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RELIABILITY STUDIES

FOR

THE NUCLEAR-POWERED ARTIFICIAL HEART PROGRAM

by

M. Horita and R. K. Zeigler

ABSTRACT

By assuming that the failures of an artificial heart
system with a mean life of 10 years can be modeled by a
particular probability distribution, both the probability
of a failure in the system within t years and the reli-
ability required of each subsystem and component are
investigated.

1. INTRODUCTION

The objective of the Nuclear-Powered

Artificial Heart Prototype System Develop-

ment Program being conducted by the Divi-

sion of Biomedical Environmental Research

[DBERl of the Energy Research and Devel-

opment Administration (ERDA) is to develop

a fully implantable nuclear-powered arti-

ficial heart with a mean life (life ex-

pectancy) of 10 yr. This report investi-

gates the reliability of such an artificial

heart system. Here, reliability is defined

as the probability that a device will per-

form adequately for a specified period

after implantation. It also indicates

the implications of various assumptions

about subsystem or component reliability

and the requirements that may be imposed

on component structure in light of DBER’s

objectives.

For simplicity, the heart is treated

first as a single basic unit. By assum-

ing that the artificial heart system fail-

ures can be modeled by a particular prob-

ability distribution, the probability of

a failure in the system within 1, 2, ....

I

15 yr is calculated. In particular, the

exponential, normal, lognormal, gamma,

and Weibull distributions are considered.

In reality, however, the artificial

heart is composed of 4 subsystems with

53, 37, S, and 4 components, respectively.
1

Using the probability distributions men-

tioned previously and further assuming

that the heart is a simple series system

each of whose subsystems and components

has the same failure distribution, the

mean life required of each subsystem and,

subsequently, of each component is cal-

culated. In this calculation, however,

it is necessary to alter DBER’s objective

of developing a heart with a mean life of

10 yr by considering a heart with a median

life of 10 yr instead. (Discussion of this

topic begins on page 10.) Given results

whose distribution is unknown, the addi-

tional constraint of setting equal to 0.5

the probability that the system’s tine to

failure will be less than or equal to 10

yr, i.e., P(T < 10) = 0.S, makes 10 yr the

median of the distribution by definition.

I
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Finally, two other approaches to this

problem are considered. If each heart sys-

tem component is assumed to have the same

failure distribution, the median life re-

quired of each subsystem with ki components

can be calculated. Further, if each sub-

system is assumed to have the same failure

distribution, in particular, the same med-

ian life, the mean life required of each

component of a particular subsystem also

can be calculated. These results are

tabulated for closer inspection.

This report does not give any final

answers about the reliability and mean

or median life requirements of the comp-

onents of a complex artificial heart sys-

tem like the prototype that DBER is devel-

oping. It does indicate some possible ap-

proaches and their consequences by simpli-

fying the problem through easing consider-

ations and calculations.

2. THE HEART AS A SINGLE BASIC SYSTEM

2.1. The Exponential Failure Distribution

The exponential distribution is chosen

as the failure distribution if it can be

assumed that the failure rate function is

constant, say A . This assumption implies

a lack-of-memory property or no “aging”

effect.

Let T be a random variable that rep-

resents system time to failure. The exp-

onential probability density function,

pdf, is

[

-t/a, t > 0b
f(t) =

[
o ,elsewhere,

where t denotes time. The mean, E(T), is

A which when set equal to 10 yr, the mean

life of the heart system, implies that the

variance is V(T) = A2 = 100. The stand-

ard deviation or positive square root of

the variance is SD(T) = 10. To calculate

the probability of a failure in the system

within t years, use

/

t
1 -t/a-x/a dx = 1 - e ,P(T < t) = —e
A

o

where P(T < t) often is denoted by F(t),

the (cumulative) distribution function or

cdf . Figures 1-3 are graphs of the expo-

nential pdf, calf,and failure rate func-

tion, respectively.

The probabilities of k = 10 and

t = 1, 2, ..., 15 are summarized to four

decimal places in Table I (at the end of

this report). Note that when t = 7 yr,

the probability of a failure in the sys-

tem is 0.5034 and when t = 10 yr, the pro-

bability is 0.6321. For the probability

of a failure within 10 yr to be about 0.5,

a mean life of 14.4 yr is required.
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t

Fig. 1. The exponential probability density
function with X = 10.

2.2. The Normal Failure Distribution

If the system is subject to aging or

gradual failure of its electrical or mechan-

ical components, a normal distribution may

be useful in characterizing the failure

distribution.
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Fig. 2. The exponential cumulative distri-
bution function with 1 = 10.
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Fig. 3. The exponential failure rate func-
tion with k = 10.

The normal pdf is

f(t) = - [1exp - M,
mu

--<t<-,
2U2

r-t-pu

()t-u&zdz . @ ~ “
. A’
m

The probabilities for this standardized

normal distribution with mean zero and vari-

ance one (standard deviation one) are con-

veniently tabulated and available in most
2statistics texts. As two parameters, p

and o, are involved, set p = 10 and select

various and arbitrary values of u to in-

vestigate the quantity P(T ~ t). Tables

II-VI exhibit the calculations for p = 10

and c = I, 3, 5, 7, and 10, respectively.

The normal pdf, calf,and failure rate func-

tion for these five sets of parameter val-

ues are shown in Figs. 4-6.
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Fig. 4. The normal probability density
function with E(T) = 10 and
SD(T) = 1, 3, 5, 7, and 10.

2where p, cs , and u are the mean, variance,

and standard deviation, respectively. If

a change of variable, z = (t-p)/u, is used,

the probability of a failure in the system

within t years is given by

3
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Fig. 5. The normal cumulative distribution
function with E(T) = 10 and
SD(T) = 1, 3, 5, 7, and 10.
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Fig. 6. The normal failure rate function
with E(T) = 10 and SD(T) = 1, 3,
5, 7, and 10.

2.3. The Lognormal Failure Distribution

If X = loge T is normally distributed,

T is said to have a lognormal distribution.

This distribution has been used to describe

the distribution of nuclear reactor fail-

ure rates. The pdf, mean, and variance

are

I
1

— exp [- (loge(t)-P)2/(2u2)],t>o
tmio

f(t) =

o 9 elsewhere ,

E(T) = e
p+02/2 ,

and

22
V(T) = e2U e“ (e” -l).

and

For E(T) = 10 and V(T) = 1, say,

P = E(X) = loge 10 - 02/2

cr2= v(x) = loge(l.ol) - 0.01 .

The standard deviation is SD(X) - 0.10. By

substitution, u = loge 10 - 0.01/2 -..2.30.

These v and o
2
values can then be used in

calculating the probability of a failure

in the system within t years, where

(
loget-!-l

P(T~t) = P(XS loget) = p Z ~ ~
)

loge t-u

J

u
. 1 -z2/2 dz

Ge
–m

which is tabulated as previously mentioned.

When other values for the standard de-

viation of T are assigned and calculations

similar to those shown above are performed,

E(T) = 10 and SD(T) = 3 imply that P -2.26

and u = 0.29; E(T) = 10 and SD(T) = 5 imply

4



that p - 2.19 and u = 0.47; E(T) = 10 and

SD(T) = 7 imply that p - 2.10 and u = 0.63;

and E(T) = 10 and SD(T) = 10 imply that

v-- 1.96 and u = 0.83. Results are shown

in Tables II-VI.

The lognormal pdf, calf,and failure

rate function for the five cases considered

above are shown in Figs. 7-9.
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Fig. 7. The lognormal probability density
function with E(T) = 10 and
SD(T) = 1, 3, 5, 7, and 10.
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Fig. 8. The lognormal cumulative distribu-
tion function with E(T) = 10 and
SD(T) = 1, 3, 5, 7, and 10.
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Fig. 9. The lognormal failure rate function
with E(T) = 10 and SD(T) = 1, 3,
5, 7, and 10.

2.4. The Gamma Failure Distribution

The gamma distribution may be useful in

characterizing failures if the components in

a complex electromechanical system fail

instantaneously during the initial (burn-in)

stage or the wear-out period of operation.

The gamma pdf, mean, and variance are

1 ta-l e-t/B, O<t<rn
r(a)Ba

f(t)=

o ,elsewhere,

E(T) = a~,

and

V(T) = af32,

where a is the shape parameter and B is the

scale parameter. Note that when a = 1, the

gamma pdf reduces to the exponential pdf.

By graphical depiction, the failure inten-

sity rate increases for a > 1 and decreases

for a < 1.

The chi-square distribution is a

special case of the gamma distribution with

a = v/2 and 8 = 2 where v is a positive

integer representing the degrees of freedom.

5



If T has a gamma distribution with param-

eters u and B, then there exists an X such

that T = ~ where the random variable X

has a chi-square distribution with v = 2a

degrees of freedom.

of a failure within

pressed as

P(T~t:

To calculate t]

Thus , the probability

t years can be ex-

= P(x~2t/s).

at probability, three
.

approximations may be used.> The first

approximation standardizes the random vari-

able X, that is, subtracts its mean, v,

and divides by its standard deviation, = .

As V+-, the standardized chi-square dis-

tribution approaches the standardized nor-

mal distribution. Thus ,

P(x ~ 2t/!3)- 1@~~-v)(2v) -1/2
(2(2a)) ‘1/2

1

(1)

The second approximation is known as

Fisher’s approximation, and the third is the

Wilson-Hilferty approximation. Both use

approximate standardization and are given

as

[
P(x ~ 2t/f3).Q ~ - 42(2a) - 11

P(x ~ 2t/8).
Q{[(~)l’3-1

+ ~(2a) -1MT_)}~&
2

{[

t
1/3

Q (3)
1

.
a –l+m

II

3/ii--

Of these three approximations, the first is

the least accurate and the third is the

most accurate, unless 2a is large, in which

case, the difference in accuracy among them

is small.

Again, through the arbitrary and con-

sistent assignment of SD(T) = 1, 3, 5, 7,

and 10, calculations for these five cases

using the Wilson-Hilferty approximation are

shown in Tables II-VI, respectively. Set-

ting E(T) = 10 and SD(T) = 1 gives a = 100

and 13= 0.10. Similarly, for E(T) = 10

and SD(T) = 3, a - 11.11 and B = 0.90;

for E(T) = 10 and SD(T) = 5, a = 4 and

B = 2.50; for E(T) = 10 and SD(T) = 7,

a. 2.04 and B = 4.90; and for E(T) = 10

and SD(T) = 10, a = 1 and B = 10.

Figures 10-12 show the gamma pdf, calf,

and failure rate function.

.(

.4

f(t)

.2

SD(T) = 1A

Fig. 10. The gamma probability density
function with E(T) = 10 and
SD(T) = 1, 3, 5, 7, and 10.

(3)
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The Weibull pdf is

1.0
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Fig. 11. The gamma cumulative distribution
function with E(T) = 10 and
SD(T) = 1, 3, 5, 7, and 10.

41
I

1

0
0 s 10 15

L

Fig. 12. The gamma failure rate function
with E(T) = 10 and SD(T) = 1, 3,
5, 7, and 10.

2.5. The Weibull Failure Distribution

The Weibull distribution has been use-

ful in accelerated testing of components

operating under forced conditions, test-

ing of equipment such as ball bearings and

electron tubes during the initial-failure

phase, and in a system involving several

components whose failure is attributed to

the severest flaw.

I ()tY~t_Y-l exp - ~ $ —t>l)

f(t)=

o
, elsewhere,

where y is the shape parameter and 6 is the

scale parameter. When y = 1, the Weibull

pdf becomes the exponential pdf. An expo-

nential-type graph which can be used to

characterize a decreasing failure intensity

rate results when y < 1. Also, Weibull

pdf’s with y < 1 are useful in describ-

ing catastrophic failures. Wheny > 1,

the graph of the Weibull pdf is unimodal.

In a more general case, wear-out failures

and increasing failure intensity rates are

best characterized using y > 1 and

t>~>o. The mean and variance of the

Weibull distribution are given by

E(T) = 6l’yr(l+ l/Y),

‘ly[r(l + 2/Y) - rz(l + l/Y)l.V(T) = I?

To calculate the probability of a fail-

ure within t years, the values of y and B

must be determined. For E(T) = 10 and

V(T) = 1, say,

~2/y = 100 ,

rz(l + l/Y)

and

r(l + Z/y)
= 1.01 .

rz(l + uY)

In a trial and error process, y . 12.15

and B . 2.38 x 1012 are a solution to the

above equations. In similar calculations,

E(T) = 10 and SD(T) = 3 give y . 3.71 and

B- 7.57 x 103; E(T) = 10 and SD(T) = 5

give y . 2.10 and 6 - 1.63 X 102; E(T) = 10

and SD(T) = 7 give y -.1.45 and B - 32.59;

and E(T) = 10 and SD(T) = 10 give y . 1.00

and B - 10. Note the large f?values that

result. Such parameter values seem very

unrealistic.



Figures 13-15 are graphs of the Weibull

pdf, calf,and failure rate function for each

of the five cases.

Fig. 13. The Weibull probability density
function with E(T) = 10 and
SD(T) = 1, 3, 5, 7, and 10.

1.0 I /’

Fig. 14. The Weibull cumulative distribu-
tion function with E(T) = 10 and
SD(T) = 1, 3, 5, 7, and 10.

30

20

h(t)

10

/

SD(T] = 1

Ou
o 5 10 1s

t

Fig. 15. The Weibull failure rate function
with E(T) = 10 and SD(T) = 1, 3,
5, 7, and 10.

The probability of a failure within t

years is given by

J
t

P(T5 t) = y/6 XY-l exp(- Xy/B) dx

o

. 1- exp(-ty/f3) .

The results are shown in Tables II-VI.

2.6. Summary : The Probability of a Failure

in the Heart System

For the exponential distribution, the

probability of a failure in the heart system

is high during the initial years, reaches

0.5 before the seventh year instead of the

tenth year, and does not exceed 0.8 even

during the fifteenth year.

The results ,for the other distributions

considered (see Tables IT-VI) show similar

probabilities within tables. In a compari-

son among tables, the probabilities of a

failure during the first 10 years generally

increase as the standard deviations in-

crease, then after the tenth year the pro-

babilities generally decrease as the stan-

dard deviations increase.
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3. A HEART COMPOSED OF 4 SUBSYSTEMS AND

99 COMPONENTS

The four subsystems of the artificial

heart are a thermal converter, a blood

pump, a flexible shaft assembly, and a cool-

ing system.
1

It will be assumed that they

are connected in series; that is, failure

of any one subsystem implies failure of

the entire heart system, where each sub-

system operates independently of the others

(Appendix A).

3.1. The Exponential Failure Distribution

First, consider the case in which each

subsystem has an exponential failure distri-

bution with parameter A. The probability

of a failure in the system within t years

is

P (TS St)

= P (at least one subsystem fails before
time t)

= 1 - P(ssl> t, SS2> t, SS3> t, SS4> t)

= 1 - P(ssl> t) P(SS2> t) P(.SS3> t)

P(SS4 >t)

4
= 1 - (e-t’k) =1-e

-4t/A
7

where S refers to system and SSn refers to

subsystem n. The result is an exponential

distribution with parameter A/4. The mean

and variance of the random variable T for

the system are

E (TS) = A/4 = 10* a= 40,

and

V(TS) = 1600 .

Thus , if each subsystem has a mean life of

40 yr and a variance of 1600 yr (or a

standard deviation of 40 yr), the heart

system will have a mean life of 10 yr and

a variance of 100 yr (or a standard devia-

To go one step further, assume that

the four subsystems have kl, k2, k3, and k4

components, respectively. Each component has

an exponential failure distribution with

parameter 1 and each operates independently.

In reality, several different failure dis-

tributions may be represented within a sub-

system and failure of a single component

may not imply failure of the subsystem and,

subsequently, of the entire heart system as

the series connection suggests. Neverthe-

less, for simplicity of calculation and

illustration, these assumptions are made.

The probability of a failure in the

heart is now given as

P (TS~ t)

‘P

. 1

. 1

. 1

. 1

. 1

=1

(at least one subsystem fails before

time t)

- P(ssl> t, SS2> t, SS3> t, SS4> t)

- P(ssl> t) P(SS2> t) P(SS3> t)

P(SS4> t)

- P(C1l >t, .... Clk >t)
1

P(C21 >t, .... c2k St)
2

p(C31 >t, .... C3k >t)
3

P(C41 >t, .... c4k >t)
4

- P(cll > t). ..p((+ > ‘)

P(C21 > ‘). .-p(c~k > t)
2

P(C31 ~ t). ..p(c~k > t)
3

P(C41 > t). ..P(c4k > t)
4

‘l+k2+k3+k4- [e-tlj

-(k1+k2+k3+k4)t/X ,
-e

where C. .
lJ

refers to component j , j = 1, ...,

k.9 in the ith subs~stem. The result is
tion of 10 yr). From a practical standpoint, 1-an exponential distribution with parameter
such large variances are undesirable. More- A

(k~ +k +k +
Thus , each component

over, a mean life of 40 yr is not realistic. 23 k4)”

9



should have a mean life of (kl + k2 + k3 +

k4) x 10 yr for the heart to have a mean

life of 10 yr. As there are 99 components

in the artificial heart, the requirement is

an incredible mean life of 990 yr each.

Of those 99 components, 53 are in the

first subsystem, 37 in the second, 5 in

the third, and 4 in the fourth. If it is

assumed that each component has the same

exponential distribution, the mean life

required of each subsystem with ki compo-

nents is

10 ~ ki
i=l
k,

1

years. That is,

()p%si ~ t

= P (at least one component in subsystem

fails before time t)

. (l- PCi~>t, .... Cik ‘t
)

= ~ - P~il>t), .... P{iki>t)

This is an exponential distribution with

4
lo~ki

i=l
parameter ki . Thus, for the

heart to have a mean life of 10 yr, each

subsystem should have a mean life of

18.68, 26.76, 198.00, and 247.50 yr, re-

spectively. (The life values of sub-

systems and components are rounded to two

decimal places throughout this report.)

The latter values, especially, are proba-

bly impossible to achieve in practice.

3.2. The Normal Failure Distribution

When each subsystem has a normal

failure distribution with parameters P
2and u , the probability of a failure in

the system within t years is

In determining the mean life required of

each subsystem given 10-yr mean life of

the heart, there is the problem that the

above result is not normally distributed.

In an attempt to solve the problem, addi-

tional constraints are imposed and a trial

and error process is used. Given pre-

assigned values for the standard deviation

‘f ‘ss’
where the subscript SS refers to

subsystem, the following values for the

mean of TSs> v = E(T,_S), give P(TS ~ 10) =

0.s. Note that, by definition, the value

of t such that P(T < t) ~ 0.S and P(T ~ t) >
i

—
0.5 is called the median of the distribu-

tion of the random variable T. Hence, in

satisfying the assumption that P(Ts ~ 10) =

0.5, DBER’s objective of developing an

artificial heart with a mean life of 10 yr

changes to that of developing a heart with

a median life of 10 yr (Appendix B). Rota-

tionally, tM denotes the median.

For a = SD(TSS) = 1, u = E(TSS) = 11.00;

for u = 3, p = 12.99; for u = 5, p = 14.99;

for u = 7, p = 16.99; and for u = 10,

v = 19.98.

If the four subsystems have 99 compo-

nents and all the components have the same

normal failure distribution, a comparable

trial and error process involving preassigned

standard deviation values is used to de-

termine the mean life values of the compo-

nents indirectly. Again, it is assumed

that the median life of the heart is 10 yr.

The probability of a failure in the heart

within t years, given its composition of

99 components, is

[I_
co

1’
99

P(TS~t) =1-
1

exp(-z2/2)dz
%

t-p
u

10



For t = 10 and a = SD(TC) = 1, 3, 5, 7,

and 10 where the subscript c indicates com-

ponents, this equation is set equal to 0.5

and solved for p. For these five cases, the

results show that each of the 99 components

should have a mean life, p, of 12.46, 17.38,

22.29, 27.21, and 34.58 yr, respectively.

The median life required of each sub-

system with ki components each of which has

the same normal distribution is calculated

using

al ki

()[[-

1
p %si :t ‘1-

1

exp(-z2/2)dz .
/2%

t-v
u

For subsystem I, for example, solve for t

using

If each component has a mean life, p, of

12.46 yr and a standard deviation, u, of

1 Yr, P(TSS1 :10.23)= 0.5. That is,

subsystem I has a median life of 10.23 yr.

Results of using the other previously

given values for the mean and standard de-

viation of the components of each of the

four subsystems are shown in Table VII.

Still another approach may be taken.

If each subsystem is required to have the

same normal distribution, specifically, the

same median life, then the mean life of –

each component in a particular subsystem

can be calculated using

‘1-[&exp(-7=005~
To illustrate, for subsystem I, setting

u = SD(TC) = 1 and using the previously

calculated value E(TSS) = 11.00 = t gives

[/ -

m

1
53

1- 1.
m

exp(-z2/2)dz

w

= 0.5 .

Trial and error give u = E(TC) = 13.23.

Similar calculations for other values

of SD(TC) and E(T._.J for each of the four

subsystems are summarized in Table VIII.

3.3 The Lognormal Failure Distribution

If each subsystem has a lognormal

failure distribution with parameters P and

02, the probability of a failure in the

heart within t years is

(p ‘s~t

=1-
[

CxJ

1 exp(-z2/2)dz
fi

1Jloge t-v

KS

.

-1

Again, through trial and error, p and u

ar~elected so that the median life of

the system is 10 yr. For u = SD(TSS) =

1, the mean life required of each sub-

system, u = E(TSS), is 11.10 yr. If

‘ss = loge TSS is normally distributed,

E (XSS) -.2.40 and SD(XSS) - 0.1. For

SD (Tss) = 3, E(TSS) = 14.00, E(XSS) - 2.60,
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and SD(XSS) --0.29; for SD(TSS) = 5, E(TSS)=

17.92, E(XSS) - 2.77, and SD(XSS) - 0.47.

Similarly, for SD(TSS) = 7, E(TSS) = 22.93,

E(XSS) - 2.93, and SD(XS._) - 0.63; for

SD(TSS) = 10, E(TSS) = 32.47, E(XSS) -.

3.13, and SD(XSS) - 0.83.

For the heart with 99 components each

having the same lognormal distribution, the

probability of a failure in the system with-

in t years is

()p‘S:t
.

.1
99

[! -

03

=1- 1 exp(-z2/2)dz .
n

loge t-P

u

Given t = 10, P(TS ~ 10) = 0.5, and

u = SD(TC) = 1, 3, 5, 7, and 10, each of

the 99 components should have a mean life,

P, of 12.84, 21.49, 35.71, 57.65, and

109.50 yr, respectively, for the system

to have a median life of 10 yr. If

xc = loge Tc is normally distributed,

E(XC) - 2.55, 3.02, 3.46, 3.86, and 4.35

for the five cases, and SD(XC) --0.10,

0.29, 0.47, 0.63, and 0.83.

In considering the distribution of the

components among the four subsystems, use

[[ - 1
ki

m

1-
1. exp(-z2/2)dz” ,
m

loge t-~

u

where each component is assumed to have the

same lognormal distribution. With this

equation set equal to 0.5, the median life

required of each subsystem is obtained by

solving for t using the values of p = E(TC)

and u = SD(TC) calculated in the previous

paragraph. Results are shown in Table IX.

If each subsystem has the same log-

normal distribution (the same median life),

the mean life required of each component

within a particular subsystem is obtained

by solving for p using the previously cal-

culated values for u and t in

()p%si ~ t

[J -
m

1

ki

1-
1. exp(-z2/2) dz
En

loge t-P

u

= 0.5 .

These calculations are given in Table X.

3.4. The Gamma Failure Distribution

When each subsystem has a gamma fail-

ure distribution with parameters a and 8,

the probability of a failure in the system

within t years is

P(T <t
\s- )

( 1[()

1/3
=1- l-~t -1

m

1 1)
4

1
‘% 3h- ,

again by use of the Wilson-Hilferty ap-

proximation . The result is not a gamma

distribution. Trial and error are used to

find the mean life required of each sub-

system if the median life of the system

is to be 10 yr. For P(TS ~10) = 0.5,

SD(TSS) = 1, say, implies that E(TSS) =

11.00, a - 120.93, and f3-.0.09. Likewise,

SD (TSc.)= 3 gives E(TSS) = 12.97, a -18.68,

and B . 0.69; SD(TSS) = 5 gives E(TSS) =

14.89, a - 8.87, and B -.1.68; SD(TSS) =

7 gives E(TSS) = 16.77, a . 5.74, and

$- 2.92; and SD(TSS) = 10 gives E(TSS) =

19.51, a - 3.81, and 8 - 5.13.



Given the 99 components each of which

has the same gamma distribution, the pro-

bability of a failure in the heart within

t years is

P(T,:t)

=+-Ql[(5-y3-l
99

1
‘% 1 1)‘K

For t = 10, P(TS~ 10) = 0.5 and SD(TC) = 1,

3, 5, 7, and 10, the mean life required of

each component is 12.32, 16.46, 20.23,

23.78, and 28.84 yr, respectively. In

these five cases, the a values are

cl. 151.83, 30.10, 16.37, 11.54, and 8.32

and the B values are 6 -0.08, 0.55, 1.24,

2.06, and 3.47.

To calculate the median life required

of each subsystem with ki components, set

=+01[(+1”-,

1 0
k.

1 1

‘G
‘G = 0.5

and solve for t using the a and B values

obtained for E(TC) and SD(TC) in the pre-

vious paragraph. These results are shown

in Table XI.

If each subsystem has the same gamma

distribution (the same median life), solv-

ing

(p Tssi ~ t)
.+@l[(+’”_,

1 1)
k.

1
1

‘%
3Az- = 0.5

for aB = E(TC) using the previously calcu-

lated values of t gives the mean life re-

quired of each component within a subsystem.

These results, as well as the values for

SD(TC), a, and B, are given in Table XII.

3.S. The Weibull Failure Distribution

If each subsystem has a Weibull fail-

ure distribution with parameters Y and B,

the probability of a failure in the system

within t years is

()
4

P(TS ~ t)
tY

= 1 - exp -~ ,

which is a Weibull distribution with param-

eters y and $/4. Assuming that the mean

life of the heart system is 10 yr and the

standard deviation is 1 yr, if y - 12.92

and 0 . 5.78 x 1013 , the mean life and

standard deviation required of each sub-

system are 11.16 and 1.05, respectively.

Similarly, for SD(TS) = 3, Y - 3.70 and

B- 2.89 X104 imply that E(TSS) = 14.50

and SD(TSS) = 4.37. For SD(TS) = 5,

Y- 2.10 and B --6.48 x 102 imply that

E (TSS) = 19.34 and SD(TSS) = 9.68”, and for

SD(TS) =7,y- 1.45 and B - 1.30 x 102

imply that E(TSS) = 25.99 and SD(TSS) =

18.19. If SD(TS) = 10, Y - 1.00 and

!’- 40.00 give E(TSS) = 40.00 and

SD (TSc.)= 40.00.

For a heart with 99 components, each

having the same Weibull distribution, the

probability of a failure within t years is

P(TS ~ t)
()

tY 99
= 1 - exp -~ ,

which is a Weibull distribution with param-

eters y and 6/99. A mean life of 10 yr

and a standard deviation of 1, 3, 5, 7, and

10 yr for the heart system were the con-

ditions placed on the following calculations.

For y . 12.05 and 6 - 1.84 x 1014, the mean

life and standard deviation of each compo-

nent are 14.64 yr and 1.48 yr, respectively.

For SD(TSS) = 3, Y . 3.70 and f3-.7.14 x 105

imply that E(TC) = 34.54 and SD(TC) = 10.40.
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Similarly, for SD(TSS”

@. 1.60 x 105, E(TC)

= 5, y -.2.10,

= 89.20, and

SD(TC) = 44.65. Fo~ SD(TSS) = 7, Y - 1.47,

B- 3.39 x 104, E(TC) = 231.98, and SD(TC) =

160.89. For SD(TSS) = 10, Y - 1.01,

B - 1.02 x 103, E(TC) = 966.00, and SD(TC) =

959.41.

For a subsystem with ki components

each of which has the same Weibull dis-

tribution, the probability of a failure in

the subsystem within t years is

() ()
k.

~Y 1

%si~t=l-f=p --F 7

which is a Weibull distribution with param-

eters y and B/ki. Given the values for

E(TSS) and SD(TSS) obtained Previously,

the mean life, standard deviation, a, and 8

values required of each component within a

subsystem, assuming an identical Weibull

failure distribution for each subsystem, are

as shown in Table XIII.

3.6. Summary : The Life Requirements of a

Subsystem with k Components

In comparing the mean life or median

life of a subsystem or component as calcula-

ted for the various probability distribu-

tions , it appears that stringent assump-

tions and requirements are sometimes needed.

The means and standard deviations of

the exponential and Weibull distributions

are extremely high. The results for the

other three distributions, in similar pre-

assigned standard deviation conditions,

show comparable mean life values for the

three subsystems. As for the mean life

values of the 99 components, the lowest

requirements came from using the gamma dis-

tribution, whereas the highest came from

using the Weibull distribution.

Assuming that each component of the

heart system has the same failure distribu-

tion gives median life values of each sub-

system with k components derived using a

normal distribution, a lognormal distri-

bution, and a gamma distribution which are

very similar to each other. Note that the

median life required of a subsystem with

fewer components is a few years longer

than that of a subsystem with more compo-

nents; i.e., the fewer the components, the

less likelihood of a failure in the system,

so the longer the median life. Just the

opposite is true if each subsystem is as-

sumed to have the same failure distribution,

in particular, the same median life. Then,

the fewer the components in the subsystem,

the shorter the mean life required of each

component.

It is recommended that experimental

data obtained by testing the heart system

be used to suggest failure distributions

and parameter values of practical interest

in calculating the probability of a failure

within t years and the mean or median life

required of a particular subsystem or com-

ponent. Although these computations will

be more difficult, the results will be

more realistic.
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APPENDIX A

SYSTEM RELIABILITY

Because the heart is assumed to be a

simple series system of components,

‘S=R1’ ‘2’ ““”’Rn ‘

where RS is the system reliability and Rn

is the reliability of the individual com-

ponents. Given the apportioned reliability

of the components as shown in Table 5.4 of

Ref. 1, the reliability of the system is

0.500636. Of the 99 heart components, 22

have a reliability of 0.999999, 70 have a

reliability of 0.999, and 7 have a relia-

bility of 0.91s. If these 7 components

had a reliability of 0.999 instead of

0.915, the reliability of the system would

be 0.925834. To speculate further, if

each component had a reliability of

0.9999, 0.99999, and 0.999999, respec-

tively, the corresponding system relia-

bilities would be 0.990148, 0.999010, and

0.999901.

APPENDIX B

THE MEAN VS THE MEDIAN

Two measures of a distribution’s cen-

tral tendency are the mean and the median.

The mean is the long-term average of a ran-

dom variable, and the median is the point

below which 50% of the distribution lies.

Although the median is mathematically less

tractable, it is useful in descriptive

statistics because it represents the typi-

cal score. The mean, on the other hand,

is useful when making inferences beyond

the sample.
2

If the distribution is symmetrical,

the mean and median are equal. If the

distribution is asymmetrical or skewed,

they usually are unequal. If a distri-

bution is skewed to the right, or posi-

tively, the mean is usually larger than

the median. If a distribution is skewed

to the left, or negatively, the median is

usually larger than the mean.

Note that the mean is very sensitive

to changes in data scores at the extremes

of a distribution, whereas such changes

do not affect the median as long as the

rank order of the scores is preserved.
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TABLE I

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS

ASSUMING A MEAN LIFE OF 10 YEARS, A VARIANCE OF 100 YEARS,

AND THE EXPONENTIAL FAILURE DISTRIBUTION

Years

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Exponential

0.0952

0.1813

0.2592

0.3297

0.3935

0.4512

0..5034

0.5507

0.5934

0.6321

0.6671

0.6988

0.7275

0.7534

0.7769

TABLE II

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS

ASSUMING A MEAN LIFE OF 10 YEARS, A STANDARD DEVIATION OF

1 YEAR, AND VARIOUS FAILURE DISTRIBUTIONS

Years\Distribution

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Normal

0.0000

0.0000

0.0000

0.0000”

0.0000

0.0000

0.0013

0.0228

0.1587

0.5000

0.8413

0.9772

0.9987

1.0000

1.0000

Lognormal

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000
0.0002

0.0144

0.1571

0.5199

0.8426

i).9698

0.9963

0.9997

1.0000

Gamma

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0004

0.0171

0.1582

0.5133

0.8418

0.9721

0.9972

@ .9998

1.0000

Weibull

0.0000

0.0000

0.0000

0.0000

0.0001

0.0012

0.0078

0.0390

r).”1534

0.4508

0.8517

0,9959

1.0000

1.0000

1.0000
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TABLE III

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS

ASSUMING A MEAN LIFE OF 10 YEARS, A STANDARD DEVIATION OF

3 YEARS, AND VARIOUS FAILURE DISTRIBUTIONS

Years\Distribution NoTmal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.0013

0.0038

0.0098

0.0228

0.0478

0.0912

0.1587

0.2525

0.3694

0.5000

0.6306

0.7475

0.8413

0.9088

0.9522

Lognormal

0.0000

0.0000

0.0000

0.0015

0.0134

0.0555

0,1427

0.2698

0.4160

0.5583

0.6813

0.7787

0.8509

0.90z0

O .9367

Garoma

0.0000

0.0000

0,0007

0.0057

0.0248

0.0714

0.1536

0.2687

0.4032

0.5398

0.6638

0.7663

0.8447

O.gr)og

0.9391

TABLE IV

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS

ASSUMING A MEAN LIFE OF 10 YEARS, A STANDARD DEVIATION OF

5 YEARS, AND VARIOUS FAILURE DISTRIBUTIONS

Years\Di.stribution Normal Lognormal Gamma

1 0.0359 0.0000 0.0012

2 0.0548 0.0008 0.0100

3 0.0808 0.0104 0.0346

4 r).1151 0.0442 0.0789

5 0.1587 0.1091 0.1421

6 0.2119 0.1990 0.2198

7 0.2743 0.3019 0.3065

8 0.3446 0.4066 0.3961

9 0.4207 0.5052 0.4839

10 0.5000 0.5934 0.5662

11 0.5793 0.6693 0.6407

12 0.6554 0.7331 0.7063

13 0.7257 0.7857 0.7627

14 0.7881 0.8286 0.8102

Weibull

0.0001

0.0017

0.0078

0.0225

0.0508

0.0975

0.1662

0.2580

0.3701

0.4952

0.6224

0.7396

0.8365

0.9079

0.9541

Weibull

0.0061

0.0260

0.0599

0.1068

0.1652

0.2327

0.3066

0.3842

0.4626

0.5392

0.6120

0.6791

0.7394

0.7922

15 0.8413 0.8631 0.8497 0.8374
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TABLE V

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS

ASSUMING A MEAN LIFE OF 10 YEARS, A ST~ARD DEVIATION OF

7 YEARS, AND VARIOUS FAILURE DISTRIBUTIONS

Years\Dist.ribution

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Normal

0.0993

0.1265

0.1587

0.1957

0.2375

0.2839

0.3341

0.3875

0.4432

0.5000

0.5568

0.6125

0.6659

0.7161

0.7625

Lognormal

0.0004

0.0128

0.0558

0.1281

0.2171

0.3109

0.4017

0.4850

0.5592

0.6239

0.6796

0.7272

0.7677

0.8019

0.8309

Gamma

0.0196

0.0610

0.1183

0.1855

0.2576

0.3308

0.4024

0.4706

0.5340

0.5922

0.6449

0.6921

0.7340

0.7710

0.8033

TABLE VI

THE PROBABILITY OF A FAILURE IN THE HEART SYSTEM FOR t YEARS

ASSUMING A MEAN LIFE OF 10 YEARS, A STANDARD DEVIATION OF

10 YEARS, AND VARIOUS FAILURE DISTRIBUTIONS

Years\Distribution

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Normal

0.1841

0.2119’

0.2420

0.2743

0.3085

0.3446

0.3821

0.4207

0.4602

0..5000

0.5398

0.5793

0.6179

0.6554

0.6915

Lognormal

0.0094

0.0647

0.1515

0.2469

0.3386

0.4218

0.4952

0.5589

0.6140

0.6614

0.7022

0.7374

0.7677

0.7940

0.8168

Gamma

,0.1013

0.1808

0.2.552

0.3241

0.3876

0.4458

0.4988

0.5471

0.5909

0.6306

0.6665

0.6989

0.7282

0.7547

0.7786

Weibull

0.0302

0.0805

0.1403

0.2050

0.2718

0.3385

0.4036

0.4660

0.5250

0.5799

0.6307

0.6770

0.7190

0.7567

0.7903

Weibull

0.0952

0.1813

0.2592

0.3297

0.3935

0.4512

0.5034

0.5507

0.5934

0.6321

0.6671

0.6988

0.7275

0.7534

0.7769
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TABLE VII

THE MEDIAN LIFE, tM ,REQUIRED OF EACH SUBSYSTEM WITH ki COMPONENTS

ASSUMING AN IDENTICAL NORMAL FAILURE DISTRIBUTION FOR EACH COMPONENT

\

E(TC) 12.46 17.38 22.29 27.21 34.58

Subsystem
SD(TC)

1 3 5 7 10

I t = 10.23 10.70 11.16 11.62 12.32

II 10.37 11.12 11.87 12.62 13.74

111 11.33 13.99 16.65 19.31 23.29

IV 11.46 14.38 17.30 20.22 24.60

TABLE VIII

THE MEAN LIFE, U, REQUIRED OF EACH COMPONENT WITHIN A SUBSYSTEM

ASSUMING AN IDENTICAL NORMAL FAILURE DISTRIBUTION FOR EACH SUBSYSTEM

\

E(TSS) 11.00 12.99 14.99 16.99 19.98
Subsystem

SD(TC) 1 3 5 7 10

I U= 13.23 19.67 26.12 32.57 42.25

II 13.08 19.25 25.41 31.58 40.83

III 12.13 16.38 20.64 24.89 31.27

IV 12.00 15.99 19.98 23.97 29.96

TABLE IX

THE MEDIAN LIFE, tM, REQUIRED OF EACH SUBSYSTEM WITH ki COMPONENTS

ASSUMING AN IDENTICAL IOGNOIWAL FAILURE DISTRIBUTION FOR EACH COMPONENT

\

E(TC)
Subsystem

SD(TC) ,

12.84 21.49 35.71 57.65 109.50

1 3 5 7 10

I t = 10.23 10.71 11.16 11.58 12.13
11 10.38 11.16 11.93 12.66 13.65

III 11.42 14.77 18.74 23.15 30.25
IV 11.57 15.35 19.93 25.15 33.73
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TABLE X

THE MEAN LIFE, M , REQUIRED OF EACH COMPONENT WITHIN A SUBSYSTEM

ASSUMING AN IDENTICAL LOGNORMAL FAILURE DISTRIBUTION FOR EACH SUBSYSTEM

\

E(TSS) 11.10 14.00 17.92 22.93 32.47
Subsystem

SD(TC) 1 3 5 7 10

I

II

III

IV

p = 13.86 26.90 51.28 93.53 207.22

13.67 25.81 47.96 85.51 184.12

12.43 19.49 30.54 46.77 83.11

12.26 18.76 28.71 43.06 74.53

TABLE XI

‘E ‘Dim ‘lm’tM’ REQUIRED OF EACH SUBSYSTEM WITH ki COMPONENTS

ASSUMING AN IDENTICAL GAMMA FAILURE DISTRIBUTION FOR EACH COMPONENT

\

E(TC) 12.32 16.46 20.23 23.78 28.84
Subsystem

SD(TC) .1 3 5 7 10

a 151.83 30.10 16.37 11.54 8.32

e 0.08 0.55 1.24 2.06 3.47

I

II

III

Iv

t = 10.20 10.51 10.74 10.94 11.19

10.32 10.83 11.22 11.54 11.96

11.20 13.14 14.76 16.19 18.10

11.33 13.48 15.29 16.90 19.08
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TABLE XII

THE MEAN LIFE, STANDARDDEVIATION,a, AND B VALUESREQUIREDOF EACH COMPONENl_

WITHIN A SUBSYSTEM ASSUMING AN IDENTICAL GAMMA FAILURE DISTRIBUTION

FOR EACH SUBSYSTEM

\

Subsystem E(TSS) 11.00

II

III

Iv

I E(TC)= 13.12

SD(TC) - 1.00

a -172.19

f3- 0.08

12.99

1.00

168.86

0.08

12.12

1.00

146.82

0.08

11.99

1.00

143.85

0.08

12.97

19.02

3.00

40.18

0.47

18.67

3.00

38.74

0.48

16.28

3.00

29.46

0.55

15.94

3.00

28.24

0.56

14.89

24.67

5.00

24.35

1.01

24.14

5.00

23.30

1.04

20.36

5.00

16.59

1.23

19.82

5.00

15.72

1.26

16.77

30.19

7.00

18.60

1.62

29.47

7.00

17.72

1.66

24.37

7.00

12.13

2.01

23.64

7.00

11.41

2.07

19.51

38.30

10.00

14.67

2.61

37.30

10.00

13.91

2.68

30.29

10.00

9.17

3.30

29.28

10.00

8.57

3.42
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II

III

IV

TABLE XIII

THE MEAN LIFE. STANDARD DEVIATION, a, AND B VALUES REQUIRED OF EACH COMPONENT

WITHIN A SUBSYSTEM ASSUMING AN IDENTICAL WEIBULL

FAILURE DISTRIBUTION FOR EACH SUBSYSTEM

\

Subsystem E(TSS) 11.16

SD(TSS) 1.05

I E(TC)=15.48

SD(TC)- 1.57

a -11.98

!3 - 3.00 X1014

14.98

1.50

12.13

3.00 x 1014

12.64

1.19

12.94

3.00 x 1014

12.42

1.16

13.03

3.00 x 1014

14.50

4.37

42.45

12.80

3.69

1.50 X106

38.48

11.S6

3.71

1.10 X106

22.41

6.75

3.70

1.45X105

21.13

6.34

3.71

1.20 X105

19.28

9.77

128.57

64.53

2.09

3.34X104

108.43

54.50

2.09

2.30 X104

41.61

20.88

2.09

3.16X103

37.39

18.77

2.09

2.51X103

25.99

18.19

420.22

301.22

1.41

S.88 X103

297.41

201.88

1.50

6.00 x103

78.83

55.31

1.45

6.40 X102

67.56

47.29

1.45

5.21X102

40.00

40.00

2158.18

2171.16

0.99

2.06 X103

1480.00

1480.00

1.00

1.48X103

200.00

200.00

1.00

2.00 X102

160.00

160.00

1.00

1.60 x102
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