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The system of equations describing the diffusion of radiation

through material is discussed from the point of view of the fommlation

for numerical solution. These equations, which are more general than

the equilibrium diffusion equation, contain terms describing (a) cooling

of material by radiation in optically thin systems, (b) diffusion of

radiation through material with or without energy exchange with the

material, and (c) an approximation to the free streaming of radiation.

Consequently, they are applicable to a much wider range of radiation

transport phenomena than the equilibrium diffusion equation.

The several regions of applicability are examined from the point of

view of the structure of the equations and the frequency dependence.

FhK1.ly, the general non-equilibrium diffusion equations are discussed

regarding appropriate mean absorption coefficients for frequency groups.

Spatial and time dependence of the difference equations are also consid-

ered.
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Introduction

The radiation diffusion equation containing the Rosseland mean

abso~tion coefficient results from several independent approximations

which need not be made simultaneously. The purpose of this report is to

display and discuss the equation resulting from approximation of the

angular dependence of the radiation intensity by two terms of an expan-

sion in Legendre polynomials about the isotropic distribution,

I =10+ I1pl(~) . (1)

In this approximation the radiation energy density E(erg sec/cm3)

-1
is

E=2Yt
J

Idw = 4x1
o’

and the net

-1

radiative flux F(ergs/cm2) is

F

-1.

additional approximationswill be noted subsequently. Inter-The role of

action of the radiation with the material consists of (1) pure absorption

in the LTE approximation for which the absorption coefficient corrected

for induced emission is W~(cm-l) and (2) the Thomson limit of Compton

scattering by free electrons giving a total scattering coefficient

P6 = %/5 r~e(cm-l), where r. = classical electron radius and Ne = free

electron density.
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In the diffusion

(2) of Ref. 1]

~ ~10
+A

FK
ara

and

appruimation the transport equation becomes [Eq.

-.

k(r%l) =w~(B -l.)

= -(y; +@I1 , (2)

a result which is also obtained for the total intensitywhen photon

polarization is included [Eq. (6) of Ref. 1]. In these equations a = O

gives the slab geometry result while a = 2 gives the equations for

radial diffusion in a sphere. The dependence of source function,

absorption coefficient, and intensity on frequency has been suppressed.

Equations (2) also contain the material temperature through the

absorption coefficient W; and Planck function B. To complete the system

of equations it is necessary to describe how the material temperature

changes. In addition to the effect of hydrodynamic motions the material

energy Em (ergs/cm3) can change in the above approximations through the

spontaneous emission of radiation and the absorption and induced emission

of radiation. Scattering in the Tlmnson limit occurs without energy

change. When supplementedwith an equation of state the temperature

change is determined by the following equation:

d.% 00
d’r_..p~-c

dt J
dv~; (kB -E) .

0

(3)

.

Transcribing Eqs. (2) in terms of E and F gives

.

6



,.

.

and

E+V*F = CV; (lhcB - E)

la~+gw= - (&+p~)F;% 3

Comparisons of the solutions of

equation solutions in plane geomet~

. (4)

these equations with the transport

indicate2 a much wider region of

applicability than for the equilibrium diffusion equation. Equations

(4) written in terms of the divergence and gradient operators are more

widely applicable than the original derivation indicates. Equations (3)

and (4), together with the material equation of state and the equation

of hydrodynamic motion, form a system for the evolution of the radiation

field and material temperature. The frequency of the photons enters

through the Planck function and the coefficient of pure absorption and,

in general, does not permit a grey atmosphere solution.

The several regions of applicability of Eqs. (3) and (4) are exsm-

ined below from the point of view of the structure of the equations and

their frequency dependence. Appropriate mean abso~tion coefficients for

frequency groups are

difference equations

Radiation Streaming

In special cases

the radiation streams

with the material (u:

Q Q

introduced, and spatial.and time dependence of the

me considered.

the equations take a simpler form, however. When

through the system without appreciable interaction

= lJ8* O) the radiation energy equation becomes

(5)

This wave equation describes the propagation of disturbances travelhg
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with the speed *c/~ correspondingto an average direction of many oblique

waves as described by the diffusion approximation. The integral of Eq.

(5) over frequency can be performed to give an identical equation for the

total radiation energy. The inclusion of the 3F/M term, therefore, adds

the ability to describe the streaming of radiation signals without inter-

action with the material, albeit with a very crude approxtition to the

angular distribution of the propagating wave.

The Diffusion Equation

Neglecting this tens Eqs. (4) beccme

%=5‘“(~A’E)+c”~(kB-E)‘
(6)

a diffusion equation in which radiation energy changes, in addition, due

to material absorption and emission. It is necessary now, of course, to

include Eq. (3) to determine how the matter temperature changes and

affects the mdiation propagation. Introducing the total radiation

energy ~(ergs/cm3) and net flux FR(ergs/cm2sec),

and

a

‘R =J
Fdv

o

the frequency Integrated

>

Eq. (6) withEq. (3) iS

..

.

.
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mm dER d’T
s . V*F

a-- ‘mr R -P=

and

(7)

The first equation of Eqs. (7) is just the total energy conservation

equation as solved in the regular radiation diffusion equation. The

second equation for the net flux is also closely related to the regular

diffusion equation except for the form of the radiation energy. To

obtain the standard form it is necessary to make an additional assump-

tion that the radiation energy is in local equilibrium with the material

and thus has a Planck distribtiion correspondingto the local temperature.

Then it is possible to perform the frequency integration independently

of the energy gradient since the spatial dependence occurs only through

the material temperature em. The familiar result is

‘R ‘=
+.#!e: ,

where

AR is the Rosseland mean free path,

(8)

and a is the radiation energy constant.
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Matter-Radiation Equilibration
-.

The radiation equilibrium assumption is appropriate only when cer-

tain criteria are satisfied which insure that the interactionbetween

radiation and material has had time to effect equilibration. For example,

in an enclosure In which no inhomogeneitiesexist the radiation energy

changes with time as

Since the

radiation

0

total.energy is conserved the temperature will change as the

energy changes so that the integrands above depend on the.

If I% << Em during the equilibration history, however, then B and v;

remain mibstantially constant and

-V:ct
E=~+(E o-~B)e .

The characteristictime 7R for the radiation energyto relax to the

equilibrium value MB is TR /= 1 cv~, which depends on the temperature

and the frequency. When the radiation field is heated solely by emission

the relevant absorption coefficient frequency average is given by

~=aO~[l-S(ct)l ,

where the transmission function S is given b?

-I+p
k~ “dv Be

S(5) = o
4

●

af3m

.
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For early times the relevant frequency average gives the Planck mean

abso@ion coefficient. If, on the other hand,
5

>> Em during the

equilibration and the radiation spectrum is Planckian with temperature

er, the material energy will change; but ~will remain approximately

constant,

8E

J#=hc ‘dvw; [B(er)-B(em)] “
o

Introducing a two-temperature Planck mean absorption coefficient,

J
w

45( ~;(8m)B(er)dv

llp(em,er)= o

the equation becomes

aEm
~= ca [O~vp(em,Or) - eji$em,em)] .

(9)

The quantitative result is complicated by the dependence of quantities

on the changing em, but an esthate of the characteristic relaxation time

Tm for the material to reach the

1 Em(Or)
‘Tm = --Jr

cVp(gr)Or) r

radiation temperature is

●

If the temperature changes appreciably in the time intervals ‘rRor Tm,

deviations from local radiative equilibrium will occur. Factors increas-

ing the deviation are (1) low density and (2) high radiation frequency or

temperature, which make Wp small.

u



Scattering Diffusion

-.

When the radiation is diffusing in a medium having a very small

absorption coefficientbut in which the scattering coefficient is appre-

ciable, the radiation equation becomes

Since the scattering coefficient is frequency independent, photons dif-

fuse without changing frequency. It is clear that in this approximation

an initially inhomogeneousblackbody distribution of radiation will evolve

to a non-blackbody distribution through merging of spectra and dilution

of the photon energy density. Consequently, in this case it is necessary

to follow portions of the spectrum in separate calculations if spectral

resolution is desired. The total radiation energy, hcwever, canbe found

by solving the single equation

(lo)

Scattering Diffusion with an mission Source

In both the diffusion and material energy equations the spontaneous

emission term can be integrated in frequency in temns of the Planck mean.

More generally, for a frequency interval Vj ~ v S Vj+l the partial Planck

mean may be introduced,

(11)

.
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where the normalized Planck integral

hv

?#‘J=m ‘

and

.
Uj+l

J U3
v’ — du

u
a eu

-1
V(e, v,v)=
pmjj+l

.
‘j+l U3

r — du*.
J e“ -
‘t

If v~ >> p: so that p: is negligible in

so that E is negligible in the coupling

thin medium), then Eqs. (3) and (6) can

give

and

dEm d’r 4
~=-p~-acvpem

where v is the total Planck mean
P

1

the diffusion

term (as ina

be integrated

term and 4%B >>E

hot optically

over frequency to

(12)

.



Equations (12) with the equation of state describe the cooling of the

material and the diffusion of the radiation by scattering after emission

by the material.
“.

Non-Equilibrium Diffusion

If either of the two approximations above is not satisfied, it is

necessary to retain information about the radiation frequency dependence

because the material and radiation energies are then coupled together in

a way dependent on the spectrum. In the material equation the heating

by absorption depends on the frequency dependence of E as does the corres-

ponding radiation energy cooling term. In addition, the frequency depend-

ence of V; makes the diffusion term dependent on the frequency spectrum.

Neglecting the streaming term, the equations are

and

?3E
00

J+=-co ‘v~:(kB-E) “ (13)

Introducing frequency groups v. g v s V8+1J Withinwhich the absorption

coefficients take mean values,’’Eqs.(13) are approximated by

(14)

J

:
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Different frequency means appear in the various terms of Eqs. (14).

In the material emission term the correct mean in the partial Planck,

‘J
p ~ ~ ~+1), iS defined in Eq. (11). For the absorption term=V(e,v,v

the correct value given by the Chandrasekhar mean cannot be formed.

Clearly, it should depend on parameters associated with the radiation

spectrum but should reduce to the partial Planck mean when the radiation

and material are in equilibrium. Such a quantity, containing only a

single radiation parameter, is the two-temperature Planck mean absorption

coefficient introduced in Eq. (9). The corresponding partial mean is

Vj+l

k ~ PUB dv
v.

v (e ye>V >V ) = J
p m r j j+l Y

ae~bj(er)
(15)

which may be used for v’.
J

The diffusion term contains a mean free path

which, in the equilibrium diffusion approximation,becomes the Rosseland

mean free path of Eq. (8). A satisfactory mean for this term must have

this limiting behavior and also contain parameters characterizing the

radiation field when it deviates

ing one such radiation parameter

which for the frequency group is

from equilibrium. A quantity contain-

is the two-temperature Rosseland mean

defined as

(16)

which may be used for x .
J

Both of the above quantities contain the

parameter er which represents the shape of the radiation spectrum for

15



the frequency group in question. Since the frequency dependence within

a group is unknown it must be inferred by examining au available infer.

mation. This informationmay be derived, for example, from the nature

of the source or from variation in intensity between neighboring frequency

groups.

The absorption coefficients entering Eqs. (4) also csnbe calculated

in the way described above. Consequently, the term limiting to the wave

equation can be included to give a system of equations which is capable

of accounting for all of the phenomena discussed above.

The Difference Equations

Assuming that appropriately averaged frequency group absorption

coefficientsare available, the remaining step is to devise difference

equations in space and the. To simplifY the spatial difference equations,

a problem in plane geometry is chosen for illustration; other geometries

can also be calculated, hcwever, quite analogously with the equilibrium

diffusion eqwtion. Retaining the streaming term, the difference eqwxtions

correspondingto Eqs. (3) and (4) are

Atn 2 %+1/2

{

n+l/2
=~aw

bn+l/2
i+l/2,j i+l/2,j [(f3:::/2r+ k:+lJ:

(
n+l/2. ~+1 + If

- ‘;+l/2,J i+l/2,j i+l/2,j
)}

9 (17)

“.

.
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If+;-qd+
) (+ ‘ti/2, j -

E?+l-+@
n i-1/2,j

ei+l/2,j - i-1/2,j
cAt )

#+1 *

%+1/2‘j.+12
Atn

(n+d2 ~+1 + ~

- ~:+1/2,j i+l/2,j
)}

i+l/2,j “

(18)

(19)

In Eqs. (17), (18), and (19) the subscript i denotes the spatial position.

The flux Fi is evaluated at interfaces between zones having thickness

%+1/2 “ The half-integer subscripts (as for the energy E
i+l/2) denote

quantities evaluated at zone centers. Material thermodynamic properties

are associated with zone centers so that absorption coefficients are most

easily formed at i + 1/2. The quantities Ai and &i are to be obtained

by judicious averages of neighboring zone quantities. The Mterial tern.

perature has been denoted by e in Eqs. (17) and (19), dropping the sub-

script m.

The solution is contained in the simultaneous equations for E?+l,
n+l
F

n+l
~andQ , which involve adjacent spatial points. me flux can be

ell.minatedbetween these first two equations, however, to give

#+1
‘i+l/2 i-1/2

En+l +C
- ‘i+l/2 i+l/2 i+l/2*::;/2 + %+1/2 = 0 ‘ (20)

where, dropping the frequency subscripts, the coefficients have the values

17



1
++1/2= - 12&i+;,2&i 1

( 1 )
>—-—

2Li
cAtn

c~:+l2 ~
%+1/2= $+ 4 c

(h
1 +

12Axi+l/2 % i—.—

cAtn
2hi

ci+l/2 = -

Di+l/2 = -

+

+

1
Ax ‘) )

i+l i+l
—-—

cAtn %+1

c 1

(
1 1 912k.j+’J/2ki+l — - —

cAtn %+1 )

{

$ ap
2 i+@’i+l/2

.

F~+l - ~

+ 12AXC

(

%&&2 %&%&

*%+1/2 i+l/2 —-—
n 2Li

—-—
cAt

n
cAt 2%1 )

+---- i+l/2

L

● (21)

Equation (20) is in suitable form for solution by the well.known algorithm

for the tri-diagonalmatrix. It is coupled, however, with the energy

equation, Eq. (19). Consequently, an iteration is required to make the

two equations consistent. Temperature dependent coefficients may be

improved in the iteration also.

In the event that a single frequency group is sufficient to describe

the frequency dependence the equations may be linearized either in 0 or 64

18
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and

as

for

the

for

solved simultaneously. To do this, the material energy may be expressed

&+l -<
- v $n+r.(en)h

~n+l/2
m

Atn
)

~(en+l/2 3 Atn

4
the fourth p~er case.

()
Solving the resulting IIq. (19) for On+l

i+@ ‘
temperature term in Eq. (17) can be eliminated. The resulting equation

E has the same form as Eq. (20), but the coefficients B and D are mod-

ified,

‘{ —-q
cAtn

-L4.++12 c‘~+1/2=Atn ( 1
+ 1

‘i+l/2 % % ~i+l i.+1—.
cbtn 2~i+l‘)

%+1/2

*:+1/2 + Pi+l -If
-—

Atn %+1/2 +12.;+1,2f*

\ —-qncAt

The resulting

centeringmay

. (22)

equation still contains time dependent coefficients whose

require improvement by iteration.
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