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ABSTRACT

A method known as continuous analytic continuation is proposed

for obtaining approximate solutions to the nonlinear reactor kinetics
equations. The method is described and its properties are investigated
theoretically. This method is one of the most powerful methods avail-
able for obtaining approximate solutions to systems of coupled nonlinear
differential equations of any order and is well suited for digital com-
puter application. Basically, the method consists of expanding those
variables which are analytic functions of time in Taylor series to order

K over successive intervals in the time domain.

The proposed method has several advantages over other numerical
methods currently in use. The most important of these advantages is
that the method yields a definitive criterion for the magnitude of the
time step. This criterion is such that the time step automatically
expands or contracts, depending on the behavior of the neutron level
within each interval. Furthermore, the magnitude of the time step deter-
mined from this criterion can be much larger than the’promﬁt neutron
generation time. The use of this criterion to determine the time step
guarantees that the error in the results increases at most linearly with
the number of time steps. That is, the relative or fractional error after
n time steps is bounded by ne where ¢ is the error criterion (g << 1).

The error criterion determines the maximum truncation error in each Taylor
expansion.

Approximate solutions by continuous analytic continuation are com-
pared with analytic solutions to the reactor kinetics equations for some
of the few special cases in which analytic solutions are known. The
aéreement between the approximate and analytic solutions is excellent,
and the error accumulation in the approximate method is, in all cases,

within the limits predicted by the theory.
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Comparisons are made with a numerical integration method for
several cases in which analytic solutions are not available. The
agreement between the two methods is good, but continuous analytic
continuation is significantly faster than the numerical integration
method, It is found in these problems that there is an optimum order
K with respect to computing time and that the computing time is not a
sensitive function of the error criterion €. These results are in
agreement with properties predicted by the theory.

Comparisons are also made with observed transients in the Godiva
and SPERT I reactors following step inputs of reactivity. The calcu-
lated results using continuous analytic continuation are in good agree-
ment with experiment in the range of reactivity inputs where the feedback
model used is valid.

The reactor kinetics equations can be expressed in two different
forms; one based on the prompt neutron generation time A and the other
based on the prompt neutron lifetime £. Solutions using the two forms
of the equations are compared and found to be identical for all practical
purposes. Since the equations based on A are simpler from a mathematical
viewpoint than those based on £, it is recommended that the equations

based on A be used in all transient analyses.
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1. INTRODUCTION

This study is devoted to the solution of the general form of
the space- and energy-independent reactor kinetics equations by a
method which has several important advantages over current numerical
methods. Basically, the method consists of expanding those variables
which are regular or analytic functions of time in Taylor'series over
successive intervals in the time domain. A full description of the
method and an investigation of its properties are presented in Section 2,

The general form of the reactor kirn.tics equationms, whichvare a
system of coupled nonlinear ordinary differential equations, includes
an arbitrary number of delayed neutron groups, aﬁ extraneous neutron
source, and a time-varying reactivity including nonlinear power and

thermal feedback.

l;lv Definition of Problem

It is not possible, in general, to obtain closed solutions to
nonlinear differential equations in terms of elementary functions
since at present there is no simple unifying theory in nonlinear
mathematics analogous to vector spahes and operators in linear mathematics.

(1-6) which is used to find properties of

A qualitative theory does exist
boundedness, stability, and periodicity of the solutions, but this theory
does not attempt to find the solutions themselves. Thus, solutions to

nonlinear differential equations must be obtained using numerical methods

and other approximation techniques.



1.2 Need for a New Method

Generally, numerical methods are used to obtain approximate
solutions to the nonlinear reactor kinetics equations. Among these
N Run

ge—

modified Runge-Kutta procedures,(lo’ll)
(13,14) finite

methods are numerical integration using Simpson's rule,
(8,9)

(12) Euler integration schemes,
(15,16) (17)

Kutta procedures,
collocation method,
difference methods, and others.

All of these numerical methods suffer from one or more of the

following disadvantages:

(a) Stability of the numerical procedure imposes severe
limitations on the maximum permissible time step evén
for slow transients, thus requiring prohibitively long
computing times;

(b) There is no analytic criterion for determining the magni-
tude of the time step (often the procedure is one of trial
and error);

(c) Those methods which have an interval switching facility use
arbitrary criteria to determine when the time step is to be
modified;

(d) The accumulated error at each time step is not known as a
result of (b) and (c);

(e) Some numerical methods are not self-starting and thus require
a separate procedure to generate the first few points;

(f) Some methods cannot handle the reactor kinetics equations in
their full generality.

The proposed method, on the other hand, does not suffer from any of these
disadvantages.

Analog methods are not considered in the above discussion because

'the 'proposed method is for use with a digital computer. Whether analog
or digital methods ére better at the present time is not in question here.

Analog computation has its own advantages and disadvantages.(ls) It is




true that until a few years ago, analog simulation was the preferred
method. Since that time, however, developments in digital computer
speed and size, numerical methods, graphical display devices, and pro-

gramming techniques have overcome the major objections to digital simulation.

1.3 Scope of Investigation

A digital computer program wés written which solves the reactor
,kinetics equations using the proposed method. As a check on the accuracy
of the method, comparisons were made with analytic solutions for the few
special (mostly linear) cases where analytic solutions exist. Some non-
linear cases were compared with results from another numerical method.
In addition, results from the proposed method were compared with some
experimental excursions. )

The accumulated error as a function of the number of time steps
and of the truncation error criterion, and the effect of the order of
the Taylor expansion and of the error criterion on the efficiency of
the method were investigated theoretically. The results were then
verified by comparing the approximate solutions with a few analytic
cases.

There are two possible forms for the reactor kinetics equations,
one based on a prompt neutron generation time, and the other on a prompt
neutron lifetime. Comparisons of results for a few nonlinear cases
using the two different forms of the equations were made in order to

study the effect of representation.



2. DESCRIPTION OF METHOD

First, a general description of the method is given. This is
followed by a description of the reactor kinetics equations and then
by the application of the method to these equations. Derivations of
some useful properties of the method are then made, and finally, some

variations in the basic method are discussed.

2.1 General Description

The proposed method for obtaining approximate solutions to the
reactor kinetics equations is a specialization to functions of a real
variable of a method known as continuous analytic continuation.(lg)
This method is one of the most powerful available for obtaining approxi-
mate solutions to systems of coupled nonlinear differential equations
of any order and is well suited to digital computer application.

In the complex plane, the method consists of expanding the
dependent variables in Taylor series over successive overlapping regions
along a path in the complex plane. The variables must be analytic
functions within each region in which the Taylor expansion is made. For
analytic functions, the convergence of the Taylor series to the value

of the function is assured,(zo)

and a test for the convergence of the
series is not required. Functions which have a finite number of singular
points can be treated by this method by choosing the path from the initial
point to the desired final point, so that the path neither intersects
nor encloses any of the singular points.

For functions of a real variable, those dependent variables in
the system of differential equations which are analytic functions are
expanded in Taylor series over successive intervals on the real axis,
Since for functions of a real variable the path from the initial point
to the final point is confined to the real axis, the path cannot be
chosen to avoid singular points. Thus, any variables which have singular
points must be treated separately. This procedure is discussed in detail
in Section 2.3. .




Some general features of the method are:

(a) The method is linearly iterative, that is, each successive
step is connected to the previous step by an algorithm (method
of computation) which does not increase in complexity at each
step. This is a basic requirement for any practical numerical
method.

(b) At each time step, solutions are obtained from the values of
the dependent variables and their derivatives at the previous
step only. Most other numerical methods require a knowledge
of the values of the variables at several preceding time steps
in order to extend the solution.

(c) The method yields an analytic criterion for the magnitude of
the time step at each iteration; this criterion is such that
the time step automatically expands or contracts depending
on the behavior of the function.

(d) Since the error in the approximation increases, at most,
linearly with each step, the method is more stable than some
other numerical methods.

(e) The method is self-starting; it requires only that the initial
values of the variables be specified.

These points are clarified in the sections which follow.

2.2 The Reactor Kinetics Equations

A derivation of the space-, energy-, and direction-averaged
reactor kinetics equations for systems in which fuel is stationary is
given in Appendix A. As indicated there, these equations can be expressed
in two different forms, with those based on a prompt neutron generation
time being more generally applicable. For this case, the equations to
be solved are (bars indicating effective quantities have been dropped
for convenience of notation):
I
aN(e)/de = N M[p(e) = BINCE) + ) Ay C,(8) + S(B) (2.1)
i=1



dc, (£)/dt = A% g N(E) -, C,(8) 121, .., I (2.2)

N(t) = neutron level (which is proportional to the power level),
Ci(t) = delayed neutron precursor or emitter level for type i,
S(t) = extraneous neutron source,
A = prompt neutron generation time,
AT decay constant of group i of delayed neutron emitters,
By ™ fraction of delayed neutrons in group i,

g = total delayed neutron fraction, that is
I

B-Z By » and
i=1

p(t)

reactivity.

The reactivity p(t) can be written in a general way as

p(t) = I(t) + F(t) (2.3)

where I(t) is a function representing the impressed reactivity and
F(t) is a function which represents reactivity feedback. The impfessed
reactivity I(t) can be in the form of an analytic function (for example,
sin wt, eat) and/or in the form of a polynomial in t. The reactivity
feedback F(t) can be a function of the temperature (or temperatures of
various regions) of the system, of the neutron (or power) level of the
system, and of other variables, such as density, pressure, and void
volume fraction. Until a specific problem is considered, the explicit
form of p(t) need not be specified.

Because of the term p(t) N(t), Eq. 2.1 is nonlinear in N(t) 1if p(t)
is a function of N(t). For examplé, if the reactivity feedback F(t) is




proportional to the integrated power (or total energy release) [ N(t) dt,
then one of the terms in the product p(t) N(t) is N(t)d/.N(t) dt, which
is nonlinear in N(t).

Equations 2.2 for the delayed neutron emitters are linear. However,
if the prompt neutron lifetime were to be used instead of the prompt
neutron generation time (see Appendix A), these equations would also be
nonlinear. .

If thermal feedback is included in F(t) and if heat transfer by
radiation is present, then the heat balance equations will be nonlinear
in temperature. In general, thermodynawmic variables which may enter into

F(t) are described by nonlinear differential equations,

2.3 Application of Method to Reactor Kinetics Equations

The average neutron level and delayed neutron emitter levels, when
large, are well-behaved or analytic functions of time. This is because
there are no physical processes in a reactor which can result in dis-
continuous changes in these variables. Hence, values of these dependent

variables [which are denoted in general by y;(t)] at time t are determined

j+l
from their values and derivatives at tj by expanding in Taylor series
about tj to order K:
K
= (k) RN -
Yi(tj+1) Z vy (tj)(tj+1 cJ.) / (k1) (2.4)
k=0

In this equation, yik)(tj) denotes the kth derivative of yi(t) evaluated

at t = tj. These derivatives are obtained by successive differentiation
of Eqs. 2.1-2.3.



For solution on a digital computer, it is convenient, but not
necessary, to establish general expressions for the kth derivative of
all the dependent variables. These expressions can be established
by inspection for some of the equations in the system, but others
require special attention because of the occurrence of nonlinear terms.
General expressions for the kth derivatives of Eqs. 2.1 and 2.2 and

those for several specific forms of Eq. 2.3 are given in Appendix B,

Whereas continuous analytic continuation requires information
about yi(tj), yil)(tj), cees yik)(tj) in order to extend the solution
E? yi(tj+1)’ most other numerical metliods require information about
yi(tj), yi(tj_l), ooy yi(tj_n) to extend the solution to yi(tj+1).

Thus, the proposed method is self-starting and for a system of first order
differential equations requires only that the initial wvalues yi(0+) of the
variables be specified. (The derivatives at t-O+ are obtained by successive
differentiation of the differential equations.) However, if any of the
variables yj(t) which enter into the feedback function F(t) satisfy a

second order differential equation, then the initial value of the first
@9
J

so on forvhigher order équations.

derivative y (0+) of these variables must be specified in addition; and
The reactivity p(t) or its derivatives may not be continuous

at certain points in the transient because of impressed discontinuous

changes in the function I(t), such as termination of a ramp input of

reactivity. Discontinuities at t = 0 are not a problem because the

initial conditions are defined at t = 0+. However, for some problems,

it is possible that p(t) cannot be expanded in a Taylor series close

to certain other points in the transient. For this reason, the value

of p(tj+1) is obtained explicitly from its defining equation after

the values of all the other dependent variables at t = t have been

j+1
obtained using Taylor expansions.

It should be noted that the algorithm (Eq. 2.4) used to compute
yi(tj+1? does not increase in complexity at each step, but is the same

for every time step. This is a basic requirement for any practical
numerical method.




2.3.1 Analytic Criterion for Time Step

The time steps tj+1 - tj in Eq. 2.4 are obtained by

requiring that the absolute value of the relative truncation error for
each expansion be at most equal to the error criterion ¢ (which is an

input parameter << 1),

|R (e )y (e )] <€ (2.5)

i+l 3+l

for all time steps j and variables Yy Ri(t ) is the remainder after

j+l
K+ 1 terms in the Taylor expansion of the variable Yi for the j+lth time

step. The remainder (in the Lagrangian form) after K + 1 terms in the

Taylor expansion is given by(21)
(K+1) K+1
RyCey) = vy (e = £) /(K + 1) (2.6)
where
by 202t
and t
j+1
yixﬂ) (n) = f Y§_K+1)(t)dt/(tj+1 - tj)
‘1
- [yf"(cjﬂ) - yf‘%cj)]/«j+1 - £, 2.7)

Using Eq. 2.6, it can be seen that the largest time step
which satisfies Eq. 2.5 for each variable is given by

1

(k+1) (n) I]-Ia—l .

(tj+1 - tJ.)i = [kK +1)! ¢ Iyi(tj+1);s |yi

(2.8)

Equation 2.8 is an analytic criterion for determining the time step. As

can be seen from this equation, the time step is determined by the error



criterion e, the order K of the Taylor expansion, and by the behavior of

the function yi(t) in the interval t.< t <t For a fixed e, the

time step can be increased in most pioblems bi+increasing K. For a fixed
K, the time step can be increased by increasing €. Also, for a fixed ¢
and K in Eq. 2.8, the time step will be largest where the ratio
Iyi(tj+1)| : |y§K+1)(n)| reaches a maximum (where yi(t) is varying the
least rapidly) and smallest where this ratio reaches a minimum (where
yi(t) is varying the most rapidly). Thus, the time step automatically
expands or contracts, depending on the behavior of the function, in order
to maintain a constant relative truncation error.

Since the method requires a common time step for all the variables
and since the time step computed from Eq. 2.8 is different for each variable,
a common time step must be computed using the variable which yields the
smallest time step. Experience with the method has shown that the neutron
level N(t), which in general varies the most rapidly and over the largest
range, is the variable which places the greatest restriction on the time
step. Thus, the use of N(t) in Eq. 2.8 to determine a common time step
will generally guarantee that the other dependent variables will also satisfy

Eq. 2.5. TFor this reason, a common time step is determined from

1
- a . (K+1) K+1
tie1 T &y [(x+ 1! elN(tj+1)| : |N ()| . (2.9)
Because N(t ) and N(K+1)(n) cannot be calculated until t -t
j+1 jH1 B

is known, the time step is computed by approximating N(t +1) by N(t,) and
(K+1) (K+1) 3 3
N (n) by N (tj).
2
- . |y (KFHL) ]K+1
t., ¢ — & 1 (K+ 1)! e[N(t, + N t . 2,1
ER [( ) elne] ¢ | ()] (2.10)
These approximations are valid for a small value of tj+1 - tj (obtained

by using a sufficiently small €), since

10




lim N(K+1)(n) = N(K+1)(tj) (see Eq. 2.7)

Cy41” &y

and

lim N(t

C3a1™ &y

j+1) = N(tj) .

Regardless of the size of tj+1 - tJ, however, these approximations are

valid when N(t) does not change greatly in the interval tj ftx j+1 and
when the K+2th term in the Taylor expansion is a good approximation to

the remainder after K + 1 terms. Furthermore, because of the K + 1 root
in the expression for the time step, tj+1 - tj is not a sensitive function

+ .
of the ratio IN(tj+1)| IN(K 1)(n)l. For example, if X = 4, an order

of magnitude difference between -

Nyl s WD)

and
. (K+1)
IN(tj)l : |N (cj)l

yields values of tj+1 - tj from Eqs. 2.9 and 2.10 which differ only by
a factor of 1.6.

2.3.2 Problems in Applying Criterion and Their Solution

The use of Eq. 2.10 in conjunction with a low order K
(say K < 2) and large € (say € 3_10—3) can result in relative truncation
errors which are greater than € over portions of some excursions. This
problem arises when N(K+1)(t) is increasing rapidly and/or N(t) is

decreasing rapidly in the interval tj+1 - tj. This problem can be
eliminated by the following process:

(a) An initial value for tj+1 - tj is computed from Eq. 2.10.
(b) Using the initial value for t

-t initial values for

i+l 3’

11



N(t ) and its derivatives are computed. Because the

reaitir kinetics equations are coupled, this requires a
pass through all the equations in the system.

(¢) An improved time step is then computed from Eq. 2.9, where
N(K+1)(n) is calculated from Eq. 2.7.

(d) 1f the improved time step is larger than its initial value
(for this case the initial time step yields a smaller trun-
cation error than required) or smaller by a factor not
exceeding a preset value, the calculation proceeds to the
next time step. If the improved time step does not satisfy
the above conditions, it becomes the initial time step, and
steps b-d are repeated until the conditions are satisfied.

Iterations on tj+1 - tj where j is fixed will be referred

to as inner iterations, while iterations on t t, where j changes

will be called outer iterations. In many casizt inﬂlr iterations are
not required for ¢ :_10—6, while several inner iterations per outer
iteration may be required over certain portions of the transient for
larger values of €. Values of € greater than 10—4 should not be used,
unless accuracy is not important. For most problems, an € in the range
10—6 - 10—5 is satisfactory. The actual value of € to be used in a
calculation depends on the desired accuracy which, in turn, depends
on the number of outer iterations, as well as on € (see Section 2.4.1).
Another problem which can arise in connection with computing the
time step is that N(K+1)(tj) in Eq. 2.10 may be zero. This can occur
at the beginning of the transient for certain problems or at some other

point in the transient for others. An example of the first case is
dN(t)/dt = Po sin (wt) N(t)

where all odd derivatives of N(t) at t = 0 are zero. An example of the

second case is an inflection point in N(t) when K = 1,

12




The problem just described can be handled in the following manner.
1f N(K+1)(t) = 0 for t = 0, two choices are available: (a) the order K
of the Taylor expansion can be increased or decreased until N(K+1)(0) is
nonzero or (b) a starting time step (such as 10jA) can be assigned and
then modified, if necessary, by the process discussed previously. If
N(K+1)(t) becomes zero during the transient (t # 0), again two choices
are available: (a) the order K can be increased or decreased until
N(K+1)(t) is nonzero or (b) the time step can be set equal to the pre-
ceding time step and then modified, if necessary, by the process described
previously. In both cases, option (b) was chosen for incorporation into
the digital computer program (described in Appendix D). This decision
was based more on the desire to keep K constant during each run, thus
allowing an investigation of the effect of K on other parameters, than

on any inHerent advantages of option (b) over option (a).

2.4 Derivation of Some Properties of the Method

By placing a restriction (Eq. 2.5) on the maximum value of the
relative truncation error in the Taylor expansion for each variable
and each time step, it was shown in Section 2.3 that a definitive
criterion (Eq. 2.9) for the magnitude of each time step could be
obtained. The use of this criterion to compute the time step makes
it possible to obtain a first approximation to the upper limit of
the accumulated relative (or fractional) error and to determine the
effects of the order K of the Taylor expansion and of the error

criterion ¢ on the efficiency of the method.

2.,4.,1. Accumulated Error

In order to simplify the notation in the following discussion,
the dependent variables in the set of coupled nonlinear differential
equations which describe the behavior of the reactor system are denoted

by yi(t) and the set of equations by

13



dy;(e)/de = £.(y s ovuy yp» t) 1i=1,2, ..., m. (2.11)

Approximate values for yi(t) from the Taylor expansions are denoted by

Yi(t). Superscripts enclosed in parentheses denote the order of the
derivatives.

It shoﬁld be pointed out again that the method of continuous
analytic continuation is not restricted to first order equations, such
as Eqs. 2.11. The only restriction on order is that no derivatives
occurring on the right-hand side of the differential equations can be
of greater order than the derivative on the left-hand side.

The accumulated relative (or fractional) error Ej for variable
Yy after j time steps (or after j outer iterations) is, by definition,

i
Ey = [yi(tj) - Yi(tj)]/Yi(tj) (2.12)

where yi(t ) is the exact value at t = tj.

It is now assumed that the coupled set of Eqs. 2.1l has been
solved for some particular problem in the interval 0 < t ::tmax using
continuous analytic continuation and that the number of time steps at
t = tmax is M oax® It will be shown by mathematical induction* that a
first approximation to the absolute value of the accumulated relative

error after n (1 < n i-nmax) time steps is given by

1
|E;| <ne. (2.13)

If a theorem concerning positive integers n is known to be true for
n =1 and if the assumed truth of the theorem for n = j implies its

truth for n = § + 1, then the theorem is true for all positive
integers n.

14




At the initial point t = t,s the values yi(to) of all the
dependent variables are known exactly from the initial conditions. Further-
more, all the derivatives yik)(to), k=1, 2, ..., K, can be computed exactly
by successive differentiation of Eqs. 2.11. Hence, for t = to’ the following
equality holds

18y =y e ) K =0,1,...K (2.14)
i= 1,2,...,m

where K is the order of the Taylor expansion and m is the number of dependent

variables.

The exact values of the dependent variables at t = tl(tl > to)

are given by

K
t) = (k) -t )k
yi( 1’ }: i (to)(t1 to) / (k1) + Ri(tl) (2.15)
k=0
where Ri(tl) is the remainder after K + 1 terms in the Taylor expansion for

the first time step. The approximate values at t = tl are calculated from

(k) k
Y, () =i Yy (to)(tl - co) / (k!) (2.16)
k=0

The combination of Eqs. 2.14 through 2.16 gives the result

vyt =¥, (e)) + Ro(ey).

(2.17)
Now the time steps tj - tj—l are chosen so that (Eq. 2.5)
R, (t,)
i
;;-(—;;—)— <e 1=1,2,...,n (2.18)

j= 1,2,...,nmax

15



is satisfied for a specified € << 1. Equation 2,17 can be rearranged to
yield

[yi(tl) - Yi(tl)]/Yi(tl) = Ri(tl)/Yi(tl). (2.19)

With the definition of Ei from Eq. 2.12, there results on combining Eqs.
2,19 and 2.18,

<e (2.20)

which proves that Eq. 2.13 is true for n = 1.
Assume that Eq. 2.13 is true for n = j, i.e., that

i
)Ej

< Je (2.21)

is a true statement. It shall be shown that this assumption implies that Eq.
2.13 is true for n = j + 1.

From Eq. 2.12, yi(tj) can be written as
i
yy(ey) = 1+ EY ¥, (t,). (2.22)

Substitution of Eq. 2.22 into Eq. 2.11 allows the derivatives y§k)(tj)

to be expressed in the following manner:

), \ 1, (k) . .
Yy (cj) a+ Ej) Y, (cj) oi,k(tj) k=1,...,K (2.23)
i~=1,...,m
: i (k)
where oy k(tj) is a second order correction term compared to Ej Yi (tj).
,
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- 1 re given as in Eq.
For t tj+l(tj+1 > tj). the exact values are g q

2,15 by
yy(tyyy) = Z RN CRICWERPIICHICE N O (2.24)
k=0
whereas the approximate values are given as in Eq. 2.16 by
K
- (k) - ek 2.25
AN EDIE R CRICIREE IO (2.25)
k=0

Substitution of Eqs. 2.22 and 2.23 into Eq. 2.24 yields to a first

approximation

K
yy(t,) = (L + E;') }: Yf‘)(cj)(c (2.26)

k=0

- tj)k/(k!) +R

j+1 1(Eqe)

k

. - ' = b
Products of small numbers; oi,k(tj)(tj+1 tj) /(k!) for k=1, ..., K;
have been neglected in Eq. 2.26,

The substitution of Eq. 2.25 into Eq. 2.26 then yields
yi(tj+1) 1+ E ) Y j+1) + Ri(tj+1) (2.27)

which by rearrangement becomes

' i
l:yi(tj+l) - Yi(tj+l)]/Yi(tj+1) - £ + [Ri(tj+1)/Yi(tj+1)]. (2.28)

Now, the left-hand side of Eq. 2.28 is E§+1 by definition (Eq. 2.12).
Thus, Eq. 2.28 becomes

A i
G4 " Ey [Ri(tj+1)/Y (tj+1)] (2.29)
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By making use of the inequality
|a+b| < ]a| + |b] (2.30)
for real numbers a and b, the following result is obtained from Eq. 2.29,

R, (t )
E;" U T S ./ S (2.31)

<
- ¥y (typ)

i
s . ’Ej.*-l

Finally, the substitution of Eqs. 2.21 and 2.18 into Eq. 2.31 yields the

desired result

)Ejiﬂ < (+1) e (2.32)
This completes the proof of Eq. 2.13.

To recapitulate, it has been shown that to a first approximation
the accumulated relative error after n time steps using continuous analytic
continuation is given by Eq. 2.13 for any positive integer n. Thus, the
accumulated relative error increases at most linearly with the number of

time steps and an upper bound for ’Ei’ is given by

= n g, (2.33)
upper bound

Ei
n

The validity of Eq. 2.13 was verified for a few cases (Section
3) by comparing approximate solutions using continuous analytic contin-
uation with some analytic solutions,

From Eq. 2.29, it can be seen that cancellation of errors is
possible, if the remainder in the Taylor expansion changes sign during
the transient. If K is even, the remainder changes sign when the first
derivative of the dependent variable changes sign. If K is odd, the
remainder changes sign when the second derivative of the dependent variable
changes sign. Thus, for oscillatory transients, the error should accumulate
more slowly than for nonoscillatory transients. This was verified for a

particular case (Section 3).
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2.4.2, Effect of Order and Error Criterion on Efficiency

Assume the reactor kinetics equations for a particular
problem have been solved by continuous analytic continuation up to
t = tn and that the computer time required, exclusive of time required
for reading input and writing output, was tc. The efficiency as used
here is defined by

efficiency = tn/tc. (2.34)

The effects of the order K of the Taylor expansion and of the error
criterion € on the efficiency will now be investigated.

Consider first the effect of order on efficiency. The com-
puting time tc is equal to the number of time steps n multiplied by
the computing time per time step. The computing time per time step
is proportional‘to the number of operations required on the computer
per time step, which is in turn, to a first approximation, proportional
to Kz. On the other hand, tn is proportional to n multiplied by the
average time step At. Thus, the following proportionalities hold

tc a nK2 (2.35)

t, o n At, (2.36)
so that

_— 2 .
tn/tc a At/K", (2.37)
The average time step At is given approximately (Section 2.3)
by S
L
— K+1
At = [(K+ 1! €] g(x) (2.38)
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where g(K) is the average value of

L
DN“)I*IN“HJ“)UKH

in the interval 0 < t <t . Obviously g(K) depends on the particular
problem being solved and for each particular problem also depends on tn.
Substitution of Eq. 2.38 into Eq. 2.37 gives

tn/tc a £(K) g(K), (2.39)

where 1

£(K) = [+ 11 )/, (2.40)
For the simple problem
NB ) = a7 o N
with p equal to a constant, it is seen that

N(K+1)(t) - (A—l p)1<+1

N(t)
independent of t so that

g(K) = A/p = constant.
Thus, for this simple case

tn/tc a £(K).

For more complicated problems with reactivity feedback and delayed neutrons,
the form of g(K) cannot be determined analytically. However, experience

with the method has shown that to a first approximation,
g(K) a 1/K* (2.41)

where x 18 in the range 0 to 1 for most problems. (x = 0 for the simple

problem considered above.) Substitution of Eq. 2.41 into 2.39 yields

t /t, a £(K) / (K)* (2.42)
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Figure 2.1 shows the behavior of f(K) as a function of K for
several values of the parameter €. Note that £(K) exhibits a maximum
which occurs at higher values of K with decreasing e. Figure 2.2 shows
the behavior of f(K)/(K)x as a function of K for x = 0.5 and for several
values of the parameter e. Note that f(K)/(K)0°5 exhibits the same
general behavior as f(K) but that the maxima are shifted to smaller values
of K. Thus, for problems involving reactivity feedback and delayed neutrons,
g(K) shifts the maximum for tn/tc to a smaller value of K than that expected
from £(K) alone. The qualitative behavior, as exemplified by Figs. 2.1 and
2.2, of the efficiency as a function of K has been verified for a few cases
(Section 3).

Consider now the effect of ¢ on the efficiency for a fixed order
K. If K is fixed, Eqs. 2.35, 2.36, and 2.38 become

t.an (2.43)
t an At (2.44)
1
At a e, (2.45)
Thus
1
t/t a sK+1. (2.46)
n c

The function h(e)/h(10—6), where
1

h(e) = eK+1 . (2.47)

is plotted as a function of € in Fig. 2.3 for several values of the parameter
K. It can be seen from the figure that, as the value of K becomes larger,

h(e) becomes less sensitive to changes in €.
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From the work in Section 2.4, the absolute value of the accumu-
lated relative error IEnI is proportional to ne. From Eqs. 2.44 and 2.45,
n is proportional to
o1
e K+1
for a fixed - Hence, IEnI is proportional to
K
eK+1 |
for a fixed tn. Thus, the efficiency (Eq. 2.46) is a less sensitive function
of ¢ than IEnI. For example, if K = 2, decreasing ¢ by three orders of
magnitude should decrease IEnI (at a fixed tn) by two orders of magnitude,
while tn/tc should decrease by only one order of magnitude. Hence, accuracy
can be increased by decreasing ¢ without causing a proportionate increase
in computing time, the situation becoming more favorable with larger values

of K. This property was verified for a few cases in Section 3.

2.5 Variations of Basic Method

For some types of problems, a straightforward application of the basic
method may not be the most efficient way, from the viewpoint of computing
time, to utilize continuous analytic continuation. In these cases, a modi-
fication of the basic method may be faster. Some particular examples are

considered below.

2.5.1 Constant Reactivity (p < B8) with Delayed Neutrons and Sources

The first example considered is the case of constant reactivity
(in particular, p < B) with delayed neutrons and an extraneous source. This

case is described by the equations,

I
NP e) = a7 - N + ) Ay e (e) + s (2.48)
i=]l
1 -1
M) = a7y N -2y () t=1, ..., I (2.49)
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where p is a constant which is smaller than B. For this case, the response
of the reactor is controlled by the delayed neutrons, except for the initial
prompt jump.

In the basic method, the time step is determined by N(t). However,
it is possible to modify the basic method in the case under consideration, so
that the time step is determined by the delayed neutron precursors Ci(t).

This results in much larger time steps than would be allowed by the basic
method for the same accuracy. A description of the variation in the basic
method follows:

The values of Ci(t) at t =t are determined as usual from,

j+1
K

Cy(ty ) = Yy G4 (62 (g g = £/ D) 1=1, ..., I (2.50)
k=0 ‘

but tj+1 - tj is calculated from the time step criterion (Section 2.3) using
the delayed neutron precursor which is varying the most rapidly. Since the
time step determined in this manner can be much larger than that which would
j41) 18
calculated explicitly from Ci(tj) and N(tj), instead of from an equation
similar to Eq. 2.50. This procedure requires that the higher derivatives

of Ci(t) be decoupled from those of N(t).

be required for a Taylor expansion of N(t) to the same accuracy, N(t

The first order derivative in Eq. 2.50 is calculated from Eq. 2.49.
Higher order derivatives in Eq. 2.50 are obtained, as follows: Differentiate

Eq. 2.49 and use Eqs. 2.48 and 2.49 in the result to eliminate N(t). The
result is

1

c§2)(t) = a, cil)(c) + bi Ci(t) + di E: Aj Cj(t) + dis (2.51)

j=1

i=1, .... 1
where
a, = A—l(p - B) - Ai
b, = Al - B) A
-1

di = A Bi.
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Since Eq. 2.51 is linear, it is seen by inspection that

(k+2) (k+1) (k) (k)
Ci (t) = ay i (t) + bi c (¢) +d Z xj C (t) (2.52)

i=1, ..., I
for k > 0.
Equation 2.48 can be integrated by the use of the integrating
factor exp[—A—l(p - B)t]. The result is

t
) e“’At + e““At i lifjﬂ' Ci(t) e—w(t—tj) dt
i=] t

3

= N(t

N(tj+1) 3

+% (e¥8t _ 1) (2.53)

where
-1
w=A (p - B)

At = ¢t t

417 7
The delayed rieutron precursor levels in the interval tj <t 5-tj+1
are given by (Eq. 2.50)
- (k) , ~_ k
¢y =) cPepe- eptan b <t oty (2.54)

k=0
i-l’ seey Io

Thus the integral in the second term on ‘the right-hand side of Eq. 2.53

becomes,
t K (k) t
j+1 j+1 _
f c,(t) e w(t-ty) 4 Z -——-L f erwlt=ty o _ tj)k dt
t t
] ]
K (2.55)
-2 Cik) (cj) In(k,At)

k=0
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where At

In(k,At) -4][ e WX K gy

(2.56)
o
and
X = t - tjo
The integral in BYy. 2.56 is a standard one and is equal to the finite
series:
-wXx :
2 [(mx)k + k(w0 * T+ k@ - Do 2+ ...+ k{].
wk+1
By evaluating this finite series at the limits O and At, obtain
_e—wAt
e = o [t + 1eaa0™ 4 ki - 1) (a2
w
k!
+ ...+ k!] + k+l (2.57)

Substitution of Eq. 2.57 into Eq. 2.55 then yields

t K (k)
j+1 (t.)
_/. c (t) e “olt-ty) g . E: -—-———J—-
& k=0 W

{1 _ o wat [(wAt)k + (wae)*7? + (o) 2 + ...+ 1]} . (2.58)

k! (k - 1)! (k - 2)!

From Eqs. 2.58 and 2.53 is obtained
K k
( )(t )

N(tj+1) N(t ) ¥ Z | Z .

i=1 k=0 o

k k-1 k-2
wAt (wat) (wat) (whAt) S wAt
{e ) [ W e -DT T eyt eee ¥ 1]} v Sqeube

(2.59)
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The integral of the neutron level between tj and tj+1 is
obtained from Eq. 2.59 which holds in the interval tj <t < tj+1 The

result is " ,
t K (k)
j+1 N(t,) (t )
f N(t”) dt~ —-1—( wAt _ 9y 4+ z Z .
&5 1=1 k=0

k+1 k k-1
At t t t
{e“’ -1-[%‘3%”“39—*%:‘“%57* +wAt]}

+ §2‘ (emAt - wAt - 1). (2.60)

w

In order to compute the instantaneous inverse period at t = tj+1’
N(l)(tj+1) is required. Using Eq. 2.59, it is found that
k

w i 2 )(‘ ).

N (tj+1) = wN(t ) ev
i=] k-O
k-1 k-2
wat _ | (wAt) (wAt) wAt
{e [(k mrhY + ke = D1 + ... +1 + Se . (2.61)

For problems in which this variation of the basic method is
applicable, the time steps can be as much as two or more orders of magni-
tude larger than those obtained with a straightforward application of
the basic method. Thus, the computer program (Appendix D) has been
written to solve problems of the type under consideration using this

variation of the basic method.
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2.5.2 Near Exponential Behavior

In most reactor transients, N(t) and Ci(t) rise or fall in an
exponential or near exponential manner over a part or parts of the transient.
In these regions, the variation of the basic method discussed below may be
more efficient from the viewpoint of computing time.

The functions N(t) and Ci(t) are rewritten as

(t-t.)
N(t) = en R(t)
t, < tct
(t-t,) j— = "3jH1
¢, (t) = en 3 W, () (2.62)
where
(1 - (2.63)
w, = N (tj)/N(tj).

Thus, the functions R(t) and Wi(t) give the residual variation remaining in
N(t) and Ci(t) after the exponential behavior has been extracted. To deter-
mine the governing equations for R(t) and wi(t), Eqs. 2.62 are substituted

into the reactor kinetics equations

I
N (e) = Ao () - 8] NG + ) Ay C(0) + 8
i=1
(1) -1 -
c; (t) = A By N(t) - Ay Ci(t) i=1,...,I (2.64)
yielding I )
= ~w_(t-t
R(l)(t) = A—llp(t) - B8 = Aw ] R(t) + 21_ Ay W, (t) + Se n J
i=1
By St Sty
(1) -1
WO (e) = AT By R(E) = Oy + ) W ()
i=1,...,I. (2.65)
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The higher derivatives of R(t) and wi(t) are obtained by successive
differentiation of Eqs. 2.65. From Eqs. 2.62, it can be seen that the
values of R(t) and Wi(t) at the beginning of the interval, that is at

t = tj, are given by ’

R(tj) - N(tj)
Wy(ey) = Cy(ey). (2.66)

The equations defining p(t) remain unchanged, except that N(t) in the heat
balance equations is replaced by exp[mn(t - tj)] R(t).

For exponential or near exponential variation of N(t) and Ci(t) in
the interval tj <t f-tj+1’ R(t) and Wi(t) are slowly varying functions
of time. By applying continuous analytic continuation to Eqs. 2.65 instead
of to Eqs. 2.64, larger time steps will be allowed for the same relative
truncation error in these portions of the transient. However, in regions
where the response is far from exponential, the use of Eqs. 2.65 may give
smaller time steps than Eqs. 2.64. Also, the expressions for the integral
of N(t) between tj and tj+1 and for the higher derivatives of the heat
balance equations contain more terms using Eqs. 2.65 than with Eqs. 2.64.
Thus, the use of Eqs. 2.65 is expected to yield shorter computing times
only when a major portion of the excursion is exponential or near expo-

nential in character.

The procedure for solving Eqs. 2.65 and the associated equations which

describe p(t) in the interval t <t<t is basically the same as

3 hEp!

described '‘previously for Eqs. 2.64. After the values of R(t ) and W

§+1 1 (Eq41)

have been obtained from the Taylor expansion about t = t the values of

j’
N(tj+1) and Ci(tj+1) are obtained from Eqs. 2.62 by setting t = tj+1°
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2.5.3 Miscellaneous Variations

Two miscellaneous variations of the basic method which can
increase the efficiency of continuous analytic continuation are mentioned
briefly. .,

First, consider excursions starting from essentially zero power
level. For these problems, the feedback equations can be bypassed until
sufficient energy has been generated to increase the temperature of the
reactor. This does not occur until the power level has increased by
several decades above the initial power level.

Secondly, since the time step required by N(t) and Ci(t) is much
smaller than that required by the feedback equations, the efficiency of the
method can be increased by doing several outer iterations on the neutronic'
equations per outer iteration on the feedback equations. An altermative
to this approach is to use a lower order K on the feedback equations than

that used on the neutronic equations.
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3. RESULTS

The method of continuous analytic continuation was applied to a
variety of reactor kinetics problems. As a check on the accuracy of the
method, comparisons were made with analytic solutions in a few special
(mostly linear) cases for which analytic solutions exist. Comparisons
were also made with results from another numerical method for a few
nonlinear cases, as well as with some experimental transients reported
in the literature,

Since the reactor kinetics equations can be expressed in two different
forms (Appendix A) -- one based on the prompt neutron generation time and
the other on the prompt neutron lifetime -- comparisons of solutions using
each of these two forms were made in order to study the effect of repre-
sentation of the reactor kinetics equations.

The efficiency (Section 2.4.2) as a function of K and € was obtained
for those problems which had a computing time of at least a few tenths of
a minute, since time is kept by the computer only within an accuracy of
40.01 minute. The time can be obtained during execution of the program by
use of the subroutine CLOCK (Appendix D). The computing time t, used in
calculating the efficiency is obtained by calling the subroutine CLOCK at
the start of the problem (after all input data have been read in) and at
the end of the problem (before writing and/or punching output).

3.1 Comparisons with Analytic Solutions

Six cases for which analytic solutions exist were computed using
continuous analytic continuation. For all of these cases except one,
the differential equations are linear. The approximate results were

compared with the analytic solutions for each variable occurring in the

equations., The variables
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t

f N(t-) dt-

(o}

and

a(t) = N () /n(e)

were included in the comparison for most of the cases. The integrated

neutron level is computed using continuous analytic continuation in the

following manner: From Eq. 2.4 N(t) is given in the interval t g stst,
by
K
(k) k
N = - !
() Z N (tn_l)(t tn_l) /(k.) t oy St<t, (3.1)
k=0
so that
¢ K
n N e o (k) _ k+1
f N(t ).dt Z LR G LY, /(k+1)! (3.2)
t.; k=0
Thus, the integral
t
f N(t”) dt-

(o}

is obtained by summing Eq. 3.2 over all time steps in the interval O to t.
It should be mentioned that in all problems considered in this

and sqpsequent sections, only a fraction of the points from the approxi-

mate solutions were plotted. Analytic results were computed at corres-

ponding points to allow calculation of the accumulated error. In Section

2.4, it was shown that to first order, the absolute value of the accumulated

relative (or fractional) error for variable Yi is less than or equal to

ne (Eq. 2.13), so that the upper limit is ne (Eq. 2.33). In this section,

the actual accumulated relative error for the various cases is compared

with Eq. 2.33 in order to verify that Eq. 2.13 holds.
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3.1.1 Case l: Step Change in Reactivity:; No Delayed Neutrons,
Source, or Feedback

The simplest problem for which analytic solutions exist is that
of a step change in reactivity with no delayed neutrons, source,or feedback.

This case is represented by the equation

1

v ) = a7t o weo) (3.3)

which by inspection has the solutions

-1p t
N(t)/N(0) = el Po (3.4)

t -1
fo N(t”) dt* = Ap;I N(0) {eA Pot —1] . (3.5)

Approximate results using continuous analytic continuation with K = 6
and € = 10—6 are compared with analytic results in Figs. 3.1A and 3.1B for
the case A = 10—5 sec, p_ = 6.4 x 10—4, and N(0) = 1.0. As can be seen
from these figures, the agreement between the approximate and analytic
results is excellent. The actual accumulated relative error in N(t) for
this case is compared with Eq. 2.33 in Fig. 3.1C, and the results are
in agreement with Eq. 2.13. Figure 3.1D shows the actual relative error
in N(t) and the upper limit from Eq. 2.33 at a fixed point (t = 0.5 sec)
in the transient as a function of € with K as parameter. Again, it is
seen $hat .the relative (or fractional) error satisfies Eq. 2.13. 1In
Section 2.4.2, it was shown that at a fixed point in the transient the
accumulated relative error is proportional to CK/K+1. This is verified
in Fig. 3.1D for the case under consideration.

Because the computing time was only of the order of 0.0l minute
for this problem even on carrying out the solution to N(t)/N(0) = 1038,

it was not possible to study the effects of K and € on the efficiency.
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ACCUMULRTED RELATIVE ERROR IN MNKTD

ACCUMULATED RELRATIVE ERROR IN NCTD AT T=0.5 SEC
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3.1.2. Case 2: Ramp Input in Reactivity: No Delayed Neutrons,

. Source, or Feedback

Another simple problem for which analytic solutions exist is

that of a ramp input in reactivity with no delayed neutrons, source, or

feedback. This problem is represented by the equations
1 -1
N ) = a7 o) N
p(t) = bt

where b is a constant. The solutions to this problem are

2
N(t)/N(O) = PF /2A
- = gat22“
/ N(tT) dt” = N(O)tz 2l (Zn ¥ D)
(o}

n=0

alt) = NV eymee) =b a7t e

where a(t) is the instantaneous inverse period and a = b/2A.

3.9 is obtained by expanding the exponential in an infinite series and

integrating term by term.

Comparisons of approximate results using continuous analytic con-
tinuation with K = 4 and ¢ = 10—6 are made with the analytic results in
Figs. 3.2A through 3.2D for the case A = 8 x 10—9 sec, b = 2,1 x 10~
and N(O) = 1.0, It can be seen from the figures that the approximate
results are in excellent agreement with the analytic results.
3.2E, the actual accumulated relative error is compared with Eq. 2.33;
the results are in agreement with Eq. 2.13. The actual relative error

in N(t) and the upper limit predicted by Eq. 2.33 at a fixed point

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(t = 1.3 x 10—2 sec) in the transient are shown in Fig. 3.2F as functions

of ¢ with K as parameter. As expected, the figure shows that the accumu-

lated relative error satisfies Eq. 2.13 and that it is proportional to

eK/K+1 (Section 2.4.2).
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For this problem, the odd derivatives of N(t) at t = O are
zero. Thus, the initial value of the first time step cannot be com-
puted from Eq. 2.10 when K is even. The results in Figs. 3.2A through
3.2E indicate that the procedure (Section 2.3.2) used to eliminate this
difficulty is satisfactory.

As in Case 1, the computing time for this problem was only
about 0.0l minute, and thus, it was not possible to investigate the

efficiency as a function of K and €.

3.1.3. Case 3: Step Change in Reactivity with Thermal Feedback;
No Delayed Neutrons or Source

One of the few nonlinear problems for which analytic solutions

exist 1s that of a step change in reactivity with thermal feedback and

no delayed neutrons or source. The following equétions apply in this case:?

N ey = a7 p(e) Nee)
o(t) = a + b[T(t) - T(0)]
T () = B N()

where
' T(t) is the temperature of the reactor,
a is the initial value of plt),
b is the temperature coefficient of reactivity, and

H is a constant involving the heat capacity and a conversion
factor from neutron level to power level.

Equation 3.13 applies to the adiabatic case, since heat losses are not

taken into account. This equation can be integrated directly to yield

t
T(t) - T(0) = H f N(t ) de- .

(o}
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By substitution of Eq. 3.14 into 3.12, one obtains

t
o(t) =a+bH f N(t”) dt-, (3.15)

(o}

which when substituted into Eq. 3.11 yields

1

t -
N ey = A7t a n(e) + A7 bE N(R) f N(t?) dt” . (3.16)
(o}

Equation 3.16 is a nonlinear integro-differential equation in N(t).
The solution to the system of Eqs. 3.11 through 3.13 is

given in Appendix C. The results are

2
N(t) - o ) wt
N(0) _ ot e (3.17)
17 %2
t N(O)(r, - r,) wt
f N(t”) dt* = i 2 e - :;t (3.18)
o rl - r2 e
b ry r2(emt -1
p(t) = a + " (3.19)
rp-r,e
ry r2(emt - 1)
T(t) = T(0) + — (3.20)
r,-r,e
-1 wt
(1), 1 A7 bryry(e - 1)
a(t) = N(D) = A a+ " (3.21)
* ! rl -r,e

42




where

w=pt [a2 - 2b HA N(O)]%
r, = (a + Aw)/b
r, = (a - Aw)/b.

Approximate results using continuous analytic continuation
with K = 4 and €¢ = 10—6 are compared with the analytic solutions in Figs.
3.3A through 3.3E. The comparison is for the case A = 10—3 sec, a = 10—2
b = —10—4/°K, H = 10—14 °K/sec, N(0) = 105, and T(0) = 303 °K. It can be

seen from these figures that the approximate results are in excellent

agreement with the analytic solutioms.
The actual accumulated relative error for N(t) and T(t) is com-
pared with Eq. 2.33 in Fig. 3.3F. Since p(t) is zero near t = 2.8 sec,
the relative error for p(t) is not defined in the vicinity of this point.
However, the accumulated relative error for p(t) in other portions of the
transient is almost identical to that for T(t). As expected, the results
in Fig. 3.3F are in agreement with Eq. 2.13. It should be recalled (Section
2,3) that a gommon time step for all the dependent variables is determined
from the behavior of N(t). The assumption was made in Section 2.3 that the
use of this time step would guarantee that the other dependent variables
would also satisfy the truncation error criterion (Eq. 2.5). That this
is the case for the problem under consideration can be seen from Fig. 3.3F
which shows that the error accumulates more slowly for T(t) than for N(t).
Another interesting point concerning Fig. 3.3F should be men-
tioned. The time step is determined in a manner (Section 2.3) such that
the relative or fractional truncation error is <e for each time step. Thus,
the truncation error at the peak in the neutron level (Fig. 3.3A), where
N(t)/N(0) = 5 x 1011, is much larger than at the tail end of the transient
where N(t)/N(0) is decreasing rapidly. Figure 3.3F shows, however, that
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Eq. 2.13 for the accumulated relative error continues to hold for the
tail end of the transient. The reason for this is that the remainder in
the Taylor expansion for N(t) changes sign in the vicinity of the peak,
resulting in cancellation of most of the error accumulated up to that
point. This is evident in Fig. 3.3F from the dip in the accumulated
relative error for N(t).

The actual relative error in N(t) and the upper limit from
Eq. 2.33 are plotted as a function of € with K as parameter in Fig. 3.3G
at a fixed point (t = 5.6 sec) in the transient. The accumulated error
satisfies Eq. 2.13 and is proportional to eK/K+1
2.4,2),

as expected (Section

Again, the computing time for this problem was too short (=0.03

min) to allow investigation of the efficiency as a function of K and €.

3.1.4, Case 4: Sinusoidal Variation in Reactivity; No Delayed
Neutrons, Source, or Feedback

Another problem for which analytic solutions are available is
that of a sinusoidal variation in reactivity with no delayed neutrons,

source, or feedback. This problem is represented by the equations
NV ey = a7 o) Nw) (3.22)
p(t) = p sin wt (3.23)
o

where Py and w are constants.

By inspection, the solution to this problem is

p
g%%% = exp [K% (1 - cos mt)}
2p
= exp (‘A—m2 sin2 %‘) (3.24)
a(e) = 8P ey/mee) = a7 o sin wt. (3.25)
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Approximate results using continuous analytic continuation
with K= 4 and € = 10—6 are compared with analytic results in Figs., 3.4A
through 3.4C, Two cycles of the solution are plotted for the case
A= 10—5 sec, p_ = 5 x 10—4, and w = 10 sec—l. These figures show that
the approximate results are in excellent agreement with the analytic
results. For this problem, the odd derivatives of N(t) at t = 0 are _
zero, so that the initial value of the first time step cannot be computed
from Eq. 2.10 when K is even. The results in Figs., 3.4A through 3.4C
indicate, as in Case 2, that the procedure (Section 2.3.2) used to elimi-
nate this difficulty is satisfactory.

The actual accumulated relative error in N(t) for this case
is compared with Eq. 2.33 in Fig. 3.4D, and the results are in agreement
with Eq. 2.13. Because of the oscillatory behavior of N(t) in this
problem, the remainder in the Taylor expansion for N(t) changes sign
over portions of the transient. As a result, there is a periodic cancel-
lation of truncation errors, and the error does not accumulate as quickly
as for nonoscillatory transients (compare Fig. 3.4D with Figs. 3.2E and
3.10).

Figure 3.4E shows, as a function of €, the actual relative
error in N(t) and the predicted upper limit from Eq. 2.33 at t = 1 sec
for two values of K. The results are in agreement with Eq. 2,13 and
with the observation (Section 2.4.2) that, at a fixed point in the

transient, the relative error is proportional to sK/K+1,

The computing time for this problem was only about 0.03 min
by continuous analytic continuation. However, by continuing the solution
over many (=50) cycles, computing times of the order of one minute can be
obtained. Figure 3.4F shows the variation of the efficiency with € for
two values of K for the case shown in Figs. 3.4A through 3.4C. Results
in Fig. 3.4F are in agreement with those in Section 2.4.2 (Fig. 2.3).

Figure 3.4G shows the efficiency as a function of K with € as parameter
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for the case A = 10—3 sec, p = 10—2, and w = 10 sec—l. The results
in Fig. 3.4G are in qualitative agreement with those in Section 2.4.2
(Fig. 2.1).

3.1.5. Case 5: Step Change in Reactivity with One Delayed
- Neutron Group; No Source or Feedback

The problem of a step change in reactivity with one delayed
neutron group and no source or feedback can be solved analytically. This

problem is described by the equations

NP ey = a1 (o - B) N(E) + A C(b) (3.26)

¢ ey = a1 g N(e) - A C(r) (3.27)

where p is a constant. The analytic solutions of Eqs. 3.26 and 3.27,

obtained by Laplace transformation, are

t wat
N(E) wy 2
NGOy = 21 © +a,e (3.28)
t wst
c(t) _ s | 2
0y b1 e + b2 e (3.29)
. A o a wyt a w,t
f N(t”) dt* = N(0) [—1 (el - +2(e? - 1)] (3.30)
o | wa
(o}

a; = (wy + 1+ A—le)/(m1 - w,)
gy (o) + A+ ATE)/(wy = )
by = lug + A+ 4758 -p) 1/ (w) - w,)

by = luy + A+ A°(8 = )1/ Cuy = w)-
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In the above equations, w

1 and Wy are the two roots of the equation

w2+[A—A—1(o—B)]w—A’1xp-o

and the initial condition.C(l)(O) = 0 has been applied.

A comparison of approximate results using continuous analytic
continuation with K = 5 and ¢ = 10—6 is made with the analytic results in
Figs. 3.5A through 3.5C. The results are for the case A = 10—5 sec, p =

-3
3.2 x 10

figures, the approximate results are in excellent agreement with the analytic

, B= 6.4 x 10—3, and A = 0.4 sec—l. As can be seen from these

results,

Figure 3.5D comﬁares the actual accumulated relative (or fractional)
error in N(t) and C(t) with Eq. 2.33; the results are in agreement with Eq.
2.13. The actual relative error and the upper limit from Eq. 2.33 are plotted
in Fig. 3.5E as a function of ¢ with K as parameter at t = 25 sec for the
case under consideration. The results in Fig. 3.5E are in agreement with
Eq. 2.13 and the accumulated relative error is proportional to eK/K+1 as
expected (Section 2.4.2).

The computing time for this problem was not long enough (=0.05 min)
to allow investigation of the efficiency as a function of K and ¢.

A straightforward application of the basic method to this case,
and the case which follows, is not the most efficient from the viewpoint of
computing time. Thus, a variation of the basic method was used in these

cases (Section 2.5.1).
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3.1.6. Case 6: Step Change in Reactivity with Six Delayed
Neutron Groups; No Source or Feedback

The final problem considered for which analytic solutions are
available is that of a step input of reactivity with six delayed neutron
groups and no source or feedback. This problem is an extension of Case 5

to more than one delayed neutron group. The equations to be solved are

6
Ny =47 G - N +) A, €, () (3.31)
i=1
6B -1
Ci7(e) = A7 By N(E) - A, C (1) i=1, ..., 6 (3.32)

where p is a constant.

By assuming the trial solutions

N(t) a vt

wt
Ci(t) ae

in Eqs. 3.31 and 3.32, it is found that

7
w,t
N(t) = Z a e 3 (3.33)
=1
w,t
c, (t) =i b;' e d (3.34)
j=1

where the coefficients in Eqs. 3.33 and 3.34 are constants and the are

J
the seven roots of the well-known inhour equation:
6
p=Auw+ Z;;Bi[l + (ki/w)]. (3.35)
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In terms of the period T = 1/w, Eq. 3.35 can be written in the more

familiar form

A i
P T+Zl+k T (3.36)

Equations 3.31 and 3.32 were solved for step inputs of reactivity
using continuous analytic continuation with K = 4 and € = 10—6. The asymp-
totic behavior of N(t) and Ci(t) is proportional to e(t/T) where T is the
largest root of Eq. 3.36. Asymptotic periods obtained with the approximate
method are compared in Table I with those calculated from Eq. 3.36. The
agreement between approximate and analytic results is excellent and the
fractional error in the periods are within the limits predicted by the

approximate method.

It should be pointed out again that Cases 5 and 6 were computed
using a variation of the basic method (Section 2.5.1) which is applicable

to these cases and which is more efficient than a straightforward application
of the basic method.
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TABLE

I

Asymptotic Periods for Step Inputs of Reactivity

With Six Delayed Neutron Groups

Inhour Equation
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3.2 Comparisons with a Numerical Intepration Method

In the previous section, approximate results using continuous
analytic continuation were compared with analytic solutions for a few
cases, in order to check the accuracy of the approximate method and
in order to verify some of its properties. In this Section, approximate
solutions to two problems for which closed analytic solutions are not
€]

code. This

code solves a reduced integral form of the reactor kinetics equations by

known are compared with approximate solutions from the RTS

numerical integration using Simpson's rule.

3.2.1. Case 7: Ramp Input of Reactivity Starting at Source
Equilibrium with Six Delayed Neutron Groups and Feedback

Proportional to Total Energy Release
The firat problem considered is that of a ramp input of reactivity

starting at source equilibrium with six delayed neutron groups and reactivity
feedback proportional to the integrated power or to the total energy release.

This problem is represented by the equations

6
NP () = a7 o) - gl N0 + ) ay € (0 + S (3.37)
i=1
Cil)(t) - A—l By N(&) - ay C (t) i=1, ..., 6 (3.38)
t
p(E) = o +at + bf N(t-) de-. (3.39)

(o}

Equation 3.39 is equivalent to the two equations

p(t) = po T at + alT(t) - T(O)] (3.40)

1 (6) = mn(e) (3.41)

if b = aH,
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Equations 3.37 through 3.39 were solved using continuous
analytic continuation (ANCON code, Appendix D) and the RTS(7) code

for the case

A= 1078 gec = 3.61 x 10" neuts/sec p, = ~2.1x 1073
a=21x%x107) secd  b=-2.216 x 107 gec™t B=2.1x% 10"
B, = 7.98 x 10’54 B, = 5.88 x 10"’[+ By = 4.536 x 10;4

B, = 6.888 x 10 Bg = 2.163 x 10 Bg = 7.35 x 10
A, = 1.29 x 1072 sec™™ Ay = 3.11 x 1077 Ay = 1.3 x 107t
- 3.31 x 10°¢ Ay = 1.26 A =3.21

Results using continuous analytic continuation with K = 4 and ¢ = 10—6

are compared with results from the RTS code in Figs. 3.6A through 3.6D.
It can be seen from these figures that the agreement between the two
results is satisfactory.

The computing time required by the RTS code for this excursion
was 9.03 minutes, while only 0.35 minute was required by the ANCON code.
The number of time steps required with the RTS code was 118,000 for an
average time step of 2.56 x 10—7 sec, whereas with the ANCON code only
2,000 time steps were required for an average time step of 1.51 x 10—5 sec.
Both problems were run on the same computer (IBM-7094) and the two codes
are programmed in the same language (FORTRAN II, Version 3).

It was shown in Section 2.3 that by requiring that the relative
truncation error in the Taylor expansion be at most equal to €, an analytic
criterion for the time step at each iteration could be obtained. 1In the RTS
code, the starting time step is varied automatically through an arbitrary
device. The criterion used in the RTS code to determine if the time step
is to be modified is the magnitude of the relative change in N(t) per time
interval |6N/N|. The test sequence is as follows: If [SN/N| <F_, Ot is
set equal to the previous At. If F_ < |6N/N]| < F , At is increased
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by a constant factor DT MULT. If F, < |sN/N| < F,, At is unchanged.
Finally, if |§N/N| > F,, At is decreased by the factor DT MULT. Regardless
of the results of the above tests, however, the minimum value of At
allowed by the RTS code is 1 x 10—7 gsec. In the above discussion, Fo’ Fl’
F2, and DT MULT are input constants. The function of the Fo fiducial is
to minimize spurious oscillations in N(t) and ,(t) (inverse instantaneous
period) which may develop when |§N/N| becomes very small.

In the problem under consideration, the value used for DT MULT

was 1.2, which is the value recommended in Ref. 7. However, the use of

4 3

, and 3 x 10 °,
respectively) resulted in spurious oscillations in w(t). Hence, these

the recommended values for Fo’ Fl’ and F2 (1 x 10—4, 3 x 10

values were decreased until all spurious oscillations in w(t) were eliminated.
4

The final values used were Fo =] x 10—5, F1 = 3 x 10—5, and F2 =3 x 10

Figure 3.6E shows how the time step varies throughout the
excursion for both methods. This figure should be examined in con-
junction with Fig. 3.6A, since the time step is determined by the
behavior of N(t).

Figure 3.6F shows the upper limit of the relative or fractional
error in N(t) predicted by continuous analytic continuation (Eq. 2.33).
Since N(t) exhibits some damped oscillations (Fig. 3.6A), the actual
fractional error in N(t) using continuous analytic continuation can be
expected (Section 3.1) to lie well below the curve in Fig. 3.6F. The
error in the results from the RTS code cannot be predicted by the method
used in that code. However, judging from Figs. 3.6A through 3.6D, the
error is of the same order of magnitude as that using continuous analytic
continuation.

The efficiency (Section 2.4), computed at t = 3 x 10—2 sec,
is shown in Fig. 3.6G as a function of K for two values of ¢. From this
figure, it can be seen that, for ¢ = 10—6, K= 5 1s the optimum order.
The qualitative behavior of the efficiency as a function of K is as expected
from the discussion in Section 2.4 (Fig. 2.2). TFigure 3.6H shows the
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efficiency (normalized at ¢ = 10-6) as a function of € with K as parameter.
The efficiency, and hence the computing time, is not strongly dependent
on the error criterion €, especially for larger values of K. These results

are in qualitative agreement with those in Section 2.4 (Fig. 2.3).

3.2.2. Case 8: Step Input of Reactivity with Six Delayed Neutron
Groups and Feedback Proportional to Total Energy Release

The second problem considered is that of a step input of
reactivity with six delayed neutron groups and reactivity feedback pro-
portional to the integrated power or total energy release. This problem
is represented by equations similar to the previous case (Case 7) but
with S = 0 and a = 0.

Figures 3.7A through 3.7D are a comparison of results using

continuous analytic continuation and the RTS code for the case

A= 10—3 sec ' ' p_=1x 10—2
-17 -1 ° -3

b=-1x 10 sec B= 6,5 x 10

B) = 2.145 x 1074 B, = 1.4235 x 1073 By = 1,274 x 1073
B, = 2.5675 x 1073 By = 7.475 x 1074 B = 2.73 x 1074
A, = 1.24 x 1072 A, = 3.05 x 1072 Ay = 111 x 107t

-1
A, = 3.01 x 10 Ag = 1.14 Ag = 3.01

The constants used in these calculations were K = 4 and ¢ = 10—6 with

continuous analytic continuation, while the recommended (Ref. 7) values

of DT MULT = 1.2, F_ = 1074, F; = 3x 107, and F, = 3x 1073 were used

in the RTS code. As can be seen from Figs. 3.7A through 3.7D, the agree-

ment between the two methods is very good in general. The only exception

is in the tail of the transient where the inverse period calculated by

the RTS code contains several spurious oscillations. These cannot be seen

in Fig. 3.7D because of the scale used but are evident in the output listing.
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The constants Fo’ Fl’ F2 were decreased by an order of magnitude from the
recommended values in an attempt to eliminate these spurious oscillations.
However, this failed to eliminate the spurious oscillations, and the com-
puting time increased by an order of magnitude.

With the ANCON code, 1.00 minute of computing time was required,
while the RTS code required 2,99 minutes using the recommended values for
Fo’ Fl’ and F2. The number of time steps required to compute the excursion
by continuous analytic continuation was 5,960 for an average time step of
1.68 x 10—1 sec. The corresponding numbers for the RTS code were 67,200
time steps and an average time step of 1.51 x 10—2 sec.,

Figure 3.7E shows the variation of the time step as a function
of time for both methods. The upper limit for the relative or fractional
error preq;ctqd by continuous analytic continuation (Eq. 2.33) is plotted
in Fig. 3.7F. From the previous work (for example, Case 3), the actual
error in the results should lie well below the curve in Fig. 3.7F. The
error in the results from the RTS code can be estimated from Figs. 3.7A
through 3.7D to be of the same order of magnitude as that using continuous
analytic continuation.

The variation in the efficiency with K and € for this problem
is shown in Figs. 3.7G and 3.7H. The results in these figures again verify
some properties predicted in Section 2.4.2 for continuous analytic continuation.

It should be pointed out that the RTS code solves the kinetics
equations based on the prompt neutron lifetime 2. These differ from those
based on the prompt neutron generation time A in that the delayed neutron
precursor equations based on % are nonlinear, while those based on A are
iinear (Appendix A). Also, in the RTS calculations in this section, £
was taken to be numerically equal to A and Sk(t) = k(t) - 1 was taken to
be numerically equal to p(t) = [k(t) - 1}/k(t). These differences are in
addition to the difference in the approximate methods used to solve the
equations. In spite of all these differences, the results using continuous

analytic continuation are in good agreement with those using the RTS code.
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This leads to the conclusion that it is immaterial which set of the
reactor kinetics equafions are used, and furthermore, % and &k(t) can
be used interchangeably with A and p(t), respectively, without gsignif-
icantly changing the results. These points are discussed further in

Section 3.4.

3.3 Comparison with Experimental Transients

In this section, results obtained using continuous analytic con-

tinuation are compared with experimental excursions reported in the

literature for the Godiva(zz) and SPERT 1(23’24)

a fast, bare U235 metal, spherical reactor with a diameter of about

reactors. Godiva is

6.75 inches. On the other hand, SPERT I is a reflected, water-moderated

heterogeneous, low-enrichment UO2 thermal reactor.

3.3.1. Godiva Bursts

Reference 22 reports the results of experimental studies made
of the time behavior of Godiva following step increases in reactivity with
essentially zero initial power level and no external neutron source. For
step inputs of reactivity in the prompt critical range, but below about
5¢ above prompt critical, the reactivity feedback (which is due to thermal
expansion of the metal sphere) is proportional to the total energy release.
Thus, the equations which describe the time behavior of Godiva for step
inputs of reactivity in this range are the same as those for Case 8 (Section
3.2.2). For slower transients (step inputs of reactivity less than prompt
critical), the heat transfer from the sphere to its surroundings cannot be
neglected. For faster transients (step inputs of reactivity larger than

about 5¢ above prompt critical), the thermal expansion of the sphere is
retarded by inertia.

75



-

Assuming that B = 6.4 x 10—3, the neutronic parameters for
(22) '
Godiva are

/A = 1.03 x 10° sec”? A= 6.2136 x 10”° sec

A, = 1.2771 x 1072 gec! A, = 3.1949 x 1072 Ay = 1.1820 x 1071
A, = 3.1847 x 101 A, = 1.5083 A, = 5.3191
4 -4 3 -3 6 -3
B = 2.26 x 10 B, = 1.3248 x 10 B, = 1.2224 x 10
84 = 2,6176 x 1073 85 - 8.832 x 10°% 86 = 1,28 x 1074

temperature coefficient of reactivity = -2,688 x 10—5/°C
heat capacity = 6.6613 x 1073 Mw—sec(?C.
Calculated results using continuous analytic continuation are
compared with experimental results in Figs. 3.8A through 3.8C. Figure
3.8A is a plot of the peak fission rate, which is proportional to the
peak neutron level, versus the initial asymptotic inverse period Wy
Figure 3.8B shows the burst yield or total fissions to the peak as a
function of W, o The burst yield is proportional to the integrated
neutron level at the peak. Figure 3.8C is a plot of the burst width at
half-maximum as a function of W, o The calculated results are in good
agreement with the experimental results in the region where the feedback
model used is valid. Above W, & 5 x 104 sec-l, corresponding to a step
input of approximately 5¢ above prompt critical, the retardation of the

thermal expansion of the reactor by inertia becomes increasingly important.

3.3.2. SPERT I Excursions
Experimental results of excursions in SPERT I following step
inputs of reactivity are reported in Ref. 23. For w, > 100 sec—l, corres-
ponding to step #nputs >30¢ above prompt critical, heat transfer from the
fuel to the moderator.can be neglected and the roactivity(za) is given by
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p(t) = p, ~ 4.588 x 1074 g0-74

where E is the integrated power or total energy release. For wy > 100 sec—l,
reactivity feedback in the constrained (no fuel element bowing) SPERT I core

is due mostly to Doppler broadening of U238 absorption resonances as the fuel

temperature increases. Other neutronic parameters(23’24) for SPERT I are
-3 -3 -5
A/B = 3.6 x 10 ~ sec B = 7.4 x 10 A= 2,664 x10 - sec
A\ =127 x1077 sect A, =3.17 x 1072 =1.16 x 107%
A, =3.13 x 1071 A = 1.40 A, = 3.88
4 -4 3 -3 6 -3
81 = 2,4494 x 10 82 = 1,44744 x 10 83 = 1,24912 x 10
34 = 3.14352 x 10—3 BS = 1,12924 x 10—3 86 = 1,8574 x 10—4

'’ [

4 MW-sec
“’)—_‘T

heat capacity of active region = 0.11(1 + 5.3 x 10~
Calculated results using continuous analytic continuation are

compared with experimental results in Figs. 3.9A and 3.9B where the peak

power and energy-to-peak power, respectively, are plotted as a function of

w e The agreement betweem calculated and experimental results is good.
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3.4 Effect of Representation of Reactor Kinetics Equations

In Appendix A, it was shown that the reactor kinetics equations
could assume two different forms; one form being based on the prompt
neutron generation time A and the other on the prompt neutron lifetime 2.

These two sets of equations are reproduced below for easy reference.

Equations based on A

I
NP () = a7Mp(e) - g1 N(D) + ) 4y (o) + 8
i=]1
(1) -1
Ci(e) =a " gy N(t) - 2y C () 1=1,...,I
p(t) = [k(t) - 1]/k(t) (3.42)

Equations based on £

vy = 7 - g se) - 8l N +i WACEE

i=1
1) -1 .
C; 7 (e) = £ By [8k(t) + 1] N(t) - Ay Ci(t) i=l,...,I
Sk(t) = k(t) - 1 (3.43)
Again note that the basic difference between these two forms is in the

equations for Ci(t); those based on £ being nonlinear while those based

on A are linear.
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Some comparisons between'continuous analytic continuation
using the kinetics equations based on A and the RTS code, which solves
a reduced form of the kinetics equations based on £ by numericai integra-
tion, were made in Section 3.2. The probléms compared in that section
were the response of a fast reactor to a ramp input of reactivity énd of
a thermal reactor to a step input of reactivity. For all practical pur-
poses, the results from the two methods were identical.

In this section, the two forms of the reactor kinetics equations
(Eqs. 3.42 and 3.43) are solved for a particular problem by continuous
analytic continuation and the results compared. The problem used for com-
parison is that of a terminating ramp input of reactivity starting at source
equilibrium with six delayed neutron éroups and reactivity feedback propor-
tional to the fuel and moderator temperatures. Heat transfer from the fuel
to the moderator 1s assumed to take place by radiation. Thus, the equations

which must be added to Eqs. 3.42 and 3.43 to complete the description are

- -

p(t) = p  + at + ac[T(t) - Tf(Q)] +oa [T (8) - T (0)] t<t
p(t) = p, +aty + af'['rf(t) - Tf(o)] + am['rm(t) - Tm(o)] t>t
(3.44)
e TS (1) = q, HN(E) - hr[rlf'(t) - T:l(t)] (3.45)
e, T (e) = Q HN(E) .+ hr[r‘f‘(c) - T:(c)] (3.46)

in which t1 is the time at which the ramp is terminated. Note that the
hzat balance equations (Eq. 3.45 and 3.46) are nonlinear, because of the
T  terms. The equation which defines §k(t) is the same as Eq. 3.44 with
p(t) and Po replaced, respectively, by &k(t) and Gko.

82




Comparisons of results from the two forms of the kinetics
equations using K = 4 and ¢ = 10—6 are made in Figs. 3.10A through 3.10D.

The excursion shown in these figures is for the case

A= 10—3 sec B = 6.5 x 10—3 S = 200 neuts/sec
P ™ Gko = 2.5 x 10—2 a=6,5x 10—4 sec—1 t, = 47.5 sec
: 1
A =126 x 1072 gec? A, = 3.05 x 1072 Ay = 111 x 1071
A\, =3.01 x 1071 A = 1.14 A = 3.01
By = 2.145 x 1074 B, = 1.4235 x 1073 By = 1.274 x 1073
B, = 2.5675 x 1073 By = 7.475 x 1074 Bg = 2.73  x 1074
a; = -2.6 x 10’5/°c a =-2.3 x 10'4/°c Qp = 0.925
Qm = 0.075 c. = 0.3 MW-sec/*C c = 12 MWw-sec/°C
-14 s £ -14 B
h, = 2.482 x 10 MW/°C H=1,5x 10 MW,

Figures 3.10A through 3.10D show that the two forms of the reactor
kinetics equations give essentially the same results for this case. The small
differences between the results can be attributed to the fact that 6k(t) and
£ were taken to be equal, respectively, to p(t) and A.* Computing times for
this excursion were 0.75 minute using Eqs. 3.42 and 1.08 minutes using Eq.
3.43. The difference in computing times is due to the fact that the higher
derivatives of Ci(t) using Eqs. 3.43 contain more terms than those using Eq.
3.42,

Since the results in this section and in Section 3.2 indicate that
there are no significant differences between solutions obtained using the
equations based on £ and those based on A, and since the equations based on
A are mathematically more simple than those based on £, it is recommended

that the equations based on A be used in all reactor kinetic analyses.

* .
6k(t) and £ differ from p(t) and A by a factor of k(t) which is always
close to unity.
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4, SUMMARY AND CONCLUSIONS

A method for obtaining approximate solutions to the nonlinear
reactor kinetics equations was described, and its properties were investi-
gated. This method, known as continuous analytic continuation, has
several advantages over numerical methods currently in use. The most
important of these advantages is that the method yields an analytic criterion
for the magnitude of the time step, and the criterion is such that the time
step automatically expands or contracts, depending on the behavior of the
neutron level in the interval. The use of this criterion to determine the
time step guarantees that the error in the results increases at most linearly
with the number of time steps.

Approximate solutions by continuous analytic continuation were compared
with analytic solutions to the reactor kinetics equations for some of the
few special cases in which analytic solutions are known. The agreement
between the approximate and analytic solutions was excellent and the error
accumulation in the approximate method was found in all cases to be within
the limits predicted by the theory. Comparisons were then made with a
numerical integration method for several cases in which analytic solutions
are not available. The agreement between the two methods was good, and it
was found that continuous analytic continuation was faster than the numerical
integration method. Some properties predicted for continuous analytic con-
tinuation were also verified in these calculations. Comparisons also were
made with expérimental transients in the Godiva and SPERT I reactors. The
calculated results using continuous analytic continuation were in good
agreement with experiment in the region where the feedback model used was
valid.

Solutions using the two forms of the reactor kinetics equations were
found to be identical for all practical purposes. Since the form based on
the prompt neutron generation time is simpler from a mathematical viewpoint,
this form is to be preferred over the form based on the prompt neutron
lifetime.
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5. ‘RECOMMENDATIONS FOR FUTURE WORK

The proposed method was used successfully to describe open-loop reactor
dynamics, that is those problems in which there is no coolant flow or those
problems in which the excursions are fast enough so that the dynamics of the
coolant loop need not be considered. The possibility of using the method to
describe closed-loop dynamics shouid be investigated. This will involve
incorporating additional differential equations into the feedback equations
and describing transport delays.

In those cases with thermal feedback considered #n Secéion 3, tempera-
ture coefficients of reactivity and heat capacities were taken to be constant.
For systems in which these quantities are sensitive to changes in temperature,
the constant approximation will lead to erroneous results. Temperature co-
efficients of reactivity and heat capacities which are specified functions
of temperature can be handled easily by the method. This capability will
be incorporated into the computer program in the near future.

The possibility of extending the method to functions of two variables
(time and one space dimension) should be investigated. This capability is
needed for solving the coupled neutronics-hydrodynamics equations which are

required to describe effects of inertia.
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APPENDIX A

DERIVATION OF SPACE-, ENERGY-, AND DIRECTION-AVERAGED

REACTOR KINETICS EQUATIONS

In this appendix, the space-, energy-, and direction-averaged reactor

kinetics equations are derived from the time-dependent Boltzmann equation ’

for reactor systems in which fuel is stationary.

Let

n(;;E,E,t) denote the number of neutrons per unit volume, solid

angle, and energy at position';, moving in the direction of the unit vector

Q with energy E at time t. The number of neutrons n(;;E,E,t)K; Aw AE in the

cell Ar Aw AE (A; is a volume element and Aw is an element of solid angle

about the
following

(a)

(b)

(c)

(d)

(e)

(£)

Let

unit vector 5} centered at ;:E;E changes with time due to the
processes:

collisions in the cell Ar Aw AE which result in absorption or
scattering out of the cell,

collisions in a cell Ar Aw” AE” which result in neutrons being
scattered into AT Aw AE,

fissions in a cell Ar Aw” AE” which result in prompt neutrons
being produceﬂ in the cell AT Aw AE,

net streaming or leakage of neutrons out of Ar due to their
motion,

neutrons produced in AT Aw AE due to radioactive decay of delayed
neutron precursors, and

artificial or extraneous neutron sources producing neutrons in
At Aw AE.

Ci(;,t) denote the number of delayed neutron precursors of type i

per unit volume at position'; and at time t. Then the number of delayed

neutron precursors Ci(;,t) Ar in the volume element AT centered at r changes

with time due to the following processes:
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(g) production in Ar due to fission, and
(h)“ losses in Ar due to radioactive decay.
The mathematical expressions which describe processes (a) through (h)

can be shown to be those given below.

(a) ot(?,E,t) v(r,2,E,t) AT Aw AE

®) [ do” B o EFH, BB, yEELE,0) AT o oE
P - - - -
@ [ @ amr DCTE B - 8) V(ED 0p(7.E,0) WELED 8T o bk
() 2+ v y(r,2,E,t) AT 4w AE
d
(e) A, C (r,t) (E) AT Aw AE
e 2t

(g) f dw” dE* B, v(E") of(;,E’,t) v(r,0”,E-,t) AT
(h) Ay C(r,t) Ar

where

¥(r,Q,E,t) £ V(E) n(r,%,E,t) = directional neutron flux per unit

volume, energy, and solid angle
V(E) = velocity associated with neutrons of energy E

Ot(;,E,t) = total macroscopic interaction cross section (assumed

to be independent of %)

Os(;;§'4§,E'*E,t) = macroscopic scattering cross section for

scattering from E’;ﬁ’ to E;ﬁ.

of(;,E,t) = macroscopic fission cross section (assumed to be independent
of Q) '
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P
:;(f' (E“,E) = energy spectrum of prompt fission neutrons when the neutron

A

|

S(r,q,E,t)

v (E)

2]

By equating the time rate of change of n(r,Q,E,t) AT Aw AE and Ci(EQt)A?

to the rate

obtained.

1 3y

causing fission has energy E” (assumed to be independent of

), normalized so that

(-] p '
fo X e dE = for all E

energy spectrum of delayed neutrons from group i of delayed

neutron precursors (assumed to independent of 5), normalized

so that

© d
f j( (E) dE = 1 for all i
0 i

directional extraneous source density

average number of neutrons emitted per fission when the neutron

causing fission has energy E,

decay constant of group i of delayed neutron precursors,

fraction of fission neutrons emitted by group i of delayed neutron

precursors, and

total delayed neutron fraction, that is

0= Y .
i

of production minus the removal rate, the following equations are

-\7(—137-3—5- (;,E,E,t) --q - V‘P(;:E’E:t) - ot(;’E’t) w(?,ﬁ,E,t)

— — — p — — m—
+ fdw’ dE’[gs(r,Q’-p{z,E’-»E,t) + (1 - ) \,(E’)% (E”,E) of(r,E',t)] p(r,Q”,E-,t)

- — - d
+SEEED + ) A G0 Y ®
i
i
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:—Ctl (r,t) :fldw‘ dE” By vw(E*) og(T,E-,t) y(T,27,E%,t) - Ay C (r,t).
(A.2)

Equations A.l and A.2 apply to a reactor system in which fuel is
stationary, since transport of delayed neutron precursors was not con-
sidered. It was assumed that both prompt and delayed neutron sources from
fission, as well as ot and of are isotropic. In addition, it was assumed
that the decay of a delayed neutron precursor results in the production of
exactly one neutron and also that scattering is instantaneous.

Equations A.l and A.2 describe the behavior of the noncritical system.
Consider now the delayed critical case, that is, the steady state case with-

out an extraneous source. For this case, the above equations become

—5 ¢ V¢O(I_,E,E) - ot,o(;’E) ¢O(r_’§’E)

_ d
A €y (D) Xi (E) = 0 (A.3)

fdm’ dE~ 8, W(E") of’o(r_,E') ¢o(r_,§‘,1s') - A c o(::_) =0 (A.4)

where do and Ci o are the directional flux and delayed neutron precursor

]
distributions, respectively, at delayed critical. The values of the various
cross sections at delayed critical are denoted by the subscript o.

Equations A.3 and A.4 can be combined to yield

0.

P
- - v— P - . — A P
+ [X (E*,E)(1 - B) + ZI )C(E) 31] Y(E) o (5, )% 6, (T,8",E)

s (A.S)

-% - v ¢_(r,0,E) - ot’o(?.E) ¢, (r,2,E) + fdw’ dE’gos’o(?.?T‘*ﬁ.E’*E)
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For reasons which will become clear later in the development, the adjoint
of Eq. A.5 is more useful for the purpose at hand. The adjoint equation

is obtained formally by replacing —ﬁhby Q in the first term and transposing
the kernel in the integral term:

Q- V ¢x(r,2,E) - ot,o(;’E) ¢*(r,2,E) + fdw’ dE* 3 0, o (T, ,ESE")

+‘:>(p (E,E) (1 - B) + Z Xj (E°)8,

=0 (A.6)

v(E) of’oG.E)% ¢*(r,2",E7)

In Eq. A.6, ¢g is the neutron importance function at delayed critical.
The concept of neutron importance is discussed in Reference 25.

In order to simplify the notation in the manipulations which follow,
the following substitutions are made.

S(r,R,E,t) = S(x,t)

W(r,R,E,t) = ¥(x,t)
¢, (r,R,E) = ¢_(x)
o(r,%,E,t) = o(T,E,t) = o(x,t)
o(r, R ,E™*E,t) = o(r,y ?y,t)
dy = dw dE dx = dr dw dE = dr dy (A.7)
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With the above substitutions, Eqs. A.l1 and A.6 become, respectively,

v]('E) g—qt"- (;’t) = —ﬁ e Vv w(;,t) - Ot(;’t) ‘P(;.t)

p  — —
o+ f-dy{os(?.y'+y.t> + (- 8) vED) X (BB of(X’,t)] v ,E)
.
+8(x,t) + ) A, C_(T,t) (E) (A.8)
Yo @0 X

2 V@) -0, () 4% ) +fdy’ 3 O, o(Tsy*y)

o on —
+ [7( (E,E?)(1 - B) + >f X: (E’)Bi] v(E) °f,o(")

¢3(§') = 0 (A.9)

Multiplying A.8 by ¢3(§3 and A.9 by w(;:t), subtracting the resulting
equations, and combining a few terms gives

s (45 $(E,0) L ~ o
3:'[ vE) 0T [Q 95 (%) “’(x’t)] - 6 0, (x,t) ¢%2(x) v(x,¢)

- P - — —
+ [ay [os<r.y"+y.c> + - vEI X (E,E) of<x'.c>] ¢* () ¥(x.0)

d
—fdy‘ 308’0(?.y+y’) + [%(E,E’) -8 +) )(ia')si] v(E) of’o@%.
i

d —
RGN VG + SGLE) $AGD + ) A, C G0 X, ® o
i

(A.10)
where

Got(;;t) = Ot(;;t)'— ot'o(;)'
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If the time dependence of y(x,t) is separable, that is,
p(x,t) = N(t) ¢(x) (A.11)

then, on integrating over all space, energy, and solid angle, Eq. A.10

becomes

(t) — $%(x) ¢(¥) -
dgtt f BEICHE ’N(t)fdyfdr Voo 12 ¢x(x) ¢(x)]
—N(t)fd; 8o, (x,£) o%(x) o(x) + N(:)fd? dy dy” -
[osG.y‘*y.t) +@- 8 veE) \PEnD of<§',c,-]¢g<§> ¢(x")

- - S -
- N(t)fdr dy dy~ §os o(1:,y-*y') + [(1 - B) /\( (E,E') +Z :I/(_, (E ]v(E) O¢ (x)

36 060 + [ax sGe oG ) Ay [ & o, t))k ®) 64
i

(A.12)
) By use of the divergence theorem, the integral over space in the
first term on the right side of Eq. A.12 can be written
fd? VIR 0% (x) $(0)] = f (n * Q) ¢% ¢ da | (A.13)

volume
surface

where n is the outward normal to the surface of a large sphere enclosing
the system. If there are no neutrons entering from outside the sphere

enclosing the system, that is,
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¢ = 0 for -1 i; e <0, then by necessity the importance of neutrons
leaving the sphere enclosing the system is zero, that is, ¢* = 0 for

0 :_H'° 5-5_1. Thus, the integral over the surface of the sphere of the
normal component of the product ¢* ¢ vanishes and Eq. A.13 is identically
equal to zero. This is one of the reasons for using ¢* as a weighting

function.

Since E, E“, w, and w” are dummy variasbles in the integration, it can
be seen that

— - p A _
fdr dy dy~ 305’0(1’.}7")") + {(1 - B)/Xv‘ (E,E) + Z Bi/YL(F‘)] v(E) of’o(X)%
i

m

L@ o@ 2 [ 4yt ay o, Gy +

/d -— -—
[(1 - A+ g X (E)] W(E?) o (x7) 2 NOKICRE
A TN

(A.14)
With Eqs. A.13 and A.l14, Eq. A.12 becomes
-— -— p

dggtz f v(E) N(t)fdr dy dy~ 3605(r,y’*y,t) + [(1 - B)X (E°,E)

t
+ }_611/: <E)] WET) 80 (x,0) | 2@ ¢(x7)

i

- - _ d
- N(t)vf.dx GOt(x,t) ¢g(x) $(x) - N(t)./Pdr dy dy~ E:,Bij)ci(E)°
' 1

V(E) 0G0 G 6Gx) +fd§ SGe,e) #%)

z fdx C (r t) ’. (F) ¢*(x) (A.15)
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where .
aos(?.y’-»y.t) = os(r.y’»y.t) - as’o(r.y’»y)

Bog(x,) = o (x,t) -~ op ((X).

The corresponding equations for the delayed neutron precursors are
obtained by multiplying Eq. A.2 by ¢g(§) ;X:i(E) and integrating over
all space, energy, and solid angle to obtain

d _ _ d
%E dx ci(?,c))(i(n) ¢o*(x) = N(t) Bifdr dy dy’Xi(E) .

— — d —
WE 0,8 B $G) - A, [ dx o F0) 'Xiw) #% o) - (4.16)
In order to obtain the reduced equations, the following definitions
are made:
F(e) = fdF ay ¢y [(1 -0 Y @ +) 8, 71 <E)] V(E) o (x",t)
1 i
©r) 6(x7) | (A.17)

The function F(t) can be regarded as the fission source integrated over
space, energy, and direction using ¢3 ag 8 weighting function. Note that
the prompt and delayed fission neutrons are weighted by their appropriate
energy spectra. F(t) is used in some of the definitions giQén below.

- P
p(8) = Ty {fdr dy dy” <508(r.y"'y;t) + [(1 - B) X (E*,E) +Zsij(i(m]-
1 i
V(E?) So.(x",t) | 0% (x) ¢(x") —f& 8o, (x,t) é%(x) ¢(x) (A.18)

Equation A.18 expresses the reactivity p(t) in terms of changes (relative

to the initial steady state case) in the various interaction rates integrated
over space, energy, and direction using ¢g as a weighting function. F(t)
occurs as a normalization factor in this definition.
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1 J _¢%(x) ¢(x)
A(E) = F?EY dx-—--;zgy—— (A.19)

Equation A.19 is the definition of the prompt neutron generation time A.
Its significance can be seen by considering the monoenergetic, isotropic
case (no E or ﬁhdependence). For this case, Eq. A.19 becomes A(t) =

1/vv E}(t) where

ag(t) -/d? og(T,t) ¢*(1) ¢(ﬂ//d? $X(r) ¢(r).

The quantity 1/v E} is the average time between collisions which result in
fission. Since v neutrons are produced per fission, A(t) = l/vvof(t) can

be interpreted as l/production rate. The prompt neutron generation time

is time dependent because og may vary with time during an excursion in which
the temperature changes. The variation of A with temperature is so small,
however, that it is neglected. In a reactor controlled by fuel rods, of

and thus A, will vary with time if a control rod is inserted or withdrawn
during the transient. On the other hand, in a reactor controlled by poison
rods, A is essentially independent of control rod position. For a more
detailed discussion of this point, see Reference 26. In practice, the time

dependence of A is always neglected.

B d - -
Ei(t) = F(%fd? dy dy~ Xi(E) v(E®) of(x‘.t) ¢g(x) ¢ (x*) (A.20)

Equation A.20 defines the effective delayed neutron fraction E; for group 1

of delayed neutron precursors. Bi is equal to the actual fraction Bi’ multi-
plied by a factor which takes into account the fact that delayed fission
neutrons have a different energy spectrum than prompt fission neutrons. Since
og occurs in both numerator and denominator of the factor which multiplies

Bi’ Bi is not sensitive to changes in O¢ with time., Thus, in practice Bi

is considered to be independent of time.
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B(t) -=§:§;(t) = total effective delayed neutron fraction (A.21)
i

o (x) ¢(x) .
T, (®) -fdx c, (T,t) X (E) ¢*(‘/f dx oy | N (A.22)

X e

The effective delayed neutron precursor level C (t) for group i of delayed
neutron precursors is defined as the integral over space, energy, and
direction of C (r t) using‘:k: and ¢* as weighting functions. The integral
in the denominator in Eq. A.22 is a normalization factor. Since ¢(x) =

v(E) n(x), this normalization factor is the integral of n(x) over space,

energy, and direction using ¢* as a weighting function:

¢*(x) ¢ (x)
S(t) -fdx s{x,t) ¢*(x)// dx ——-‘-’-(?)——— (A.23)

The effective extraneous source Ekt) is defined as the integral over space,
energy, and direction of S(x,t) using ¢g as a weighting function. The
integral in the denominator in Eq. A.23 is again a normalization factor as

described above for C (t)

Substitution of Eqs. A.18 through A.23 into Eqs. A,15 and A.16 gives

dggt) - p(t)A— B n(e) + Z)‘i C,(t) +5(6) (A.24)
dEi(c) Ei -
-(—l-g—— E ) 'IT" N(t) - )‘i Ci(t) . i=1, ..., I (4.25)

The time dependence of A, Ei, and B in Eqs. A.24 and A.25 has been neglected
for reasons discussed above. Since the assumption of constant A is more
justifiable for reactors which are controlled by poison rods, Eqs. A.24 and

A.25 are more appropriate for these reactors.
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An alternate form of the reactor kinetics equations can be obtained
by making use of the multiplication factor k(t) and the prompt neutron
lifetime £. By definition, the relation between k(t) and p(t) is

[k(t) - 1]/k(t) = p(t). (A.26)

An expression for k(t) in terms of changes in the various cross sections
can be obtained by combining Eqs. A.26 and A.18. The prompt neutron life-
time is basically given by 1/v5; where ;; is the effective macroscopic
absorption cross section (including leakage). Thus, £ can be interpreted

as 1/destruction rate. Since k(t) is equal to production rate/destruction

rate, it is seen that
k(t) = L(t)/A(L). (A.27)

Substitution of Eqs. A.26 and A.27 into Eqs. A.24 and A.25 yields the

alternate form of the reactor kinetics equations

et [u £ kie) ~ 1 }u(c) ENACERC

dt (A.28)
i

dEi(c) Ei k(t) _

1t - 7 N(t) - xi Ci(t) i=1, ..., I (A.29)

Again the usual practice is to neglect the time dependence of £ in Eqs. A.28
and A.29. In this case, the assumption of constant £ is more justifiable
for reactors employing fueled control rods.

Since reactors employing poison for control are more common than those
using fueled control rods, the equations based on A are used in this study.
The equations which describe N(t) are nonlinear in both cases because of

the term p(t) N(t) in Eq. A.24 and the term k(t) N(t) in Eq. A.28. These
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terms are nonlinear because in problems involving feedback, p(t) and k(t)

are functions of N(t). The delayed neutron precursor equations using a
constant prompt neutron generation time A (Eq. A.25) are linear, while those
using a constant prompt neutron lifetime £ (Eq. A.29) are nonlinear because
of the k(t) N(t) term. Thus, from a mathermatical viewpoint, the system of
equations based on A (Eqs. A.24 and A.25) is simpler than the system of
equations based on £ (Eqs. A.28 and A.29). The method of continuous analytic
continuation can be used on both systems of equations, however.

In the above derivation, the conventional kinetics equations for reactors
in which fuel is stationary were obtained in the time separable case from the
time dependent transport equation. Since the derivation is exact for the
time separable case, precise definitions of the various quantities appearing

(27)

in the reduced equations were obtained. Lewins has obtained the conven-
tional form of the kinetics equations for the general case of mobile fuel
without the assumption of separability.. In this case, all quantities appear-
ing in the reduced equations are weighted averages over all variables except
time. One of the weighting functions in the nonseparable case is w(?}ﬁ;E,t)
and hence, this function must be known before some weighted averages (such

as A) used in the reduced equations can be calculated. However, it is much
more difficult to determine y(r,Q,E,t) than it is to solve thé reduced kinetic
equations. Furthermore, if the behavior of y(r,R,E,t) were known, there

would be no need for reduced equations, since w(;;ﬁ;E,t) already contains all

the necessary information.
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APPENDIX B

EXPRESSIONS FOR HIGHER ORDER DERIVATIVES OF VARIABLES
APPEARING IN REACTOR KINETICS EQUATIONS

The method of continuous analytic continuation requires the computation
of the derivatives, to order K + 1, of the variables appearing in the reactor
kinetics equations for each time step. For solution on a digital computer,
the establishment of general expressions for these derivatives is convenient.

Consider first the reactor kinetics equations based on the prompt
neutron generation time. These equations (Eqs. 2.1-2.3, Section 2.2)

are reproduced below.

NP ey = a7l o(e) - 81 MO + ) Ay € (0) + S(B) (8.1)
i=1

Cfl)(t) = gt By N(&) - a4 C () 1=1, ..., I (B.2)

p(t) = I(t) + F(t) (B.3)

The k+lth derivative of N(t) can be established by mathematical
induction by successive differentiation of Eq. B.l. The result is

-1

N () 2 a (o) - a1 N () 4 AK ) (k)
1
+ ké‘; = 1) p(z) N(k’z) + ...+ A’l p(k) N
I
+ z a ) + s e (B.4)
i=]

for 0 < k < K.
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In terms of the binomial coefficients defined by

k_k(k=-1) ... (k-n+1) k!

Bn n! nl(k - n)! °’ (8.5)

Eq. B.4 can be written in a more compact form:

n
n=]

N ey Aoy - 8] N () + A—li Y (™ ¢y yik™)

I ’ 1
" ¢ ey + Wy . (B.6)
i=1

If the extraneous source is a constant, then S(k)(t) « 0 for k > 1. If
S(t) is an analytic function of time (for example, sin wt, eat, or poly-
nomial in t), the derivatives S(k)(t) can easily be obtained. On the other
hand, if S(t) is given as a table of numbers, the derivatives S(k)(t) can
be obtained by fitting the data with a polynomial.

Since Eq. B.2 is linear, the k+lth derivative of Ci(t) can be established
by inspection to be

C§k+1)(t) o gl 8, N ey - A Cik)(t)° (B.7)

From Eq. B.3, it can be seen that the k+lth derivative of p(t) is
given formally by

o (L) oy w 1 OetL) oy 4 p (kD) (1 (B.8)

To proceed further, particular forms for the functions I(t) and F(t) must
be assumed. The forms considered below have been included as options in
the digital computer program. Since reactivity is introduced by the use
of subroutines (see Appendix D), forms other than those considered below
for I(t) and F(t) can be used either by expanding the present subroutines
or by writing additional ones.
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The first option for I(t) is
I(t) = a + Po sin t (B.9)

which represents a sinusoidal variation in reactivity with angular frequency
w and amplitude Po about a . This type of impressed reactivity can be pro-
duced by oscillating a rod within the reactor. The derivatives of I(t) for
this case are given by

2k

I(2k)(t) = (—1)k (w) po Sin wt (even derivatives) (B.10)

k+1 2k-1

I(Zk—l)(t) - (-1) (w) p, €OS wt (odd derivatives)
for k :_1.

A second option available for I(t) is

I(t) = a + tl(t) + rz(t) (B.11)
where

rl(t) = at for t < tl

rl(t) - alt% t >t

rz(t) - a2t2 t < t2

r,(t) = a,t, t>t, (B.12)

and ays 315 35, tl’ and t2 are constants to be specified. Thus, Eqs. B.ll

and B.12 represent either a step input of reactivity (qo), a ramp input

of reactivity due to control rod movement at constant speed (alt), a reactivity
variation due to control rod movement at constant acceleration (aztz), or any
combination of these three effects. Note that the terms at and aztz are
terminated at t = £ and t = t,, respectively. The derivatives of I(t) for

this case are obtained by inspection from Eqs. B.1l and B.12:
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I(k) () = rg_k) () + rgk) ()
where
)y =
ry (t) ay
t <t
1
r&k) () =0 k> 2
() ey =
Ty (¢) = 0 k>l t >ty
() (o) =
T, (t) 232t
(D (py =
ry (t) = 289 t <ty
rgk)(t) =0 k>3
() [y =
.2} () =0 k>1 t >ty
A third option available for I(t) is @ gcram at t=tg
jnitial step and/or rawp input of reactivity. This casé is
by defining rz(t) in Eq. B.11 as
rz(t) = 0 t <ty
r.(t) =2 (t - ¢ )2 ¢ <t <t + 6t
2 2 -] g — — 8
e >t + 8¢

rz(t) - a2(5t)2

Y '
where az(Gt)2 is the-worth of the gcram rod.

for this case are given by
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(8.13)

(B.14)

after an

tepresented

g of rz(t)

(8.15)




rél)(t) - 2a,(t - ¢t )

(2)
r, (t)q2a2 tg ittt +ét
e () = 0 k> 3
r(k)(t) 0 k>1

2 = > t <t ort>t + 6t (B.16)

Thermal feedback is introduced by letting

J
F(t) = Zaj['rj(t) - T
=1

j(0)] (B.17)

where aj and Tj(t) are the temperature reactivity coefficient and temperature,
respectively, of the jth region of the reactor. The derivatives of F(t) are
obtained by inspection from Eq. B.1l7

J
F) (¢y = E: s, T§k)(t) (B.18)
j=1

for 1 <k <K + 1.

Several options for the heat balance equations, to be used in

conjunction with Eq. B.17, are available. The first is

c de(t)/dt = Qj BN(t) - P

=1, ..., .1
j 3=1, J (B.19)

A

which represents the case of constant power removal (P,) from the jth

3

region, The heat capacity of region j is c,; Qj is the fraction 6? power

A

deposited in region j; and B is a conversion factor from neutron level to
power level. Note that for J = 1 and the adiabatic case (P, = 0), Eq. B.19

yields

3

t
T(t) - T(0) = (QB/c).l~ N(t*) dt~
o
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so that Eq. B.1l7 becomes for this case
t
F(t) = (aQB/c) f N(t”) dt” . (8.20)
o

Equation B.20 represents the case of reactivity feedback proportional to
the integrated power or total energy release. The higher derivatives of

Eq. B.19 are by inspection

Tj(k+1)(t) - (QjB/cj) N(k)(t) J=1, vee, J (B.21)

for 1 < k < K.

The second option for the heat balance equations is

c, dT,(t)/dt = Q

j j BN(t) - b

1 5 Tj(t) =1, ..., J (B.22)

where bj is a constant. In this case, power removal is proportional to

the temperature. From Eq. B.22, the derivatives of Tj(t) are by inspection
() 0y o () (py _ (k) )
Tj (t) (Qj B/cj) NTO(E) (bj/cj) Tj (t) (B.23)

d=1, ..., J

forlikiK.
The third option available for the heat balance equations is

J
- - in _ .
cj de(t)/dt Qj BN(t) j{:hc [%j(t) Tn(L)]

n=]

J
- Zhif‘[’rg’(c) - T:‘l(t)] 3=1, .uu, J (B.24)

nw}l
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which represents heat transfer between the various regions of the reactor

by conduction,. convection, radiation, or any combination of these.

The
coefficients hgn

are the conductive and/or convective heat transfer coefficients
from region j to region n, while the coefficients hin
radiative heat transfer coefficients.

of the T“(t) terms,

are the corresponding
Note that Eq. B.24 1s nonlinear because

By setting yj(t) = T;(t) in Eq. B.24, the general expression for
the k+lth derivative is seen to be

J e
) () o W) 3nf 5 () (1)
i () = qpre) ¥ ) - ) wd LTJ (&) - ¢ <t)]
n=1
th“[ k) ey - ﬁk)(c)] Cogel, ael, d (B.25)

n=1

for 0 < k < K. 1If xj(t) = Tf(t) so that yj(t) = xj(t) xj(t), it can be.

established by mathematical induction that

(k)(t) = X4 (8) xj(k) (t) + & 1! x(l) gk’l) + k(e 2 1) ‘2‘!’ 1 x§2) x;“’z)

(k)
+...+xj xj

Xy (6) xj(k)(t) + ZB ‘“’(c) x(k ) (¢)

n=l

(B.26)
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where

() y o
xj (t) T

(&) T (e + & T D)y 535?%—Ll T§2) Tgk—zl

3000 PR T

(k)
o+ T Ty

k
_ ) k (@), o (k-n)
T, (0) T{¥ (6) + j{:sn 1™ (0 T (6) (B.27)

n=l

for 0 £ k¥ £ K and where BE are the binomial coefficients defined in Eq. B.5.
Consider the reactor kinetics equations based on the prompt neutron

lifetime. These equations are (Eqs. 3.43, Section 3.4)

-

I
N (6 = 1A - @ s - g N©) + ) 2 Cy(0) + 58 (8.28)
i=1
cM ey = £ g l6k(t) + 11 N(e) -, C, (¢) i=1 I (B.29)
i i i i s ey o
Sk(t) = I(t) + F(t). (B.30)

Equation B.28 is of exactly the same form as Eq. B.l with p(t) and A replaced,
respectively, by (1 - B) 6k(t) and £. Thus, the k+lth derivative of N(t)
can be obtained by referring to Eq. B.6:

: k
N () w7 - e sk - 81 80 + e - @) 8K s ey 8K ()
I n=1
+ E: a, o) +s® o). (B.31)
i=]
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The excess multiplication factor 6k(t), like the reactivity p(t)
1s expressed as the sum of a forcing function I(t) and a feedback function
F(t). Thus, the derivatives of 8k(t) can be obtained in the same manner
as for p(t),.

Equation B.29 is basically different from its corresponding Eq. B.2
in that Eq. B.2 is linear, while Eq. B.29 is nonlinear because of the )
term Sk(t) N(t). The higher derivﬁtives of Ci(t) in Eq. B.29 can be estab-
lished in the same manner as for other nonlinear differential equations

considered previously. The results are

k
cik“) (t) = &% By [8k(t) + 1] N ey & 72 By Z BE sk (e N (g
n=1
(k)
- Ay Co(E) i=1, ..., 1 (B.32)

for 1 <k < K.
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APPENDIX C

ANALYTIC SOLUTION FOR CASE 3

The problem defined by the set of equations

dx:lit)_ - Df\t) N(t) (c.1)
p(t) = a + b[T(t) - T(0)] : (c.2)
d'crltgtz = H N(t) (c.3)

is one of the few nonlinear cases for which analytic solutions exist., In
Section 3.1.3, comparisons were made between approximate results using
continuous analytic continuation and the analytic solutions of Eqs. C.l
through C.3. 1In this appendix, the analytic solution to these equations
is displayed.

Differentiation of Eq. C.2 and the use of Eq. C.3 in the results yields

9%§£l = bH N(t). .4

Substitution of N(t) from Eq. C.l into Eq. C.4 gives

pdp = bH A dN. (c.5)

Equation C.5 can be integrated directly to give

%l-fz(:) - az] = bHA|N(E) - N(O)] , (C.6)
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where use was made of the fact that p(0) = a (Eq. C.2). Equation C.6
can be solved for p(t) to yield

p(t) = § a’ + 2bHA[N(E) - N(O)]%k. (c.7)

Substitution into Eq. C.1l of N(t) and p(t) from Eqs. C.3 and C.2,
respectively, gives

1
dN = 7%

a + b[T - T(O)]% dT, (c.8)

which upon integration yields

N(E) = N(O) + 3 3au~<c> - @] + 21(e) - @17} . (€.9)

Solve for N(t) in Eq..C.3 and substitute the results into Eq. C.9 to
obtain 1

41 o (o) + 1) - T + B [1(e) - TC@1? . (c.10)

Equation C.10 can be simplified by making the following substitutions:
y(t) = T(t) - T(0) (c.11)

= b/2A c

cy 9 = al/A Cy = HN(0). (C.12)

With these substitutions, Eq. C.10 becomes

dy _ . .2
dc T~ Y t eyt (C.13)
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Integration of Eq. C.13 between the limits O to t gives

y
f T - t. (C.14)
c,y +c,y +c

1 2 3

(o}

The integral in Eq. C.1l4 is in standard form. However, the
expression for the integral depends on whether cg > 4c1c3, cg - 4c1c3,

or c2 < 4¢

2 163 Ouly the case in which the temperature coefficient b is
negative is of practical interest. For this case, cg > 4c1c3 and the

integral is given by

I

21y

2
2c,y + ¢, - (c, - 4c.c.,)
1 2 2 1
3 L = t. (C.15)

(cg - l&c]_c:a)—;5 in 5
2c1y + c, + (c2 - 4c1c3)

0
In order to simplify Eq. C.15, let
2 Ig -1, 2 Y
W= (c2 - 4c1c3) = A “[a” - 2bH A N(0)] (C.16)
c, + (c2 - 4c.c. )k
r. = 2 2 1-3 - at Aw
1 2c b (€.17)
1l
2 ]
¢y = (e — b4eyey) a - Aw
r, = - . (C.18)

2c1

where use has been made of Eqs. C.12, Substitution of Eqs. C.16 through
C.18 into Eq. C.15 yields

y + r2 rl
1n T:';-l- .z: = wt, (C.19)
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Equation C.19 can be solved for y, which from Eq. C.1l1l is equal to T(t) - T(0),
to yield

rlrz(emt -1
. (C.ZO)
wt

T(t) - T(0) =

The first derivative of T(t) with respect to t is, from Eq. C.20,

4 _ Wt
dT(r)  WrpTalrg - r)) e
= (C.21)
dt wti2
(r1 -r,e )

Substitution of Eq. C.21 into Eq. C.3 gives

_\mt
mrlrz(r1 - r2) e
N(t) = wty2
H(r1 -—r,e )
wr, T r, - r 2
_ 12 1 2 wt
= —~ e . (C.22)
H(rl r wt
2 r1 - r2 e

From Eqs. C.17 and C.18, it is seen that

a2 _ A2 w2
rr, = 5 (C.23)
b
2Aw
I -r,= - - (C.24)
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Substitution of Eq. C.16 into Eq. C.23 gives

2H N(O
rr, = b . (C.25)

With the help of Eqs. C.24 and C.25, it can be seen that

wrlrz

H(r1 -r

= N(0). (C.26)
2) '

Equation C.26 can be substituted into Eq. C.22 to give

N(t) = N(O) i e . | (€.27)
v \Tp "I, e

The solution for p(t) can be obtained by combining Eqs. C.2 and C.20;
by inspection, the result is

b rlrz(emt -1
p(t) = a + - c . (C.28)
r, -1, eV

It can be seen from Eqs. C.1 and C.28 that the instantaneous inverse

period, defined by

at) w L dN(E)

N(t) dt ?

is given by

br,r (emt -1
a(t) =2+ 12 . (C.29)

wt
A(r1 -, e )
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The integrated neutron level is obtained by integration of Eq. C.27.
The result is

t

N(O)(xr, - T,) wt _
f N(t”) dt” = 1 Z £ 1 . (C.30)
w r. - 1 ewt
o 1 2

The neutron level reaches a maximum when dN(t)/dt = 0. By taking the
derivative of Eq. C.27 with respect to time and by setting the result

equal to zero, it is found that this occurs at t = t

where -

t =l 1n<,_1_> . : (C.31)

m w r

2
The maximum value of N(t) is obtained by setting t = tm in Eq. C.28; the
result is
a2
N(tm) = N(0) - 20 bH (C.32)

From Eqs. C.28 and C.20, the reactivity and temperature at t = tm

are given by
p(t ) =0 (C.33)
a
T(tm) = T(0) - b (C.34)
For t + », Eqs. C.20, C.28, and C.30 yield

T(«) = T(0) - ) | (C.35)
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p(®) = —Aw = ja[l - 3—"—“——’2‘—3‘—@1]1 (c.36)

Aw - a

f N(t”) de- = 2A8(0) (C.37)
(o}

If 2bH A N(O)/a2 << 1, Eqs. C.35 fhrough C.37 can be approximated by

(=) = 1(0) - 22

p(») & -a ' *

fN(t’) dt’-‘---;—zﬁ£ .
(o]
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APPENDIX D

ANCON —— A DIGITAL COMPUTER PROGRAM BASED
ON CONTINUOUS ANALYTIC CONTINUATION

A brief description of a digital computer program (ANCON) which
solves the reactor kinetics equations by continuous analytic continuation
is given in this appendix. The code is programmed in the FORTRAN II,
Version 3 language for the IBM-7094 computer and including its associated
subroutines, requires a 32K memory.

Because of the occurrence of A~1 in the reactor kinetics equations,
the higher derivatives of N(t) and Ci(t) can become very large when A is
small (A can vary from 10—3 sec to 10—9 sec). This is a problem only in
that there is a limitation on the largest number permissible (¢1038) in the
IBM-7094 computer. Thus, for solution on a digital computer, the equations

were rewritten in terms of a dimensionless independent variable t defined by

In terms of ¥, the kinetics equations can be written

I
N(l)(r) = [p(t) - B] N(x) + Zyi Cy(x) + AS
1=1
cP () = g N - v, € (D) | 1=1, ..., I

where Yy " A Xi.

The organization of the computer program is shown in Fig. D.l. The
subroutine CLOCK is called by the main program at the beginning of the
calculation (after all input data has been read in) and at the end of

the calculation (before writing the output). CLOCK records the current
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Fig. D.1 Organization of Computer Program




time which is kept to an accuracy of +0.01 minute. The subroutine BINWRT

is used to punch the output on binary cards. This subroutine is called by
the main program at the end of the calculation, if the punched output option
has been selected,

The subroutine REACT is called by the main program several times in
each time step. This subroutinevcomputes the derivatives of p(t) as they
are needed by the main pfogram. REACT in turn calls on the subroutine
TEMPER, which computes the derivatives of the heat balance equations when
they are required by the subroutine REACT.

The program is written in modular form, so that any type of reactivity
variation can be represented by adding more options to the subroutines
REACT and TEMPER (or by writing new subroutines) and so that modifications
to the maia prégram are not required in the process. For example, the
feedback model used for the PAERT I transients (Section 3.3.2) required the
writing of a special subroutine REACT, since this feedback model was not
available in the standard subroutine REACT.

The input to the program is described in Table II. Cards 1 through 5
and card 9 are read in by the main program ANCON. Cards 6 and 7 are read
in by BEACT, if the option N4 = 2 is selected. This option is for a
reactivity variation of the type

J

p(t) = p(0) + a;t + a2t2 + Xaj['l‘j(t) - Tj(O)].

i=1

Card 8 is read in by TEMPER, if N7 = 2, which is the case of heat removal

proportional to the temperature:

ed

cJ j (t) = Qj BN(t) - bj Tj(t) J=l, oo, Jo

Other options available for p(t) and the heat balance equations were described

in Appendix B.
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TABLE 1I
Input Specification for ANCON Code

Card Format Entry Comments
1 12A6 AL(I), I=1,12 Title card
2 1216 KMAX Order of Taylor expansion, KMAX < 15
IMAX Number of delayed neutron groups, IMAX < 10
N1 N1=0 for new problem, N1¥0 for problem continuation
N2 N2#0 1if restart dump desired at end of calculatiom, otherwise N2=0
N3 N3=1,2, dr 3: specifies type of output desired
N4 N4=1,2, or 3: specifies type of p(t) desired
NMAX Maximum number of lines of output allowed, NMAX < 999,999
N5 N540 if output is to be punched on binary cards, “otherwise N5=0, AL(1)
- i8 used for identification on cards
N6 Number of lines printed per line punched on binary cards, N6 > 1, not
used 1f N5=0
N8 N8#0 1if Ci(O) to be read in, N8=0 1f Ci(O) to be calculated from
equilibrium relation Ci(O) = Bi N(0)/A Xi
3 6E12.5 E Error criterion epsilon
DEL1 Percent change in N(t) before current values of variables are printed
TIMEST Value of t at which calculation is terminated
ANMAX Maximum number of time steps allowed
G Prompt neutron generation time, sec
S Source, neuts/sec
PWRCON Conversion factor B between neutron level and power level, MW
FO N(O0)
& 6E12.5 B(1),DC(I) Bi’ Ai' Omit this card if IMAX=0
I=1, IMAX
5 6E12.5 co(XI), I=1, IMAX Ci(O), Omit this card 1f IMAX=0 or N8=0
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TABLE 1I (continued)

Card Format Entry Comments
6 216,5E12,5 JMAX Number of heat balance equations, JMAX<25
N7 N7=1.2, or 3: .specifies type of heat balance equations desired,
N7 not used 1if JMAX=0
RHOI e (0)
Al ay-
A2 a
TMX1 t at which ajt term is terminated
T™X2 . t at which ayt2 term is terminated
(Note: Cards 6 and 7 are proper input for case N4=2)
7 6E12.5 TC(J), J=1, JMAX Temperature coefficients (°C‘1), omit this card if JMAX=0
8 6E12.5 TO(J), HCAP(J), Q(J) Tj(O)(°K), cj(HW—sec/°C), Qj' bj
. P(J), J=1, JMAX :
(Note: Card 8 1s proper input for case N7=2)
9 6E12.5 RESTART DUMP Restart dump is input as punched out at end of a previous calculation,

include only if N1#0



" Some of the input data is edited by ANCON. For example, zero or
negative values for N(0), Ci(O), and heat capacities are not allowed
and the order of the Taylor expansion must be within the range 1 < K < 15.
If these tests are not satisfied, appropriate comments are printed and the
problem is not executed.

During the calculation, certain variables are continuously tested by
ANCON. One of these is the value of the argument in the time step criterion
(Section 2.3.1). If this value becomes of the order of the largest number
permissible ( 1038) on the computer, a comment suggesting that K be reduced
is printed and the calculation is terminated. A second variable tested is
the number of inner iterations (Sectioq 2.3.2). If this number becomes
greater than 10 during any time step, a comment suggesting that € be reduced
is printed and the calculation is terminated. Another variable tested is
N(t), which must be nonzero and positive and must lie within the range
1079 < n(e) < 10%°

and the calculation is terminated.

. If the test is not met, a suitable comment is printed
A problem is terminated whenever t or the number of time steps exceed,

respectively, the input parameters TIMEST and ANMAX. Also, the problem

can be terminated at any time by depressing sense switch 6.
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