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ABSTRACT

A numerical and analytical study is given of the effects of trun-
cation errors for various differencing schemes in Eulerian hydrodynamics.
Space truncation errors are studied for a conventional second
order time scheme. Correlations can be made between the analytical

theory and the numerical calculations.
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INTRODUCTION

We desire to give some idea of the effects of truncation errors re-
sulting from the finite differencing of the hydrodynamic equations in a
fixed Eulerian mesh of one space dimension. The Eulerian form of the
hydrodynamic equations will be used, as in a previous reportj in conser-
vative differential and difference form. A fixed mesh in plane coordi-
nates is assumed. Each cell of the mesh has a length of dx. The cells
are numbered from left (i = 1) to right (i = iM). Given the mesh at
some time and with proper boundary conditions, the usual problem is to
carry the values of the quantities stored for each mesh point forward
in time explicitly to a small time 5t later. This numerical method is
for compressible flow in the presence of shocks. The IBM Electronic
Data Processing Machine, Type 7090, was used for the numerical compu-
tations.

The conservative differential form of the hydrodynamic equations in

one dimension is given by:

2-- % 2
2
agf;V) _ _op gxov ) (2)



aézE) _ _ dpv + pvE) (3)
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where p is the density, v is the material velocity, p is the pressure, and
E is the total energy per unit mass. E is the sum of the internal energy
per unit mass (éﬁ and the kinetic energy per unit mass, i.e., E = é?+ % v2.
The extension to two dtmensions is indicated elsewhere.1 A polytropic gas
is assumed (with 7 = 5/3) in the mmerical calculations. Thus p = (7 - 1)céf
and 02 = y(y - 1)5; where ¢ is the sound speed.

Values of Pss Vi and é;.are stored and will be considered as the
values of p, v, and é; respectively, at the center of the ith cell of the
mesh. Strictly speaking, the product of Py and the volume of the ith cell
is the mass in the ith cell., The products of vi and é; with this mass are

the momentum and energy, respectively, in the ith cell. The conservative

difference forms of equations (1), (2), and (3) are given by

n+1 n 0]

-— i
5t Bx (%)
n+1 n+1 nn 2 2
1 Vi TPy (p + oV )i% (p + pv )i_% 5)
5t % >

n+1_n+1l n z—————"y -(—-—-T
Py Ei - p?Ei pv + pvE), pv + pVE i-%

5% 1;3 (6)

where if n indicates some time t, and n + 1 indicates a time t + 5t (one
time step later). The method of calculating the barred quantities on the
right side of these equations and the resulting truncation errors will be

the subject of this report. For conservation they must be unique, i.e.,
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for example, the number calculated for (°V51+A in the ith cell is to be
2
X . t
used in the (i + 1) B Lell for vai(i+1) 1+ Or, if the left side of the
-2
first cell is the left boundary and the right side of the iMth cell is the

left boundary of the region being studied, then by Eq. (4),

5? pn+1 pn

i TPF3 e e
Q 5t )BX = (QV)1~_2L - (pV)iM'i'%
i=1

i.e., the change in mass of the region each time step is given by the mass
flow in and out of the boundaries in that time step. Similarly, Egs. (5)
and (6) must be made to conserve momentum and energy, respectively. This
report will not discuss the stability of the various differencing schemes,

which may be found elsewhere.2

TRUNCATION ERRORS AND DIFFERENCING SCHEMES

Since the equations are all similar, we will show only the expansion
of Eqs. (1) and (4), i.e., for advancing the density in time. The same

procedure is used for Eqs. (2) and (3). Thus,
SRR (éé)n + §Ei 32é>n + 5t é3é>n coe (7)
Py =Py St/ T 72 2,778 3y +
For an explicit calculation we must evaluate the coefficients of 5t, 6t2,
Stj, etec, from the values of p, v, and.é?which exist at the various mesh

points at time step n. We will truncate (7) after second order (no 6t5

term). The coefficient of 8t is given by Eq. (1), i.e., g% = - b(p;) .

The coefficient of 5t° is given by Eqs. (1) and (2), i.e.,



2 d > > 32 2
o 3 M]3 [2]- . L6 e

Thus, we must calculate the coefficients of dt and 6t2 by the use of
space derivatives. These space derivatives will be calculated by finite
differencing schemes from the values of p, v, and é?at time step n
which are given at the various mesh centers. Any finite difference
scheme for the space derivatives will be accurate only to some order
in ®x, i.e., will have truncation errors.

We will use the following methods of space differencing. Iet §£
be a function of x which we desire to approximate by some scheme of

finite differencing, using the values of f at various mesh points;

we want

Bx
to approach (5?> within some order (of truncation) in 8x. In this re-
port, of course, f may be p, v, éf p,etc. or some combination of these
dependent variables. For differencing we will assume a three point

scheme such that

5T BT AT PV >0
s T
£ = 0 -
143 < 1£ vy = 0 )
= S0 BTt ST if V. <0
\ E'o T

where go = 51 +E, t 55, Vp = vy +V, s and the set (51,52,53) are con-

stants. The only exception to Eq. (8) is that for Vp = 0 and f = p, then
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£, = Pi * Py
i+s 2

V‘I‘ is a number to test the direction of flow. Since, in a three
point scheme, one must have two mesh values on one side of the boundary
between two cells and one mesh value on the other side of this interface,
it is evident that V‘I‘ 1s used to select two mesh values on the side of

the interface from which the hydrodynamic flow is approaching this inter-

face,

Let
2
df " (6 £
! = 5% f. = - ete.
i Kx i, 1 ox i,

and, for V, > O, expand from Eq. (8) as

f _—L[Ef +§.‘f 5x f! 25"2f" 5x3f"'+"’>
iy T ES L0 2&1*"1*’5‘ T

2 3 N
y L 8% e AX o
+ Ej(fi - Bx fi + T fi - ———6— fi + ):I

or, doing the same for fi_%(VT > 0), we have

-t 2 b+t 3k -t
) 2~ 55\ ex® Lu(t2 5) &x (.3___5_>
f1+§’f1+5"f'i( £ >+ 5 fi( i/t ® £ e /7

f

-g, = 2¢ 2 g, + 4t 3 -¢, -8t
_ . 1 3 5x ™ ., (71 }) Ox” L 1 3) vee
sy = 7+ 0 e >+2fi( e A e /"

For V'I‘ < 0, we have

=11~
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E. + 2t 2 E. + L4E 3 E, + 8¢,
£,,1 = £, + Oxf] ! 5>+5x £ 15 5)+5x £ >+

14z i € 2 i i Ey
(10)
€, + € 2 + &5 E, + &
- 2 3 5%~ L4 (22 5 1"
fi-’%‘— fi'*'SXfl!.( go >+ > fi<§ go > x f‘ >+ se e
Equations (9) and (10) give
£, - T3 _ gy 8% g (—51 + 52-.5§3> . 5x2 f...<§1 +E, 7§3>
dx i 2 i EO b i EO
+ 6x5 <~ > 4 oo VT >0
(11)
Bx B 6 i €o
+ 6x5 (\ > 4 oo VT <0

Thus, for our three point scheme for the calculation of f on an inter-
face (fi+%)’ the selection of the three constants (51,52,55) will deter-
mine a differencing scheme and determine the truncation errors. The
terms in Eq. (11) containing 5x, 6x2, 6x5, etc. may all be considered to
be errors in

<?i 1 - fi,%>

ox

as an approximation to fi.

We will consider in this report the types of differencing schemes

given in Table 1.
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Table 1., Type Differencing

Type €, 3 s ES
I 1 1 0 2
II 1 0 0 1
IIT 6 3 -1 8
v 4 1 -1 N
\ 7 4 1 12
VI 3 0 -1 2
VII 5 2 -1 6

Type I gives a linear differencing scheme. Type II indicates that the
value on the boundary is to be taken as the value from the near cell
from which the flow is approaching the interface, Type III results

from a quadratic fit of the three selected mesh values which is eval-
uated at the interface. Type IV is the result of an extrapolation from
the nearest mesh value behind the flow to the interface, using the slope
given by the two outside cells. Type V is the result given by a linear
least squares fit with three data points. Type VI uses the two mesh
values behind the flow for a linear extrapolation to the interface.
Type VII does not seem to have a simple geometrical interpolation. How-
ever, its value as a differencing scheme to reduce the truncation errors

will be shown below, Though there does not seem to be any profitable



reason for doing so, Type VII may be considered as a linear combination

of Type I and Type VI, i.e., for VT >0,

2(; P ‘> . h(fi + fi+1>
_AZh m3tig S
6

is the same as Type VII.

£y

k3

We can now return to the coefficients in Eq. (11) which determine
the truncation errors. Table 2 illuminstes the effect of the £'s on the

truncation errors.

Table 2. Truncation Errors

dx Coefficients 6x2 Coefficient
Type (51’52’53) <i§1 : zi - 3§é> (f§1 - gze: BE?) (51 - ii - 7§é>
I (1,1,0) 0 0 1
iz (1,0,0) -1 +1 1
111 (6,3,-1) 0 0 1/4
v (4,1,-1) 0 0 -1/2
v (T,4,1) -1/2 +1/2 | . 3/2
vi (3,0,-1) 0 0 -2
viz (5,2,-1) 0 0 .0

The fact that Types II and V do not give an accuracy even to order dx may
be noted. In fact, both give the effect of a diffusion term being added

to the differential equations, with Type II giving twice as much diffusion

e



as that given by Type V. This fact and the effect of the errors in the 6x2
terms will be evident in the numerical examples given leater in this paper.

Let us again return to Eq. (7). The coefficient of 6t2 will have a
term involving the second space derivative. Differencing this space de-
rivative in an ordinary conserving manner, i.e., like

Pinn 7P B "By,

P.,. +P - 2p
Bx Bx i+1 i-1 i _pn, 2 e 2
5% = 2 =Py TP Ox o+ (12)

will give accuracy to order dx. This term is then accurate to order
6t26x, i.e.,, third order. In this report, all the numerical examples
used a linear (first order) differencing scheme for the calculation of the
coefficient of the term which is second order in time. The various types
of differencing schemes listed above were used for the calculation of the
coefficient of the 8t term in Eq. (7). Thus, Types II and V give accur-
acy only to order 5t,while Types I, III, IV, and VI give accuracy to order
5tdx. Type VII may give accuracy to order as high as 6t6x2 for this term,
depending on the considerations discussed in the next paragraph.

Because the right side of our hydrodynamic equations are nonlinear
in the dependent variables, there are several ways these terms may be
grouped for differencing. We will discuss two methods of grouping and
designate them as Group A and Group B. By Group A we will mean that
f of Eq. (8) is to be replaced by pv when used to calculate the coeffi-

cient of 8t in Eq. (7), i.e.,

f +

14k T (ov)i+% = (&,PyVy + 6500 1Yy 3pi_1vi_1)/go
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for VT > 0, etc. Group A will thus result in the truncation errors in-

dicated in Table II being valid for

(DV)1+% - (DV)i_%
Bx

as an approximation to

=

Similarly, Group A for the first order time terms means that f of Eq. (8)

i

is replaced by p + ov2 and f is replaced by pv + pvE in Egs. (5) and (6),
respectively. In other words, Group A means that the terms on the right
hand side of the hydrodynamic equations are fitted as a group. By Group
B we will mean that each dependent variable on the right hand side of the
hydrodynemic equations (for coefficient of &t terms) will use Eq. (8) in-

dividually, i.e.,

(0v)y,3 = PyadVaad = (B1Pp * 82Piay + 85Py ) (Bvy + B0y 0+ 85V, /%

for VT > 0, ete, Thus, by Group B one can expand and obtain (for VT > 0)

Py, 1V, 1 = P; 1V -, + &, - 3¢
R r A S i o . Bx " 1 2 3
Bx = pyVi +efvy + 5 [PeVs t V4P s

e e A S

E, - &, + TE (6, - )8, + &) + (&, + 26, )(&, + LE,)
1 2 3 1 2 2 2 2 1 1
x[ 5 ] * 5["1 it °1"i][ 2 > ; ] }
o ~

+ o0
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Using Type VII (5, 2, -1) differencing, one sees that the last term in
. 2
the coefficient of 5x does not vanish. Another instructive example of

Group B is also given by considering spherical geometry. Considering

the divergence in one dimension

[a(rafz o 21‘-]
TxtT

ror
with T =T * dr/2 and Vp > 0, we find
I‘2 1if, o r2 1, 2f ' 2r! -E. + E,_ = 3B\

14kl i-gi-5=f.+___i_+§_1;<fn+ 1>< U el y
r or oxr 2 N1 xy €0
2 " '
,or [f"'<§1 + &, 7§3> . Bfi <§1 + &, 5§3> .3 fi] ' e
6 i 13 g 38 2 ;?

The last term in the coefficient of 6r2 cannot be made to vanish by
any selection of 51, 52, and 53. The advantage to using the Group B

method is that, since pi+%, Vi+%’ and é;+% are calculated once for
each cell and used to calculate all the other terms which are combina-
tions of them, calculation time is saved. However, the numerical ex-
amples given later in this report will indicate that the resulting
truncation errors are not desirable.

For a stagnation region one may note that, if the flow is into a

cell on both interfaces (VT < 0 for fi+% and Vp, > O for fi-%)’

- 1 ES 6 1 %0

and, if the flow is out of a cell on both interfaces (VT > 0 for fi

r\')YH

-17-
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2
f,,1 - fF E, - & 2
__1_'*'_‘2_6).(_:1_’.%: 2.—.2_._5_.6._3 fi +%—f’3+ soe (16)

The result is that the truncation errors are essentially increased by one
order for all the schemes (except Type I) considered in this report.
To summarize the methods discussed above and used in this report, we

note that, for kq. (4),

t 2.1 2.1
Zov5i+%= (o\r)?% - -2-:-; [(p + OV )y " (p + pv )1] ()

The first term on the right is calculated by Group A and Group B for the
various types of differencing. The second term on the right is the

second order time term which is used in this report.

NUMERICAL RESULTS

The numerical solution to a steady shock was used to study the
effects of truncation errors. In front of the shock all the cells con-
‘tained initial values of py = 1.0, v, = O, and Eo = 0. Wita y = 5/3,
the theoretical values behind the shock are p_ = 4.0, v, = 1.0, and
C; = 0.5. The shock was assumed to enter the mesh on the left boundary,
and its progress to the right was calculated as a function of time,

The left interface of the first cell and all mesh values to the left of
this cell, i.e., the left boundary conditions, were assumed to have the

values of ps, v

o and é;. The theoretical shock velocity is 4/3 Ve

The theoretical position of the shock and values of p, v, and é-are

-18-




plotted as straight lines (connecting dots) in the numerical examples

below.

Table 3 gives the "key" to the problems.

Table 3., Key to Problems

Problem Type
Number Differencing Bx Group

1 I (1,1,0) 1 A
101 I (1,1,0) 1 B
2 I (1,0,0) 1 A
102 I (1,0,0) 1 B
3 III (6,3,=1) 1 A
103 III (6,3,~1) 1 B
4 v (%,1,-1) 1 A
104 v (4,1,-1) 1 B
5 v (7,4,1) 1 A
105 v (7,4,1) 1 B
6 vi (3,0,-1) 1 A
106 Vi (3,0,-1) 1 B
7 VII (5,2,-1) 1 A
107 VII (5,2,-1) 1 B
14 I (1,1,0) 1/4 A

(3 Plots)
17 VII (5,2,-1) 1/4 A

(3 Plots)
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A constant value of &t = 0.3 Bx/vs was used for each problem.
Values of 8t from 0.4 &x/v_ to 0.05 Bx/vs made essentially no differ-
ence in the numerical results for the better differencing schemes.
However, Problem 6 is given as an example to illustrate the difficulty

of using a constant dx for all time, i.e., one should use a different

5t = 0.3 st

max

for each cycle, where ‘vmax‘ is the velocity of maximm magnitude which
exists in the mesh at the existing time. Problem 6 is shown at a time
when it has just become unstable. If &t had been calculated for each
cycle in Problem 6 as indicated above, then the problem would have re-
mained stable, but large oscillations would be evident because of the
inaccuracies of the differencing scheme, i.e., due to truncation errors.

Space runs from x = 0 to x = 20,0 for all problems shown.

PROBLEM RESUITS
The density versus x plots for Problems 1-7 and 101-107 and the den~
sity, velocity, and internal energy versus x plots for Problems 14 and 17

are shown on the following pages.
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CONCLUSIONS

The problems show that grouping by Group A definitely gives fewer
truncation errors than by Group B. The exception, of course, is shown
for Type II differencing (one point scheme) where both groupings should
be the same.

A comparison of the theoretically expected truncation errors given
in Table 2 with the results in Problems 1 to 7 (Group A) is enlighten-
ing. That Type II differencing gives about twice the diffusion as that
given by Type V is evident. The effect of a smaller magnitude coeffi-
cient in the 6x2 term for Types III, IV, and VII as compared to Type I
is evident. A similar comparison can be made for the effect of the
second order space term between Types I and VI.

In general, the second order time terms in conjunction with accur-
ate space differencing gives a very fast and accurate differencing scheme.
A look at the density versus x plot of Problem 17 shows the shock
front to be essentially two cells wide. It is suprising that so few
terms in the expansions are necessary to produce this near perfect mov-
ing step function. It should be noted by observation of Eq. (11) and
Table 2 that no viscosity1 (explicit or otherwise) is used to "smear"
the shock and that if any viscous type effects are present, they are

produced by the fourth space derivatives.
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