m = k, and depends on

~ ~,g~,g(df+g,(z) + [~g(d-~g(k)]@k,g
g’

To the extent that the

identification of Eqn.

kth
harmonic component of the flux is small, the

11-21 iS good.

Note that tbe identification in Eqn. 11-21 is not unique: one

could have, with the same precision, identified ~g with any ~g(m’) for

m’ s k-1, as msy be verified by the above artifice of adding

[ 1~g(m’)-Xg(m) Om,g to both sides of Eqn. 11-19. Our choice of m’ =

has the advantage that the value of the collision cross section~
13

independent of the number of tables k.

o

is

.

.

21



~E “k-~B~” mmm RE%21PE

Here one approximates the generalized scattering cross section as

where

Ek(E’)

and thereby reduces Eqn. 11-19 to

.

.

EQN II-22

m= 0,1,2......(k-1)

{

(k+l)@k+l (z)+k~k-~ ‘z) +x (k)@
a

‘g I
k,g(z) =&+)&$’) “3Z 2k+l 6

a

{

(z)+mOm-l (z)

E 2mtl
‘g /

+~g(m)@m,g(z) =0

m=k+l, k+2,......

IQN 11-19a

Now, byadding [~g(k)-~,g(k)-~g(m)] ~m,g to both sides of Eqns. 11-19a,
.

22



we again obtain formal agreement with Eqns. 11-20a for m = 0,1$2....(k-1)

under the identifications.

.

++1) ~ ~
[IU,gI-+g(m)+~g(k) ‘~,g(k) - Zg(m]6g’gg ‘-)g

EQN II-23

The first error in this identification again appears at m = k, and.de-

pends on the magnitude of

- ~l,gt+g(k)~k,g,(d~,g(k)ok,g(z) g,

This error can be

rnoni.ccomponent of the

associated

forg’ +g

‘cesses)and

purely with

ti har-small even though the magnitude of the k

flux is not. For example, when anisotro~ is

heavy element elastic scattering, ~,g,ag(k) ~ O

(i.e. trivial energy

>,g(k) G ~,=(k).

One point of clarification

In a practical problem we don’t

loss in the anisotropic scattering pro-

msybe made here

know the spectra

etc., which after all are the quantities we want

regarding both recipes.

Qo(E>z)@l(E>z)@Esz)>

to calculate. We are,

however, forced to make assumptions as to how these spectra will look

in order to evaluate the above group cross sections. One could, of

course, follow an iterative procedure by making a guess for the e~lected

spectrum and then computing the group cross sections and thence a first

23



iterative spectrum. But, what is needed for averaging is a fine scale

spectrum within a group,and what is given by calculation is a coarse

group-wise spectrum. An estimate of such fine scale spectra may not

be too difficult save perhaps

For infinite homogeneous

in resonance regions.

media, the energy spectra of various har-

@m-l(E)
monic components of the flux are related by @m(E) - ;a

Z(E)-Zm(E)

simple approximation to this IS Om(E) --@o(E)[~tr(E)l-m.

24
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III. CAICUIATIONOF GROUP-AVERAGED CROSS SJKX?IONB

The vexious group-averaged cross sections defined in the preced-

ing chapters were calculated for nitrogen end o~en from nuclear data

tabulated in the format of R. Howerton’s magnetic tape library of evalu-

ated nuclear data. Almost without exception, Howerton’f3data were used.

These data are of three types:

1. Cross Sections. A sequence of (E,~) pairs for each reaction,

spaced sufficiently closely in energy so that we may assume Z(E) = aEb

between pairs (piece-wiselinear on a log-log basis).

2. Angular Distributions. For a variety of incident neutron

energies, E’, a sequence of (T,u’) pairs giving the angular distribu-

tion of elastic scattering in the center of mass system as a piece-wise

function normalized to

111-1

It was assumed that T(w’,E’) was piece-wise linear in l/E’. Nonelastic

reactions were assumed to be isotropic.

3. For each nonelastic, nonabsorbing reaction, for a variety

25



of incident neutron energies, E’, a sequence of (N,E) pairs giving the

number of secondaries per MeV coming out with energy E, per incident

neutron as a piece-wise linear function normalized to

f

a
N(E’,E)dE = number of secondaries

Jo

The elastic angular distributions

array of numbers

f%

were preprocessed to form the

F
n,t,j =

J

d#T(@,E’j)Pn(P)

-1

where

III-2

III-3

is the laboratory system cosine corresponding to the center of mass co-

sine$ v’. A is the mass of the scatterer in units of the neutron mass.

Pn is the nW Legendre polynomial. j labels the incident energies for

which data were given, with Et > E!
J J-1” U’t = -1 + 2t/T, for

t= 0,1, ...T. T . 100was used. The integrals were evaluated bySimp-

son:s Rule with a step size of l/Tc me qutities

J
w ‘t

Fn,t(E’) = d#T(p’,E~)pn(v)

-1

III-4

.

.
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.

were then found by

J

v ‘2

integral tit

v’~

double linear interpolation on Vf and l/E’. An

f’ J
V’l

waf3replaced by +’ - *’. Note that

-1

‘O,T,j
= 1 and F1,T,J = ~(Etj).

The secondary energy data were preprocessed to form the array of

numbers

where r labels reactions (n,n’), (n,2n), etc. The numbers

Ii&v = J(iElf(E*--)E )

g

III-5

III-6

In principle, as estimate of the flux @(E,v) should come frum some

prevfous approximate solution of the problem of interest, or of some

simil= problem. From this function, one would first calculate the

functions

@m(E) =

For a given set of

J
1

Um’dpm(ll), Ill= 0,1,2,””” 111-7

-1

energy groups, these functions may be replaced by the

normalized, piece-wise-discontinuousfunctions
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where

that,

O:(E) = @m(E)

I

dE’4m(E1)

g

III-8

the integration is over that energy group which embraces E. Note

because of the normalization,

only the relative

within each group—.

In practice,

mate relation

is of importance.

Eq. III-7 was not

@m(E) = Om-l(E)/ati(E)

III-9

of the weight’functions #~ (E)

used. Instead, we used the approxi.-

111-10

suggested by Gordon

gate the effects of

Hansen. It is planned in the near future to investi-

this approxhnation. By O.=(E) is meant
U&

Utotd(E) ‘F@)ue~stic(E). mS relation was used, then, with only

the flux distribution, @o(E), specified ad hoc.——

Let us consider now the collision cross sections

~n,g(m) =

[

dE ~~ (E)Xn(E)

6

111-11

.

where

28
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.

.

.

J
J.

Zn = dlm.mn(ll)
-1

and the transfer coefficients

z Hrl,drn)= m twzn(wm:(w)
g 6’

111-12

111-13

Note that ~(E’-AE)is a neutron ~ oduction cross section; thus, for

example,

J

m

&nJ2n(E~~E) = &n’2n(El ) 111-14

0

The nonelastic contributions

leaving

to these quantities vanish for m ~ O,

nonel.

z (m) =
\

dlo~ (E) ~nOnel” (E)
o,g 6

nonel.

z (m) =
\

@@:(Et)

&
Xr(E’)~(EI)

O,g’-g g’ none . 111-15

The elastic contribution to the collision cross section is

(E)Xel (E)Fn,T(E) 111-16
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The elastic contribution to the transfer coefficients is

el

x
In,g’+g ‘m)= g,

dE’&(E’ )~el(E’)l&E’,AP’)

.

.
111-17

where

# (E*,AP’) I=
n J

dp’T(@Pn(v) 111-18

Aw’(E’,g)

and A~’(Et,g) spans the angular interval within which = inc~ng neu-

tron of lab energy E ‘ scatters elastically into a lab energy, E, which

lies witiin group g. Specifically, the integral is from p’~nto ~’
max’

where

I-l& = min

J? (E’,Av’) is taken
n

The integration

SUmS and prOdUCtS Of

tiona (inclulingthe

H 1//-1, (1 + A)2 Etin - (1 + A2)E’ 2AE’
%

{

+1, (1 + A)2 E
/]

EUUCg- (1 + A2)E’ ~t

111-19

as zero if AL’(E\g) is negative.

formula used for tie energy integrals was that for

functions of the form f(E) = aEb. The cross sec-

calculated Otr) and the flux, O., were assumed to

be of this form between data points. Because ~ (Et,Ap’)has no simple

energy dependence, the integration steps Ei to E; were kept small, for

the elastic case, as long as the scattering out of group was non-zero.
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Iv. MICROSCOPIC CROSS SECTIONS

The cross sections, and associated nuclear data, used in these

calculations are those of the IllL-IASLneutron data tape library.

It is the objective of this section to present the data for nitro-

gen and oxygen with a short description (for eati energ~icQIY ~ssible

reaction) of the methods used in deriti~ the cross section v~ueso

Since there are large energy ranges and a number of energetically

possible reactions which have never been measured, the library is re-

garded, always, as being a current approximation. As new e~rimental .

data become available, they are compared with the values on ta~and

-es in the librery are made where necessary.

Cross sections and other data are presented in a form suitable for

linear-linear interpolation. All angular distributions and energy dis-

tributions of secondaries are presented in a normalized form, such that

the integral over the cosine of the angle or over secondary energy is

unity.

.
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NITROGEN

Iv-1 ● The following reactions have thresholds below 15 MeV.

Reaction

n,y

n,p

nja

n,n’y

n,t

n,d

n,n’p

n,n’d

n,2n

n,n ‘a

Threshold (MeV)

o.

0.

.16

2.47

4.29

5.70

8.09

11.00

11.31

12.43

Iv-2. Total Cross Section

From .025 eV to .001 MeV the values are taken from Reference 1.*

l?rom.001 MeV to .08 MeV, a smooth variance is assumed to connect the

measurements above and below this range. From .08 to .85 MeV the val-

ues are based on the measurements of Reference 2, and from .85 to 2.1

MeV they are based on Reference 3. For the remainder of the energy

range, i.e., from 2.1 to 1.4.6MeV, the data of Reference 4 are used as

the basis of the total.cross sections.

.

*
References for Chapter IV are on we bo.
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IV-3. n,y Cross Section

At .025 eV the value recommended in Reference 5 is used. It is

assumed that the cross section drops generally as l/v to 1 mb at

100 eV, then to zero at 300 eV and above.

IV-4. n,p Cross Section

From a mean of measured values, taken to be 1.78 b at .025

eV, the cross section is assumed to fall as l/v to a minimum of 3..5mb

at 100 KeV. From this minimum it follows in accordance with References 6

and 7 to about 4.1 MeV. From a value of 84 mb at 4.1 MeV to 14.6 MeV,

there sre no measurements, so the cross section is assumed to fall to

25 mb at 4.75 MeV and then to 15 mb at 14.6 MeV. There is probably

resonance structure in this energy range,but with no measmwments it

is assumed that the cross section will fall on the average because of

competing reactions.

IV-5. n,a Cross Section

The threshold of this reaction is at .16 MeV. It does not rise

to a value of 10 mb until about 1.3 MeV. From about 1.4 to 5.0 MeV the

cross section was measured, as reported in Reference 7. From about

5 MeV to 8.5 MeV the measurement included the n;t reaction as well as

the n,a reaction. For a limited range (5.75 to 8.25 MeV) the n,t re-

action was differentiated and reported. It was about an order of magni-

tude lower than the n,a reaction. The n,t reaction was lumped with the
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n,a reaction because of the restricted range for which n,t was measured

and its low value. From 8.5 MeV to 14.6 MeV there is only one measure-

ment, Reference 8, at about 14 MeV, done with a cloud chamber. This

measurement was for alpha emission so any n,n’a would be Included. With

the uncertainty associated with this measurement, it was decided to

straight-linethe cross section from a value of 100 mb at 8.5 MeV to

bmb at 14.6 MeV.

IV-6 . n,n’y Cross Section

The measurements of Reference 9 define the cross section to

about 8.o MeV. At 14.1 MeV a measurement (Reference 10) of nonelastic

neutron emission defines the cross section for the sum of 2(n,2n) +

n,n’y + n,n’p + n,n’d + n}nti reactions. Since the only one of these

reactions which has been measured at 14 MeV is the n,2n reaction, the

others are lumped together and called the n,n’y reaction, for conven-

ience. The value at 8.o MeV is connected smoothly to the value at

14.1 MeV.

IV-7. n,t Cross Section

The n,t cross section is lumped with the n,czcross section as

described above.

.

Iv-8 . n,d Cross Section

This reaction has not been measured. It is felt from systematic
.
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that it is probably of the order of 10 to 20 mb;and, consequently,

little is lost by ignoring it, as has been done here.

m-g . n,n’p; n,n’d; n,n’a Cross Sections

These reactions have not been measured aud consequently are

lumped with the n,n’y as described above.

IV-10. n,2n Cross Section

Inmost recent data, Reference 5, a value of 8mb at 14.6 MeV

is reported. We have used an older value of 5.1 mb,but the difference

is within the uncertainty of the total nonelastic.

rv-11. Elastic Cross Section

In general, this cross section was derived by subtracting ‘the

nonelastic cross section from the total with the results checked against

the integrated elastic reported in Reference 5. In two cases these did

not sgree. Both times, the difficulty was resolved in favor of the sub-

tractive process.

IV-12. Elastic Angular Distributions

These are presented in normalized form such that the integral of

the angular distribution is unity. The data, from which the angular

distributions are derived, are those presented in Reference 11.
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IV-13. n,n’y and n,2n Angular Distributions

These are assumed isotropic in the center of mass system.

IV-14. n,n’y and n,2n Energy Distributions for Secondaries

At 14.0 MeV these are derived from Reference 10. Below 14.0

MeV, the values are guessed, taking into account appropriate level

schemes.

.

.

.
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OxY#lm

IV-13 , The following reactions have thresholds below 15 MeV.

Reaction Threshold (MeV)

n,y o.

nsa 2.35

n,n’y 6.43

n,n ‘a 7.60

n,p 10.22

n,d 10.51

n,n’p X2.88

Iv-~6. Total Cross Section

The total cross section is essentially the same as that presented

in References 1 and 5. Below one KeV the values of Reference 1 were used.

Between 1 KeV and 14.6 MeV the data points in the IRL tape library of

experimental cross sections were plotted mechanically

from which

from which

References

points were chosen for this presentation.

the experimental points were taken are the

land5.

and a curve drawn,

The references

same as those of

IV-17. n,y Cross Section

This cross section is less than 0.2 mb at .025 eV and was ignored

for the purpse of these calculations since it may be assumed to be non-
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rising with increasing energy.

IV-18. n,a Cross Section

This cross section is measured to be not greater than 4 mb at

3.65 MeV (Reference1.2). It is therefore assumed to have an effective

threshold at 3.6 MeV. From 2.6 to 9.0 MeV, the data of References 1.2,

13, 14 are used. Worn 9.0 to 14.6 MeV the cross section is assumed

constant at 80 mb. Although there are surely resonances in this re-

gion, there have been no measurements;and the 80 mb value is a hopeful

attempt to present an average in this region.

IV-19. n,n’y Cross Section

The values used here generally follow the measurements of Ref-

erence 9, up to 9.5 MeV. I%om 9.5 to 14.6 MeV the values are inter-

polated smoothly to tie into the ~ mb value reported in Reference 15.

IV-20. n,n’a and n,n’p Cross Sections

These cross sections are assumed to be included in the n,n’y

cross section. They have not been measured.

.

IV-21. n,p Cross Section

This cross section has been well.measur~and the values used

here are derived from the measurements reported in Reference 5.
.

38



IV-22. n,d Cross Section

This reaction has not been measured and is ignored here. It is

possible that it could have a 10 to 20 mb cross section at 14.6 MeV,

which would still be within the uncertainty of tie total absorption

cross section at this energy.

rv-23. Elastic Cross Section

This cross section is derived by subtraction of the sum of the

nonelastic cross sections from the total.

Iv-24. Elastic Angular Distributions

These are presented in normalized fozm such that the integral

of the angular distribution is unity. The data from which the angular

distributions are derived are those presented in Reference 11.

Iv-25. n,n’y Angular Distribution

Assumed isotropic for lack of data.

IV-26. n,n’y Energy Distribution of Secondaries

These are derived from consideration of the O
16

level scheme.
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v. NUMERICAL EVACUATION OF MUUTIGROUP

141CROSCOl?ICCROSS SECTION SETS FOR

Air Data

1.22 grsm/liter

.

nitrogen 79$

oqfgen 21$

MULTITABLE

SEA LEVEL AIR

sea level air

normal day 19C

4.024 X 10-5

1.070 )( 10-5

Section V-1 of this chapter reviews briefly the

x ~024
nuclei/cc

x 1024 nuclei/cc

way in which vari-

ous partial cross sections contribute to the collision and generalized

scattering cross sections. Section V-2 presents the k-table “consis-

‘ent’’pk-l
recipe (Eqn. 11-21) explicitly for l-table consistent PO to

5-table consistent P4,while Section V-3 gives the corresponding Sn cross

section entries for the k-table “transport” recipe (Eqn. II-24). Sec-

tion V-4 gives two additional recipes which have been used at Los Alsmos,

namely a “l-table weapons transport approximation” which sacrifices ac-

curacy in neutron energy losses through anlsotropic scattering in order

to

‘1

in

6Uarantee POsitiVe in-group scattering cross sections, and a “2-table

approximation (Bell)”which uses flux weighting only.

Numerical.values of the macroscopic cross sections of sea-level air

a 25-group structure, defined in Table V-1, are illustrated in Tables
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V-2 through v-6 for the 1, 3, and 5-table transport recipes and for the

5-table consistent P4 recipe. Although group absorption cross sections

do not appear e@icitly in the Sn entries, their values are implied

bythe~gand~~ g-Ogand should be the same for all multitable recipes.

We have listed these implied group absorption cross sections as a con-

venient check of numerical consistency. One may note, in comparing say

the ~g values for 5-table transport vs 5-table consistent computations,

that corresponding entries differ considerably. However, as will be

seen later in Chapter VI, their net implications for neutron penetra-

tion in air are essentially identical.

.
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V-1 An Elaboration on the Cross Sections Entering the Transport Equation

The general time independent Boltzmann transport equation adapted to

Sn notation is shown in Eqn. V-1.

‘E’ ‘~’

+ H @(E’, &)v~f(E’)x(E)dE’d&

E’ ~’

This equation differs from Eqn. II-1 mainly in the “splitting

the

one

and

generalized scattering cross section into two components.

EQN v-1

up” of

The first

represents all neutrons born by scattering events excluding fission,

the second term expresses explicitly the contribution due to fission

neutrons born. We have also assumed that the inhomogeneous source

S(E,fi)= O. In this equation,

X(E) = “collision cross section” and experimentally defined by

transmission = e
-~(E)xo

One often splits Z(E) into prtial reaction cross sections ~p(E)

defined by the

For example

X(E) = ~n’n(E)

probability that a collision result in p is ~pfl.

+ ~n’n’(E) + ~n’y(E) + ~n’p(E) + ~n~2n(E) + ~n>f(E) + ...

.

.
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Z(E ‘~E,~‘“6) = “generalized scattering cross section exclusive of

fission neutron production.”

This same notation is often used to include fission neutrons (as

indeed it was used in Eqn. II-l), but not here. One often splits

X(E ‘+E,?’•~) into partial scattering cross sections representing

the different reaction processes. Thus, if process p results in

Np secondary neutrons with probability distribution in energy and

angle given by Tp(E’,E,~’*fi),then

n,n(E’,E,?V*ti)+ ● 0=00=00+ Xn>n(E*)OIOT

.

.
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V-2

Sri-Inputfor l-Table Consistent P. A~roximation

Sri-Inputfor 2-Table Consistent

Zg = X6(0)

PI Approximation

(g’ 46)

(6: +/3)

p) = ~
gdg

[ 1~,wg(l)+ Zg(o) -Zg(l)

●
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Sri-Inputfor 3-Table Consistent P2 ApproxLmation

Xg = Zg(o)

O,g:dg(o)
~(l) =x
~‘-%

(6’ +6)

~(l) =Zo,wg(o)
Wg

za.zg-
[5 1~(l),+~(1:i3’N-

.



.

,

Sri-Inputfor 4-Table Consistent P3 Approximation

Zg = Zg(o)

~(l)
g’-g= ~o,gldg(o) (6’ 4 g)

@ = ~
g-% o,g4g(o)

[
z =x - ~ ~y+~(l)a g 13’A3‘g ‘g 1

Z(2)
g’-bg = %,gbg (1) (g’ + g)

$2) = ~
g-% [l,gpg(l)+ ~g(d -Zg(l)” 1

E::g=E~,gbg(s) (43’+g)

.#o .E3,wg [
E?g 1

(3)+ Zg(o) -zg(3)

.



Sri-Inputfor ~-Table Consistent P4Appr oximation

Zg = zg(o)

‘+) (o) k’ + 63)
gbg = %,g’dg

‘#) = ~
*6 O,g+g(o)

X(2) \
(1)g’dg = ,g’+g

&) = ~
-g [l,g+g(l)+~g(d-Zg(l)”1

(g’ =g)

Z(4)
gkg = ~j,g’dg (3)

X(4) = ~
g+ [ 1~,g+(3)+ Zg(o) -zg(3)

.J5) q
g’+g = ,i3’-Yx(4)

(6’ +6)

Z(5) .&J4)+ [Zg(o) -zg(4q
6-%
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b

V-3

Sri-Inputfor l-Table Transport Approximation (Isosource Transport)

z~r = Zg(l) - Zl,g(l)

~(l) = ~
gt+g o,&g(o) (6!’+ g)

[
o,g~(o) + $@ - ~l,g(l) - Zg(d

1

[

z .Z - ~ ~Q),+~(l)
a tr

e’?k ‘g ‘g 1

.
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Sri-Inputfor S-Table Transport Approximation

Zg = zg(3) - Z3,8(3)

O,gbg(”)
~(l) = ~ (g’ + g)

g ‘+g

@ = ~
[ 1O,eg(o) + Z%(3) - z3,g(3) - x%(o)

e%

.
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Sri-Inputfor J-Table Transport Approximation

zg=zg(4) -\,g(4)

~(l) =~
gLg O,gbg(”)

@ =x
6+3 [

O,=g(o)+ Z&h) -~,g(4) - X6(0)]

(6’ +(3)

X(2)
(1)g’4g = =1,g’4g (g’ #g)

@ =~

[
~g+g(l)+ ~g(4) -z4,g@) -Zg(l)g-% ) 1

Z(3)
gLg = =2,g’4g(2) (g’ #g)

2,g4g@)+[~g(4) -X4,6(4) -xg(2)]
X(3) =x

W6

X(4)
gbg = ~3,g’4g(3) (g’ +g)

~(h) =~
%-% [S,g+g(s)+ ~g(4) -\jg(h) -zg(3) 1



Sri-Inputfor S-Table Transport Approximation

z==xg(5) -z5,g(5)

p) =~
O,gbg(o) k’ +6)g LOg

@ = ~
[ 1~,g+g(o)+ zJ5) -z5,g(5) -ZJo)

g-%

#) =x
6 ‘-6 I,g,.qp k’ #g)

@ = ~
6-W ~,wg(l) + [~g(5) - X5,6(5) - Zg(l)]

Z(4) =x
6’-% S,gbg(s) k’ + 6)

z:= ~,&g(3) + pg(5) - z5,g(5) - zg(3)]

●

X(5) \ (4) (g’ +6)gbg = ,g’-bg

d5)= q,=(4)+ [xg(5) - X5,6(5) - zg(4)]
&g
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v-4

Sri-Inputfor l-Table Weapons Transport Approximation

Zg =Zg(o) -Zl,g(o)

O,g’-g(o) -~,gt+g(o)
#) =~
g‘%

@ = ~
g-%

~,g+g(o) -z I,g+p

Sri-Inputfor 2-Table Pl Approximation (Bell)

Eg= Xg(o)

~(l)
g’-og= ~o,g’4g(o)

@ = ~
IR$ O,g+p

(%’ +g)

(/3’ +i3)

k’ +g)
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TABLE V-2

MACROSCOPIC CROSS SECTIONS OF AIR lKIR1-TAME TRANSFORT COMPUTATION*

1

13 Za Eg ~(l) ‘y.)
Wg g~g+l

1 4.06 -6 5.000 -5 3.775 -6 1.349 -5

2 5015 -6 4.701 -5 ~ .482 -5 9.515 -5

3 7.69 -6 59576 -5 2.216 -5 2.291 -5

4 1.47 -5 7.590 -5 3.219 -5 2.877 -5

‘5 8.34 -6 6.523 -5 3.586 -5 2.102 -5

6 3.65 -6 8.4gl -5 5.378 -5 2.748 -5

7 ~.67 -6 g.458 -5 6.587 -5 2.704 -5

8 1.84 -6 9.471 -5 6.652 -5 2.636 -5

9 7.85 -7 1.315 -4 8.010 -5 5.065 -5

10 7.12 -8 1.572 -4 1.116 -4 4.557 -5

11 6.04 -8 1.692 -4 2.243 -4 4.480 -5

12 6.04 -8 1.860 -4 1.265 -4 5.947 -5

13 ‘6.48 -8 2.242 -4 1.g46 -4 2.958 -5

14 8.94 -8 2.550 -4 2.216 -4 3.328 -y

15 ~.62 -7 2.822 -4 2.452 -4 3.68~ -5

~6 2.89 -7 3.232 -4 2.8o1 -4 4.286 -5

17 5.12 -7 3.686 -4 3.201 -4 4.790 -5

~8 8.95 -7 4.003 -4 3.486 -4 5.079 -5

19 1.62 -6 4.162 -4 3.625 -4 5.214 -5

20 2.89 -6 4.242 -4 3.687 -4 5.261 -5

21 5.12 -6 4.317 -4 3.731 -4 5.352 -5

22 9.11 -6 4.396 -4 3.769 -4 5.357 -5

23 1.62 -5 4.451 -4 3.756 -4 5.332 -5

24 4.46 -5 4.838 -4 4.121 -4 2.712 -5

25 7.43 -5 5.362 -4 4.619 -4 0

*See Table v-6 for additional ~ (1)
.Jl)

l&Y&2’ 13-VN3’
. . . . associated with the

isotropic inelastic and n,2n processes which are common to the first
table of all multitable sets.
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VI. FAST NEUTRON PENETRATION IN SEA LEVEL AIR

In order to illustrate the relative accuracies of the various

multitable-multigroup cross section sets, we chose the test problem

of a 1000 meter radius smere of sea level air containing a unit group

1 neutron source distributed over a central sphere of 10 meter radius.

Twenw five group flux distributions were then computed by Sn, in order

n . 16, for -l multitable cross section recipes listed in Chapter V.

Tables VI-l through VI-3 listthe computedtotalfluxesat 110, 525,

and 825 meters. The dependence of

recipes is most pronounced for the

puted group 1 fluxes at 825 meters

computed group fluxes on multitable

top group. Figure VI-1 graphs com-

against table length. Here it may

be seen that all computed fluxes, save those of l-table consistent Po,

agree with the

within lU$; if

putations, the

the historical

presumably most accurate 5-table transport values to

one further excludes &and s-table consistent PK-l com-

sgreements are within %. Specifically one sees that

l-table transport approximation furnishes a relatively

good computational basis for neutron penetration in air (of course one

should not assume canparable accuracy of the l-table transport approxi-

mation for all neutron penetration problems).

All computations of the above test problem were based on the same

microscopic cross section data. The uncertainty in, say, the computed
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value of group 1 flux at a large distance from the source due to uncer-

tainty in the microscopic cross section data may be estimated from the

asymptotic flux solution @l N e
/

-%’ R which implies bO1/I?l= (ER )bK1/~.

Qualitatively, ‘At?uncertainty5~/K1 in the propagation number Kl is

equal to the uncertainty 50/cJin the group 1 microscopic cross sections.

For sea level air, ~ s O .oo6/meter,and thus

1 cross sections reflects already at R = 1000

in group 1 flux.

a 1$ uncertainty in group

meters a 6?3uncertainty

The bases for our final numerical evaluations of neutron penetra-

tion in air were chosen as 1) a 3000meterradiussphereof sea level

air with a unit group 1 neutron source distributed over a central sphere

of 10 meter radius, 2) the 5 table transport-2~ group cross section set,

and 3) Sn computation in order n = 16 and with 170 spacepoints. This

“problem” essentially exhausts the capacity of the Los Alamos

computer,and indeed this was our intention. Figures

histogrammed flux spectra computed at 110, 525, 825,

Figures VI-4 and VI-5 show the spatial dependence of

tron fluxes out to 3000meters.

VI-2 snd

and 1825

Stretch

VI-3 give

meters.

the computed neu-

61



..

62



.

—

—EEF
!M
l

..—

63



.

*.



.

.

3.2

2.8

2.4

2.0

1.6

1.2

0.8

0.4

o“

I I
—

—

.

—

—

—

—

—

.

K-TABLE TRANSPORT

/

//K - TABLE CONSISTENT P~-l

I I I
I 2 3 4 5 6 7

TABLE LENGTH ~

Fig. VI-1. Neutron flux gp 1 (12-14 MeV) in sea level air at R = 825
meters due to spherical volume source R = 10 meters, 1 neu-
tron gp 1 (12-14 MeV). Comparison of different multitable
approximateens.
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