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ABSTRACT

n a previous puliklcation,LAMS-Z!B5, Cn the Computation of the

Transport of Radiation

tions to the transport

(1962), we obtained finite difference approxima-

equation by the method of characteristics. In

this paper that method

difference equations.

is generalized to

We also propose a

obtain completely conservative

method of frequency discreti-

part of the information ordi-nation which aKLows retention of a large

ruxrilylost if the absorption coefficient is simply averaged. It is

shown that the

I.sxgeor small

difference equations behave correctly in the limit of

absorption coefficient

.
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1. The Method

The transport of photons in a medium which is in local thermody-

namic equilibrium and in which scattering can be neglected is described

by the transport equation:

where N = N(r,t,~,v) is the

= (@ - N)

specific photon

(101)

intensity at the space time

point (r,t) in the direction ~, at the frequency V. B is the Planck

finction

B(T,v) =
$(~v’m -J’

T’= T(r,t) is the temperature of the matter. The absorption

u depends on temperature and frequency. T and N are further

the energy balance equation:

where

-1 )Ndu) dv

coefficient

related by

(1.2)

-5-



~ = material energy density

tit the transport operator be

We will discuss only two cases: the slab,

and the sphere,

lb a+l .v2a
L=-

C3E ‘Nx Y3E

The parsmeter v varies from -1 to 1 and

(1 .3)

(1 .4)

To obtain a difference approximation to the transport equation we

shall treat the lef’tand right sides of (1.1) separately. The require-

ment that the equations be conservative will determine the left side ap-

proximation, and the need for correct limiting behavior will.determine

the right side. This approach was suggested to us by [2].

To obttin an approximate operator ~ for L, we appeal to the method

of discrete ordinates as formulated by Csrlson and Lathrop in [1].

#

.

.
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We urge the reader to consult that report for motivation and details.

Here, we shall only write down the appropriate ~in the notation of [1].

For a given lattice of points (ri,ti,pm), and for any ~ction f(rjt~P)Y

let

Then for the slab,

N - N~ N
1+1 - ‘i

EN= S+:dt +P —
m ‘i+l - ‘i

with auxiliary condition

N +YJ = Ni+l +Ni
S+l s

See [4] for a discussion of the stability of this scheme.

For the sphere

N - Ns
m= s+:At + vm

with auxilisry conditions

(Ai+lNi+l -AiNi)

v

N +N =Ni+l+Ni=Nm++N I
S+l s m.=

where

(1 .6)

am@Nm+L - am-LNmJ
+ Vwm

(107)

(1 .8)
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and the a’s sre non-negative and satis~

al -a 1
m% m= Pm(Ai+l - Al)

Vw
=-

m v

a
+=%+=0

(1 .9)

The cosines Mm are chosen symmetric about zero, and the weights Wm sat-

isfy

It follows from (1.5), (1.7),and (1.9)that

TN= Y(NP - NQ)

(1.10)

(1.11)

where Np and N =e 13nesx combinations of N’s at mesh points, each with
Q

non-negative

iflln>o

Np =

N=
Q

coefficients adding up to one. For example, in the sphere,
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1
v Al+, a ~

Y ‘ZE+ r++
m

1 PAi amL

‘zt +77-+-#
m

Let us now turn to the right side of (1.1). Introduce the char-

acteristic parameter s, where

d_= Q+. .v
ds

Then on any characteristic curve

-~; o ds’

N(s) = NO e +

Let Q be some point in tine(r,p,-t)

along the characteristic through Q

rAs /
Jo (uB- (N)ds = NO e

-j;, u ds”

J

s
UBe da‘

o

space. Let s(Q) = O, and measure off

a positive length As. Then

-&ads \ -JAS a ds’pAs s
-1) + Jo .B e ds

(1.12)

where No is N at Q.

The following approximate form is assumed for u and B:

1-
0

}
O<s+

0(s) =
a ~<s <As
+’

1-
B-+ Ds, O <s< AS

T
B(s) =

B+ + D+(s <s <As-As),+ _ -
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Split the last term of (1.12) into two parts

In the last psrt replace u by a+ and in the first part replace u by u .

(The latter is not quite correct, but any more accurate recipe will lead

to complications.) With the assumed form of B we find that

-a As

J

As -j% dst

[ 1+TzuBe ds=B+ l-e
o

[
As

+D+ ~e
-a+% - ~(1 - e-”+?]

-.- $?

-[

-a As

+B e -e ‘1-aAs -a As

[
As

-T ,

.(

- T -a-
+D -—

- Fe a
e -e 71

Now, in (1.1) we wilILreplace u(B - N) by

. PAS

as ccmputed above. Then

As Y(NP - NQ)= No

It turns out for the

NQ define two points on the

(e

slab

same

(1.13)

)J-1 + aBe ds
o

that the linear combinations in Np and

characteristic and that the distance

.

.
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between these points is Y-l, i.e.

‘Q
= No

As = #

(1.14)

This is not the case for the sphere, but we wilJ nevertheless make this

assumption as an approximation. Thus

.AS As
-sO ads AS

r

-JO 0a9’
Np=NQe + uBe ds (1.15)

The above is

It differs from the

do

the genertized characteristic difference equation.

equation considered in [3] in that Np and NQ me nm

defined so as to conserve photons.

Turning to the problem of frequency discretization, let

N% rvg+lNdv
Jv

~

Then -$; ads

J
N~= ‘g+l NQe

v +l’g+’~As ‘e ‘r o ‘s’”s
g g

Little can be done about the first integral above except to introduce

some mean u’, giving

Ng .
P

N: e
‘e “’ds +L’+’ LAS @e_’:’ “

f3

We propose that the last term in (1.12) be computed

ds”

ds‘ (1.16)

“exactly”, as follows:
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mThe quantities D represent ~j so let

We will.in fact write

1 dT
4

b=——
~T3 d s

Introduce the folkxoing functions

dv

e dvJ%= ‘(T)
As

1[
-U(T)=

?lB As

(

-u(T)*

g2= ~~e
-h’-’ )1dv

-u(T)%

J[
-@)As

g3 = B(T) e -e 1dv
As As

H
-u(T)T

h As
(

-u(T)— -u(T)
2

g4” ~~e
-k’ ‘e 71dV

.5=LZ2E
[ Bdv

Note that these functions depend

tions now tabulated in transport

If in (1.13) we make the

on one more parameter than do the func -

codes.

correspondencee

.

P-+

Qw -
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then (1.16) becomes

~: .

There

g5q+

+ g3(Q)

lf3#) + f3,(p) + q+32(p)

+ $ g4(Q)

still remains the actual specification

(1.17)

of the gk(p)j g@)~

and 5P, ~Q. This till be determined by the requirement that

diffusion approximation for large u, so we leave this point

we obtain a

to the next

section.

The only

we only need to

2K
I

remaining point here is the energy balance equation, but

note that

angle g

is our approximation to

and therefore the energy balance has to be

(1.18)

lowing

change

in the

angle g space-time
cell

We now have a completely conservative difference scheme in the fol-

sense: ~ is a locally conservative difference operator, and the ex-

of energy between the radiation field and the matter as expressed

approximate transport equation is exactly matched by the exchange

of energy in the energy balance equation. A price has been paid for

-13-



this, for we can no longer guwantee that the intensity at each mesh

point is positive, since the auxilkry conditions (1.6) involve an ex-

trapolation. We

the next section

tive intensities

then set to zero

that arises is that

particularly at the

feel this is not serious, because as we shaU see in

we obtain the correct behavior for large u. Any nega-

encountered should be kept during one time step and

before proceeding to the next step. Another problem

2. Limi*ing Forms

our equations may have

center of a sphere.

(a) Thick sphere. This is taken to

-uAsB=O
e

a very poa truncation error}

mean that

at all frequencies. Then from (1.1’7)using one frequency”interval

‘P (2.1)= @) +5p@)

tit f 8t8,ndfor any one of gO~ gl~ &2) gj? and 5g4. Mt p& Pis

and Pm+~be the (r,t,w) points corresponding to Ns, Ni, Nm+~ and let

P;m= (ri,ts,wm).
Y

NOWS Np is a linear combination of N’s at certain diamond points.

For example, we mi~t have

Np=a Na+l+b Ni+l+c N ~
m~

Then we define f(P) in (1.I6) as the ssme Mnear combination, in this

case

f(P) = a f(Ps+l) +bf(Pi+l) i-c f(Pme) (2.2)
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In addition, N satisfies the auxiliary conditions (1.8). If

f( p~+l) = W@,dk)++’:+l,.J + +&J+ +f+l,m-i)l

[ ‘+’ )+<p~+l,.+)+<pt~+)+<pf,.+)l‘(pm+*)=k (pi+l,m#

(2.3)

then f will slso satis~ the auxili~y conditions. It now folJows by in-

duction that

N
S+l

= go(p~+l) +DPS+l
g2(‘s+1) (2.4)

and so on for Ni+,, Mm6.

It is only necessary to arrange that (2.3) hold when e
-uA s

B is

zero. Therefore As canbe held fixed at the value givenby (1.14). The

f(P? 1) will be multiple-valued, the value depending on which cell.1,.-

adjacent to P?
-OAS

1 is being considered, except when e
1,m+=

B= O. The

remaining vsriables are defined as follows:

Let T be given at ce~ centers and integral times, i.e.

T;++

I&

T;= ;(T;~ + ‘;~

Whenever B(T) appears in f(P~ ~~) substitute T; for T. Whenever u
)2

appears substitute

-15-



&[ai-+(Tj
Wherxever5 appears use

+ ‘1+$

one of

()‘:
the following:

Ar

or

J-..3 [@..#.Y+pm+,

‘i

In the above we have used the fact that

5

h (2.5), $

mation.

where

(2.s)

(2.6)

ar4~ is omitted, which will lead to the usual diffusion approxi-

From (2.3) and (2.4) we have

[( )
S+l 4

N
S+l ‘5:$ ‘i+l +

-: } (I.lm&+Mm.+)

(with 2.5)

4

( )1
S+l

‘i (2.7)

.

.

d

.
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‘i+l 1[(,:J+(,:+IY]‘E*F

There is no need to write Nm%, for it drops out of the energy balance.

If we arrange that

Pm = $ (Pm+*

then using (2.7) and

can see that we have

+ Mm-+)

(2.8) with (1.7),(1.10), and (1.18)the reader

an implicit diffusion approximation.

(b) Thin sphere. This is taken to mean that for any ~ction

P(a)$

I
p(u) Bdv=

[
[P(o) + P’(0)u] Bd~

We will not attempt to give the precise limiting form in this case, but

wiIl only indicate

the definitions of

‘P
= o(u)

and therefore that

what is happening. First, it follows from (1.17) and

the ~ that if N(incoming) is zero then

N8, Ni, and Nmeare O(U). Then from (1.11)

2fiVAt ~~Nwm=2fiVAt ~(As)-l (NP-NQ) w
m

w

IJ

As
= 2fiVAt~~s dv aBds + O(a2)

o

Now,
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represents an

w

J
AS

m
Ta ~ dBds

average value of CTB. Admittedly it is not an average

which one would ordinarily choose, but it

the energy balance is

4JCVA% (C?B)aver%e= -
J

*a~e-tim~
cell

which is the correct form.

is a legitimate

a
%~ dtdV

3* solving the Equations

For a given temperature distribution (1.17) and the

.
average. Thus,

auxil.isxycon-

ditions form a linear system that is easily solved. For exsmplej in the

slab let r be the left boundary, ri the right boun&ty. The boundq
‘o 1

conditions will be that N. is given for Em> O, ~i given for pm < 0.
‘o 1

If t is the initial time then N is also given. If we start with the
‘o ‘o

cell (ri ,r
o io+l)’ %.%O+l ) for IJm> ~, in (1.1’7)NQ is known and

(1.1 7) and ( 1.6) determine Ni +,, N~ +,. We continue s~eeping to the
o 0

right until all Ni(pm > O) are computed. A similar sweep from right to

left detenninec sll.Ni(wn <O), and all the N are also nuw known~ so
so+?

the next time cycle could start if the temperatures were correct,

Some sort of iteration is necess~ to obtain the temperature at

the new time t~+l. The following is one possibility. First, in the

functions ~ change variables from v to u = hv/KF. This brings out a

factor T4 in go~ gls and g ~ and a f-tor T3 in
3

~ ~fi g4 which CtinCt!lS

.
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the T~ in the denominator of ~. Each ~ contains a difference of fourth

powers of T. These should be factored into a difference of T’s times a

cubic polynomial. in T. The other T4 should be written as TT3. For the

interval (ri,ri+l) we now have the form

where a, b, c, d,and g still depend on T
S+l

5
, and d depends on N.

2flVAt
11

~Ng~m = D l+A lT?+I+B lTS+;+C
i+= i-~ l-~ i+= ii-~ i+%

angle g

(3.1)

Then

T::i

(s.2)

By linearizing the contribution from the material energy the entire

S+lener~ balance equation can be made tri-diagonal in T .

Let ?be the previous iterate for T . Replace TS+l by !??in (3.1),
S+l

and solve for all the N, and also compute the coefficients A, B, C, D by

accumulating the appropriate sums. Solve the linearized ener~ balance

S+l
equation for T . It is important that (3.1) be computed as it is writ-

ten; otherwise, loss of significance in computing differences of T4

will.cause trouble. The iteration should be repeated until good energy

conservation occurs.

The proposed iteration will work well in thick or near thick prob-

lems. It is liable to be slow in thin problems.

.

.
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