~-C% L o
LA-2827 i S

5 ORT CQLLECT‘ON
e EPRODUCTION
“copY

LOS ALAMOS SCIENTIFIC LABORATORY

OF THE UNIVERSITY OF CALIFORNIA o LOS ALAMOS  NEW MEXICO
. " .- . . N - _. - -

MONTE CARLO CALCULATIONS OF THE EQUATION OF STATE
OF SYSTEMS OF 12 AND 48 HARD CIRCLES

i £- L 3 LEY P T L &.
.,_'.;/.g';' - .f‘?{";é’;*.o;‘s!%.

> oy B 1 EZ % gt . ve
2 et 4 . RN L Y .
Do ¥ e S i

3 9338 00371 2006

eS¢ AMEA ATRY M a6 am S N




LEGAL NOTICE

This report was prepared as an account of Govern-
ment sponsored work. Neither the United States, nor the
Commission, nor any person acting on behalf of the Com-
mission:

A. Makes any warranty or representation, expressed
or implied, with respect to the accuracy, completeness, or
usefulness of the information contained in this report, or
that the use of any information, apparatus, method, or pro-
cess disclosed in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to the use
of, or for damages resulting from the use of any informa-
tion, apparatus, method, or process disclosed in this re-
port.

As used in the above, *person acting on behalf of the
Commission” includes any employee or contractor of the
Commission, or employee of such contractor, to the extent
that such employee or contractor of the Commission, or
employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his em-
ployment or contract with the Commission, or his employ-
ment with such contractor.

Printed in USA. Price $4.00. Available from the

Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.




3 9338 00371 2006

e

LA-2827
UC-34, PHYSICS
TID-4500 (20th Ed.)

LOS ALAMOS SCIENTIFIC LABORATORY
OF THE UNIVERSITY OF CALIFORNIA  LOS ALAMOS  NEW MEXICO

REPORT WRITTEN: September 1962
REPORT DISTRIBUTED: July 1, 1963

MONTE CARLO CALCULATIONS OF THE EQUATION OF STATE
OF SYSTEMS OF 12 AND 48 HARD CIRCLES

by
W. W. Wood

This report expresses the opinions of the author or
authors and does not necessarily reflect the opinions
or views of the Los Alamos Scientific Laboratory.

Contract W-T405-ENG. 36 with the U. S. Atomic Energy Commission



ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov






ABSTRACT

This report presents Monte Carlo calculations of the equation of
state of two systems of hard circles (two-dimensional hard spheres), one
consisting of 12 molecules, the other of 48, Periodic boundary condi-
tions are used in both cases.

The two-dimensional systems were considered in order to reduce
"surface" effects for a given number of molecules, compared to three-
dimensional systems, and in order to ascertain if certain phenomena ap-
pearing in previous calculations for three-dimensional systems (possibly
indicative of the existence of a solid-fluid phase transition) would
appear in the simpler two-dimensional systems. It seemed likely that
such might be the case, the negative results of the pioneer Monte Carlo
investigation of Metropolis et al,, being somewhat suspect on the same
grounds as those of Rosenbluth and Rosenbluth for three-dimensional hard
spheres, where the behavior in question was not detected, presumsbly
owing mostly to the rather slow computing machinery available at the time,

No such phenomena were found for the l2-molecule system. Except for
certain trivial regions of configuration space, the Markov chains seemed

to estimate adequately the over-all petit canonical ensemble pressure




throughout the entire density range., The calculated pressure was a
monotonically decreasing function of the area, and agreed approximately
wilth the free-volume pressure at high densities, and with the virial
expansion at low densities, when account was taken of the theoretical
N-dependence at both extremes,

The 48-molecule system gave qualitatively different results, except
at the high and low density extremes where the behavior was as described
for the smaller system, In the all-important mid-density region the
Markov chains were unable to estimate the ensemble average owing to a severe
compartmentalization of configuration space into two crystallographically
distinct types of configurations., The first, or L, type is related to the
familiar regular hexagonal configurations.

In the second, or H, type, two sub-classes could be distinguished. One
consisted of configurations best described as irregular, with a stochastic
behavior more or less like that expected for a fluid. The other sub-class
of H-type configurations was derived from a defect-lattice of ﬁg_mole_
cules in the rectangular cell, one molecule being replaced by a hole.
Within the latter configurations, diffusion occurred over a considerable
range of densities by the hole-diffusion mechanism., At reduced areas
T in the interval 1.3 to 1.35 (v = 1 in the close-packed regular hexagonal
configuration), the system only infrequently changed back and forth be-
tween configurations of L and H type; transitions between the two H sub-
types were rather frequent. At v < 1.3, L-H transitions were not observed.

However, the system could be stabilized in H-type configurations of the




defect type by means of "compression" from v > 1.3, the apparent pres-
sure then considerably exceeding that of L-type configurations at the
same reduced area. At T > 1.4 the L configurations and the defect type
of H configurations progressively disappeared, as would be expected,

We conclude that while these phenomena, which are simllar to those
observed for three-dimensional hard spheres, may perhaps be the finite-
system manifestation of the existence of a first-order phase transition
in macroscopic systems, the present calculations certainly do not estab-
lish that such is the case, Calculations for considerably larger sys-
tems are necessary if the question is to be further investigated, as for
example in the recent dynamical calculations of Alder and Wainwright for
a system of 870 hard circles, in which they obtained a van der Waals loop
in the equation of state,

Finally there is presented an extensive statistical analysis of the
data reduction procedures required by the present petit canonical en-
semble Monte Carlo method, in which the equation of state must be obtained
by numerically differentiating the directly estimable "cumlative pair-
distribution function." It is concluded that use of Markov chains conver-
gent to isothermal-isobaric ensemble averages might be advantageous. This
has been found to be feasible in some unpublished calculations for three- ‘

dimensional hard spheres.







PREFACE

This long-overdue report describes the calculations made at the
Los Alamos Scientific Laboratory from 1958 up to the present on systems
of twelve and forty-eight hard circles (i.e., two-dimensional hard
spheres). The previously published results for three-dimensional hard
spheres are briefly summarized, as well as some unpublished results.

It is a pleasure to express my appreciation to Dr. Berni J. Alder
and Dr. Thomas E. Wainwright of the University of California Radiation
Laboratory, Livermore, for many discussions in which ideas and calcula-
tional results were exchanged. I am also grateful to Professor
Robert D, Richtmyer of New York University, for pointing out the utility
of the Markov chain central limit theorem as a basis for the empirical
statistical analysis, Above all I am indebted to Mr, Jack D. Jacobson
for nearly all the calculator programs used in this investigation, as

well as for the over-gll supervision of the calculations.,

We We Wood

September, 1962
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GLOSSARY OF SYMBOLS

We list here the more important symbols used in this report, along

with the number of the section in which each is defined.

Symbol

A(x)

b(N)

E(x)
#(1)
£(2)

((12)

a(¢)

a(c, T)

Description
Regular hexagonal lattice spacing.
Unit step function.
Unknown coefficient in Salsburg-Wood theory.
Estimate of Bi’ Q.V.

Coordination number of a close-packed configura-
tion,

Determinant of matrix (C

)

ith virial coefficient for a system of N molecules.

Spatial correlation matrix of a sampled set of
shell populations,

Diffusion parametexr.

Theoretical standard deviation of a stochastic
variable X,

Expected (mean) value of a stochastic variable x.
2

@2
2

2

(12)%

Degrees of freedom of s
Degrees of freedom of s
Degrees of freedom of s

Ensemble average of G({, r); i.e., the familiar
curmlative pair-distribution function.

Cumulative pair-distribution function in con-
figuration space,

21

Section
2.3.3
2.1
10.1
9.1

Jed.1l.1

8.3

10.2

8.3

2.3.5
8.2.1

8.2.1

9.2.2.1
9.2.2.1
9.2.2.1

2.1

2.1




Lo}

(pij)
Prgr(V)

P(x)

GLOSSARY OF SYMBOLS
(Continued)

Description

G(C, ¥) at time step t of Markov chain realization.

The s ® time—_smoothed observation of Ga(g, t) at
c=¢, -
04

Over-all estimate of G({) at time t. We will
frequently abbreviate Gt(ga) as Gt(a) .

Coefficients of skewness and excess of an observed
set of shell populations of shell .

Molecule provisionally displaced at time t,.
Boltzmann'!s constant,

The number of values Qi , @ =1(1)K, at which the
c.d.f. 1s estimated.

The number of 2-molecule rectangular unit cells
whose longer sides compose one edge of V.

The number of 2-molecule rectangular unit cells
whose shorter sides compose one edge of V,

The number of time-smoothed observations.

The number of molecules in a hard-sphere (or hard-
circle) system.

Thermodynamic pressure in the petit canonical en-
semble,

Pressure parameter of the isobaric-isothermal
ensemble,

Fundamental transition probability matrix for a
Markov chain.

Probability density of the fluctuating volume in
the constant pressure ensemble,

Cumulative probability function of a stochastic
variable x.

22

Section

2.2

2.3.}'+

2.2

8.5

2.3.2
2,1

2.3.h

3elolt

B3elokt

8.2

Belolt

2.1

2.3.2

11.h



GLOSSARY OF SYMBOLS

(Continued)
Symbol Description Section
. Iz, . |- 1.1
1J 1J
r(a) Mean-square successive-difference ratio statistic 8.2.2
for a sequence of observed shell populations
for shell <.
T The set of N vectors ?l’ Fé,---, 3N . 2.1
r(t) T at time t. 2.2
;i Two-component position-vector of molecule i. 2.1
T, T, - 7. —
1J dJd 1
R(a) Observed total number of runs in shell popula- 8.2.1
tion of shell <.
Ri?) Number of runs of length k observed in shell 8.2.1
population of shell .,
e Estimate of o= . 9.1
52 Sample variance of observed shell population 8.2.2
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GLOSSARY OF SYMBOLS
(Continued)

Description

Standardized normal deviate.

Volume (area) per molecule for hard-sphere (hard-
circle) system.

Volume (area) per molecule for face-centered
cubic (regular hexagonal) close—packed hard
spheres (circles).

Volume (area) of system of N hard spheres (circles).

Weight factors.

Matrix of Independent variables in regression
analysis,

Least squares estimate of T .

Column vector (Yl, YE""’YK) or Y,, YE,"'YK).

Sample mean of a set of observed shell populations
Yo Yoo ' Yhe -

Observed shell population for shell o over the sth

time_smoothing interval,
Gibbs phase integral in configuration space.

Theoretical coefficient of o} in approximating
polynomial for ﬂa .

Theoretical coefficient of 0} in approximating
polynomial for G(Qa) .

Maximum displacement parameter,

Dirac delta function.

2 2
Co%l - Ca *

Time-smoothing interval,
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Argument of cumulative pair distribution function.
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Theoretical shell population of shell a.
Compressibility factor.

Free-volume equation of state with an arbitrarily
appended O(N~-) correction.

Free-volume approximation for compressibility
factor.

Virial equation of state for a system of N
molecules truncated to a polynomial of degree
i in 7-1,
Degree of regression polynomial approximating ﬂa.
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1.1

Chapter 1

INTRODUCTION

l.l Preliminary Description of the Monte Carlo Method

The Monte Carlo method used in the calculations to be discussed in
this report is essentially that orginally described by Metropolis, et al.l
Its theoretical basis has been discussed in g number of pa,pers,g_5 so that
it will suffice to recall here that it is a prescription for defining a
stationary Markov chain with discrete states and discrete time whose time
average converges stochastically to an ensemble average with a given
weight function. In this report we will consider only the classical me-
chanical petit ensemble of Gibbs, whose weight function (unnormalized)

is the usual Boltzmann factor. The desired ensenble averages are then
estimated by the corresponding time agverages over a particular realiza-

tion or development of the chain carried out to a large number of time

steps on a high-speed computing machine.
It will be convenient to adopt the following terminology: A system
is specified when a space or class of possible states is defined. A

(Markov) chain for such a system is specified when a stochastic matrix of
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1.1

one-step transition probabllities between all pairs of these states is
given., A realization (or development) of such a chain is a sequence of
states actually traversed by the s&stem in the course of a stochastic
evolution according to these transition probabilities.

It must be emphasized that the "time" mentioned in the gbove de-
scription has no relation to any actual physical time (except the machine
time involved in the development of the chain), nor does the motion of
the state point bear any detailed relation to any actual dynamical motion

of the molecular system., The procedure is a numerical method for esti-

mating classical statlistical mechanical ensemble averages, and indeed
since 1t is a classical method (i.e., not quantum mechanical), the in-
tegrations over momentum variables involved in the ensemble averages can
be performed analytically, so that as actually carried out for a system
of N two-dimensional molecules the method is a random walk in the ZN-

dimensional configuration space of the system.

The original investigationl reported calculations for a system of
224 hard spheres in two dimensions (hard circles), and subsequently
Rosenbluth and Rosenbluth6 considered systems of 256 three-dimensional
hard spheres and 56 two-dimensional Lennard-Jones molecules. Our own
work began with systems of 32 and 108 three-dimensional Lennard-Jones
molecules.2 From this point on, the term '"hard sphere" unless further
qualified will refer to the three-dimensional case; 'hard circle," to the
two-dimensional case,

In the meantime Alder and Wainwright7 at the Livermore Laboratory,

had devised their molecular-dynamical method and applied it to systems of
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hard spheres. As the name implies, this method calculates thermodynamic
functions (as well as some transport properties) by time-averaging over
the actual dynamical phase-space trajectory of the molecular system,
starting from a suitable initial state, and integrating the elementary
Newtonian equations of motion over long enough times so as to attain
dynamical equilibrium,

The Monte Carlo statistical mechanical method and the dynamical
method, when applied to the same molecular system, ought to give the same
thermodynamic results [at least to O(N'l)], if the quasi-ergodic hypothe-
sis of statistical mechanics is correct. This hypothesis, though widely
believed, has not been rigorously established,8 so that comparison of
results from the two methods is of some interest in itself.

The preliminary results of Alder and Wainwright for hard spheres, of
which we were privately informed, in fact differed significantly from
those of Rosenbluth and Rosenbluth,6 and this naturally led us to adapt
our then existing program for three-dimensional Lennard-Jones m.olecules2
to calculate the equation of state of systems of 32, 108, and 256 hard
spheres, The results indeed exhibited a behavior qualitatively different
from that obtained by Rosenbluth and.Rosenbluth,6 which we attribute to
their relatively slow computing machine (Maniac I); the phenomena in
question (to be described below) are likely to appear only after a rather
long "time™,

Accordingly programs especially adapted to the hard-sphere system

were prepared,b and a re-examination of the equation of state of hard
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1.2

spheres by the Monte Carlo method was undertaken in collaboration with
Alder and Wainwright's dynamical investigation. Preliminary results by
both methods were published simultaneously5’9 for systems of 32 and 108

molecules, as well as additional though still incomplete Monte Carlo
5

results,” and a rather complete account of the molecular-dynamical results

for systems of 4 to 500 molecules.lo

1.2 Summary of Results for Three-Dimensional BEerd Spheres

The hard-sphere equation of state calculations by the Monte Carlo
method are summarized and compared with the molecular-dynamical results
in Fig. 1.1, taken from Ref. 5. Also shown is the free_-volume hard-

sphere equation of s’catell

and the five-term virial equation of state of
Rosenbluth and Rosenbluth.6 In Fig. 1.1 the abscissa T is the ratio
V/Vo where v is the volume per molecule, vy is the face-centered cubic
close-packed volume per molecule, and the other symbols have their usual
significance: p is the pressure, T the temperature, k Boltzmann's con-
stant.

Two branches of the equation of state are shown in Fig. 1.1 for
T < 1.6. In the interval 1.52 < 1 < 1.60 the branches arose from sepa-
rately averaging the high and low plateaus of realizations having the
typical appearance of Fig. 1.2 (also taken from Ref. 5). Similar secular

fluctuations occurred in the molecular-dynamical results, and were treated

in the same way.
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l.2.1 '"Hourglass'" model of configuration space,

This behavior led us to the following visualization of the geometry
of 3N-dimensional configuration space which is undoubtedly over-simpli-
fied but which affords a convenient model for the observed behavior, and
which motivated much of the subsequent investigation. We imagine that
at these densities the accessible region of phase space is essentially
hourglass-shaped, and we label the two chambers of the hourglass L (low)
and H (high) according to whether an average restricted to the particular
chamber leads to a high or low pressure. This two-chamber description is
suggested by the essentially two-level appearance of Fig, 1.2. The con-
striction of the hourglass is imagined to be relatively narrow, and to
contain only a small fraction of the total accessible volume, as suggested
by the abrupt and relatively infrequent shifts in level in Fig., 1.2. The
state point representing the face-centered cubic lattice configuration
(which is the usual starting point of the random walk) is deduced to be
in chamber L from the fact that random walks begun from it typically
show initially a low plateau (e.g., Fig., 1.2), in this interval of <.

In these terms the random walk of Fig, 1.2 can be swummarized as roughly
3.5 + 10° steps in chamber L, 1.7 * 10° steps in chamber H, 1.3 107
steps in chamber L, then 1,1 ° lO5 steps in chamber H, after which the
calculation was terminated.,

Larger values of 7 in the interval 1.52 to 1.6 seemed to lead to
shorter low plateaus and longer high plateaus; at T > 1.6 there was

seldom a noticeable low plateau. At smaller values of T in this interval
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1.2

the system tended to remain in chanber L for very long times; 1f it
succeeded in reaching chamber H it also remained there for a long time.
(These observations should be understood to apply to the 32.molecule
system; very few calculations were performed with the larger systems in
this range of reduced volumes.) These observations led us to conclude
that as v increases the hourglass connection widens, with the chambers
probably becoming indistinguishable at T > 1.6, There is some sugges-
tion that at v = 1.6 chanmber H is probably much larger then chamber L.
For ¢ near 1,52 the relative volumes are unknown, and the connection
between them very constricted., For v < 1.52 neither the Monte Carlo nor
the dynamical calculations observed the 32-molecule system to leave the
L chamber, when the calculation was started from the face-centered cubic
(f.c.c.) lattice.

We were naturally led to examine the geometrical structure of con-
figurations sampled from the low and high plateaus of random walks in
the interval 1.52 < v < 1.6, though the number of configurations which
could be investigated was rather small due to the difficulty of adequately
visualizing the three-dimensional structures. Not unexpectedly, we found
that configurations selected from a low plateau (i.e., according to our
model, points in the L chamber of configuration space) were recognizably
close to the f.c.c. lattice arrangement. Furthermore, we noted that
diffusion (i.e., interchanges of neighboring molecules) was very rare,
perhaps non-existent, throughout the duration of a L plateau. On the

other hand, we were unable to recognize any particular regularity in
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1.2

configurations sampled from high plateaus (i.e., points in the H chamber),
during which considerable diffusion occurs.

The infrequent molecular interchanges within a L plateau indicate a
revision of our model of configuration space to show N! chambers of type
L, corresponding to the N! permutations of the molecules, with inter-
connections which are more constricted than the I-H connections, This is
crudely indicated in Fig. 1.3 by showing two L chambers, Two H chanbers
are also shown, although one might be consistent with the observations
for 1.52 < 1 < 1.6, because at smaller values of T they are expected to

appear (see below). The H-H connection is shown wider than the L-H

Fig. 1.3 A schematic diagram of the hourglass model 3N-dimensional
configuration space of a system of hard spheres near v = 1.55.
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1.2

connections, in agreement with the observations above.

It is obvious that for Markov chaln realizations such as that of
Fig. 1.2, the over-all time average, which should converge to the desired
ensemble average, is in fact very poorly convergent. On the other hand,
the average over a particular L or H plateau may be reasonably convergent,
and if the plateau is sufficiently long this average 1s not too sensitive
to uncertainities concerning the beginning and end of the plateau. Ac-
cording to our model (Fig. 1l.3) such averages estimate ensemble averages
restricted to the L or H chamber, which are evidently lower and upper
bounds, respectively, to the complete average. Such, then, was the
motivation leading to the double-valued equation of staté of Fig. 1.1

in the interval © = 1.52 to 1l.6.

l.2.2 DPossible phase transition.

The properties of the L states outlined in the preceding section
are strikingly similar to those usually associated with a s0lid crystal-
line phase: (1) approximately regular lattice (f.c.c.) structure; (2) in-
hibited diffusion. Similarly, the properties of the H states resemble
those of a fluid: (1) irregular structure; (2) free diffusion; (3) higher
pressures than L states at the same 7. Taken in conjunction with the
considerable discussion which has been carried out in the statistical
mechanical literature concerning the existence of a solid-fluid phase
transition for systems of hard spheres, these observations naturally led

us 3,9

to suggest them as tentative support for the existence of such a
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1.2

phase transition., This interpretation was also strongly supported by the
appearance of essentially the same phenomena in the Monte Carlo calcula-
tions2 for three-dimensional Iennard-Jones molecules at a pressure and
temperature in reasonable agreement with extrapolation of the experimental
melting locus of argon. On the other hand, of course, it was possible to
believe that these phenomena were artifacts of the small number of mole-
cules which were used in the calculations, rather than characteristic of
the behavior of macroscopic systems.

In addition to whether or not a first-order phase transition exists
for hard spheres, there are also differences of opinion as to whether, if
such a transition does exist, the exact petit canonical ensemble reduced
pressure pvo/kT should be a monotonically decreasing function of volume at
fixed T and fixed finite N, or whether it might exhibit loops more or less
simlilar to those of the van der Waals equation of state., The best discus-
sion of this problem seems to be that of Hill.12 The only cases in which
exact calculations exist are for certain simple lattice gases with small
N, where loops in fact do occur. It is thus of some interest to examine
the possibilities on the basis of our simple configuration-space model
(Fig. 1.3), again under the assumption that the connections have negli-
gible volume. We denote the volumes of the L and H chambers by QL(T,N)
and. wH(T,N), and define three pressures: p(T,N), the result of averaging
over both types of chambers; pL(T,N), obtained from the L chambers alone;

and.pH(T,N), from the H chambers, The usual petit ensemble theory gives

-1
vao/kT =N (3 4n QD/BT)N 5
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-1
pHyo/kT =N (3 4n wH/BT)N 3

pv /KT = N‘l[a n (w + wg) /BT]N .

The last equation can be written by use of the first two as

p=(1 —W)pL +VPp

w

o/ (o, + wg)
giving the expected result that the over-all average pressure p is just
the average of o, and pH'weighted in proportion to their volumes W and

w Now consider the variation of t at fixed N; on the right side of

i
the above equation for p, the functions w, PL’ and.pH all vary. Let us
suppose, as 1is intuitively plausible, that 193 and.pH are both monotoni-
cally decreasing functions of 1, as indicated in Fig. 1l.4t. Suppose in
addition that the weight function w increases from values near zero to
values near one, as T increases over a small interval, as shown in the
figure, If this increase is abrupt enough, it is clear that van der Waals
loops will appear, as is most easily seen by considering the limiting
case in which w approaches the unit step function (see figure). On the
other hand, a more gradual increase in w can evidently result in a mono-
tone p. Thus we see that either type of isotherm could result from our
model,

Accepting for the moment this first-order phase-transition inter-
pretation of the observations, let us consider the effect of increasing

the number of molecules., For large enough N, and values of T between

the phase boundaries, we expect that a typical configuration should be
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Fig. 1.4 A possible mechanism for the occurrence of van der Waals loops
for the model of Fig. l.3.
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one of coexistent phases, some portions of the system being crystalline,
others fluid. The failure to observe this in small systems can be reason-
ably interpreted as being due to large interfacial effects, Thus at
larger values of N we would expect Fig. 1.3 to change. Regions of mixed
L and H character should appear and be predominant except near the phase
boundaries. Exactly how this will occur is not clear; a likely possi-
bility is that the L-H connections expand and dominate the I and H

regions.

l.2.3 '"Extended fluid" branch of the equation of state.

As already suggested in Section 1.2.1, it seemed likely that the
failure to observe H states in the realizations started from the f.c.c.
lattice at v < 1.52 was due to constriction of the L-H connections,
rather than to the complete disappearance of the H region of configura-
tion space. The well-known phenomenon of supercooling of liquids below
their freezing point, and the existence of "random close-packed'" hard-

13

sphere confiligurations also influenced our thinking in this respect, as
a result of which we devised the following "compression procedure" for
obtaining starting configurations in the H region at reduced volumes
below l.52.

We begin with an arbitrarily chosen H state from a high plateau of
a realization at T > 1.52. With the centers of the molecules fixed
in the Monte Carlo cell, the molecular dismeter is increased (i.e., T

is decreased) to a value at which the closest pair of molecules is Jjust
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in contact. The standard Monte Carlo random walk is then carried out
from this starting point until one or the other member of this pair is
successfully moved. The molecular diameter is then again increased un-
til the closest pair (usually a different pair then in the previous step)
is in contact, etc. In this way a sequence of configurations is obtained
with decreasing reduced volumes; since the "compression" process is
rather rapid (at least in the early stages) the state point was expected
to remain with high probability in the H region. Such configurations
were used as the startiné point for the usual random walk realizations,
and gave the points shown in Fig. 1.l on the upper branch of the equation
of state for v < 1.52. Without intending to prejudice the decision with
respect to a first-order phase transiﬁion, we call this part of the upper
branch the "extended fluid'" branch of the equation of state,

It is a priori quite possible that at high densities H chambers of
qualitatively different type (i.e., not equivalent under a permutation
of the molecule labels) may be present, and their connections may be-
come very constricted or non-existent. In such a case more than one
upper branch of the equation of state may be present (at fixed small N)..
This might explain the possibly significant difference between the
"extended fluid" points obtained by us and those obtained by Alder and
Wainwright (Fig. l.1), who used a similar but more gradual "compression"
procedure,

Sample configurations from these extended fluid realizations at

T = 1.32 and 17 = 1.18 were examined by constructing rather crude
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three-dimensional models, and various two-dimensional projections. At

T < 1.52 diffusion was absent, in contrast to the rather free diffusion
at v > 1.52 already mentioned. (In terms of our model this implies N!
regions of the H type, either disconnected or having very constricted
connections.,) The highest density (7t = 1.18) configurations fluctuated
very little, and were describable as rather distorted body-centered

cubic arrangements, apparently quite different from the structure de-
scribed by Alder and Wainwright7 at about the same density (thus suggest-
ing the presence of more than N! H regions of at least two non-equivalent
types).

From Fig. 1.1 it is clear that the "extended fluid" branch of the
equation of state has an apparent asymptote in rough agreement with
Scott's13 value of 7 ~ 1.16 for "dense random packing", but the agree-
ment is most likely accidental, since one would hardly expect to dupli-
cate "dense random packing" with as few as 32 molecules (no realizations

were generated on this branch with N > 32),

l.3 Retreat to Hard Circles

The indications, described in the previous section, of a possible
phase transition in systems of hard spheres led us to question whether
similar phenomena might also be present in systems of hard circles and
have been missed in the original investigation,l again due to the slow-
ness of the calculators of that date (as well as to the relatively large

nunber of molecules which was chosen). As far as statistical mechanical
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theory is concerned, the situation for hard circles is the same as for
hard spheres. The first-order phase transition has not been shown to
exist, nor has it been shown not to exist. Only in the one-dimensional
case, where the complete equation of state can be obtained analytically,
is an exact answer known: in this case, there is no transition.

Aside from an investigation of the two-dimensional case as a ques-
tion in its own right, there were important reasons of convenience for
transferring our efforts to it. At that time the available calculators
were IBM type 704, and it seemed to us that we had about reached the
practical limit of the ability of calculators of that speed to attack
the phase-transition problem in the three-dimensionsl systems. The
over-all average of 32-molecule realizations like that of Fig. 1.2 clearly
could not be determined; that realization, for example, required between
four and five hours of machine time, and its over-all average (as dis-
tinct from the within-plateau averages) is essentially worthless, With-
out a determination of such over-all averages at a number of points in
and near the possible transition region, the nature of the p-V isotherm
even for the small system remains in question. Further, even if the
equation of state for the 32-molecule system could be determined, and
displayed, say, a van der Waals loop, the significance of this result
for macroscopic systems would still be in doubt. Obviously, the inherent
limitation of the method to very non-macroscopic numbers of molecules
prevents one from even expecting to brove the existence of a first-order

phase transition by such means., The most that can be expected is a
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demonstration by calculations for larger systems (N ~ 1000, say) that
the phenomena appear likely to persist as N increases, [For example, one
can imagine that a van der Waals loop for small N might shrink as N in-

creases in such a way as to produce a second-order transition for macro-

scopic systems (N - «).]

As already mentioned, there is some reason to suspect that at larger
values of N the statistical behavior may be less difficult (appearance of
coexistent phases, rather than secular fluctuation between the two pure
phases). However, larger values of N were already very time consuming
outside the "transition' region, and could certainly not be expected to
be less so inside it, Thus, an important reason for investigating two-
dimensional systems was the fact that with calculationally feasible
values of N (which are only slightly greater than in three-dimensions),
the interfacial effects believed to be responsible for much of the
difficulty should be considerably reduced.

An incidental advantage of the two-dimensional case is the greater
ease wlth which the geometrical structure of sample configurations can
be studied.

Accordingly, in 1958 we began the calculations which will be de-
scribed in this report. Unfortunately, soon after most of the calcula-
tions were completed the investigation was put aside in favor of other
unrelated problems, and only recently have we returned to the work of
reducing the results to a form suitable for publication. Preliminary

S

results were made available to Helfand, Frisch, and Lebowitz,™  for

comparison with thelr approximate analytical results,
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Alder and Wainwright have also applied their dynamical method to
15

hard circles, and in a recent paper™ present an isotherm displaying a
van der Waals loop for a system of 870 molecules.

In the meantime our own situation with respect to calculator speed
has improved, with the availability of IBM-7090 and IBM-7030 machines.,
In the near future we will attempt to verify the molecular-dynamical re-
sult for a large system of hard circles. In this report we present
Monte Carlo results for two small systems of 12 and 48 molecules, which
are of some interest in their own right, and whose understanding ought
to facilitate the investigation of larger systems,

A considerable effort has been made to develop data reduction

methods which can give estimates of the precision of the equation of

state results, as will be described,
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Chapter 2

THE MONTE CARLO METHOD FOR SYSTEMS OF HARD CIRCLES

2.1 Derivation of the Equation of State

The petit canonical ensemble: expression for the pressure of a
system of hard circles in terms of the value of the radial distribution
function at the molecular surface is well-known, but the usual deriva-
tion proceeds by way of an assumption of circular symmetry. This as-
sumption is not exactly valid in our calculations owing to the finite
number of molecules and to the particular boundary conditions which are
used, For this reason we present here a derivation which avoids the
symnetry assumption.

The Gibbs phase integral in configuration space for a system of N

hard circles of diameter o confined to an area V is

7, (V) fvf [ Az, - o) & . (2.1)

V(13)
The two-component vector giving the position of the center of molecule i
is denoted by T;, while T denotes the set of all such positions
is the magnitude of the

{%l’ Thr *tts rﬁ}, and is a 2N-vector; rij
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separation vector ?J - ;i between molecules i and j; and (ij) stands for
the set of all distinct molecular pairs., The function A(x) is the unit

step function,

0Oifx<0 ,
A(x) ={ (2.2)
lifx=20 |,

The thermodynamic pressure is defined by

NKT - N (2.3)

v XL(B in ZN

A

where the variation of the area V is understood to take place with its
shape (to be discussed in Chapter 3, along with the boundary conditions)
held fixed. The symbols k and T as usual stand for the Boltzmann con-
stant and the thermodynamic temperature.

If the dimensionless vectors

X = v“'ki’.
1L

P.J
-

X, =

are introduced, (2.3) can be written

oW V.(a In zx
NET LA /A
with
) = [ o[ ] ackx, - o)aF
Y (1)

where w is a fixed unit area whose shape is independent of V. Differen-

tiation under the integral sign then gives

by



St | f f Z) V%Xi.a - ")] B(V%xgé - )& '

(13¥kL)
With use of the identities

daa(x)
dx

= 6(x)

and

A(x)6(x) = 6(x)

2

where 6(x) is Dirac's delta function, we obtain

8 o, L1 - T ) e

Return to the original coordinates r gives

‘“’iizﬁ‘ew‘iava“'fv[({[ Ay - )] {Z u }"

Next we introduce the cumilative pair-distribution function in configura-

tion space
o, ) = & Z AC -Tyy) (2.4)
13)

in which the sum is evidently the number of molecular pairs whose dis-

tance between centers in configuration T is less than or equal to {, and

the corresponding ensemble average

0@ - [ +of [(U)Mrm-c)}}(c, i (2.5)
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Then we obtain

0 4n Z§ [BG(C)]

oV kv | T3¢ ’
C=0
by use of which (2.3) becomes
BV _1+Za’o) (2.6)
Nlﬂ‘ E . .

The prime denotes partial differentiation with respect to the argument
¢ of G(C); the latter of course depends also on N and V,

Equation (2.6) is the desired result, expressed for convenience in
terms of the derivative of the average cumilative pair-distribution
function, rather than in terms of the radial distribution function be-
cause the latter cannot be directly calculated by the Monte Carlo method.

As indicated at the outset, no assumption of circular symmetry was
necessary, and in fact the usual assumption of uniform singlet density
was also avoided., Thus Eq. (2.6) applies, with the pressure definition of
Eq. (2.3), also to crystalline phases in which the singlet density is not
necessarily uniform (though in the case of systems with periodic boundary

conditions, see Chapter 3, the singlet density is always uniform).

We will frequently find it convenient to use the symbol

# = pV/NKT : (2.7)

for the compressibility factor. We also define the area per molecule

v=VN ,

and define the hexagonal close-packed area per molecule

v =/3d/2 . (2.8)
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For coverings of the infinite plane by non-overlapping circles of
diameter o, it is known16 that v 1is the smallest possible value of the

area per molecule v, The reduced area T is defined as

T = v/vo . (2.9)

2,2 Estimation of the Equation of State

As indicated in Chapter 1, the average cumilative pair-distribution
function G({) defined by Eq. (2.5) is estimated by the Monte Carlo method
as the time average of the configuration-space function a(¢g, ?) over a
realization of a suitable Markov chain in the space of the configuration
states of the system. If we denote the configuration state attained by
the realization at time t by ?(t), and the corresponding value of
G(¢, T) by é(g, t) = g[g, ©(t)], then the resulting estimate of the

petit ensemble average G({) is
t

G.(0) =% ) &, t9) - a0 (2.10)
t/=1

The arrow indicates the stochastic convergence of the Markov chain time
average to the ensemble average as t — =,

Thus, the essence of the method is the generation on a high speed
computing machine of a sequence of configuration states, which sequence
forms a realization of a Markov chain having this convergence property.
For each state t’/ in the sequence, the function é(g, t’) and its running
average §£,(g) are calculated for an appropriate set of values of (.

The development is carried to an appropriately large value t of t',
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whereupon the estimates EE(C) mist be numerically differentiated to
give G'(c), from which the compressibility factor s is calculated from
Eq. (2.6). The data reduction procedures involved are discussed in

Chapters 7, 8, and 9.

2.3 Classification of Parameters

2.3.1 Parameters which specify the system: N, V(shape), and 7.

The basic parameters which define the physical hard-circle system,
and thus the space of configuration states, are the number of molecules
N, the area V (including its shape and boundary conditions), and the
molecular diameter g. The first two of these parameters are discussed
in detail in Chapter 3. Together they determine v = V/N, while ¢ deter-
mines v_ by Eq. (2.8), the reduced area T being then given by Eq. (2.9).
It is convenient to reverse this procedure and specify the reduced ares

T as a fundamental system parameter instead of the diameter o.

2.%.2 Parameters which define the Markov chain: (pig) and 6,
oJ

The conditions on the stochastic matrix defining the Markov chain
which suffice for the time averages of its realizations to converge
stochastically to the corresponding petit ensemble averages have been
discussed in detail elsewlzlere.l—5 Briefly, the configuration states to
be included in the ensemble averages must form a single ergodic class,
and the elements of the stochastic matrix must satisfy a stationarity

condition involving the Boltzmann factors for the states,
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For the case of hard circles, the configuration states to be in-
cluded ("accessible states'") are ordinarily all those in which no 'over-
lap" occurs, i.e., those in which all pairs (i, j) satisfy rij 2¢g., In
exceptional cases (Section 1.2.1) only a subset of these states may be
desired, If the one-step transition probability from state j to state k

is p the stationarity condition for hard circles reduces to the

Jx’
reversibility or symmetry condition

Poc = Py o
The ergodicity condition requires that between any two "accessible states"
j and k there be a non-zero transition probability in some finite number
of steps.

The matrix which we used in the present calculations is the two-
dimensional modification of the one used in the hard-sphere calculations.5
Rather than write out its algebraic definition, we will describe the
stochastic process by which the configuration state ?(t + 1) at time
t + 1 is generated from the state ?(t) at time t. One of the N molecules
is selected randomly and approximately uniformly; call this molecule
i(t). The two cartesian coordinates of i(t) (glving the position ;i(t)(t)
of this molecule at time t) are given provisional displacements random
and uniform on a certain interval (-8, &), the other molecules remaining
in their positions at time t; call this provisional configuration
T/(t). If T’(t) contains an overlap (i.e., if as a result of its provi-
sional displacement, molecule 1(t) has approached closer than the dis-

tance ¢ to another molecule), then 1(t) is returned to its former
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position, and the next state of the realization is identical to the
previous state: r(t + 1) = r(t). If ©'(t) contains no overlap, then it
becomes the next realized state: r(t + 1) = ©/(t).

The maximum displacement parameter &, which appears in the above
description (and is not to be confused with the Dirac delta function of

Section 2,1), affects the rate of convergence of the stochastic process

(i.e., the number of steps required on the average for a certain precision
of the statistical averages), but not the existence of convergence toward
the petit ensemble limit. The value of 6 should in principle be chosen
for optimum convergence. It is clear that both very small and very large
values will lead to too gradual a motion of the state point in configura-

>

tion space. In the hard-sphere case” a limited investigation of this
optimization problem was made, on the basis of the intuitive criterion
of maximizing the rectified trajectory of the state point. These results
have been used as a rough guide in choosing 8 during the hard-circle in-
vestigation.

It is evident that the above described Markov chains satisfy the
sufficient conditions for convergence, assuming of course that the initial
state at t = O is chosen to be an accessible state, -except for one possi-
bility. The latter is the case in which the prescription permits the
state point to move between two disconnected ( i.e., mutually inacces-
sible) regions of configuration space, depending on their separation

relative to 6, as indicated schematically in Fig. 2.1 The figure is to

be understood as a schematic projection of configuration space onto the
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—28—

FPig. 2.1 A possible one-step transition between two dynamically
inaccessible regions of configuration space.

two-dimensional space of a single molecule, with states j and k differing
only in the position of this molecule., The square with state J as center
is of edge 26, and consequently dynamically inaccessible states such as

k can possibly be reached from j. Such situations are believed to be
rare, since at densities where compartmentalization of configuration
space is important the usual values of 6 are expected to be small com-

pared to the probable distance between mutually inaccessible regions.
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2.3.3 Parameters which determine the realization: v(0) and the pseudo-
random number sequence,

The reglization which will be obtained on the computing machine is
determined by the initial state r(0), and by the pseudorandom number se-
quence which is used to produce the pseudostochastic sequence of states.
The initial configuration is usually a regular hexagonal arrangement of
the molecules with the distance a between nearest-neighbor centers given
by

o =oviEN . ' (2.11)
The random number sequence is discussed in Chapter 4.

2.3.4 Parameters which determine the observations made upon a realization:

Arx®, K, end At.

As seen In Section 2,1, for the determination of the equation of
state of hard circles, the derivative of G({) at { = ¢ is sufficient.
The required numerical differentiation can accordingly be carried out
using only observations of é(g, t) near { = 0. To date only such observa-
tions have been made, not because the radial distribution function over a
wider range is without interest, but because this restriction permits a
considerable increase in the speed with which the computer can genefate
the realization. This comes about because the calculations required to
compute the observation @(C, t) at each step can, if { is so restricted,
be limited to just the interactions of the displaced molecule 1(t)

(Section 2.%.2) with its immediate neighbors.s
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For convenience the set of values {ga} , at which the observations
are made, 1s chosen to be of the form

2 _ 2
=0

roart | g =1,2,000,K (2.12)
where Ar2 and K are suitably chosen parameters. They determine the
fineness of detail and the range over which the cumlative pair-distri-
bution function is observed. In principle they should be chosen so as to
optimize statistically the results obtained in a given computation time,
In practice they have been chosen somewhat haphazardly, in part on the
basis of graphical differentiation techniques.

The realizations used in practice are much too long to allow the
tabulation of the observations at each step of the random walk., Also,
the running averages E%(ga) are too slowly varying to be convenient for

the purpose of monitoring the progress of the realization., For this

purpose we make coarse-grained or time-smoothed observations by averaging

é(ga, t) over successive groups of At steps each. Thus, our primary ob-

servations are

sAt
~ 1 A
G(s,a) =T Z G(ga,t'), a=1,2,°*",K, 5 =1,2,000 , (2.13)
t/=(s=1)At+l

The coarse-graining parameter At could also, in principle, be determined
optimally on the basis of statistical considerations, but in practice it
has also controlled intermittent dumping of data for restarting the cal-

culation, and has been chosen on the basis of convenience in this respect.
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The running averages @%(Ca), which converge toward the desired

ensemble averages, are of course easily obtained at times t = sAt:

Gy =5 ) 80 . (2.14)

2.3.5 A parameter which determines only the speed of the calculation: d.

>

The "diffusion distance' d is a parameter” which affects only the
speed with which the computer generates the observations on a particular
realization. Its value determines the number of neighbors of the dis-
placed molecule 1(t) (see Section 2.3.2) whose interactions with i(t)

mist be calculated at each time step. A small value of d leads to a

small number of neighbors but more frequent updating of certain tables

of these neighbors. The balancing of these two opposing effects leads

to an optimmm value of 4, This was the subject of a limited investigation

>

for the hard-sphere case,” in which a rather broad range of nearly
optimum values was found. The values of this parameter in the present
investigation were selected for the most part by analogy with the be-

havior of the three-dimensional case.
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Chapter 3
PERIODIC BOUNDARY CONDITIONS, THE AREA V,
AND THE NUMBER OF MOLECULES N

As in all our previous Monte Carlo investigations, we have used
periodic boundary conditions in the bellef that they probably afford
the best means of approximating with a finite number of molecules the be-

havior of quasi-infinite thermodynamic systems.
3.1l Definitions

3,1,1 V mist be a unit cell of a planar lattice.

The first requirement of these boundary conditions is that the area
V must be a unit cell of some lattice which covers the plane., That is,
given an area V of specified shape and dimensions, there must exist two
linearly independent lattice vectors Zl and Zé having the following prop-
erty. Let an, with m and n any positive, negative, or zero integers, be

the area obtained by applying to every point Rof V= Vbo the translation

ﬁmn(ﬁ) =R +m]l +nf2 .

Then V is a proper unit cell if corresponding to any point ﬁo of the
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plane there exists a unique pair of integers m(ﬁg) and n(ﬁo) such that
Vm(ﬁo)’n(ﬁg) contains ﬁo' It is immediately clear that this requirement
alone considerably limits the shape of V. For example triangular shapes
are excluded., Among the satisfactory shapes are evidently parallelograms
(including rectangles) and certain hexagons; certain shapes with curvi-
linear boundaries would also be admissible.

This requirement being satsified, one next associates with each
configuration of N hard-circle molecules in the area V the infinite con-
figuration (covering of the plane by circles) of density 16 N/V obtained

by applying the above translations to the finite configuration,

3.1l.2 Summation conventions.

The set (1j) of molecular pairs over which the sums and products in
Section 2,1 are taken for any configuration is then defined as follows.
The index i runs over just the N molecules of the basic cell V = Vbo'
The index j runs in principle over all the molecules in all the cells
Vﬁn Vbo’ as well as over the values J > 1 in Vbo' However, for the
systems we will consider, the molecular diameter ¢ and the relevant
values of the argument { of the cumilative pair-distribution function
will always be small enough compared to the dimensions of V so that the
equations are unaltered,with j restricted to its values in Voo and to
the molecules in the immediately adjacent cells., Owing to this extension
of the range of the J subscript, the set (i3) now contains more than

the N(N - 1)/2 distinct pairs obtained if both i and j were restricted
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to just the molecules in Vbo' However, the independent variables which
specify a configuration are still just the N position vectors ?i ranging
over V = Vbo’ and it is readily verified that the equations of Section

2.1 are unchanged.

3,1.3 Maximum packing density.

In the terminology of Section 2.3.1, a configuration has an overlap,
and is thus not an allowed state during the fandom walk, if there is an
overlap between any pair of molecules of the infinite system. And con-
versely any configuration which is an allowed state under the periodic
boundary conditions corresponds to a non-overlapping covering of the in-
finite plane with a packing density equal to the density N/V of the
finite system. Thus, a finite system with periodic boundary conditions
cannot have a packing density greater than that possible for an infinite
system.

As mentioned in Section 2.1, the maximum density for an infinite
system is that of the familiar hexagonal close-packed arrangement, which
has a volume per molecule equal to Vos 85 given by Eq. (2.8). It is ob-
vious that if we wish our finite system to approximate the behavior of
nearly close-packed, quasi-infinite systems, we should choose V and N
so that the area V is an N-molecule unit cell for the regular hexagonal

lattice,
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3.1l.4 Unit cells for regular hexagonal lattice.

Figure 3.1 shows several unit cells containing one or two molecules,
which themselves generate the regular hexagonal lattice, and from which
larger composite unit cells can be constructed. Of the possible shapes,
rectangles are computationally the most convenient, The smallest such
unit cell contains two molecules, as shown in the figure, and has edges

a and./g'a, where a is the nearest-neighbor distance. A rectangular array

of IM such unit cells, with edges /3La and Ma, is accordingly a suitable

cell with an area
2

V = /31LMa (3.1)
for a system of
N = 2IM (3.2)

molecules, For both of the systems to be reported here, the area V is

a rectangle with side-ratio /3/2, the ratio L/M being fixed at 2/3. The
smaller of the two systems contains 12 molecules (L = 2, M = 3), the
larger, 48 molecules (L = 4, M = 6); see Figs. 3.2 and 3.3, Both will be

discussed in more detail in subsequent sections of this chapter.

3+.1le5 Toroidal formlation,

An equivalent, often helpful, description of periodic boundary
conditions for such rectangular areas is to regard the N molecules as
moving on the surface of a torus, with a suitable definition of distance.
The periodic boundary conditions are in fact sometimes called toroidal

boundary conditions. In the above discussion we proceeded by the more
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Fig. 3.1 Unit cells for the planar regular hexagonal lattice.

62




Fig. 3.2 The l2-molecule system in the regular hexagonal close-packed
configuration, v = 1,
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Fig. 3.3 The 48-molecule system in a regular hexagonal configuration.
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cumbersome lattice definitions in order to more clearly esteblish the
connection with quasi-infinite systems.

Finally it should be mentioned that during the random walk, a dis-
placement of a molecule across the boundary of the cell V = Vbo into an
adjacent cell is allowed. However, under the above definitions the
molecule similtaneocusly reappears in V at the opposite boundary, so that
the nunber of molecules contained in V is conserved., (Note the greater
simplicity of the toroidal formilation.)

3.1.6 Uniform singlet density; reduction of configuration space to
2(N - 1) dimensions,

Every configuration of & periodic system belongs to a two-dimensional
continmuum of equivalent configurations in which the relative positions ?ij
are identical, corresponding to uniform translations around. the torus.

Due to this symmetry the singlet density of any periodic system is uni-
form. In addition the configuration space can be reduced to 2(N - 1)
dimensions by introducing coordinates of the N — 1 molecules i = 2,3,°*+,N
relative to molecule 1. The position T. of molecule 1 then disappears

1
from Eqs. (2.1) and (2.5), so that the integrations over ;i can be carried
out to yield a factor V. This factor cancels from numerator and denomina-
tor of Eq. (2.5), with the result that the average cumilative pair-distri-
bution function G(C) is expressed as the ensemble average for a system of
N hard circle molecules having 2(N - 1) degrees of freedom, one molecule

being held fixed at the origin.
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The random walk of the Monte Carlo method can be modified to take
place in this 2(N - 1)-dimensional space by simply holding one molecule
fixed. In some recent calculations for Lennard-Jones molecules this has
indeed been done, since in addition to slightly increasing the calcula-
tion speed [by a factor N/(N - 1)], the stuay of the geometrical struc-

ture of sample configurations is somewhat simplified.

3.2 Effect of Periodic Boundary Conditions

and Finite N at Low Densities

Lebowitz and.Percusl7 have recently investigated theoretically the
dependence of the petit ensemble pressure on the number of molecules
for systems with periodic boundary conditions. They showed that there
are essentially two types of dependence of p on N at fixed v and T. One
of these, which they call the '"normal' dependence, arises from correction
terms to the virial coefficients which are of the form of polynomials in
N-l. The second, or '"anomalous' dependence on N is more complex, and
arises from the area (for two-dimensional systems) dependence of the
virial coefficients of large enough order for the corresponding Mayer
clusters to wind at least once around the periodic torus. The latter
dependence can be predominant for very small values of N.

For the rectangular systems with L/M = 2/3 the reduced area
Tc(v, N), below which the virial coefficient of order v becomes area

dependent, is given by

'rc(v, N) = 1w2/3N. (3.3)

65




32

In Table 3,1 this critical reduced area is tabulated as a function of v
for the two systems of the present investigation. In the l2-molecule
system,the second and third virial coefficient have a "normal' N-depen-
dence (i.e., are volume independent) at all values of the reduced area,
Wﬁile the fourth virial coefficient becomes dependent on T for v < 1.78.
In the 48-molecule system,the second through the sixth coefficients have
normal behavior, but the seventh virial coefficient is dependent on 7T

for 1 < 1.36.

TABLE 3,1 CRITICAL VALUES OF THE REDUCED AREAS FOR

ANOMALOUS DEPENDENCE OF VIRTAIL. COEFFICIENTS Cv
7, (v, N)
N = 12 N = 48

v
2 —_ —_
3 1 -
N 1.78 -
5 2.78 —_
6 L 1
7 5.22 1.36
8 7.11 1.78
9 9 2.25
10 11.11 2.78
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3.3 Effect of Periodic Boundary Conditions

and Finite N at High Densities

3.3.1 Summary of Salsburg-Wood asymptotic analysis.

Complementing to a certain extent the results of Percus and Lebowitz
discussed in Section 3.2, Salsburg and.Wbod;8 have recently established
theoretically the behavior of the equation of state of finite periodic

systems of hard circles or spheres in the high density limit.

3.3.1.1 Stable limiting configurations.

The fundamental assumption is that as the reduced area agpproaches
from above a certain value 1%, in a system of fixed shape and N, a closed
region of the 2(N - 1)-dimensional configuration space of Section 3.1
contracts to a single point or limiting configuration T*, As a result
at infinitesimal expansions from the reduced volume 7% only configuration
states which are infinitesimally close to the limiting configuration
space point T* are accessible from r*, Such a limiting configuration is
sald to be stable. No easily applicable sufficient condition for T* to
have this stability property was obtained, but a necessary condition on
the coordination nunber ¢ (defined as the average number of contacts
per molecule) of the limiting configuration was shown to be

czh -2/ . (3.4)
In addition an obviously necessary condition is that the limiting con-

figuration be close-packed, i.e., no molecule must be able to move with
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the other molecules held fixed.

3.3,1.2 Freevolume equation of state is asymptotically correct.

Provided that the limiting configuration is stable, the following
asymptotic expression for the petit ensemble equation of state restricted

Eg_configurations accessible from the limiting configuration was obtained:

-1
v 1 - *
w2V _ 2(1 - ﬁ* ), o(1) . (3.5)

This result agrees, neglecting terms of O(N-l) and 0(1) in (v - T*),

with the free-volume equation of statel8 based on the same limiting con-

figuration,

%FV =T—TE . (3.6)

T -

3.3.1.,3 Difficulties for large N.

This asymptotic agreement with the free-volume approximation is the
most interesting result of the Salsburg-Wood analysis. However, it still
has to be regarded as an uncertain approximation as far as systems of
thermodynamic size are concerned. This is because T - T¥ must be O(N—%)
if the states accessible from % are to be inaccessible from the per-
mitations of T¥ obtained by renumbering the molecules. The latter situa-
tion is necessary (though not sufficient) for the Salsburg-Wood derivation
of Eq. (3.5). Such a range of expansion is uninterestingly small for
thermodynamic values of N. There are intuitive reasons to believe that
Eq. (3.5) is valid for such large systems, with 7% = 1, but this has not

been proved,
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3¢3.2 Examples,

3+.3.2.1 Stable regular hexagonal lattice.

The regular close-packed hexagonal configuration with 7% = 1 is
undoubtedly an example of a stable limiting configuration, although a
formal proof is lacking. In this case Eq. (3.6) becomes the usual free-
volume equation of state, which should consequently usefully approximate
the equation of state of finite systems at high density, provided that
the hexagonal configuration is accessible to the system. And under the
usual supposition that the vast majority of states of quasi-infinite
systems at high density are close to the regular hexagonal configuration,

Eq. (3.6) is hopefully a useful approximation for these systems also,

3.5.2.2 Unstable honeycomb lattice,

The close-packed honeycomb lattice configuration with 7* = 1.5,
Fig. 3.4, is an example of an unstable limiting configuration (for all
systems except those with very small values of N) whose coordination
number (3) does not satisfy Eq.(3.4). Examination of the figure shows
that by a coordinated rotation of the molecules in one of the hexagonal
rings through one-twelfth of a revolution, the system reaches a configu-
ration in which these molecules, us well as their nearest neighbors,

all have considerable freedom of movement,
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Fig. 3.4 The unstable close-packed (7% = 1.5) honeycomb lattice of
coordingtion number 3.

3.3.2.35 Unstable square lattice,

Another example of an unstable limiting configuration is the close-
packed square lattice with 7% = 1,154, Fig. 3.5. Let us first consider
this configuration under periodic boundary conditions in a square area
vV = Ncg. We note immediately that the configuration is unstable in that
any row of molecules (except that containing the fixed molecule) can be
slipped horizontally around the torus by an arbitrary amount. If alter-
nate rows are so displaced a distance of one hard-circle radius in the
same direction, we arrive at a configuration in which the molecules

within each row are still close-packed, but in which adjacent rows are
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Fig. 3.5 The close-packed (7% = 1.,154) square lattice.

no longer in contact. Alternate molecules in each row can consequently
be given small vertical displacements such that the configuration be-
comes one in which no molecules are in contact. Consequently the pres-
sure obtained by averaging over states accessible from the close-packed
square lattice is finite at v = 1.154. For sufficiently large N these
states may be expected to include a preponderance of states which approx-
imate a regular hexagonal arrangement of this density except for boundary
defects, The pressure is then expected to approach approximately the

usual (1% = 1) free-volume value.
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3¢3.2.3.1 Effect of rigid boundaries, The preceding example shows

that a configuration can be close-packed, satisfy Eq. (3.4), and still be
unstable. Let us conslder the same system with rigid wall boundary con-
ditions, As far as we have been able to determine, this close-packed
configuration is now stable at finite N. Consequently the equation of
state under these conditions would be expected to approximate Eq. (3.6)
wvith 7% = 1,154, for T - 1% = O(N-%). However, the behavior of large
systems at expansions greater than this would be quite different; as
connections appear between the square lattice configuration and the
approximately hexagonal configuration, the pressure can be expected to
shift rapidly to the lower values characteristic of the latier configura-
tions, Thus, one can argue that periodic boundary conditions are slightly
advantageous since they allow the instability of such a close-packed con-

figuration to manifest itself in finite systems,

3+.3.3 Conclusion,

Comparing the Salsburg-Wood analysis with the hard-sphere Monte Carlo
results of Fig. 1.1, we see that the approximate agreement of the high
density points obtained from calculations started from the face-centered
cubic lattice (the "solid'" brench of the equation of state) is to be ex—
pected, and hopefully should be characteristic of much larger systems.,

The "extended fluid" branch for the 32-molecule system would be expected
to be in approximate agreement with Eq. (3.6) with v* near 1.15., BHowever,

the significance of this curve is in doubt. It might be a small system
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artifact; or it might be the small system manifestation of metastable
randomly packed configurations of large systems,

The asymptotic N dependence given by Eq. (3.5) may be expected to
be of some use in comparing Monte Carlo calculations for systems of
different numbers of molecules, but its usefulness in this connection
may be expected to be limited by our lack of knowledge of the N depen-

dence of the 0(1) term (see Chapter 10).

3.4 The 12-Molecule System

34,1 Surface molecules,

The twelve-molecule system defined in Section 3.1 was shown in
Fig. 3.2 in its hexagonal close-packed configuration, v = 1. In a sense
one can say that this system is almost all edge or '"surface", although
the term requires a special interpretation since under periodic boundary
conditions there is no true one-dimensional surface (edge). However, con-
sidering any specific configuration such as Fig. 5.2, we see that if a
surface molecule is defined to be one which has among its nearest neigh-
bors one or more "image'" molecules, i.e.,, one or more molecules contained
in another unit cell an in the notation of Section 3.1.1, then all ex-
cept two molecules (numbers 6 and 7 in Fig. 3.2) are surface molecules.

Another way of characterizing the finiteness of the system is to
note that, while in the regular hexagonal lattice arrangement the six
nearest neighbors of each molecule are all distinct,there are only three

distinct next-nearest neighbors, instead of six as would be the case in
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a large system, For example, in Fig., 3.2 the six next-nearest neighbors
of molecule 7 are molecules 5, 10, and 12, each being counted twice. In
this respect the l2.molecule, two-dimensional system is similar to the

32-molecule, three-dimensional system.

3.4.2 Toroidal topology of lattice lines,

Stil11 another characterization of rectangular periodic systems is
obtained by considering the way in which the principal lattice planes, or
lines in the present two-dimensional case, wind around the torus., The
hexagonal lattice has three systems of such lines, which in Fig. 3.2 are
at angles of 30°, 90°, and 150° with respect to the longer edge of the
cell. The vertical lines are seen to form four distinct colums (rings),
each of which contains three molecules. The inclined lattice lines,
however, fall into a single class. Proceeding from molecule 1 along the
150° line, we find the sequence 1, 2, 7, 8, 9, 10, 3, 4, 5, 6, 11, 12,

1, *** . That is, all twelve molecules are encountered before a repeti-
tion occurs. In geometrical terms, the 150° lattice lines of this system
in the hexagonal lattice configuration form a single spiral around the

torus.

3.4.3 Critical v for diffusion; validity of free_volume equation of state.

In connection with tﬁéiquestion of the reduced area range over which
the assumptions of the Salsburg-Wood analysis are valid for this system,

it is of interest to estimate the smallest value of v at which the
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configuration of Fig. 3.2 and one or more of its permuted arrangements
(obtained from Fig. 3.2 by renumbering the molecules) are connected, The
connecting path is probably one which we observed during the Monte Carlo
calculations, but which might have been anticipated by study of Fig. 3.2.
It corresponds to a fluctuation in which one of the above_mentioned
columns of three molecules rotates one (or more) lattice distance around
the torus. The value of T required for this fluctuation is that at which
one such columm or ring has just sufficient room to rotate freely when the
other three rings are tightly nested together, as shown in Fig. 3.6. In
the l2-molecule system this requires T = 1.136, At smaller reduced areas
the permuted lattice configurations are isolated from each other. It
does not follow, of course, that the free-volume approximation is neces-

sarily good for this system at all T < 1.136, since Eq. (3.5) is only an

Fig. 3.6 High density diffusion mechanism, showing the presumably highest
density path between permuted regular hexagonal configurations, just
rossible for the 12-molecule system at 7 = 1.136.
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asymptotic expression valid at v — 1.

On the other hand, it is possible that the free-volume approximation
may indeed be useful for T ~ 1.136, since the probability of the above
fluctuation is exactly zero at this minimm value of tv. At this and
slightly larger reduced volumes, the configuration-space volume of the
connecting paths is small, and the region of accessible space omitted
in the Salsburg-Wood "polytope!'" estimate may be negligible., In order to
form an idea of the rapidity with which the connections become larger as
T increases, we can calculate the reduced area at which the above rota-
tion of a ring can take place with all other rings in their regular
lattice locations, Under these conditions the fluctuation in question
would appear to be fairly probable, corresponding to an appreciable
connecting region, The required value of T is h/B. Thus, the free-
volume approximation is expected to bresk down at some smeller reduced

area,

3.4.4 Alternative tetragonal (c = 4) lattice,

Figure 3.7 shows that this l2-molecule system is also compatible
with a different regular lattice configuration which is a relative of
the square lattice of Fig. 3.5. This latiice has a two-molecule rect-
angular unit cell of side ratio 5/37h, and 1s compatible with any
rectangular area V based on the regular hexagonal lattice for which the
ratio L/M = 2/3 (see Section 3.1). The lattice is close-packed at

T = 48/M43 ~ 1,116, and is probably stable since its coordination number k4

6



3.}'+

| 9 5 |

12 8 4q 12
3 i 4 3

10 6 2 10
i 9 ] i

12 8 4q 12

Fig. 3.7 A tetragonal close-packed (7% = 1.,1163) cohfiguration which 1is
compatible with the 12-molecule system, as shown, as well as the 48-
molecule system,
satisfies Eq. (3,4), and in contrast to the square lattice, its lattice
lines are not orthogonal. Consequently, in some interval of reduced
area greater than 1.1163 this configuration is probably inaccessible
from the regular hexagonal configuration, (Note that the close-packed
reduced area of this ¢ =4 lattice is slightly smaller than the above
estimate of the smallest reduced area at which the simplest permtations
of the hexagonal arrangement are connected, )

For some interval of reduced. area close to .T = 1.1163, then, the
equation of state obtained by averaging this system over the states
accessible from the ¢ = 4 configuration would accordingly be expected

to approximate that given by Eq. (3.6) with 7% = 1.1163., For larger
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reduced areas, however, the equation of state would be expected to shift

toward the lower values characteristic of hexagonal configurations. For

large systems Fig. 3.6 suggests this should occur at expansions where the
inclined close-packed lines of molecules can slip along each other. For

the 12-molecule system, however, this is not a possible mechanism, since

the topology of these lattice lines is like that of the inclined lattice

lines of the hexagonal configuration: each of the two systems contains a

single class of all 12 molecules,

This configuration is mentioned in order to show the type of be-
havior which can appear in finite periodic systems, The structure of
the arrangement, e. g., the angle between the lattice lines, depends on
the ratio L/M, and one can be reasonably certain that for large systems

it is of no statistical significance.

3.5 The 48-Molecule System

The regular hexagonal configuration of this system was shown in
Fig. 3.3. The area V for this system can be regarded as being made up
of four of those for the l2-molecule system. As a result any configura-
tion of the latter has a corresponding analogue among the configurations
of the 48-molecule system, Thus, many of the remarks already made in
connection with the smaller system apply also to the larger one. In par-
ticular, the tetragonally coordinated lattice of Fig. 3.7 is also possi-

ble with the 48-molecule system.
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Using the definition of surface molecule given in Section 3.4.1,
exactly one-half of the molecules of this system are so characterized.
In terms of the shell structure of the regular hexagonal lattice, all
neighbors of any molecule are distinct through the fifth shell. The
30° and 150° lattice lines are found to decompose into two evenly divided
classes each. The smallest value of 7 at which one of the eight columar
rings of six molecules can rotate around the torus is 1.063 , correspond-
ing to the larger concentration of "free area" possible in the larger
system, The value T = 4/3, at which this rotation is possible from the
regular hexagonal configuration is, of course, independent of the size
of the system,

The above description does not exhaust the possiblé structures
obtainable with this system, as we shall see when we come to the discus-

sion of the Monte Carlo results.
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Chapter 4

THE CALCULATOR PROGRAM

A1l the calculations to be described in this report were performed
on IBM Type 704 machines, using a two-dimensional, adaptation of the
hard-sphere program which has been described in detail elsewhere.5 With
this program a typical calculation time for one time-step of a realiza-

tion is roughly 17 milliseconds,

4,1 Random Numbers

The pseudorandom numbers used for all realizations were those of a
single sequence of 70-bit "middle square" numbers.lg The cycle length
of this sequence is unknown, but was found by suitable tests to be
greater than four million., This is more than is required for any of the
realizations to be described here, Except for this test for repetition,
the sequence has not been further tested statistically. One-half (35
bits) of one of these numbers was used at each time step as follows:

9 bits to select the molecule to be moved; 12 bits for each of its two

coordinate displacements; the remaining two bits were discarded.



k2

4,2 Two Versions of the Program

Two slightly different codes were used, which we will designate as
codes A and B. In code A, through an oversight, what amounts to a small
low-order (less in magnitude than 2—17, unit distance being the longer
edge of the rectangular cell) noise was introduced into the displaced
position ?i(t) of the molecule which is moved at each time step t
(Section 2.3.2). The effect of this noise is small as far as the Markov
chain transition probability maﬁrix is concerned, but at some point in
any realization its presence changes the success - failure outcome of
an attempted displacement for which this decision is borderline. Con-
sequently the configuration at the next time step of the realization in
which the noise is present differs from that in the same realization
without noise. From that point on, of course, the two realizations are
stochastically different, In the same way, two code A realizations which
are Jldentical except for their values of the diffusion parameter d
(Section 2.3.5) will also differ, which would not normally be the case.

In code B this noise was accordingly removed. A number of realiza-
tions with identical parameters were run with both codes, and the results
were found to be in statistical agreement, as expected. Such calcula-
tions accordingly can be regarded as replicate observations on the same
system, in much the same way as variation of the initial configuration
or the random number sequence can be used to produce replicate realiza-

tions for the same Markov chain, or as variation in the displacement




the same system averages.

4.3 Program Input and Output

The data required for input to the program are the parameters al-
ready discussed in Section 2.,3: the system parameters, which are the re-
duced area T and the integers L and M which determine V and N according
to Eq. (3.1) and Eq. (3.2); the maximum displacement parameter & which
determines the Markov chain; and the observatibnal parameters conslsting
of the time-smoothing interval At and the parameters Ar2 and K which
determine the detail and range of the observations of the cumuilative pair
distribution function, In addition the initial configuration can be
provided; if none is given, the program positions the molecules on the
regular hexagonal lattice, Finally the diffusion parameter d must be
given.

The primary output of the program is the set of time-smoothed values
G(s, @) of the cumlative pair-distribution function, as given by Eq.
(2.13). These quantities, for a = 1(1)K, are recorded on magnetic tape
at the times t = At, 2At,e°°, sAt,***, along with sufficlent additional
data to permit the realization to be restarted at these times, in case
it is interrupted (for example, by a machine error). In particular the
configurations ?(t) at the above values of t are avallable on this output
tape, which is preserved as the permanent record of each realization.
This tape is used as input to various auxiliary programs which perform,

for example the statistical reduction of the observations, as described
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in Chapters 7, 8, and 9. Another such program can be used to plot the
snapshot configurations r(t), available on the tape at time intervals

At, on the SC-4020 microfilm printer-plotter.
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Chapter 5

RESULTS FOR THE 12-MOLECULE SYSTEM

We generated 27 realizations of varying length for the system of
12 hard circles described in Section 3.4, The parameters and resulting
compressibility factors are given in Table 5.1. The uncertainty esti-
mates given for the compressibility factors were obtained by statistical
techniques which will be described in Chapters 7, 8, and 9. Although
they were formally obtalined as estimates of the standard deviation of
the estimated compressibility factors (whose distribution should be
approximately normal), with more then 100 degrees of freedom in most
cases, the statistical approximations involved are probably such as to
make them too small. Thus, caution should be exercised in any statis-
tical application such as confidence interval estimation.

As indicated by the appearance in Table 5.1 of Jjust a single value
of pV/NkT for each realization, we did not observe in this system of
12 hard circles the "jumpy" or 'two-plateau" behavior which was ex-
hibited by the hard-sphere systems as described in Chapter 1. This

point is discussed in more detail in Section 5.l. Section 5.2 1s devoted
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TABLE 5.1 PARAMETERS AND COMPRESSIBILITY FACTORS

FOR THE SYSTEM OF 12 HARD CIRCLES
(see footnotes on following page)

Realization(a) T a fécr
Al 1.025 2.
A2 1.050 2.2
A3 1.075 2.4
Al 1.100 2.2
AS 1.150 2.2
A6 1.150 0.44
AT 1.200 2.2
A8 1.250 1.8
A9 1.250 2,03
Al10 1.290 2.2
All 1.300 2.2
A2 1.350 2.3
Al3 1.400 2.0
Alh 1.450 2.3
Al15 1.475 2.3
Al6 1.500 2.5
ALT 1.500 2.4
A18 1.500 2.5
Al19 1.525 2.5
A20 1.550 2.5
A21 1.600 2.3
A22 1.700 2.?
A3 1.800 2.5
A2k 2.000 2.5
A25 2.500 2.9
A26 3.000 2.8
A27 3.900 3.0
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L®)

99
14
19
23
24
19
11
29
15
16
29
32
24
42
Ly
42
76
30
38
39
99
23

24

16

18
25

26

pV /NKT
T76.84 £ 0.55
38,06 * 0.38
26.42 % 0,17
20.62 % 0.09
14.25 * 0,07
62.90 * 0.87
11.20 % 0,10
9.182 £ 0,063
9.262 * 0,098
8.405 £ 0,076
8.328 £ 0,086
T.423 + 0,084
6.857 £ 0,079
6.272 £ 0,091
6.214 * 0,047
6.033 £ 0,062
5.909 * 0,052
6.008 £ 0,079
5.788 £ 0,062
5.524 £ 0,058
5.229 ¥ 0,073
4,660 £ 0,066
4,066 * 0.062
3.372 £ 0,064
2.459 £ 0,031
2,030 £ 0,029
1.674 % 0,015




FOOTNOTES TO TABLE 5,1

a All realizations were generated using code A (see Section 4.2) with

At = 19 200, except Al, A6, A9, and A2l for which code B with
At = 4 800 was used. The value Ar2/a2 = 12°2-1 yas used in all cases
except Al and A6, which had a value one-eighth as large, and A26, which
had one-half the standard value. All realizations were started from
the regular hexagonal lattice (Fig. 3.2) with the following exceptions:
A6 and A9 were started from the tetragonal lattice of Fig. 3.7; AlO
was- started from a configuration generated by the 'compression process™
(see Section 5.1.2); Al8 was started from a configuration obtained by
Alder and Wainwright after 20 000 collisions along a dynamical trajec-
tory started from the hexagonal lattice.

b This columm gives the number of coarse-grained observations (of At
steps each) used in estimating pV/NkT. On all realizations the first
coarse-grained observation was not included, except for A9, where the
first five such observations were omitted.
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to the geometrical structures observed in this system. In Section 5.3
our qualitative conclusions with respect to this system are summarized.
Discussion of the quantitative aspects of the equation of state results
is postponed until after the calculations for the 48-molecule system and

the data reduction techniques have been described,

5.1 Statistical Behavior

5e1:1 Regular lattice realizations.

Our principal objective in studying the 12-molecule hard-circle
system was to see whether it would exhibit phenomena possibly indicative
of the presence of a phase transition in large, quasi-infinite systems.
Such indications might be of essentially two different types.

The first possibility is that it would be feasible to estimate the
true ensemble average (over-all configurations accessible from the hexa—
gonal lattice) over the entire density range. In this case the indica—
tion of a possible phase transition would take the form of an anomaly in
the resulting p-v isotherm, presumsbly either a loop of the van der
Waals type or a more or less horizontal inflection point. It might then
also be possible to obtain a similarly complete equation of state for a
significantly larger value of N, and thus perhaps to obtain some indica-
tion of the behavior of the anomaly with increasing N.

The second phenomenon which might be regarded as suggestive
of a phase transition is the same "jumpy" or "two-plateau" behavior as

was observed for hard spheres and described in Chapter 1. None of our
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realizations of Markov chains for the 12-molecule system displayed such
behavior. However, as we shall see, later calculations for the system of
48 hard circles did display this "jumpy" behavior at reduced areas in the
interval 1.3 to 1.35. The calculations for the smaller system were al-
most all done before those of the larger one, so that at the time we had
no particular reason to concentrate our attention in this interval of re-
duced area. As a result, for the l12-molecule system in this interval we
have only realizations All and Al2 at 7 = 1.3 and 1.35 respectively.

The "control charts'" for the first three observed points G(s, 1),
a(s, 2), and a(s, 3) of the cumlative pair-distribution function for
these two realizations are shown in Figs. 5.1 and 5.2, Even in retrospect,
considering our later experience with the 48-molecule system, these control
charts are not especially noteworthy, although that for realization Al2
shows some indication of non-randommess in successive coarse-grained ob-
servations.

Thus, our calculations indicated that the ensemble averages over the
accessible configurations of this system were being reasonably well esti-
mated at all densitles, It was accordingly possible to inquire gbout the
presence of anomalies in the resulting isotherm which might, as already
described, be indicative of a phase transition in large systems. In
Fig. 5.3 the estimated reduced pressure pvo/kT is plotted against the
reduced area T in the same logarithmic representation as used in Fig. 1.1
for hard spheres, Also shown are the virial equation of state, with

neglect of terms of O(T—S) as given by Metropolis, et al.,l and the usual
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Fig. 5.3 The equation of state of the system of 12 hard circles as
calculated by the Monte Carlo method in the present_investigation (e).

Also shown (x) are the results of Metropolis et al.” for 224 hard circles.
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free-volume equation of state Eq., (3.6), with 7* = 1, (The free_volume
curve for t¥ = 1,1163 and the neighboring point for realization A6 are
discussed in Section 5.2.4 ).

The results have the expected qualitative behavior at low and high
densities. In the latter region the points lie slightly below the free-
volume curve, by an amount which is in at least rough agreement with the
N"T term in Eq. (3.5). At low densities the Monte Carlo values approach
agreement with the virial approximation; the scale of the figure is too
small to show whether or not the difference is O(N—l T—l) as would be
expected from the analysis of Lebowitz and Percus.

Furthermore, we note that all the points appear to lie on a reason-
ably smooth curve, including across the interval v = 1,3 to 1.35 in which,
as already mentioned, the 48-molecule system will be seen to exhibt anom-
alous behavior. Figure 5.3 is in marked contrast to Fig. l.l, where even
if all the points in the interval v = 1.5-1.6 were ignored, and the en-
tire "extended fluid" branch as well, the remaining points for the regu-
lar face-centered cubic lattice realizations would clearly indicate the
presence of some sort of anomaly between T = 1.5 and 1.6. The Monte
Carlo results for the l2-molecule system as plotted in Fig. 5.3 give no
hint of any sort of anomaly which might suggest a phase transition for
large systems, nor does Fig. 5.4 In which the mid-range data are shown
in the usual linear representation.

Comparing (Figs. 5.3 and 5.4) the present results for 12 hard

circles with those of the original investigationl of the system of 224
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Fig. 5.4 Central portion of Fig, 5.3 replotted on a linear scale, The
radii of the points (e) correspond approximately to the standard
deviations given in Table 5,1,
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hard circles, we note that there is approximate agreement at both low
and high densities, as would be expected from the Lebowitz-Percusl7 and
Salsburg-W’ood.l8 analyses, A more quantitative comparison at these two
extremes will be made in Chapter 10.

The present results appear to be significantly higher than the
previous ones in the mid-density range v = 1.3 to 1.5, say. Two explana-
tions of this difference are possible, On the one hand, it is conceiv-
able that the two systems, one of 12 molecules in a rectangular cell, the
other of 224 molecules in a square cell, simply have appreciably different
equations of state in this region, As will be seen when the behavior of
the 48-molecule system is described, there is reason to suspect that such
is indeed the case,but in quite a different fashion from that suggested
by the results of Ref. 1.

The other possibility is that the random walks of Metropolis et al.,
because of the rather slow calculator available at the time, were not
long enough for convergence; that is, their averages are too low due to
"memory" of the initial regular configuration. In ocur opinion this
latter possibility is quite likely since according to Metropolis et al.,l
their random walks were all less than 22 400 steps long, only slightly
exceeding the usual time-smoothing interval for our smaller systems. We
ordinarily discard the first coarse-grained observation because it shows
a tendency to fall below the over-all average, particularly in the mid-

density range.
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5.1l.2 A single "compressor" experiment,

With the intention of seeing whether we could obtain an "extended
fluid" branch of the l2-molecule equation of state distinct from that
obtained by starting the realizations from the hexagonal lattice, we
carried out one "compressor' experiment using the technique described in
Section 1.2.3. The configuration selected was the last one in realiza-
tion A16 at 7 = 1.5. It was "compressed" to T = 1.29, and the resulting
configuration used as the starting point for realization Al10., As shown
in Fige. 5.3 and 5.4 the resulting reduced pressure is not significantly
different from that expected for a realization begun at the regular hexa-
gonal configuration.

At the time, this reéult was interpreted as additional support for
the absence of any behavior indicative of a phase transition. However,
our subsequent experience in studying the geometrical structure of both
this and the larger system has suggested, as will be discussed in Sec-
tion 5.2.2, that the parent configuration from realization Al6 had a
structure so close to the regular hexagonal configuration that the above
result might have been expected.

At this point the investigation turned to the 48-molecule system,
with results to be described in the next chapter. Recently the labora-
tory acquired the high-speed, electronic printer-plotter device (SC-4020)
mentioned earlier, with which it has been feasible to make a much more
thorough study of the geometrical structure of the hard-circle system

than was possible using hand-plotting techniques. Accordingly, we
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returned briefly to the l2-molecule system in order to study its geome-
trical character as a function of the reduced area 1, as will be discussed

in the following section.,

5.2 Geometrical Structure of the 12-Molecule System

5.2.1 Voronoi polygons.

In characterizing the geometry of irregular configurations sampled
from the Markov chain realizations, we will find it convenient to employ

the '"Woronoi polygons' used by Rogersl6 in establishing his upper bound

for the greatest possible packing density of hard spheres, and by Bernalgo
in his recent studies of the packing of hard spheres (in the three-dimen-
sional case, of course, one has '"Voronol polyhedra" whose definition and
properties are similar to those given below for two-dimensional systems).

In any configuration T of a system of N hard-circle molecules, there
is one Voronoi polygon for each molecule i, It is defined as consisting
of all those points of V (regarded as the surface of a torus) which are
closer to ;i (the center of molecule 1) than to the center of any other
molecule. The boundaries of the polygon are evidently segments of some
of the N - 1 perpendicular bisectors of the line segments ;ij’ J =1,
2,°¢+, N, # i, From the definition it is easy to see that the N polygons
are all convex and fit together so as to fill the area V,

In irregular configurations a convenient (for some purposes) defini-

tion of a '"meighbor" of molecule i is any other molecule whose Voronoi

polygon shares an edge with that of molecule i; the number of such
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neighbors will be called the "Woronoi coordination number." These
definitions are not always equivalent in the case of regular lattice con-
figurations to the usual definitions of 'nearest neighbor" and coordins-
tion number, For example, in the regular hexagonal configuration the
definitions are equivalent, but in the tetragonal lattice of Fig. 3.7

there are six Voronoi neighbors, and only four nearest neighbors.,

5.2.2 The "compressor" experiment,

Figure 5.5 shows the parent configuration, from realization Al6 at
T = 1.5, with which the compression was started, the configuration ob-
tained after compression to T = 1.29, from which realization A10 began,
and the last configuration (t = 326 400) of AlO. In these and other
figures of this type, the bonds commnect "Woronoil neighbors" as defined in
the preceding subsection. It should be mentioned in passing that they
have been drawn in '"by eye" and may be in error in borderline cases in
which the shared edge is quite small or non-existent.

We note that the configuration before compression, Fig. 5.5a, is
recognizably close to the regular hexagonal configuration (compare with
Fig. 3.2); all molecules have Voronoi coordination number 6, and the bonds
are not far from their regular lattice arrangement. Figure 5.5b, at the
end of the compression, is still fore so., Thus, the ensuing realization
A10 would be expected to be statistically equivalent to one started from
the usual lattice, as the resulting reduced pressure indicated (Section

5.1.2).
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Fig. 5.5 Snapshots of realization Al0 at 7 = 1.29 (compressor experiment).
(a) parent configuration from realization Al6 at 7 = 1.5

(b) initial configuration of AlO, obtained by compressing (a) to T = 1.29;
(¢) final (t = 326 400) configuration of AlO
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The final configuration, Fig. 5.5c, is topologically equivalent
to (b); the connectivity is identical, indicating that throughout this
realization no "diffusion" of the molecules took place, (This conclu-
sion is supported by an examination of all the intervening "snapshots"

of this realization.)

5¢2.3 Regular hexagonal realizations at v < 1.3,

All seven of these realizations (Al through A5, AT, and A8) behaved
like Al1O., The connectivity of the initial regular hexagonal lattice (in
the Voronoi sense, Section 5.2.1) was preserved throughout with no mole-
cular interchanges ("diffusion")., The longest of these realizations is
A8 at T = 1.250 which was developed to 576 000 time steps. Thus, the
structure of the l2-molecule system in the sampled region of configura-
tion space at these densities is definitely crystalline-like., Further-
more, in terms of the Salsburg-Wood analysis, the state point has
evidently remained over long "times" in the region of accessible config-
uration space associated with the initial hexagonal configuration even
at expansions appreciably above T = 1.136, i.e,, at expansions where
the discussion of Section 3.4 shows that this configuration and some of
its permtations are connected.

This may be interpreted as experimental evidence that such connec—
tions are extremely constricted and difficult to traverse in this range
of density. Such a state of affairs is consistent with the further

Possibility that the volume of these connections is negligible in
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5.2

comparison with the regions in the vicinity of the lattice configuration,
but such is not necessarily the case, For example the situation indicated
schematically in Fig. 5.6 would also account for the behavior of these

realizations.

PERMUTED
LATTICE

LATTICE CONNECTION

Fig. 5.6 Schematic example of a constricted connection between two
lattice permitations, which has non-negligible volumne,

5.2.4 Realizations started from the tetragonal lattice of Fig. 3.7.

In order to study the signifiaeance of the tetragonal lattice struc-
ture shown in Fig. 3.7 and discussed in Section 3.4t.4, and in particular
to investigate its relation in configuration space to the usual regular
hexagonal lattice, we generated two realizations with this configuration

as their starting points.
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5.2.’-‘-.1 Realization A6 at T = l.ls.

This reduced area represents an expansion of about 3% above the
close-packed vslue 1,1163 for this lattice., The development was carried
to only t = 96 000, with all "snapshot" configurations exhibiting only
insignificant deviations from the initial arrangement. This suggests, on
the basis of the Salsburg-Wood analysis (Section 3.3) that the resulting
reduced pressure ought to be in approximate agreement with the value cal-

culated from the free-volume theory based on this lattice, i.e., from

Eq. (3.6) with t* = 1,1163, Figure 5.3 shows that such is indeed the case

the difference again being roughly as expected on the basis of the N—l

correction term in Eq. (3.5).

5.20}"'.2 Realization A.9 at T = 1025.

Here the initial tetragonal configuration was found to be "unstable™
with respect to transition to configurations of the usual hexagonal type.
Figure 5.7 shows the "snapshots" at t = 0, 4 800, 9 600, and 14 400.

By t = 14 400 the structure is seen to be a nearly perfect hexagonal

arrangement for this system (compare Fig. 3¢2). The arrangement re—

mained unchanged.(i.e., there was no "diffusion") throughout the remsinder

of this relization (t = 96 000),

5.2.4.3 Interpretation,

The behavior of realization A6 strongly suggests that at T = 1.15

the tetragonal lattice has a "pocket" or region of accessible states
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Fig. 5.7 Snapshots showing the relaxation of
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structures at t
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which is at least effectively, if not actually, disconnected from the
region around the regular hexagonal lattice. (The latter region is
doubtlessly larger, since the volume of the tetragonal pocket must be-
come zero at T = 1.1163.)

At v = 1.25, on the other hand, the rapid relaxation of realization
A9 shows that the two lattice points are connected, and suggests that the
"pocket" associated with the tetragonal lattice is no longer large com-
Pared to all its connections with other pockets. Thus, we are led to
conclude that at v = 1.25 a pocket of hexagonal states is large compared
to the volume of any other configuration space region that is easily
accessible from the tetragonal configuration. At reduced areas greater
than 1.25, we would expect the tetragonal configuration to be even more
short-lived,

These inferences are all in agreement with our comments in Section
3.4 concerning the expected unimportance of the tetragonal type of con-
figuration. In particular its stability character appears to be quite
different from that of configurations on the "extended fluid" branch of
the hard-sphere system (N = 32). The latter configurations were apparent-
ly very stable with respect to transition to nearly face—_centered cubic
configurations. The only reservation is that at this stage this inter-
pretation is baéed.on just one observation (A9) of definite instability,
plus the more negative evidence of the non-appearance of tetragonal con-
figurations in the other realizations at v < 1.3. We will return to this

point as we discuss the realizations at larger reduced areas.,
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5¢.2.5 Realization A1l at 7 = 1.3,

Realization All at v = 1.3 is the highest density realization for
the l2-molecule system in which different permaitations of the regular
hexagonal configuration were observed. Snapshots before and after the
first such permutation are shown in Fig. 5.8, from which it is seen that
during this interval of 19 200 steps the columm of molecules 1, 5, and 9

experienced a net upward displacement around the torus of one lattice

distance relative to the other molecules.

to a total of 576 000 steps, during which two other displacements of the

same type occurred.

This is the mechanism which was discussed in Section 3.4.3 as the

probable first accessible path between permutations.

This realization was developed

It is noteworthy

~,

N

Fig. 5.8 Snapshots showing diffusion in realization All at t = 1.3, (a)

(b)

t = 76 800 and (b), t = 96 000. Compare with Fig. 3.6. '
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that although it was there calculated that the path exists at 17 = 1.136,
the present reduced area of 1.3 is the smallest at which it was observed,
and furthermore this reduced area is rather close to the value T = h/3
at which this rotation of the three-molecule columns is possible in the
regular lattice configuration itself,

It is also significant that all the snapshots of this realization
are recognizably close to the hexagonal lattice. Occasionally, molecules
with coordination numbers of 5 and 7 (in the Voronol sense) were noticed.
The typical situation in which they appear is that sketched in Fig., 5.9.
Hexagonal connectivity can be restored by a small relative motion which

replaces bond BD by AC (dashed line),

Fig. 5.9 The simplest occurrence (solid lines) of Voronoi coordination
numbers 5 (molecules A and C) and 7 (B and D).
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These observations are further evidence that in this system the
connections between permutations of the regular hexagonal configuration
are indeed very constricted at expansions appreciably greater than the
reduced volume at which they first appear. In addition, as far as the
simple mechanism of Fig. 3.6 is concerned, the connection itself probably
possesses no 'pocket" of the sort depicted in Fig. 5.6.

Figure 5.4 shows that just at this reduced area, where the system is
first observed to make its way through this connection, the computed
pressure crosses above the free-volume curve, In terms of the Salsburg-
Wood analysis, at this density the contribution to the pressure of con-
figurations neglected in the polytope approximation to accessible config-
uration space becomes comparable to the effect of the finite number of
molecules (12) of this system. This would suggest, 1f substantiated for
larger systems, that the free-volume pressure may indeed be a useful
approximation at expansions greater than the range O(N—%) required for

the Salsburg-Wood demonstration.

5.2.6 Realization Al2 at 7t = 1.35.

At this density additional types of motion between permuted
hexagonal configurations were observed, and the extent of distortion from
the regular arrangement increased, as would be expected. But in general
the snapshot configurations were recognizable approximations to the reg-
ular hexagonal configuration, and the appearances of permutations were

rare enough so that successive snapshots at intervals At = 19 200 could

106




5.2

be explained in terms of a simple motion of a small number of molecules,
Examples, in addition to the columar motion already described, were the
one-step displacement of a staggered row of four molecules, such as the

cycle 5 -4 -7 -6 —5 in Fig, 3.2, or a ring shift such as

6 -10-11-7 -6, also in Fig. 3.2.

The configuration at t = 614 400, Fig. 5.10, was exceptional. The
arrangement can be made hexagonally connected, in the Voronoi sense, by
replacing the bond 10-11 by 6-7, but the result is not the usual regular
hexagonal configuration of Fig. 3.2. Instead it is a very close gpproxi-
mation to the tetragonal lattice of Fig. 3.7. (As a matter of fact, it
was this snapshot which made us aware of the existence of this alterna-

tive lattice for systems with L/M = 2/3,) The following snapshot was
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Fig. 5.10 Snapshot showing the occurrence of the tetragonal arrangement
of Fig. 3.7 in realization Al2 at 1 = 1.35; t = 614 400.
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again of the usual hexagonal type, indicating that the tetragonal
arrangement probably does not posses a well-defined "pocket' of accessible

configuration space at this reduced volume (see also Section 5.2.4),

5.2.7 Realizations at Tt = 1.4,

In realization Alk, at v = 1.4, two of twenty-five snapshots had
arrangements related to Fig. 3.7; most of the rest were recognizable
approximations to the regular hexagonal lattice. At this density con-
siderable distortion from the lattice was frequent, and considerable
relative motion often occurred between successive snapshots (At = 19 200).

As 1 increased from 1.4 to 1.6, the structures in which the regular
hexagonal lattice was recognizable decreased in frequency, while those
of irregular or random appearance increased., Occasional configurations
of the tetragonal (Fig. 3.7) type appeared, but not very frequently.

At v = 1.5 most configurations could still be classified as regular
hexagonal types, e.g., Fig. 5.5a. Figure 5.1l shows four atypical
configurations of realization Al7 at this reduced area. At T = 1.6 the
majority of the snapshots were best described as irregular or random,

When T becomes as large as 2, the configurations become gas-like.

Figure 5.12 shows some examples at T = 2,5 and 3.0.
5.2.8 Surmary.

Our over-all impression from this examination of the geometrical

structure of the system of 12 hard circles over the entire range of
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interesting densities is one of gradual change from ordered hexagonal
structure at high density to random structure at low density.

One of our main objectives in making this study was to see if
structures in the intermediate density range would give any hint of a
possible "extended-fluid' branch of the equation of state. We were
guided in this connection by the results of our structural study of the
48-molecule system. This study will be described later in this report,
but was carried out before that on the smaller system. Here it will
suffice to mention in advance that in the 48-molecule system an "extended
fluid" branch was found, and that it had a characteristic geometrical
structure which was also qulte evident at slightly larger reduced areas
in realizations started from the regular hexagonal lattice. This struc- .
ture, as we shall see, is not one which has an analogue in the 12-mole-
cule system, but it seemed nevertheless probable that we might recognize
any systematic occurrence of a structure that might have a similar role,

As the previous sections have indicated, no such characteristic
structure was noticed in the small system., The only exceptional arrange-
ment noticed was the tetragonal lattice of Figs. 3.7 and 5.10, which is
not believed to be the basis of such a branch of the equation of state
for the following reasons. First, at no reduced area is it a predominant
or frequent structure in realizations started from the usual hexagonal
arrangement., Second, it appears to be definitely unstable with respect
to transition to hexagonal structures at v = 1,25, There appears to be

a corresponding branch of the equation of state over a small range of
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reduced areas above 1,1163, which agrees approximately with the free
volume theory with % = 1,1163, as expected from the Salsburg-Wood analy-
sis. However, this branch is expected to disappear with increasing N,
and in any case it does not have the properties of an "extended fluid"
branch,

Finally, we mention again that the system remains in the configura-
tion space '"pocket" associated with the initial hexagonal arrangement
throughout quite long realizations at reduced areas up to 1.3, although
connections with some of the permuted arrangements are known to appear

in this system at v = 1.136.

5.3 Resume of the Results for the 12-Molecule System

Our main conclusion from our study of this small system is that
it shows no behavior indicative of a phase transition in system of
a large number of hard-circle molecules, The reasons for this conclu-
sion are (1) the appearance of the calculated isotherm, shown in
Figs. 5.3 and 5.4 and discussed in Section 5.1.1; (2) the absence of
any "jumpy" or "two-plateau" behavior of the control charts; (3) the
apparent absence of an "extended fluid" branch of the equation of state;
(4) the gradual change in structure with increasing reduced area.

The third of these observations is indirect, being based on the
failure to note any spontaneously appearing structure which seemed
likely, on the basis of our experience with the 48-molecule system (see

Section 5.2.8), to form a basis for an extended fluid branch, Further




"compression" experiments on the 12-molecule system could have been
carried out starting with some of the less regular configurations noticed
at © 2 1.4, but this did not seem worthwhile in view of the probability
of a negative result, as well as the rather tangential significance of

a positive one, due to certain aspects of the behavior of the 48-molecule
system which will be discussed subsequently.

The Monte Carlo pressures seem to approach agreement with the free
volume approximation at high densities (Fig. 5.3) as suggested by the
Salsburg-Wood analysis, a more precise correlation with the theoretical
N-dependence being left for discussion along with results for the 48-
molecule system. Comparison of the calculated pressure with the free-
volume approximation suggests that the latter may be useful over a larger
range of expansions than the O(N-%) renge required to localize.the mole—
cules in the strict sense demanded by the Salsburg-Wood asymptotic
analysis.

At low densities the calculated pressures appear to approach agree-
ment with the virial expansion (Fig. 5.3), a precise comparison with the
theoretical N-dependence of Lebowitz and Percus again being left for

later discussion.
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Chapter 6

QUALITATIVE SURVEY OF REALIZATIONS FOR THE

48-MOLECULE SYSTEM

The system of 48 hard circles was discussed earlier in Section 3.5,
and is shown in its regular hexagonal configuration in Fig. 3.3. For
this system we generated 39 realizations, whose parameters and resulting
compressibility factors are given in Table 6.l.

The compressibility factors are given here in order to facilitate
the qualitative discussion of these realizations. The data reduction
methods which were used to arrive at these est{imates and their asséciated
standard deviations (which follow the + signs in the table) are discussed
in Chapters 7, 8, and 9., As with the l2.molecule system, the reader is
warned at this point that there is reason to expect the standard deviation
estimates to be too optimistic.

The reduced pressures corresponding to the compressibility factors
in Table 6.1 are plotted in Fig. 6.1 on the same logarithmic scales as
used in Fig. 5.3 for the 12-molecule system and in Fig. l.1l for hard

spheres, Because of the small scale of this figure some of the points in

the interval 7 = 1.3-1.355, and also most replicated points, are omitted,

11k




TABLE 6.1 PARAMETERS AND COMPRESSIBILITY FACTORS FOR THE SYSTEM OF 48

Reali-

Initial

2
Ar
26 -log2 lm?

zation T Code(a) Coni‘ig.(b) a -¢o

B1l 1,025 A L 2.3 15
B2 1.025 B L 2.3 15
B3 1.025 B L 2. 16
B4 1.025 A L 2.h 16
BS 1.040 B L 2.4 16
B 6 1.07% B [4 1.5 16
B 7 1.075 A L 2.4 13
B 8 1.075 B L 2.k 15
B9 1.12% A o] 1.6 13
B10 1.12% B c 1.6 15
Bll 1.125 A L 2.3 13
B12 1.150 B hons 0.4% 16
Bl13 1.169 A [4 1.8 13
Blh 1.240 A L 2,2 13
B15 1.250 B Ik 2,03 13
B16 1.25% A [4 2.0 13
B17 1.275 A L 2,2 13
B18 1.290 A o] 2.3 13
B19 1.300 B L 2.4 13
B20 1.316 A c 2.3 13
B2l 1.325 A L 2.3 13
B22 1.330 A L 2,2 13
B23 1.340 A L 2.2 13
B2k 1.350 A L 2,2 13
B25 1.350 A L 2.0 13
B26 1.350 B L 2,2 13
B27 1.355 A L 2.3 13
B28 1.375 A L 2.2 13
B29 1.500 A L 2.2 13
B30 1.500 A L 2.0 13
B3l 1.500 B L 2.2 13
B32 1.650 A L 2.5 13
B33 1.750 A L 2.5 13
B3Y4 2,000 A L 2.6 13
B35 2.400 A L 2.9 13
B36 3,000 A L 2.9 13
B37 3.900 A L 3.0 13
B38 3.900 B L 2.2 13
B39 3.900 B L 11.2 13

115

18
18
18
18
17

19
12
19
12

EFEEES

13
13
17

13

10

10

12
12

12

12
12

0

10

- = O ™ W

1
14

©

160
100
121
100
100
99
38
50
21
58
33
50
33
100
13
™
101
50
150

82

71

588&

151
38
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50
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HARD CIRCIES
trong () o
2-160  80.399 *0.292
2-100 80.315 * 0.366
2.121  B80.664 ¥ 0.35%
2.100 8.o¢2 *0.388
2-100 50.995 ¥ 0.215
2-99 97.199 % 0.737
2-38 28,216 * 0.158
2-50 28,301 * 0.146
2-21 29,042 * 0.208
2-58 29,388 t 0.237
2-33 17.666 * 0.084
6-40 42,587 * 0.254
2-33 18,545 % 0.10%4
2-100  10.277 % 0.039
2-75 11.645 % 0.051
2-101 9.280 * 0.035
2-50 8,886 * 0.039
2-80 8.7 *0.03
81-150 10.58; ¥ 0.089
120-150 10.732 * 0,137
2-19 10.017 * 0.100
20-39 8.520 t 0,068
40-82 9.9:1 ¥ 0,094
2-95 8.583 * 0,061
1-1% 8.359 * 0.102
15-26 9.96% * 0.056
86-95 8.236 * 0.060
58-78 8.282 * 0,098
102-141 9.370 * 0.082
2-27 9.238 t 0,075
1-16 8.1 * 0.065
28-10 10.050 * 0.136
2-T1 9.3 ¥ 0.056
s2-71 9.678 T 0.122
2-49 8.941 * 0.064
2-92 8.667  0.047
2-90 8.080 % 0.053
247 6.675 * 0.065
2-151 6.545 * 0.032
2-38 5.099 * 0,042
2-41 .27 % 0,036
2-50 3,38 % 0,027
2-22 2.597 * 0.026
2-51 2,063 * 0.012
2-27 1.6766 * 0.0103
2-50 1.6976 t 0,0056
2-50 1.6960 * 0.0055



FOOTNOTES TO TABLE 6.1

a See Section 4.2.

b L = regular hexagonal configuration (Fig. 3.3)
C = configuration obtained by 'compressor" technique. See detailed
discussion of the realization in the text,
14 = tetragonal configuration (Fig. 3.7)

¢ This colum gives the total number of coarse-grained observations,
each of At = 19 200 time steps, in the realization., The total length
of the realization is t = 19 200 n.

d This columm gives the range of s over which the coarse-grained
(At = 19 200) observations B(s, Q) were averaged and differentiated
to obtain the quoted estimate of the compressibility factor and its
standard deviation.
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Fig. 6.1 Monte Carlo results for the system of 48 hard circles. e: com-
pletely averaged realizations started from the regular hexagonal lattice,
®: realizations started from "compressed" initial configurations, again
completely averaged. A: '"plateau'" estimates in incompletely averaged
realizations., W: a realization whose initial configuration was the
tetragonal lattice of Fig. 3.7. x: Metropolis et al.Lt for their system
of 224 hard circles. Curves shown are FV, the usual free-volume theory,
Eq. (3.6) with 7% = 13 FV*, Eq. (3.6) with v*% = 1,1163; V4, the virial
expension for N = « with neglect of terms of 0(t™’) as given in Ref. 1;
HFL, the scaled-particle approximation of Ref. 1k,
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In Fig. 6.2 the reduced pressures in the range v = l.2-1.5 are replotted
on the usual linear scale., Here the scale 'is large enough to show all
the points, as well as to indicate the estimated precision.

It will be immediately noticed that Figs. 6.1 and 6.2 indicate a
double-valued pressure curve for 7 < 1.35. This happens in exactly the
same way as in the hard-sphere investigation (Chapter 1). In the inter-
val T = 1.30-1.35 the realizations show a Tjumpy" or "two-plateau" be-
havior. At v < 1.30 the higher pressure curve arises by applicaﬁion of
the "compressor" technique (Section 1.2.3); as before, it will be called
the "extended fluid" branch of the equation of state.

Reserving a quantitative discussion until a subsequent chapter, we
note that in Fig., 6.1 the points obtained from the regular hexagonal
realizations at high density agree quite well with the free volume theory.
Comparing with Fig. 5.3 for the l12-molecule system, we note that the
agreement is appreciably improved with the larger system, as would be ex-
pected from the Salsburg-Wood analysis, Eq. (3.6). At the low density
end of the curve the Monte Carlo points approach agreement with the trun-
cated virial expansion. We also note in Figs. 6.1 and 6.2 that the
scaled-particle approximation of Helfand, Frisch and Lebowitzlh agrees
quite well with the entire (7t > 1.3) "fluld branch" of the Monte Carlo
results, as these authors pointed out on the basis of the preliminary
version of the present data.

Also shown in Figs,., 6.1 and 6.2 are the points obtained by Metropolis
et al.l in their original Monte Carlo investigation of a system of 224

hard circles in a square area V. As with our 1l2-molecule system, these
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Fig. 6.2 The Monte Carlo results for the 48-molecule system for
T = 1.2-1.5, plotted on a linear scale. All points of Table 6.1 are
shown as circles whose radii correspond to the tabulated standard devia-

tion. The curve labels are the same as in Fig. 6.1, and x again indicates
a result from Metropolis et al.
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early results are in approximate agreement with the present 48-molecule
results at low densities, and also with the present regular-hexagonal
branch of the equation of state at high densities, Both of these approxi-
mate coincidences are, of course, to be expected on the basis of the low

density analysis of Lebowitz and Percusl7

and the high density analysis
of Salsburg and W'ood.18 A somewhat more quantitative comparison will be
made in Chapter 10.

In the mid-density interval T = 1.3-1.5, these early Monte Carlo
results lie below both branches of the 48-molecule equation of state, As
in Chapter 5, we again attribute this primarily to the random walks of
Metropolis et al., being much too short, as will become evident when the
present Markov chain realizations in this interval, particularly for 1.3
< 7 < 1.35, are described in detail (Sections 6.1.2 and 6.1.3). However,
it must be emphasized that the long-time behavior of Markov chain realiza-
tions for the 224-molecule system would by no means necessarily be identi-
cal with that of the.h8-molecule sysfem to be described in this chapter,
Indeed we will see that the particular size (N) and shape (V) of the pre-
sent system apparently have considerable influence on its statistical
behavior in this ﬁidrdensity interval., Thus, although we incline to the
belief that édfficienti& long reaiizations for the 22ﬁ;molecule system
would show a two-plateau behavior similar to that of the 48-molecule sys-
tem, it is important to label this statement as a conjecture., It derives
significant support from the quite similar behavior observed in the var-
ious investigation53’5’6’9’lo of three-dimensional hard sphere systems,

In the remainder of this chapter we willl discuss qualitatively the

behavior of these realizations for the 48-molecule system on the basis of
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6.1

their statistical control charts, their estimates of the pressure, and
their geometrical structure., We will begin with the realizations whose
initial configuration is the regular hexagonal lattice, and we will pro-
ceed from the highest densities down through the interval T = 1.30-1.35

in which the "jumpy" behavior is observed, then on through the lowest
density realizations, ‘Next the "extended-fluid" branch is discussed,

but following the "compression" process from low to high density. Finally
the two realizations begun from the tetragonal lattice (Fig. 3.7) are
discussed, after which the chapter ends with a summary and interpretation

of these results.

6.1 Regular Lattice Realizations

In this section we discuss in order of decreasing density the real-
izations begun from the regular hexagonal lattice, as well as realizations
B18 and B20 which were started from "compressed" configurations, but
whose behavior resembles that of regular hexagonal realizations at the

same density.

6.1.1 T <1,3, "Crystalline" realizations.

At reduced areas less than 1.3, realizations Bl through B5, B7, BS,
Bll, Bl4, and Bl7 had the regular hexagonal configuration of Fig. 3.3 as
their starting points., Realization Bl8 at t = 1.29 was begun from a con-
figuration obtained by '"compressing" one selected from an apparent L

plateau of realization B23, This was done as part of an experiment which
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employed the compression procedure as a diagnostic tool in distinguishing

L and H plateaus in realizations where the plateaus are not very well de-

fined (see Section 6.1.2.2). As seen from Figs. 6.1 and 6.2, the pressure
estimate obtained from B1l8 indeed falls nicely on the '"erystalline" branch
of the equation of state determined by the regular hexagonal realizations

in the neighborhood of T = 1.29.

In all of these realizations the initial configuration was main-
tained throughout the entire realization except for net displacements
small compared to the nearest-neighbor distance., That is, in this den-
sity range we observed no "diffusion" (no molecular interchanges) in
these initially regular‘hexagonal realizations, Furthermore, the Voronoi
connectivity of the sampledi"snapéhot" configurations was predominantly
that of the regular hexagonal lattice, At 7 = 1.24-1.29 a few configura-
tions were noticed in which isolated groups of four molecules displayed
the simple pentagonal-heptagonal connectivity of Fig. 5.9.

The control charts for these realizations exhibit no notable
anomalies, their appearance being qualitatively similar to that of the
L plateau of Bl9 to be discussed below.

Flgures 6.1 and 6.2 show that the pressure estimates obtained from
these realizations agree well with the free-volume theory at high den-

sities, with the discrepancy gradually increasing with T.

6.1.2 1 =1,3-1.355, "Jumpy" realizations.

Tn this reduced area interval we have realizations B1l9 through B26,

all of which were started from the regular hexagonal lattice except B20
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at T = 1,316, The initial configuration of the latter was obtained by
the "compression" procedure, but it is convenient to discuss this reali-
zation along with the others in this density range since its behavior

is qualitatively the same,

Most of these realizations showed "jumpy'" or "two-plateau" control
charts reminiscent of those for the hard-sphere systems (Chapter 1). In
the following subsections each of the realizations in this interval is
discussed individually. As a framework for the discussion it will be
convenient to employ the terminology of the 'hourglass'" model of config-
uration space (Section 1.2.1). Let us emphasize, however, that by so
doing we by no means intend to prejudice a decision in favor of inter-
preting the observed behavior as indicating a first-order phase transi-

tion,

6.1.2.1 Realization Bl9 at 7 = 1.3

The control charts for the observations of the first three cumila-
tive pair-distribution functions a(s, a), =1, 2, 3, obtained from
this realization are shown in Fig. 6.3. Because of the length of this
realization the time-smoothing parameter At used in the figure is twice
it usual value, On the other hand, the '"snapshots'" to be discussed be-
low were taken at the usual interval At = 19 200, corresponding to the
entries in Table 6.1, In the discussion, therefore, we will number the
snapshots with index s’ on the latter basis, 1. e., snapshot s’ shows

the configuration of the system at t = 19 200 s’. This configuration
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occurs in the middle of time-smoothing interval s = (s’ + 1)/2 of Fig.
6.3 if s’ is 0dd, and at the end of interval s’/2 if s’ is even.

The "jump" or shift in level in Fig. 6.3 for s > 40 (s’ > 80,
t > 1 536 000) is especially striking and naturally led us to average
configurations with t < 1 536 000 as a ', plateau", and those for

t > 1 536 000 as a "H plateau'.,

6.1.2,1.1 The L plateau, This plateau exhibits properties which

are a continuation of those of regular hexagonal realizations at higher
density (Section 6.1.1), not only with respect to its control charts,

but also with respect to its estimate of reduced pressure, as well as
with respect to its geometrical structure. The reduced pressure obtained
from this L plateau is the lowest of the points shown in Figs. 6.1 and
6.2 at T = 1,30, and clearly is in reasonable agreement wlth extrapola-
tion of the points obtained from regular hexagonal realizations at higher
density,

The geometrical structures of snapshots 1 through 79 were almost all
describable as slightly distorted versions of the regular hexagonal
arrangement of Fig. 3.3. Snapshot 19 at t = 364 800, shown in Fig. 6.ha
was perhaps the most distorted configuration observed during this plateau.
In this configuration we count eight molecules with pentagonal Voronoi
coordination, and eight with heptagonal coordination. In order to re-
store the original connectivity of the regular lattice, ten diagonal
bond replacements like that of Fig. 5.9 are required, as indicated by

the broken lines in the figure. This is actually what happens on the
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Fig. 6.4 Snapshots from realization Bl9 at T = 1.3, showing the relaxation
of an atypically distorted, L-plateau configuration (a), t = 364 800, to
a more typically regular hexagonal configuration (b), t = 384 000,
next snapshot (Fig. 6.4b, s’ = 20, t = 384 000), in which the previous
distortion has relaxed to restore exactly the original connectivity.
Note also that the relaxed configuration is quite close to a regular
hexagonal arrangement; it is much more typical of the L-plateau snapshots
than is Fig. 6.ka.

Snapshots 21 through 66 showed the hexagonal lattice arrangement to
be approximately preserved, with only minor connectivity perturbations
of the type shown in Fig. 5.9.

Between snapshots 66 and 68, however, the two colums (5, 13, 21,
29, 37, 45) and (6, 14, 22, 30, 38, 46) moved downwards one lattice step
around the torus (see the discussion of this type of motion in Sections

3.4.3, 3.5, and 5.2.5). The intermediate snapshot 67, Fig. 6.5a, is of
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interest in that i1t shows this displacement almost precisely in mid-
course, In this configurstion there are four molecules with pentagonal
Voronoi coordination, and four with heptagonal coordination. The six
dotted bond substitutions return the system to the connectivity of snap-
shot 20 (Fig. 6.4b), whose connectivity is that of the immediately pre-
ceding snapshot 66 which is not reproduced here, The six dashed bond
substitutions shown in Fig. 6.5a yield the connectivity of the next snap-
shot 68, Fig. 6.5b. The latter is again a close approximation to the
regular hexagonal lattice, but one in which the above-mentioned two
colums of six molecules each have moved down one step.

Snapshots 69 through 79 showed only minor distortions of the config-

uration shown in Fig. 6.5b. The final snapshot of the L plateau

Fig. 6.5 Snapshots 67 (a) and 68 (b), taken at t = 1 286 400 and
t = 1 305 600, from the L plateau of realization Bl9 at 7 = 1.3
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(Fig. 6.6a, s’ = 80, t = 1 536 000), however, is atypical of the L class
of states, and indicates that the transition to the H region of configu-
ration space, which is first signaled in the control charts by the point
for s = 41, eorresponding to s’ = 81 and 82, actually occurred somewhat
before s’ = 80, t = 1 536 000, Thus, this snapshot is associated with
the H plateau, although the corresponding coarse-grained observation

falls in the L plateau.

6.1.2.1.2 The H plateau, The next three snapshots, s’ = 81, 82,

and 83, are shown in Figs. 6.6b through d. All four of these Fig. 6.6
configurations are perhaps best described as irregular., In each case a
number of molecules have non-hexagonal Voronoi coordination, and although
prortions of the system show local order, the over-all structure seems to
lack any regular character,

However, the next snapshot (s’ = 84, t = 1 612 800), shown in
Fig. 6.7a, is (to us, at least) a most surprising arrangement. It is an
approximately hexagonal arrangement of the 48 molecules into 7 rows of
7 molecules each, except for one row which contains a hole instead of a
49th molecule! We assign molecules to rows as follows:

21 2. 19 10 hole 16 21

14 13 b 11 2 9 8
6 Ly 3 4o 1 48

46 5 36 43 41 40 L7

38 45 35 34 33 32 39

30 37 28 26 25 24 31
22 29 20 27 18 17 23,
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Flg. 6.6 Snapshots 80 through 83, (a) through (d) respectively, of
irregular configurations at the beginning of the H plateau in realization
Bl19 at v = 1.3.
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Fig. 6.7a-d Snapshots 84 through 87 from the H plateau of realization
B19 at v = 1.3, showing occurrence of "TX7" structures,
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Fig. 6.7e-h Snapshots 88 through 91 from the H plateau of realization

Bl9 at T = 1.30.
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Fig. 6.71-3 Snapshots 92 through 93 from the H plateau of realization
B1S at 1 = 1.30,

Most of the molecules have hexagonal Voronoi coordination; there are
two with coordination number 5 and two with coordination number 7. The
arrangement is nearly hexagonal, but differs from the standard one of
Figs. 3.3 and 6.5b, for exsmple, in that its lattice lines are approx-
imately at 0°, 60°, and 120° instead of the usual 30°, 90°, and 150°.
Arrangements of this kind will be frequently encountered, and it will be
convenient to designate them as "7X7" configurations, reserving the term
"regular hexagonal configuration" to designate, as before, configurations
similar to Fig. 3.3.

The presence of the hole naturally leads to considerable mobility of
the "7XT" structure by the usual mechanism of hole diffusion, as

shown in the following 9 snapshots, Figs.6.7b-j. It is noteworthy that
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in most cases one or two molecule-hole interchanges (symbolized by mole-
cule = hole) suffice to account for the gross differences between con-
secutive pairs of these snapshots, Thus, between snapshots 84 and 85 we
assign the step 2 = hole; between 85 and 86, 9 = hole and 16 = hole; be-
tween 86 and 87, 23 = hole; between 87 and 88, 31 = hole and 39 = hole.
Between snapshots 88 and 89 the events are 38 = hole and 30 = hole, with
the latter configuration displaying noticeable irregularity in the "yx7n
structure. By the time of snapshot 90, Fig. 6.7g, the events 29 = hole,
21 = hole, 12 = hole have occurred and in addition the pair of molecules
37 and 20 look as if they were moving down into the hole between mole-
cules 12 and 19. However, the next snapshot, Fig. 6.7h, indicates that
this did not happen; rather this pair apparently moved back up into their

own rows, and molecule 4 moved up into the hole,

In Fig. 6.7i, snapshot 92, there is enough distortion in the "7X7"
structure to result in considerable arbitrariness in any assignment of
molecules to rows. By the time of the next snapshot, Fig. 6.7j, most of
the distortion has disappeared. Nevertheless, the most plausible row
assignment for this configuration, when compared with snapshot 91, implies
that during the intervening 38 40O time steps the staggered colum of
seven molecules (10, 9, 42, 41, 33, 24, 17) rotated one row downwards
around the torus, with the hole remaining in row (14, 13, 11, 9 or 10,
16, 8).

Snapshots 94 through 128, not reproduced here, continued to exhibit
well-defined "7X7" structures, after which irregular configurations such

as shown in Figs., 6.8, 6.9, and 6.10 reappear interspersed with
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Figs. 6.8-6.11 Snapshots 132, 136, 140, and 143 from the latter part of
H plateau of realization Bl9 at T = 1.3, displaying both irregular and
X" structures,
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well-defined "7XT" structures such as Fig. 6.11. There is a noticeable
tendency for the irregular snapshots to be associated with abnormally
high coarse-grained.obser&ations G(s, &) in Fig. 6.3. As a result the
last portion of this H plateau, in which such configurations seem to be
more frequent, leads to a somewhat larger estimate of the compressibility
factor (the third entry for this realization in Table 6,1) than that ob-
tained from the H plateau as a whole., The difference serves as an illus-
tration of the uncertainity in such estimates due to the non-random
character of these observations, Figures 6.1 and 6.2 show that either of
these two reduced pressures obtained from this H plateau (as well as the
H-plateau estimates for other realizations yet to be discussed in the
interval T = 1.3-1.35) can be regarded as a reasonable extrapolation of
the values obtained from completely averaged realizations at v > 1.35.
Section 6.2 is devoted to a discussion of the properties of the
wIXT" structure which we have just seen to be so characteristic of the
H plateau of the present realization. Here it is of some interest to
display the net displacements of the molecules between snapshot 79, the
last one of the regular hexagonal lattice type, and snapshot 84, the first
of the "7X7" type. In Fig. 6.12 the circles represent the molecules in
the latter configuration with their numbers omitted, while the slightly
distorted hexagonal lattice is the Voronoi lattice of snapshot 79. The
vectors show the net displacement of each molecule over the 96 000 time

steps between these two configurations,
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Fig. 6.12 Net molecular displacements between last "regular hexagonal!
and first "IXT" configurations (snapshots 79 and 84) of realization
B19 at T = 1030
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6.1.2.1.3 Summary. At this point we will swummarize our observa-
tions on this realization in terms of the hourglass model of configura-
tion space.

The L region of configuration space evidently has the following
properties: (1). It contains the regular hexagonal lattice point,

(2). A typical configuration from this region shows only slight distor-
tions from the regular lattice. (3). '"Diffusion" or molecular interchange
is still infrequent in this region at 7 = 1,3, When it does occur, the
mechanism is the colummar rotation around the torus discussed in Sections
34, 3.5, and 6.1,2,1.1., (4). It seems fair to describe these configu-
rations as being of the "perfect crystal" type.

The H region of configuration space for this system has more com-
Plicated character. Structures of two different types are found, namely
the "TXT" structure which predominates in this realization, and the
irregular structures such as Figs. 6.6, 6.8, 6.9, and 6,10, The latter
type perhaps correspond, on the average, to somewhat higher values of
the cumulative pair distribution function. There is the intriguing
possibility that at this density, at least, the irregular configurations
may represent the connection between the L region of regular hexagonal
configurations and the "H-proper" region of "7XT7" structures., This con-
jecture is based mostly upon the chronological occurrence of the irregu-
lar arrangements between those of the other two types., One can also, by
staring long enough at irregular configurations such as Fig. 6.6, con-

vince oneself that they are actually structurally intermediate between
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the two '"pure" types; that is, that they are mixtures of the latter. But
with so few molecules, and with the '"pure" structures differing mostly
just in orientation, this impression seems too subjective to be given
mich confidence.

At this density, and at this point in our discussion, it is clear
that 1t would be premasture indeed to characterize the H states as being
"fluid" in character, Diffusion is indeed relatively free, especially
in the "7XT7" structures, but it is evident that the latter have more
nearly the character of imperfect crystals. The irregular structures
may be more fluid-like in their properties, but in this realization they

are a distinctive feature of the H plateau but not the predominant one,

6.1.2.2 Realization B20 at 7 = 1,316,

The control charts for this realization are shown in Fig. 6.13. As
indicated in Table 6.1, they were interpreted in terms of three plateaus:
coarse-grained observations s = 2-19 as a H plateau, 20-39 as a L pla-
teau, 40-82 as another H plateau.

The realization began in the H reglon because its initial configu-
ration was obtained by compressing a configuration taken from a H pla-
teau of realization B23 at T = 1l.34, Actually, at the time when this
was done, our intention was to use the compression process as a sort
of diagnostic technique to test for the presence of the H plateau in
realization B23. As we shall later see in the discussion of the latter

realization, its plateaus are not especially well defined and we were

138




6.1

0.20 I I I T T I 1 i I

0.15+ -

G(s, 1)

0.10 - ' .

0.05 { ! 1 1 | | | L {
0.35 T T T T T T T T T

0.30

I
|

G(s,2)

0.25

I
!

0.20 I { | | 1 ! ! 1 |
0.50 T T T T T ] T T T

045

0.40

G(s,3)

0.35

0.30
o

Fig. 6.13 The first three control charts for realization B20 at
T = 1.316; At = 19 200,
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not sure, on the basis of the control charts alone, that a subdivision
into plateaus was proper. At the time we did not have the high speed
microfilm plotting device with which we have since acquired experience

in correlating the control chart behavior with the geometfical structure
of the system. On the other hand, the existence of an "extended fluid"
branch of the equation of state of the 48-molecule system had already
been established (see Section 6.3), so that it occurred to us to use

the approximately "adiabatic" character of the compression procedure

to test for a qualitative difference between two configurations, as
suggested by the control charts, In realization B23 the charts suggested
that observation s = 38 (with At = 19 200) might belong to a L plateau,
while the following point s = 39 might be the first of a H plateau. The
final configuration of each of these time-smoothing intervals was accor-
dingly selected as the starting point of a compression process,

Actually, the choice of the first of these, as a configuration with
which to begin a compression which was expected to take place in the L
region of configuration space, was a poor one, since the L — H transition
might easily have happened near the end of coarse-graining interval
s = 38 and still allowed this interval to give observations G(s, o)
characteristic of the L region., Fortunately, however, the selected con-
figuration was indeed of the L type, as indicated by its structure in-
terpreted in the light of our subsequent experience, and also by the
resulting realization B18 which begen from this configuration after

compression to T = 1.29 (see Section 6el.1).
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6.1.2.2,1 The first H Plateau. The s = 39 configuration of real-

ization B23, shown in Fig. 6.1ha, after compression to T = 1.316 as men-
tioned above, was used as the initial configuration (Fig. 6.14b) of the
present realization. Both of these configurations are of the type de-
scribed as "irregular" in our discussion of realization B19 at T = 1.3,
This character was maintained through snapshots 1 through 4, which are
not reproduced here. Figure 6.15 shows snapshots 5, 6, and 7, during
which the system changes from this irregular arrangement to the same
"TXT" structure previously described in Section 6.1.2.1.2.

Snapshots 8 through 15, the last being shown in Fig. 6.16a, were
all well-defined "7X7'" structures and displayed the same hole diffusion

as discussed in connection with B19. Snapshot 16, Fig. 6.16b, shows

SEoS st ksele
PG °og€»'gg_° )
slalolojgecieluiole
S50 Sorcioclo

5
(%?%;
&
2

Fig. 6.14 Genesis of the initial configuration of realization B20 at
T = 1.316. In (a) is shown the configuration of realization B23, 1 = 1,3k,
at t = 748 800, After compression to T = 1,316 it was used as the initial

configuration (b) of B20.
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Fig. 6.15 Snapshots 5 (a), 6 (b), and 7 (c) from realization B20 at
v = 1,316, showing the transition from "Lrregular" to "7XT" arrangement
during the first H plateau.
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Fig. 6.16 Snapshots 15 (a), 16 (b), and 17 (c) taken at the terminus of
the first H plateau of realization B20 at 7 = 1.316.
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considerable distortion in the "7XT" structure. Indeed the arrangement
might almost be described as irregular (note also that the associated
points in Fig. 6.13 are comparatively high). The next snapshot, Fig.
6.16c, shows somewhat less distortion, but comparison with snapshot 15
shows that it still differs appreciably from the more regular examples
of the "TXT" arrangement.

Figure 6.17 shows the next two snapshots. The first of these, at
s = 18, resembles its predecessor (Fig. 6.16c) in being an appreciably
distorted "7X7" arrangement, The second, at s = 19, is very different:
the arrangement is that of the regular lattice., Thus, we conclude that
between these two snapshots the system left the H region of configuration

space and entered the L region., Since the control charts indicate that

(a)

Fig. 6.17 Snapshots 18 (a) and 19 (b) from realization B20 at 7 = 1.316,
11lustrating the H - L transition.
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the s = 19 coarse-grained observation belongs to the L plateau, this
transition presumably occurred near the end of this group of 19 200 con-

figurations.

6.1.2.2.2 The L plateau. As indicated in Table 6.1, we treated

observations s = 20 through 39 as a L plateau, although the point s = 35
was clearly anomalous (see Fig. 6.13). And indeed snapshots 20 through
34, the last of which is shown as Fig. 6.l8a, were all typical L-type
configurations, that is, arrangements in which the basic regular hexa-
gonal lattice is easily recognizable. Furthermore, during this time no
"diffusion" occurred (compare Figs. 6.17b and 6.18a).

The configuration at s = 35 (Fig. 6.18b), however, is of the ir-
regular type, while the next snapshot, Fig. 6.18c, is again of the regular
hexagonal type. Thus, we interpret the observations as indicating a brief
excursion of the system into the H region of configuration space (or into
the connections between L and H, if the H region proper is regarded as
consisting of "7XT" structures, and the irregular configurations as the
connections between L and H)., Comparison of Figs. 6.18a and 6.18c shows
that this excursion accomplished the following sequence of nearest neigh-
bor displacements: 24 - 5 - 13 - 20 » 11 - 12 - 10 » 3 = 26 — 34 - 25 -
31 - 24,

In the remaining snapshots of the L plateau, the last of which is
shown in Fig. 6.19a, the regular hexagonal arrangement of snapshot 36

(Fig. 6.18c) is preserved.
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(c)

Fig. 6.18 Snapshots 34 (a), 35 (b), and 36 (c) from realization B20 at
T = 1.316, showing a brief excursion to "irregular" states during the
L plateau.
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Fig. 6.19a-d Snapshots 39 through 42 of realization B20 at T = 1.316,
showing the L- to H-plateau transition.
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Fig. 6.19e Snapshot 43 of realization B20 at T = 1.316.

Figures 6.1 and 6.2 show that, just as in the case of the L-plateau
reduced pressure of realization B1l9, the reduced pressure estimated from
this short L plateau lies on a smooth continuation of the curve obtained

from regular lattice realizations at higher density.

6.1.2.2.3 The second H plateau. As indicated in Table 6.1, the

observations from s = 40 until the end of the realization at s = 82 were
treated as a H plateau. The geometric structures during the transition
from the preceding I plateau are shown in Fig. 6.19. Again configura-
tions of irregular structure (snapshots 40 and 41) are observed between
the last regular hexagonal structure (snapshot 39) and those of "7X7"

type (snapshots 42 and, especially, 43). Of the remaining 40 snapshots

148




most were of "TXT" type; some (notably 71 through 76) were irregular.
None were of the regular hexagonal (i.e., L) type.

Table 6.1 and Fig. 6.2 show that the reduced pressures estimated
from the two H plateaus of this realization are in quite good agreement,
and also, as in the case of the H-plateau estimates at t = 1.3, represent
a reasonable continuation of the "fluid" branch of the equation of state

from lower densities,

6.1.2.2.,4 Summary, Our observations, and the interpretations de-
rived therefrom, on this realization are very similar to those on reali-
zation Bl9 at 7 = 1.3. The occurrence of the H — L transition is perhaps
the principal additional point of interest. In the present case, the
correlation between irregular structure and high control.chart points
within H plateaus is somewhat less marked than in the T = 1.3 realization.
On the other hand, the interpretation of the irregular structures as
constituting the L-H connections, the H region being principally of the
wIXT" type, receives some additional support. The irregular structures
are observed frequently enough to make it somewhat questionable to assign
them a negligible statistical weight. Aside from this question of the
appropriateness of treating the irregular and "7X7" structures as a
single class, the observed geometrical structures definitely support the
plateau assignments given for this realization in Table 6.1 (except, of
course, for the s = 35 excursion within the set s = 20-39, which was
evident from the control charts and ignored as a matter of crude approxi-

mation).

149




6.1

6.1.2.3 Realization B2l at v = 1.325.

This realization was started from the usual regular hexagonal
lattice. The control charts, Fig. 6.20, are in marked contrast with
those for the two immediately preceding realizations at 7 = 1.3 and 1,316,
in that no well-defined two-plateau structure is apparent. Comparison of
the values of G(s, 3) for these realizations (all three have the same
value of Ar2) shows that most of the points for the present realization
are in the range expected for the L region of configuration space, with
only occasional brief upward excursions into the range expected for the
H region., Consequently, as indicated in Table 6.1, the entire realiza-
tion was averaged, and as would be expected from the remarks of the pre-
vious sentence, the resulting reduced pressure lies in Figs. 6.1 and 6.2
approximately on the '"L" or "crystalline'" equation of state as extrapo-
lated from the regular hexagonal lattice realizations at 7 < 1.3 and
from the I plateau estimates at v = 1.3 and 1.316.

Study of the snapshot configurations substantiates this interpre-
tation in some detail. Of the 95 snapshots taken at the usual interval
At = 19 200, 75 were unambiguously classifiable as definitely of the
regular hexagonal type, five had well-defined "7XT" structures, and the
rest were either notably distorted but recognizable versions of the reg-
ular hexagonal arrangement, or were of the irregular type discussed with
the preceding realizations.

There were a number of instances in which permutations of approxi-

mately regular hexagonal structures occurred within one or two snapshot
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intervals without observation of any gross departure from 'L" type
arrangements. For example, snapshots 1 and 3 both had well-defined
regular hexagonal structures, but during the intervening 38 400 time
steps one columm of six molecules rotated one lattice step around the
torus., The intermediate snapshot 2 showed a fairly distorted but recog-
nizably regular hexagonal arrangement., The value of &(3, 3) in Fig. 6.20
suggests that a brief excursion into the H region may have occurred, but
if so, the snapshot interval is too long to detect it. Other, somewhat
more complicated, displacements around the torus occurred, as well ag an
amsing sequence of three consecutive snapshots showing a ring-around-
the-rosey rotation of the six nearest neighbors of one molecule through
approximately 60°., All these motions in configuration space seemed to
take place by way of L-L connections rather than by way of L —» H - L/,
as far as our snapshot time resolution and the diffuse definitions of
these regions and their associated connections permit us to state.

On the other hand, the pronounced upward excursion in the control
charts (Fig. 6.20) in the neighborhood of s = 50 was definitely associated
with appearance of "irregular" structures, as shown in the sequence of
snapshots 46 through 52 in Fig. 6.21. The first of these, snapshot 46, is
a reasonably typical example of a L-region state, exhibiting only slight
displacements from the regular hexagonal lattice. The next snapshot is
more interesting. The struchbure is almost hexagonal, but the only plau-

sible assignments of molecules into colurms produce, instead of the eight

colums of six molecules each characterizing regular hexagonal arrangements,
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Fig., 6.2la-d Snapshots 46 through 49 from realization B2l at 1 = 1.325,
showing an excursion into "rregular" states,
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Fig. 6.2le-g Snapshots 50 through 52 from realization B2l at T = 1.325.

154




6.1

one column of seven molecules (42, 41, 34, 26, 33, 10, 2) and one colum
of five molecules plus one hole (21, 5, 45, hole, 12, 19) or (6, 46, 38,
hole, 29, 14). That is, this configuration contains one vacancy and one
interstitial. It is one of the few such examples which we have noticed
in our bard-circle calculations, Snapshots 48 through 51 exhibit various
irregular structures in which hints of both the regular hexagonal and
"TXT" arrangements can be detected, The last snapshot, 52, of this se-
quence shows the system back in a nearly regular hexagonal configuration,
but one differing from the initial snapshot, 46, of this sequence by a
number of molecular interchanges.,

During the less obvious upward excursion in Fig. 6.20 near s = T0,
well-defined "7XT" structures were observed, as shown in the snapshots
65 through T2, Fig. 6.22. In addition to the quite pretty examples of
"IXT" structures provided by snapshots 68 and 69, this sequence also dis—
plays in snapshot 71 what is perhaps our best example of a mixed struc-
ture,

Compared to the neighboring higher density realizations Bl9 and.
B20, this realization is noteworthy for its brief residence times in the
H region. Indeed without the evidence provided by the snapshots we would
not be certain that excursions into the H region had actually occurred.
The over-all average evidently contains some H-region contribution, which
can be invoked to explain the slightly high value of the reduced pressure

estimate (Fig. 6.2) compared to adjacent I. points.
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6ele2.4 Realization B22 at 1 = 1.33,

This realization was also started from the regular hexagonal lattice.
Its control charts are shown in Fig. 6.23. As indicated in Table 6.1,
only short sections of this realization were averaged, viz., s = 1-14 as
a L plateau, 15-26 as a H plateau, 86-95 as a second L plateau. Figure
6.2 shows that the two L-plateau estimates are in reasonable agreement
with each other, and with the extension of the L or "crystalline" equa-
tion of state from higher densities, Similarly, the H-plateau estimate
is in approximate agreement with the "fluid" branch of the equation of
state as determined by other H-plateau points and by non-jumpy realiza-
tions at T > 1.35.

As will be seen from the remaining discussion of this realization,
examination of the snapshot configurations substantiates the above L-
plateau classifications, but suggests that the H-plateau classification
should be regarded with a certain reserve, We will describe the snap-
shots by type, rather than by reproducing them here, since the various
observed structures are all quite well exemplified among the snapshots
presented for the previously discussed realizations in this density
range.

Snapshots 1 through 14, corresponding to the first L plateau, in-
deed showed the regular hexagonal type of structure which we associate
with the L region of configuration space. In Fig. 6.23 the points for
s = 9 1lie well above the others in this plateau. Snapshots 8 and 9,

which precede and terminate this time-smoothing interval were noticeably
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distorted, but still of the L type. No diffusion was observed during
this L plateau; that 1s, snapshots O through 14 all display the same per-
mutation of the regular hexagonal lattice. Thus, the observed structures
definitely support our classifying these observations as a L plateau.
The upward excursion at s = 9 may have been due to undetected irregular
configurations between snapshots 8 and 9, but the fact that no molecular
interchanges seem to have occurred between these snapshots suggests that
no great departure from regular hexagonal or L-type structures is likely
to have taken place,

As already mentioned, points s = 15-26 were averaged as a H plateau.
We classified the associated snapshots, in the same terminology as used
for the previous realizations, as follows: Snapshots 15 through 18 were
of the irregular type; 16 and 18, in particular, suggested description as
mixtures of regular hexagonal and "7XT" structures. Snapshots 19, 20, and
21, particularly the first two, were good examples of "7XT7'" structures.
In this conmnection it is interesting to note that from the points for
s = 20 in Fig. 6.23, one might have guessed that the configurations
during this time-smoothing interval were of the regular hexagonal type.
The snapshots make it almost certain that they were not, and as we shall
see from the later points of this realization, at this density any one
time-smoothed observation over a sequence of "TXT7" configurations may
well have a value § that could also be typlcal of a sequence of regular
hexagonal states., Snapshots 22 through 25 were again of the irregular

type. Snapshot 26, showing the last configuration of this H plateau, was
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best described as another of our rare observations of the occurrence of
a vacancy-interstitial combination in an otherwise regular hexagonal
arrangement (Section 6.1.2.3 and Fig. 6.21b).

Snapshots 27 through 43 were again regular hexagonal structures (the
last being appreciably distorted), indicating that the observations
8 = 27-43 could have been averaged to obtain an additional L-plateau
estimate of reduced pressure. The control charts indicate that such an
estimate would be in reasonable agreement with the existing two. Here
again, no diffusion was noticed during these configurations.

Snapshots L4k through 67 were all of the "7XT" type except for
snapshot 54, which was better described as irregular (which fact is prob-
ably associated with the upward control-chart excursion at this point).
Thus, we note that we might well have averaged observations s = 44-67
to obtain a reduced pressure estimate which would, on the basis of the
snapshots, be ascribed to a more-or-less well-defined "TX7" region of
configuration space. Figure 6.23 shows that this estimate would be
intermediate between the previously discussed L- and H-plateau estimates,
the latter of which evidently contains an appreciable contribution from
irregular structures. This behavior may be interpreted as a further in-
dication that we should either distinguish two H regions of different
structure, with the irregular region tending to have higher values of
G than the "TXT" region, or else we should consider the irregular
structures as constituting the connections between regular hexagonal L

states and "TX7'" H states. As already mentioned this is mainly a matter
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of terminology, since the irregular structures are observed frequently
enough to require them to have non-negligible statistical weight. These
remarks constitute the qualification made at the beginning of this sub-
section with respect to treating observations s = 15-26 as the only H
plateau in this realization.

Continuing the point-by-point correlation of the snapshots with the
control charts, we classified snapshots 68 through 71 as irregular, T2
as "7X7", T35 and T4 as irregular, T5 as a rather distorted "7XT" arrange-
ment, and 76 as irregular. Again we note that irregular states seem to
have larger values of & than "7X7" states, on the average.

Snapshot 77 showed a return to regular hexagonal structure, the
first since s = 43, The corresponding control chart point s = 77 suggests
that a majority of the states during that time-smoothing interval must
have been irregular. Snapshots 78 and 79 also displayed regular hexa-
gonal arrangements, which correlates well with the pronounced downward
control-chart excursion at s =.78. Snapshot 80 was another case of a
regular hexagonal arrangement with a vacancy and interstitial., OSnapshots
81 through 84 were again irregular (note the associated large &). Snap-
shot 85 was a rather distorted regular hexagonal configuration.

Finally, snapshots 86 through 95 were regular hexagonal structures,
consistent with their position in the control charts, and with our treat-
ing them as a L plateau., No diffusion was observed in this rather short

L plateau.
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In sumary, this realization is perhaps chiefly notable for the al-
ready discussed strong suggestion that three regions of configuration
space should be distinguished, rather than two. Compared with the slight-
1y higher-density realization B2l at v = 1.325, it shows much longer re-

sidence times in irregular and, especially, in "TXT" configurations.

6.1.2,5 Realization B23 at T = 1,3k4.

The control charts are shown in Fig. 6.24, where the time-smoothing
interval has again been doubled. They suggest a rough classification
into four plateaus: s = 1-19 as L, 20-29 as H, 30-51 as L, 52-end as H,

The snapshots confirmed this classification, except to associate
the upward excursions at s = 8 and s = 40 with the occurence of irregular
configurations, and the downward excursion at s = 66-67 with the occurence
of regular hexagonal configurations,

However, as indicated in Table 6.1, only two sequences were averaged.
On the scale of Fig., 6.24 they are (approximately, since one point in the
figure corresponds to two actual observations with At = 19 200) s = 29-39
as a L plateau, and 52-end as a H plateau. In Fig. 6.2 the corresponding
reduced pressures fall as expected.

As would be expected, with increasing values of v the range of dis-
tortions observed in basically regular hexagonal (IL-type) configurations
increases. Diffusion is noticeably more frequent but at the present den-
sity is still rare enough in the L region of configuration space so that,

at the interval At = 19 200, successive snapshots usually show the same
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rermutation. In the H region similar remarks apply, except that
diffusion is, of course, very frequent. In this realization the observed.
sequences of "TXT" snapshots were frequently interrupted by more irregu-
lar appearing ones, in contrast to the long sequence of "TXT7" states

noticed in the previous realization.

6.1.2.6 Three realizations at 7 = 1.35.

At this reduced area we have the three realizations for which sample
control charts are given in Fig. 6.25.

The snapshots for the very short realization B24 were all of H
type, mostly irregular, except those for s = 1, 2, 5, and 19. Snapshot
1 showed only slight displacements from the regular hexagonal initial
configuration. The second snapshot showed a vacancy-interstitial combi-
nation similar to those mentioned earlier, while the third snapshot was
a quite distorted and permuted structure of regular hexagonal type.
Snapshot 19 was also of this type, indicating that the downward excursion
in the gcontrol chart at this point may have been due to a transient
return of the system to the L region of configuration spaces it had spent
the intervening time s = 4-18 in the H region, as far as our observations
indicate. All observations except the first were averaged, with Fig. 6.2
showing that the resulting reduced pressure lies as expected along the
"fluid" branch of the equation of state.

Realization B25 gave control charts and snapshots which indicate
a number of excursions back and forth between the two regions of con-

figuration space. The snapshot classification was approximately s = 1-14
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as L; 15-18 as H, irregular; 19-23 as L; 24-38 as H, mostly irregular,
some "TXT"; 39-49 as L; 50-54 as H, irregular; 55-60 as L; 61-62 as H,
irregular; 63-64 as L; 65-70 as H, irregular and "7x7". Even within
this rather fine sub-division, configurations of the opposite type were
noted in some cases. Only two sequences were averaged, as indicated in
Table 6.1. The interval s = 1-16 was selected as a L plateau on the
basis of the control charts before the snapshots were obtained. The
latter, as already mentioned, indicate that at least some of the con-
figurations included in the last two points of this interval (and also
point s = 6) were of K type; this sort of imprecision becomes more or
less unavoidable as T becomes this large. The resulting reduced pres-
sure lies (Fig. 6.2) on the "erystalline' curve, as expected., The se-
quence s = 28-40 was taken as a H plateau; again the snapshots indi-
cate that some of the states were of the other type. Nevertheless,
Fig. 6.2 shows that the estimated reduced pressure is rather higher than
would be expected from the neighboring points. This may be taken, in
Part at least, as illustrative of the bias which can be introduced by
the process of plateau classification, particularly for so short a
sequence of observations,

The control charts for realization B26, Fig. 6.25c, suggested that
the system had spent most of its time in H states, with the low level of
s = 30-40 suggesting occurence of L states. This interpretation was
largely supported by the snapshots, except that they suggest a somewhat

longer residence in L states, since snapshots s = 20-40 were mostly L
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type. (The pronounced upward fluctuation at s = 29 appears to have been
associated with a vacancy-interstitial combination.) Reduced pressures
were calculated from the entire set of observations (except the first),
and from the last portion,s = 42-7l, which seems to consist entirely of
H states. The first estimate is clearly of no particular significance,
being a rather arbitrary mixture of L and H contributions. The second

estimate, being based on appreciably more observations than the H esti-

mates of the other two realizations, is presumably a somewhat better
average over what is evidently, at this density, a rather poorly defined
region of configuration space.

Perhaps the most striking feature of these three realizations is
the large scatter in the H-plateau estimates which is apparent in
Fig. 6.2. It is clear that in the neighborhood of this reduced area,
at least, the precision estimates given in Table 6.1 and obtained by
methods not yet described, are not reliable. As will be seen, the
statistical analysis itself gives warning of this, and furthermore it is
clear that the uncertainties and subjective elements inherent in a two-
plateau classification process of this kind would be expected to result
in such scatter.

The single L-plateau estimate at this reduced area evidently agrees
rather better with its adjacent values than ought to be expected, inas-
mich as most of the above causes of large H-plateau estimate scatter
would also be expected to be operative in this case,

We noticed among snapshot configurationé of the H type an apparent

decrease in the frequency of well-defined "7XT7" confiqurations, compared
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with realizations at slightly higher density.

6.1.2.7 Realization B27 at 7 = 1.355.

The control chart for this realization is shown in Fig. 6.26., From
a control-chart statistician's viewpoint it shows definite indications
of non-randommess, but no suggestion of a well-defined two-plateau
structure. We discuss it along with the "jumpy'" realizations because
its reduced area 1s so close to that of the preceding set of three
realizations., The snapshots were classified as follows: 1-9, mostly L;
10-23, mostly H, both irregular and "7X7"; 24, a very nice regular
hexagonal arrangement; 25-42, mostly "7X7"; 43_49, mostly irregular,
The very frequent occurence of "7X7" structures, which in a number of
cases were quite well-defined, was perhaps the most striking feature of
this experiment. The somewhat low control-chart level in the interval
s = 31-40 is apparently associated with a predominance of these configu-
rations. Along with the apparent occurrence of I states in points 1.9,
this predominance of "7X7" configurations is also evidently responsible
for the resulting reduced pressure shown in Fig., 6.2 (the estimated
standard deviation is evidently not to be taken very seriously) being

somewhat low compared to the H estimates at T = 1.35.

6.1.2.8 Summary of "jumpy" realizations.

These realizations for reduced areas from 1.3 to 1.355 have been

discussed in some detail, in order that the reader can form his own
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Judgment of our lmpressions, which are as follows:

(1) The 'hourglass' model of configuration space forms an
adequate framework within which to discuss the behavior of these
realizations.,

(a) L-region states show typlcally small deviations from
the regular hexagonal lattice, very restricted diffusion, and
in general seem to merit description as "perfectly crystalline"
states,

(b) The H states apparently should be divided into two
types, "irregular" and '"7XT", The irregular states may,
topologically, play the role of connections between I states
and "TXT" states, and may have on the average larger values
of G than "TXT" states. The latter states have the character
of imperfect crystals, their primary characteristic being the
presence of a vacancy, with diffusion occurring in the obvious
way.

(2) The increasing frequency of transitions between I and H
states as 7 increases implies a widening of the constricted connec-
tion between them.

(3) Not much can be said with respect to the relative volumes
of the L and H regions of configuration space, and therefore with
respect to the true petit canonical ensemble equation of state,
in this interval of reduced areas, and particularly near 1 = 1.3.

At the upper end of the interval, T ~ 1.35, the tendency for L
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plateaus to disappear suggests that the H region is beginning to
dominate.

(4) As 7 increases, the L-L connections appear to enlarge, with
permutations of the regular hexagonal arrangement occuring without
intervention, so far as we can tell, of typical H structures. It
is noteworthy that this "diffusion" is first observed to occur at
the same reduced area (t = 1.3) and by the same mechanism (columar
rotation around the torus) as in the 12-molecule system, even
though in Section 3.5 we saw that this motion is possible at all

T > 1,063 in the 48-molecule system.

6.1.3 Realizations at 1 = 1.375.

All of these low density realizations were started from the regular
hexagonal lattice. Their behavior leaves no doubt that equivalent re-
sults would have been obtained with any other choice of initial config-
uration,

None of these realizations displayed a two-plateau behavior,

Control charts for the two highest density realizations, B28 at T = 1.375
and B29 at T = 1.4, are given in Fig. 6.27. As will be seen later,
quantitative statistical tests for randomness indicate the presence of
significant serial correlation in these two realizations, but their con-
trol charts are clearly much more nearly normal than those obtained for

T = 1.3-1.35.
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The snapshots show the expected trend away from structures of
noticeable regularity of either the hexagonal or "IXT7'" types. In realiza-
tions B28 and B29 the typical structure, in the terminology of the pre-
vious subsections, was irregular, In B28 the larger downward fluctuastions
in the control charts (s ~ 12, 33, 54, 64) were accompanied by snapshots
of the L type i.e., ones in which the regular hexagonal arrangement could
be detected.

It is our opinion, based upon both the statistical and geometrical
investigations, that the realizations at T 2 1.375 are usefully conver-

gent to the true petit canonical ensenble average for this particular

48-molecule system, although the estimated standard deviations of Table

6.1, particularly for B28 and B29, may perhaps be too small, In Fig. 6.28
we present a typical sequence of 10 consecutive snapshots (At = 19 200)
from the realization at 7 = 1.4, as exhibiting the structure of this 48-
molecule system near the high density limit of eomplete convergence. Our
classification of these configurations was: snapshot 59, a somewhat dis-
torted regular hexagonal structure; 60-63, 65, and 66, irregular arrange-
ments in which in some cases suggestions of the presence of both the
regular hexagonal and the "7X7" structures are present; 64, 67, and 68,
more or less distorted "7X7" structures.

Of the 151 snapshots obtained from the long realization B31 at
T = 1.5, the vast majority were classified as irregular. In only one
was any resemblance to the regular hexagonal arrangement noticed, and

only two were classified as reasonably regular "7X7" types.
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Fig. 6.28 A typical sequence of ten consecutive snapshots from
realization B29 at T = 1.4, At = 19 200; (a)-(d), snapshots 59 through 62.
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Fig. 6.28 A typical sequence of ten consecutive snapshots from
realization B29 at T = 1.4, At = 19 2003 (e)-(h), snapshots 63 through 66.
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Fig. 6.28 A typical sequence of ten consecutive snapshots from realiza-
tion B29 at T = 1.4, At = 19 2003 (i) and (Jj), snapshots 67 through 68.

In the twelve other snapshots enough similarity to the latter arrange-
ment was detected to describe them as distorted "7x7" structures, but the
amount of subjective judgment being exercised was annoyingly great, with
a tendency to make different classifications of the same snapshot when
viewing 1t at different times., The principal impression is of increas-
Ingly irregular structure as 1 increases,

In the realization at 7 = 1.65, all of the 38 snapshots were classed
as irregular, as was also the case in a less detailed examination of the
snapshots from the realizations at still lower density.

We have already commented upon the convergence of the resulting
reduced pressures (Figs. 6.1 and 6.2) toward the approximate virial

expansion, as well as their approximate agreement with the scaled-particle

177




6.2

approximation throughout this range of reduced area,

6.2 The "TXT" Arrangement at High Density

As the reader will probably have anticipated from the important role
played by the "TXT" states in the H region of configuration space for
reduced. areas between 1.3 and 1.35, this structure forms the basis of
the "extended fluid" branch of the equation of state obtained by the
"compressor" technique, as will be described in Section 6.3. Before pro-
ceeding to this discussion, however, it is profitable to consider certain
requirements which at high density are imposed on the arrangement by the
periodic boundary conditions and the shape of the area V, and which can
be deduced a priori even though in most cases they were first observed
during the calculations.

The basic characteristic of this structure, as already mentioned
and indeed implied in the term "7X7", is its arrangement in 7 rows
(parallel to the longer edge of V) of 7 molecules each in approximately
hexagonal coordination, one molecule being, of course, replaced by a
vacancy. We begin, then, by first considering the properties of the 49
molecule system, afterwards describing the modifications which occur

when one of them becomes a hole,

6.2.1 The 49-molecule arrangement.,

At high density we may expect the molecules to be arranged in as

nearly hexagonal close-packed fashion as is compatible with the periodic

178



6.2

boundary condition and the fixed shape of V. We therefore first recall
that 1if a hexagonal close-packed array of hard circles is regarded as
being composed of successive rectilinear rows of tangent circles, then
there is an A - B - A -~ Be++ alternation in row character: the centers
of the circles of the second row (B) must be directly above the oscula-
tion points of the first row (A); while the third row, its centers being
directly over those of the first row, is again of type A, etec.

Now if we attempt to make such a hexagonal close-packed, seven-rowed
structure, designating the first row as type A and indicating the number
of the row by a subscript, then the arrangement dictated by the periodi-
city requirement in the direction perpendicular to the rows is AlBEABBh
A5B6A7A{Bé"', where the primes indicate "image" rows. We see that the
A - B character of hexagonal close-packing is incompatible with a periodic
structure having an odd number of rows, so that there must be a stacking
defect in which two adjacent rows are of the same type (AYAi in the above
notation).

The resulting array is shown in Fig. 6.29a, except that the stacking
defect has been moved into the interior for convenience., As can be seen
from the dimensions given in the figure, with close-packed rows this

33 +1
T

array has an edge ratio of , and thus camnot fit exactly into the
rectangular area V for our 48-molecule system, whose edge ratio is /3/2

(Chapter 3):

_5_&3—_'_*‘__1_-__@_2-/3_ >0
T 2~ 1L

That is, its shorter side is slightly too long.
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Fig. 6.29 Two idealized "7XT7" structures of the 48-molecule system at
T = 1,056, The bonds connect molecules which are in contact after the
lattice is deformed in order to fit into the rectangular area V with
side ratio /3/2. In (a) the dimensions are for the system with close-
packed rows, before deformation; the shaded molecules indicate the three
types of vacancy location. In (b) is shown an arrangement having two
half-vacancies in row D, with the stacking defect being partly between
rows C and D, and partly between D and E.
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In order to make the system fit, we evidently must squeeze it to-
gether from top and bottom, figuratively speaking, while letting it ex-
pand slightly laterally. As a result the molecules in the horizontal
rows will tend to break contact. If this is done uniformly throughout
the structure, these horizontal contacts are all lost, with only the
diagonal contacts between nested rows and the vertical contacts along
the stacking defect remaining. Only a slight deformation of this sort
is required. in order to fit the system into the desired rectangle. The
calculated change in inclination of the diagonal contact lines is only
about % degree, and the free distance between circumferences of circles
in the horizontal rows is only about 1.6% of the hard-circle diameter.
The latter is calculated to be, in units of the long edge of V,

o = 0.14046, These perturbations are too small to be apparent in a
figure, so we continue to use Fig. 6.29a, keeping in mind that now only
the bonded circles are in actual contact.

We will shortly discuss the several ways in which one of these
molecules can be removed to form the desired system of 48 molecules and
one hole, but let us first note that the above value of ¢ leads with use
of N = 49 and Eqs. (2.8) and (2.9) to T = 1.034, That is, this arrange-
ment is an allowable close-packed (i. e., no molecule can be moved if
all the others are held fixed) configuration of 49 molecules in V with
an area per molecule which is 1,034 times that for the regular hexagonal

close-packed configuration., However, it is not a stable limiting
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configuration, in the terminology of Salsburg and Wood (see Section
3.3.,1.1), because it does not satisfy the contact criterion for stability,
Eq. (3.4). Figure 6.29a shows that there are five rows in which each mole-
cule has coordination number 4, and two rows in which the coordination

number is 3., The average coordination number is thus 26/7, which fails

to satisfy Eq. (3.4). Therefore, according to the Salsburg-Wood analysis,
although this 49-molecule state is close-packed, nevertheless a configu-
ration space region of non-vanishing volume is accessible from it, and at
T = 1,034 the corresponding reduced pressure is not infinite. The true
limiting configuration and limiting reduced area for this region of con-
figuration space of this system are unknown. They are clearly not the
regular hexagonal lattice nor T = 1, and we surmise that the limiting
arrangement and reduced area are not much different from the unstable

ones .

6.2.2 The 48-molecule, l-hole arrangement.

When one of the molecules of the 49-molecule structure described
in the preceding sub-section is removed, the reduced area becomes
T = 1.056 [0 = 0.14046, N = 48; Egs. (2.8) and (2.9)]. There are three
different ways in which this can be done, viz., (1) removal of a molecule
from one of the two adjacent rows which create the stacking defect (row
C or D in the figure); (2) removal of a molecule from a row which is
adjacent to one of these defect rows (row B or E); (3) removal from a
row both of whose adjacent rows are not defect rows (row A, F, or G).

Each case is exemplified by a shaded circle in Fig. 6.2%.,
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In all three cases creation of the vacancy immediately gives a
structure which is no longer close-packed. In case (1) this is obvious
since the molecule in the defect row is now free to move back and forth
between its own site and the vacancy site. In the terminology of the
free—-volume theory it has a relatively large free area., In addition,
even with all other molecules fixed, two of the molecules adjacent to the
vacancy in the non-defect row have much smaller free areas, which more-
over can be distributed by way of thelr neighbors throughout the system,
(These two molecules have three contacts after creation of the vacancy,
but two of them are diametrically opposite each other, so that these two
molecules are not fixed by their neighbors.) The free area created in
case (2) or (3) is similar to the small free areas of the last-mentioned
two molecules in case (1).

We note that only in case (1) is the vacancy likely to be very
mobile, In all three cases, as for the parent 49-molecule system, the
exact 1limiting configuration and reduced area are unknown; the latter is
obviously less than 1.056. It is possible that there are different
limiting configurations and reduced areas depending on which of the above
three types of vacancy is present, since below some critical reduced area
the hole may no longer be able to move from one location to another.

We also note from Fig. 6.29a that in some range of expansions a
probable mode of defect migration should be movement of the stacking

error from rows C and D to D and E, for example, by means of a fluctuation
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in which the vacancy row D moves as a unit one-half molecular diameter
in the horizontal direction. During such a fluctuation there will also
be ample opportunity for horizontal diffusion of the vacancy. By a com-
bination of these two types of motion, the vacancy should be able to
reach any position in the 49-site lattice,

We note that if, during a fluctuation of the above {type, some, but
not all of the molecules of the vacancy row make such displacements,
then a configuration is produced in which there are two 'half-vacancies"
and in which the stacking defect is distributed between two pairs of
rows. Flgure 6.29b shows an example in which two molecules have been
so displaced. This arrangement is also not close-packed; two of the
molecules near each half-vacancy have two of their three contacts
diametrically opposed, and thus these molecules are free to move slight-

ly, even with their neighbors fixed.

6.2.3 Summary.

The "7XT" configurations of Figs. 6.29a-b evidently correspond to
one or more regions of allowable states of the 48-molecule system for
T > 1, with 7 < 1.056, but its exact value (or values) is unknown.
Probably it is only slightly less than 1,056,

It does not seem possible to predict which of these various possible
"7XT" arrangements is most likely to occur at high density. Clearly,
there will be a range of T over which well-defined "7XT7" structures

exist but in which fluctuations are large enough so that the various

184




6.2

sub-types will not be distinguishable; e.g., the "7X7" structures al-
ready described at v = 1.3.

In any case, the corresponding region of configuration space is
evidently the H region of our hourglass model (or one of several H
regions), and 1s probably inaccessible from the regular hexagonal states
over some unknown interval T, sT< T < l.3. The last inequality follows
from the observed L — H transition in realization B19., However, at
T = 1.3 the L-H connection is evidently quite constricted.

For T 2 1,056 the calculated positions of the molecules in any of
the versions of Fig. 6.29 could be used as initial configurations for
Markov chain realizations intended to investigate the corresponding
equations of state, as well as the connectivity with the regular hexa-
gonal configurations. As already indicated, this was not the procedure
which we followed. Rather, we came to the above understanding of this
type of arrangement by way of observing it in a sequence of "compressions "
from lower density, H-type configurations, as well as observing it in the
already-described "jumpy" realizations. It is for this reason that we
give this discussion here rather than in Section 3.5,

The important point is that the existence of the "7X7" structures
at high density is intimately connected with the periodic boundary con-
ditions and with the shape of the area V required by the latter and the
value N = 48, There is no corresponding configurgtion for the l2-mole-
cule system discussed previously, nor is it clear what the behavior of

larger systems is likely to be. For example, in the four-times larger
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system obtained from the obvious 2X2 replication of the present 48-mole-
cule unit cell, there is, of course, a corresponding "L4X1h' arrangement
in which there are four vacancies and two pairs of defect rows. However,
it i1s not clear that this would necessarily be a preferred arrangement

of such a 192-molecule system in any significant range of expansions.,

6.3 Realizations Started From "Compressed!"

Configurations, v < 1.254

The five realizations B6, B9, BlO, Bl3, and Bl6, which establish
our so-called '"extended fluid" branch of the equation of state, were
all started from configurations selected from what amounts to a single
compression" (Section 1.2.3) process,

The intention, of course, was to select a "fluid" configuration and
"compress'" it to values of T less than 1.34 (where realization B23 had
given somewhat less pronounced jumps than those to which we had become
accustomed for the case of hard spheres), in order to see if the re-
sulting equation of state points would define a locus different from that
obtained from the regular hexagonal realizations,

The selected configuration was that at t = 729 600 (s = 38) from
realization B29 at T = 1.4 on the "fluld" branch of the equation of state.
(At the time, this happened to be the last configuration of B29, which
later was developed further.)

This configuration is shown in Fig. 6.30, and is of the type whicu

we described in the previous discussion as "irregular, with some
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Fig. 6.30 The parent configuration of the "extended fluid" branch of the
equation of state, shown as snapshot 38 from realization B29 at v = 1.k,

At = 19 200, The initial configurations of the "extended fluid" branch
realizations were generated by successive compressions of this configuration.

indications of being a mixture of both structures.!" Even in hindsight
it seems to be a reasonably {typical configuration of realization B29.

In discussing these realizations we will follow the compression
process from low to high density. The control charts for these realiza-
tions were not exceptional, so we will discuss them in terms of their

snapshot configurations and their resulting reduced pressures.

6.3.1 Realization Bl6 at T = 1025}"'.

Compression of the configuration shown in Fig. 6.30 to T = 1.254
produced the one shown in Fig. 6.3la, which was the starting point of the
present realization., The configuration is obviocasly an only slightly

distorted "7X7" structure. Figures 6.31b-c show the two subsequent
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Fig. 6.31 Snapshots s = 0, 1, 2, and 75 (a through 4) from '"extended
fluid" branch realization Bl6 at 7 = 1.254, At = 19 200.
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snapshots, while Fig. 6.31d shows the last configuration of the run., All
are quite well-defined:'7X7" structures, as were all the other snapshots.
No deviation large enough to suggest description as '"irregular" was noted,
nor was any snapshot at all suggestive of the regular hexagonal lattice,

The snapshots displayed vacancy migrations of the expected type.
They were infrequent enough so that a few (in most cases one; in a single
case, five) vacancy-molecule interchanges sufficed to account for the
differences between successive snapshots., A total of 85 such vacancy
Jumps were counted in this way during the 1 440 000 configurations of
this realization, Of these, 34 were interchanges of the vacancy with an
adjacent molecule in the same row, while 5] involved an interchange with
an adjacent molecule of an adjacent row, As Fig. 6.31 illustrates, at
this density fluctuations are large enough so that the stacking defect
of Section 6.2 is usually not well-defined. Consequently the vacancy
cannot usually be classified according to the three types of Fig. 6.29a.
There were, of course, a number of examples such as Fig. 6.31b in which
the vacancy is more or less distributed over the six-molecule row, but
at this density a description in terms of half-vacancies of the Fig 6.29b
type did not seem warranted. For the purposes of the above counting of
within-row vacancy jumps, in doubtful cases we assigned the location of
the hole in such a way as to minimize the number of jumés.

Figures 6.1 and 6.2 show, as already indicated, that the reduced
pressure célculatedifrom this realization is indeed much above that for

a regular hexagonal realization at this reduced area, as would be
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expected from the observed geometrical structure.

In terms of the hourglass description of configuration space, all
configurations of this realization are evidently from the H region, which
moreover appears to consist entirely of "7XT" states. This H region is
apparently effectively disconnected from the L region, and also from the
irregular type of H state., The behavior is consistent with our previous
conjecture that irregular states form the connection between I and H

states, and therefore are probably not very numerous at this density.

6.3.2 Realization Bl3 at T = 1.169.

The initial configuration, shown in Fig. 6.32a, was produced by
compression of the Bl6 configuration of Fig. 6.31b. It is thus hardly
surprising that the result of the compression process was a nicely
regular "TXT7" structure. Neither, in view of the behavior of realiza-
tion Bl6, is it surprising that all of the 33 subsequent snapshots, the
last of which is shown in Fig. 6.32b, were also well-defined "7x7"
arrengements.

The qualitative behavior was quite similar to that of Bl6é. At this
increased density the structures were more regular, and vacancy jumps
less frequent. There was now a noticeable tendency for a more or less
well-defined stacking defect to appear. In Fig. 6.32a it is somewhat
poorly defined, and appears to be shared between two pairs of rows (7-1
and 1-2, numbering from the lower edge of the cell upwards)., In Fig.

6.32b the defect is fairly prominent between rows 3 and 4, In all such
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Fig. 6.32 The initial (a; s = O) and final (b; s = 33) snapshots of
"extended fluid" branch realization Bl3 at v = 1.169, At = 19 200,

cases the vacancy was in one of the defect rows [case (1) of Section
6.2.2]e However, in a number of the snapshots no stacking defect was
noticeable, accommodation to the periodic structure being made by a slight
deformation of tﬁe lattice lines., For the purpose of counting vacancy
Jumps, therefore, we ignored the half-vacancy cases as with realization
B16, and obtained 14 within-row and only 4 between-row jumps. This
represents a notable decrease in relative jump frequency, as well as g
shift to a preponderance of within-row Jumps, when compared with Bl6., As

a result of so few jumps between rows, the vacancy was restricted to

rows 1, 2, and 3 throughout the calculation.
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6.3.3 Realizations B9 and B1O at 1 = 1.124,

As indicated in Table 6,1, these two realizations were identical
except that different versions of the machine code were used (see Section
4.2), and BLO had a smaller value of Ar- (see Section 2.3.%). The initial
configuration, shown in Fig. 6.33, was obtained by compression of the
t = 19 200 configuration of realization Bl3 at T = 1.169. As would be
expected from the previous discussion of the lower-density realizations
of the "extended flyid" branch, this configuration and all the other
snapshots from both of the present realizations were well-defined "7X7"
structures. At this rather high density the stacking defect (Section 6.2)
was always quite pronounced. It was always adjacent to the six-molecule

row [vacancy location case (1) of Section 6.2.2], and in addition the
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Fig, 6.33 The initial configuration for realizations B9 and B1lO at
T = 1012}"'.
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'"half-vacancy" configurations discussed in Section 6.2.2 were quite
predominant. That is, the typical snapshot from these realizations was
one in which the stacking defect was shared between the six-molecule row
and both its adjacent rows, and the vacancy was split into two half-
vacancies, This observation is {the principal qualitative result obtained
from these two realizations. In Fig. 6.33, for example, the best ideali-
zed description seems to be the following assignment of stacking defect
and helf-vacancy locations to the six-molecule row:

39, 3-hole, 2, 3, 10, 3-hole, 19, 15,
where the position of the line above or below the molecule numbers indi.
cates the location of the stacking defect,

Consecutive snapshots ordinsrily indicated a few half-lattice-
spacing jumps of one or both of the half vacancies. Occasionally the
latter, as a result of their more or less random individual motions, met
and coalesced into a full vacancy. At these times the stacking defect is
necessarily consolidated entirely to one side of the vacancy row, and
it is only at these times that a vacancy jump to another row is possible,
Thus, the latter were rather rare at this density; in B1O, the longer
of these two realizations, only three such between-row jumps occurred
during 1 113 600 configurations; in the shorter B9, one occurred in
403 200 configurations,

The above described behavior is well illustrated by the last nine
snapshots from realization B1O, shown in Fig. 6.34. Our idealized

description of these configurations is as follows:
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Fig. 6.34a-d Snapshots 50 through 53 from "extended fluid" branch
realization Bl1O at v = 1.124; At = 19 200.
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Fig. 6.34e-h Snapshots 54 through 57 from realization Bl1O at T = 1.124;
At = 19 200,

195



6.3

“ o o) n

0 000¢

.

s Y a Yo XY

o L] u 3 »

C. wi){wYul(oXoXa) w)Yn
i " 3 L) L4

L &4 » () ]
u)Yw R D&

-
]

JONC0/000/08

(i)

Fig. 6.341 Snapshot 58 from realization B1O at v = 1l.12%4,

Jumps Since
Snapshot Six-Molecule Row Previous Snapshots

50 39, 2, 3, 10, 3-hole, 19, z-hole, 15

51 53, 16, 32, 9, hole, ¥, 13 19 ~ (3)s 29t

52 25, 4, 32, 9, hole, L, 13

53 23, 16, 32, 3-hole, 9, 3-hole, &, I3 9 - (3)

54 23, 16, 32, 3-hole, 9, 4, 3-hole, 13 (2) «4

55 23, 46, 3-hole, 32, 9, 4, 3-hole, I3 32 - (%)

56 75, 3-hole, 46, 32, 9, 4, 3-hole, T3 46 - (%)

57 2%, 3-hole, 46, 32, 9, z-hole, &, 13 )

58 23, 46, 32, 9, 4, hole, 13 (3) «4; 23 = (3);
13~ (2).
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Comparison of the above tabulation with Fig. 6.34 will show the
reader the extent of the idealizations involved in making such simplified
descriptions. Note that at the end of the calculation the configuration
would permit a vertical interchange between the vacancy in row 7 and molew-

cule 22 in row 6.

6.3.4 Realization B6 at T = 1.07h4.

The initial configuration, Fig. 6.35a, for this, our highest-density
realization on the "extended fluid" branch of the equation of state, was
obtained by further compression of the T = 1.169 configuration shown in
Fig. 6.32a (the initial configuration of realization Bl3). As Fig. 6.35a

shows, the compression process trapped the system in a split-vacancy
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Fig, 6.35 The initial (a) and final (b) configurations of "extended
fluid" branch realization B6 at T = 1.07k.
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configuration whose six-molecule row we describe, in the notation of

the previous subsection, as

%-hole, 39, 2, 3, 10, 19, 3-hole, 15.

At this density these vacancies appear to be immobile, since after
a quite long time (1 900 800 configurations) the last snapshot, Fig.
6.35b, shows the system in a configuration which is alﬁost indistinguish-
able from the first,

In terms of the Salsburg-Wood analysis discussed in Section 3.3,
this suggests that the system is now confined to a region of configura-
tion space associated with a limiting configuration which has developed
the extra number of contacts (21 or more) required for stability, in
addition to those present in the idealized split-vacancy configuration
of Fig. 6.29b, Using Eq. (3.5) we can estimate the reduced area of
limiting configuration as < asl.OSE, which compares not unfavorably
with the value 1.056 for the unstable, idealized configuration. In
Fig. 6.35b one can see some indication of the extra contacts developing
within the horizontal rows, which in the idealized arrangement are not

close-packed.
6.3.5 Summary.

From the above discussion of these five realizations which, as
shown in Fig. 6.1, establish over the interval v = 1.0T4-1.254% an
"extended fluid" branch of the equation of state of the 48-molecule

system, we see that the underlying geometrical structure is the '"rXT7"
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arrangement first noticed in the "jumpy" realizations for t = l.3-1.35
and discussed in Section 6.2, With increasing density the split-vacancy
structure of Fig. 6.29b apparently predominates. There appears to be a
stable close-packed configuration which has a reduced area asl.OS2 and an
appearance very similar to Fig. 6.29b, but which has achieved the neces-
sary additional contacts by way of slight deformation,

The term "extended fluid" is, of course, completely inappropriate as
a description of states with such a structure, which is clearly of the
imperfect-crystal type. The implications of these observations with
respect to the over-all behavior of the 48-molecule system will be
discussed in Section 6.5. Here we again call attention to the alterna-
tive vacancy configurations of Section 6.2.2. The observed behavior at
T = 1,074 makes it likely that one or more of these, particularly the
consolidated-vacancy-in-defect-row configuration, corresponds to a region
of configuration space which at v = 1,074 is disconnected (either in the
actual sense, or in the sense of a very small transition probability)
from the split vacancy region sampled by realization B6. The correspond-
ing reduced pressures are probably not much different. The question
could be investigated, as mentioned in Section 6.2.2, by starting from the
various configurations of Fig. 6.29a with T slightly greater than 1.056.
This has not been done, since this type of behavior is presumsbly strongly
N-dependent, and since there is clearly some limitation to our interest

in the L48-molecule system.
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6.4 Realizations Started from the Tetragonal

Lattice of Fig. 3.7

As In the case of the l2-molecule system, two realizations were
started from the ¢ = 4 configuration of Fig. 3.7, whose close-packed

reduced area is 1.116 (Sections 3.4.4 and 3.5).

6.4.1 Realization Bl2 at v = 1.15.

The control charts for this realization displayed an initial tran-
sient of large G values, which by s = 6 (At = 19 200) had decayed. For
8 = 6-40 the control charts were approximately normal in appearance,

The even-numbered snapshots s = 0, 2, 4, and 6 are shown in Fig. 6.36.
Note that the control chart transient was assoclated with a structural
change in which the two independent spirals of diagonal lattice lines
(see the discussion in Sections 3.4.2 and 3.5) slip along each other
until they are approximately nested together on one side and diametrical-
1y opposed on the other, with each molecule now having five instead of
four close neighbors. This process was essentially complete at s = 6;
all subsequent snapshots showed only slight displacement from the latter
configuration (no "diffusion").

The observations for s = 6-40 were averaged to obtain the reduced
pressure plotted for this realization in Fig. 6.1. Note that it falls
about midway between the free-volume curve FV¥ based on the tetragonal

lattice and the locus corresponding to "7X7" structure., This is in
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Fig. 6.36 Snapshots s = 0, 2, 4, and 6 (a through d) from realization
Bl2 at v = 1.15, At = 19 200, showing the relaxation from tetragonal
to "slipped" structure.
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marked contrast to the behavior of the l2-molecule realization at the same
density (Section 5.2.4.1), which gave a reduced pressure in approximate
agreement with the FV¥ curve, and in which the tetragonal arrangement was
preserved., As discussed in Sectior 3.4, this can be ascribed to the

fact that the smaller system has only one spiral diagonal lattice line.

6.4,2 Realization Bl5 at 7 = 1.25.

This realization also showed a pronounced initial control-chart
transient, but the first four snapshots, Fig. 6.37, show a configuration
space behavior quite different from that of B1l2: The system is rearrang-
ing to the familiar "7X7" structure. Snapshots 4 to 13 were all of this
type, and the realization was not developed further, nor was a reduced
pressure calculated, since the result would only duplicate that from
realization Bl6.

For comparison we recall that at this density the 12-molecule system
was also unstable in the tetragonal configuration, rearranging to a reg-

ular hexagonal structure.
6.4.3 Summary.

These two realizations show that for the 48-molecule system the
tetragonal lattice at ¥ = 1.25 1s well connected to the "7XT" states and
undoubtedly of no statistical importance., At v = 1.15 it appears to be

disconnected from both the "7XT" and regular hexagonal states, with its
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own region of configuration space and an equation of state intermediate
between FV¥* (Fig. 6.1) and that of the "7X7" states. At still smaller
values of T, this region of configuration space presumably decomposes
into a region associated with the tetragonal lattice (this region dis-
appearing for v < 1,116) and a larger region associated with a limiting
configuration which probably is quite similar to Fig. 6.36d4 in appear-
ance, and has a limiting reduced area between 1,05 and 1.116.

As mentioned earlier, we believe configurations of this tetragonal
type to be of no importance in large systems, and present these calcula-

tions mostly as curiosities of interest in connection with the Salsburg-

Wood analysis, and as additional evidence, if any be needed, of the pecu

liarities possible in small periodic systems.,

6.5 Summary of the Calculations for the 48-Molecule System

We will summarize our results for the 48-molecule system by follow-
ing the evolution of the allowed region of configuration space with
decreasing density, as deduced from our calculations.

First, however, we make some preliminary remarks in connection with
the definition of the term "equation of state" for a small periodic sys-
tem. We will define the "true" equation of state (i.e., the reduced
pressure as a function of reduced area) as being the usual petit en-
semble result when averaging is restricted to just those states which
are gccecessible from some specified reference state (e.g., the regular

hexagonal lattice).
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When all allowable states are mutually accessible, forming a single
connected region in configuration space, as will certainly be the case
at sufficiently low densities, the "true" equation of state so defined
is independent of the reference state. If, however, there are densities
for which the allowable states are compartmentalized into two or more
disconnected and non-equivalent (by renumbering the mélecules) regions,
then according to the above definition there is a "true" equation of
state for each of these non-equivalent regions.

In so far as the small periocdic system 1s considered as an entity
in itself, such a definition is entlirely appropriate, leading in either
connectivity situation to the usual correspondence (assuming the at
least approximate validity of a quasi-ergodic theorem or its equivalent)
between the statistical and the dynemical behaviors. It is also, of
course, the equation of state to which our Markov chains are convergent,
if the initial configuration of the random walk is the reference state
of the definition, or is accessible from it.

It should be noted, however, that this "true" equation of state,
even with a fixed reference state, may easily have jump discontinuities
in its density dependence, Such a discontinuity will appear at a re-

duced area T, at which connections first appear between two non-equiva-

d
lent regions of configuration space with comparable and non-negligible
2(N - 1)-dimensional volumes. One of the regions is assumed to con-
tain the reference state in question, and we suppose that for 7 < Ta the

connection disappears, while for T > Td'it is present, presumably widen-

ing with increasing t. The "true" equation of state then evidently
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Jumps at 1T = T3 from a value intermediate between the reduced pressures
of each region averaged separately to that of whichever region contains
the reference point (see Fig. 6.38).

One could remove the discontinulty, obtaining a smooth extension
of curve AB to higher densities (see figure), by defining the '‘true™
equation of state to be that obtained by averaging over all allowable
states regardless of their accessibility. In so doing one would lose
the correspondence with the behavior of a dynamical system, as well as
the convergence of the present random-walk Monte Carlo method. Neverthe-
less one might be tempted to believe that the result would be a better
approximation to the behavior of large systems., The agssumption here
would be that with increasing N the qualitative properties of the two
regions remain more or less unchanged, the principal effect of larger N

being to supply connections at T < 1 This may well be the case,

ar
since large values of N certainly do lead to increased connectivity; see
for example the Salsburg-W’ood.l8 discussion, where it is just this phenom-
enon which renders questionable the usefulness of Eq. (3.5) for large N.
However, our present limited experience indicates that the qualitative
character (even the existence!) of one or more of the regions is likely
to depend even more profoundly on N, so that this question, as indeed the
entire subject of the behavior of larger systems, is really one for sub-
sequent investigation rather than one which the present investigation

can answer, Thus, we will retain our first definition of the "true"

equation of state.
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Y

Fig. 6.38 Jump discontinuities in the "true" equations of state (curves
A and AB, or B and AB, depending on whether the reference state is in

region A or B) of a small finite system in which the two regions are
disconnected for 1 < Ty *
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As we remarked above, the present Monte Carlo method is indeed in
theory always convergent to the "true! equation of state corresponding
to its initial configuration. However, as our calculations for the
48-molecule system abundantly illustrate, the convergence is necessarily
very poor at densities where the corresponding region of accessible states
is almost compartmentalized, consisting of two or more pockets which are
indeed interconnected, but by connections of very small 2(N - 1)-dimen-
sional volume compared to the volumes of the pockets themselves., As has
already been seen in the case of the "jumpy" realizations at 1t = 1.3-1.35
(Section 6.1.2), and as will be further discussed below, our calculations
indicate that such is indeed the situation with the L8-molecule system
over a wide range of reduced areas., For such densities, then, we are
unable to estimate effectively the "true' equation of state of the system.
Instead we can estim;te, by the partial or '"plateau" averaging techniques
which have been repeatedly mentioned, the extensions to 7 > Ta of the two
or more "true" equations of state for T < T4 (dashed curves of Fig. 6.38).
This will be the only possibility until a density is reached at which the
connections are relatively large and the "true" equation of state (curve
AB) can be estimated. It is important to note that not only is the AB
curve unknown over this range of densities, but also the value of 7,
itself is not in general known a priori, and so must be inferred from the
observations., As we will see, the latter cannot usually be done with
any satisfactory precision at all.

Finally, we mention that the behavior just discussed differs some-

what from that discussed in Section 1.2.2 as a mechanism for the production
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of a '"wan der Waals loop". In the latter we supposed that the relative
2(N - 1)-dimensional volumes of the two regions changed very rapidly
with density while remaining connected. In the present case we consider-
ed the situation where the relative volumes remain comparable and their
connection disappears. One can, of course, imagine a situation in which

both a discontinuity and a loop would be present,

6.5.1 T = l.o 'bO 1005.

At 1T = 1, the allowaeble region of 2(N - 1) = 94 dimensional configu-
ration space reduced to the 47! isolated points corresponding to the
various permitations of molecule numbers. Its volume is, of course,
zero, and the pressure infinite,

At 7 slightly greater than one, each of these points becomes a
region of accessible states, which will clearly be of the regular hexa-
gonal (L) type. If 7T 1s not too large these 47! pockets will be dis-
connected from each other, In Section 3.5 we calculated that some of
these pockets are certainly connected at 7 > 1.063, by paths correspond;
ing to columar rotations around the torus. This may, in fact, be the
smallest T at which any L-L connection appears. If so, it is interest-
ing that before these occur, there appear allowable regions of the "7x7"
type, which in Section 6.2 we saw to be present at T = 1,056, and even
at very slightly smaller values.

However, in the interval T = 1.0 to 1.05 presently under discussion

we will assume, as is consistent with our observations and a priori
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calculations, that the allowable region consists solely of the 47}
disconnected L pockets, all of which are of course equivalent. Thus, in
this density range the Monte Carlo method 1is convergent to the unique
"true" equation of state, and the latter in turn, according to the
Salsburg-Wood theory, is asymptotically, as T — 1 and neglecting O(N"l)
terms, convergent to the free volume Eq. (3.6) with 7% = 1. A quantitative
comparison has been postponed to Chapter 10, bul we have already noticed
(Section 6.1.1) that realizations Bl through BS at T = 1,025 and 1.04
are indeed in qualitative agreement with the free volume equation of
state, This is perhaps best regarded as evidence of the over-all reli.
ability of the calculator programs involved in these calculations,

The question as to whether these results (at 7 = 1.025 and 1.0%)
approximate, with neglect of terms of O(N"l), the equation of staté of
larger systems at the same reduced areas is essentially the same as the
fundsmental question of whether the Salsburg-Wood derivation of Eq. (3.5)
can somehow be extended so as to be valid in the presence of the L-L
connections which will exist for ¥+ = 1 as N —» ®, Here we refer the
reader to the Salsburg-Wood discussion itself,18 as well as to related
comments on the 1l2-molecule results in Sectioms 5.2.3, 5.2.5, and 5.3,

and to subsequent remsrks with respect to the 48-molecule system,

6.5.2 T = 1,05 to 1.1,

As mentioned in the previous subsection, at a value of T known to

be less than 1.056 but probably only very slightly less, the estimated
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value being l.OS2 (Section 6.3.4), pockets of '"7x7" ("H") states appear.
As far as is known, these "TX7" pockets and the regular hexagonal ('L™")
pockets are the only alloweble regions of configuration space, aside from
certain connections to be discussed below, in the interval 1t = 1.05-1,10.
As was mentioned in Section 6.5.1, &t Tt > 1,063 some L-L connections
between the regular hexagonal pockets are known to exist. However, it
will be recalled (Section 6.1.2.1) that not until 7 = 1.30 was the system
actually observed to traverse & L-L connection. We may thus safely infer
that these connectlons are very constricted indeed at v < 1.10., However,
this behavior is also a convenient warning that it is not safe to infer
the absence of connections of any particular type from a failure to ob-
serve traversels between the corresponding pocket of states,

Thus, although realization B6 at 1 = 1.074 (Section 6.3.4) exhibited
no excursions between different "TXT7" pockets, neither with respect to
permutations of the molecules nor with respect to different half-vacancy
configurations, it would be rash to assert that at this density the myx7n
pockets are disconnected from each other. Presumably such will be the
case at some reduced area above T Rsl.OSE.

Similar remarks apply also with respect to the existence of connec-
tions between the '"7XT" and the regular hexagonal pockets, No traversal
between these two regions was observed in the present density interval,
Indeed, as willl be seen in Section 6.5.3.2, the smallest reduced area at
which such L-H connections are known to be present is 1.25. They may

well be present at smaller reduced areas, the exact point of their
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appearsnce being unknown in the interval T = 1.05-1.25.

Thus, we cen not be certain whether our quite precise equation of
state results from realization B6 in the "7XT" region at 7 = 1,074 and
from realizations B7 and B8 in the L region at v = 1.075 are accurate
estimates of two different "true" equations of state, or are only partial
averages over pockets which are actually connected. In the latter case
one might suppose the regular hexagonal pockets to have the larger Gh-
dimensional volume at Tt = 1.074-1.075, since this density is only
slightly lower than that at which the "7X7" pockets contract to zero
volume, If so, the L branch of the equation of state would approximate
the "true" equation of state.

This uncertainity with regard to the significance of the two
main branches of our equation of state results (Fig. 6.1) will be
present from T = 1,05 to 1.25. Moreover, since the significance of the
XT" gstructure in larger systems is an open question, the present
calculations provided little information about the equation of state of
such systems. We would, of course, be rather surprised if for

T = 1.,05-1.1 it was not close to the L branch of Fig. 6.1.

6.5.3 T = lol - 1025.

In this section we will mention the additional topolbgical features
of configuration space which accompany the I (regular-hexagonal) and
H ("7X7m) pockets, keeping in mind the remarks of the last section with

respect to uncertain significance of the two main branches of the
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equation of state over the interval 7 = 1.05-1.25.

6.5¢3.1 T = 1.l - 1.15.

In this interval two new pockets appear in configuration space,
namely, one associated with the tetragonal lattice of Fig. 3.7, and one
associated with the related but more stable configuration which developed
from this tetragonal lattice during realization Bl2 at ¢ = 1,15 (Section
6.4.1 and Fig 6.36). We will call this second pocket the "slipped
tetragonal pocket", and the first-mentioned one the '"tetragonal pocket',
The latter is surmised to exist as an entity disconnected from the
slipped tetragonal pocket (and also from the L and H pockets) over a
small interval of reduced area whose lower end point is its close-packed
value T = 1.116. As realization B12 demonstrates, at 7 = 1.15 these two
pockets are certainly connected, the behavior suggesting that the connec-
tion is comparable in volume to the tetragonal pocket, The reduced
pressure obtained from the reallzation (Table 6.1), in conjunction with
the Salsburg-Wood theory, suggests that the slipped tetragonal pocket
may have a limiting configuration with T ~ 1.10.

At T = 1.15 we do not know whether or not the combined tetragonal -
slipped tetragonal pockets are connected to either the L or H pockets.

As has been emphasized repeatedly, both of these regions are arti-
facts of the 48-molecule system, in the sense that we are quite certain
that they are of no importance in large systems, as contrasted with the

nrx7" states about whose significance in larger systems we are uncertain.
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Finally, we recall that realizations B9 and B1O at T = 1.124 demon-
strate that at that density the various "7XT" pockets are connected with

each other,

6.5.3.2 T = 1015 - 1025.

At the lower reduced areas of this interval our L48-molecule system
appears to have three well-defined types of pockets, viz. the L, H, and
slipped tetragonal pockets. At T = 1.25 realization B15 (Section 6.4.2)
demonstrates that the slipped tetragonal region is connected to the
wIXT" region, the behavior suggesting that the former pocket is no longer
very well defined.

More interestingly, comparison with the l2-molecule realization A6
(Section 5.2.4,1) at the same density permits us to deduce the existence
in the 48-molecule system of L-H connections which at this density have
not been directly observed., The argument is as follows: The l2-molecule
system relaxed to L-type states, while the 48-molecule system relaxed to
the H-type ("7XT") states, both starting from the tetragonal lattice of
Fig. 3.7. Now any allowable state of the 12-molecule system corresponds
to the essentially identical and alloweble 48-molecule state obtained
by a 2X2 array of the 12-molecule configuration. Therefore, the 48-
molecule system could have relaxed to the L pocket, by simply following
the sequence of l2-molecule states realized in A6, Thus, the 48-molecule
combined tetragonal - slipped tetragonal pocket is connected at 7 = 1.25

to both the L and H pocket systems, so that the latter are themselves
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connected, at least by the way of the probably poorly defined tetragonal
pockets,

As remarked earlier, L-L connections are known to be present,
though not observed, while realizations B13 and Bl6 show the presence

of fairly frequently traversed H.-H connections.

6e5.4 T = 1.25 to 1,30,

As discussed in the previous section, at T = 1.25 configuration
space appears to consist principally of L (regular hexagonal) and H
(T7XT") regions which are known to be connected. Thus, for T = 1.25 to
1.375, where the L-H connections begin to become large enough for the
random walk to estimate the over-all "true" average, the two branches
of our equation of state definitely correspond to extensions to lower
density of different "rue" high density equations of state (Fig. 6.38).

At T = 1.30 we first observed directly the L-H connections, by
virtue of the "jumpy" behavior of realization B19 (Section 6.1.2,1)..

At the same time there also appear the type of states which we described
as "irregular", These have not been observed at higher densities, ex-
cept possibly for the transient states during the relaxation of realiza-
tion Bl5 at T = 1.25 (Section 6.4.2) from the tetragonal lattice to

"TXT" states. As described in Sections 6,1.2 and 6.1.3, irregular states
become increasingly prominant at lower densities., Their fate at T < 1.3
constitutes one of the most important questions left unanswered by the

present investigation., As mentioned in Section 6.1.2, there are some
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indications that these states may actually be connecting states between
the L (regular hexagonal) snd H ("7X7") pockets, In this case they
probably indeed effectively disappear at T < 1.30, as the L-H connections
contract and apparently become negligibly small in comparison with the

L and H pockets themselves. See however, the qualifications discussed
in Section 5.2.3 (particularly Fig. 5.6), which apply as well to the
48-molecule system. The question could be investigated to some extent
by means of a number of compression experiments starting from irregular
configurations obtained at 7 =2 1.3, This has not been done, mostly owing
to our desire to terminate this long drawn out investigation of the 48~

molecule system,

Be5.5 T > 1.3

As discussed in detail in Section 6.1.2.8, in the interval v = 1.3-
1.35, configuration space appears to consist of regular hexagonal (L)
pockets, "TX7" (H) pockets, and irregular states. The irregular states
possibly constitute the L-H conmnection, and in any case are numerous
enough to have appreciable statistical weight. Whatever the nature of
the L-H connection, however, it is still too constricted to allow the
Mtrue" equation of state to be determined, although at v = 1.35 it seems
likely that it will be in the vicinity of the H or "fluid" branch (Figs.
6.1 and 6.2).

At T 21,375, as described in Section 6.1.3, we believe that our

realizations estimate the "™true" or over-all equation of state of the
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48-molecule system. As Tsble 3.l shows, for these densities the virial
coefficient up to and including the coefficient of 1-6 in the expansion
of the compressibility factor pV/NkT will have their "mormal" N-dependence
according to the analysis of Lebowitz and Percus.l7 However, as we

shall see in Chapter 10, from T = 1.375 to at least 1.5, terms of 0(1‘6)
and beyond probably make appreciable contributions to the compressibility
factor, so that only perhaps beyond T = 1.5 can we be reasonably certain
that the 48-molecule results estimate the thermodynamic equation of state
within a few per cent,

6.5.6 Final remarks and comparison with Alder and Wainwright's 870-
molecule dynamical resulis.

It is quite clear that the above-described Monte Carlo results for
the 48.molecule system are such as to prevent one from drawing any con-
clusion whatever with respect to the presence or absence of a first.
order, fluid-crystalline phase transition. At T = 1.35 the frequently
occurring "irregular" states, whose contributions are included in the
"E" or "fluid" branch of the equation of state for v > 1.3 in Figs. 6.1
and 6.2, are suggestive of a fluid phase, but by v = 1.30 the "7XT7'" or
vacancy-defect structures are predominant on this branch of the equation
of state, whose statistical weight relative to the "ecrystalline" or 'L
branch can no longer even be guessed.

Thus, it is clear that if the existence of a hard-circle phase
transition is to be further investigated by the present mumerical

technique, larger systems will have to be employed. As mentioned in
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Chapter 1, Alder and Wainwright have already investigated a system of
870 hard circles. In Fig. 6.39 we compare their results for this large
system, as well as their results for a system of T2 molecules, with our
48-molecule points from Fig. 6.2. There is rough agreement between the
two small-system points, the 48-molecule Monte Carlo points tending to
lie somewhat below the T2-molecule dynamical points, but the principal
point of interest is of course the van der Waals loop in the 870-molecule
system. It is noteworthy that it lies nicely between the L and H curves
for the smaller systems, the solid terminus of the horizontal tie line
being approximately on the L curve, its fluid terminus on the H curve,
It would be interesting to know if any analogue of the 48-molecule,
n"7X7" or vacancy-defect structure appears in the large system.

In the near future we hope to investigate a simllarly large system

by the Monte Carlo method.
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Fig. 6.39 Comparison of the 48-molecule Monte Cai%o results (o) with the
72 () and 870 (bars) molecule dynamical results. The figure is adapted,
except for the Monte Carlo points, from Ref. 15, The heavy curve and tie
line are Alder and Wa.inwrigh’t:'tsl5 phase transition interpretation of their
data, the light curves their L and H (in our terminology) branches for

the 72-molecule system., Their dashed curve indicates a branch of the
870-molecule equation of state corresponding to a "glassy" region of con-
figuration space.
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Chapter 7

OUTLINE OF THE DATA REDUCTION PROBLEM

The remasining chapters of this report will be mainly devoted to a
description of the statistical techniques which we have used to reduce
our "experimental observations" to the equation of state estimates al-
ready given in Tables 5.1 and 6.1. Here we will outline the over-all
data reduction process, reserving detailed discussion of the various

steps for Chapters 8 and 9.

7.1 The "Experimental Observations®

It is convenient to regard a single realization of a particular
Markov chain for a given molecular system as constituting a single
"experiment." The parameters which define a particular Markov chain,
as well as those which determine a particular pseudostochastic realiza-
tion of such a chain, were discussed in Sections 2.3.2 and 2.3.3.

The "experimental observations" are then the set of values G(s, @),
s = 1(1)n, a = 1(1)K, of the time-smoothed or coarse-grained cumilative
pair distribution function, as defined in Section 2.3.4. The parameters

K andAr2 determine the spatial range and spatial resolution of these
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observations; the parameter At (time-smoothing interval, ses Section
2.3.4) determines the time-resolution of the observations; and the
parameter n reflects the duration of the random walk or Markov chain
realization constituting the experiment,

The n values G(s, a) for each @ are of course ultimately averaged,
according to Eq. (2.1%4), to obtain the over-all estimate E;At(ga) of
G(ga), the theoretical or "true" cumilative pair-distribution function of
the system at { = Ca = Vdg + aAr2 . However, it is not these quantities
which we wish to estimate, but rather the derivative G’(¢) from which the
compressibility factor of the system is obtained by Eq. (2.6). Our basic
data reduction problem is thus that of numerically differentiating the
observed averages E;At(a). This leads us to inquire as to the sampling

distribution of these quantities.

7.2 The Central Limit Theorem for Markov Chains

The qpantity'agam(ga), which henceforth we will write as agﬁm(a), is
the average value of the state function G(Ca) over n/% consecutive states
of a particular stochastic realization of a Murkov chain. According to
the central limit theorem for ergodic Markov chains,21 such an average
has a sampling distribution which is asymptotically (i.e., as nAt - =)
independent of the initial (t = 0) state of the system, and which is
asymptotically normal with a mean equal to the theoretical value G(Ca)

and a variance DEEGQAt(a)J wvhich decreases as (nAt)"l:

Dz[anm(w] = Ffast (7.1)
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No simple expression is known for the multiplicative factor Ei , which
mist be non-zero in order for asymptotic normality to hold.

Considering the set of values a;At(a), o = 1(1)K, as a vector
stochastic variable, its sampling distribution22 is asymptotically
multivariate-normal with the mean vector G(Ca), o =1(1)K, and a covari-

ance matrix which decreases as (nAt)_l .

7.3 Testing for Approximate Normality

and Time-Independence

The central limit theorem outlined in the previcus section shows
that 1f +t = nAt is "large enough' then the values Et(a), o = 1(1)K, from
a given experiment will be approximstely miltivariate-normally distri-
buted, so that the usual methods of applied statistics become available
(though not, as we shall see, without certain difficulties) for the
estimation of the equation of state. We know of no way of selecting an
a priori '"large enough" value of t, so that it seemed to us worthwhile
to devote some effort to an empirical statistical investigation of this
question. (The behavior of the "jumpy'" realizations described in Section
6.1.2 was adequate warning that under some conditions, at least, even
very large values were by no means adequate.)

This phase of the data analysis requires then, in the terminology
of Chapter 2, values of E%(a) from a number of independent realizations
of a given Markov chain, each realization being of length t. We wish

to test the "null hypothesis" that they are each an independent sample
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from a normal distribution with unknown mean G(ga) and unknown variance
cz(a). As discussed in Section 2.3.3, different realizations of a given
chain can be obtained by varying the random nunmber sequence or the
initial configuration. Such realizations will be statistically indepen-
dent, however, only 1f t is again 'large enough'",

The simplest procedure, then, appears to be to decompose a given
realization of length nAt into a number n’ of shorter "sub-realizations™"
of equal length, and apply standard statistical tests for "time-independ-

ence' of the resulting n’ values a;At(a). If these tests are satisfac-

=
n
tory, the values are then tested for approximate normality. Both types

of tests will be described in detail in Chapter 8. Here we should per-
haps mention that in practice the tests for time-independence and
normality of distribution are not independent of each other (i.e., some
of the more convenient tests of the null hypothesis of time—independence
assume a normal sampling distribution as well); nor are either of these
tests completely independent of the presence of the spatial correlations
to be mentioned in the following section.

The statistical tests for absence of time—correlation and normality
of distribution are, of course, more powerful the larger the number n’
of supposedly independent samples. This naturally suggests trying n’ = n,
that is, taking the largest number of time-smoothed observations avail-
able from the magnetic tape output of the main Monte Carlo code. Thus,
we begin with the null hypothesis that the value At (in most cases,

19 200) is '"large enough" according to the central limit theorem, for the
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observations G(s, @) (see Eq. 2.13) to be approximately s-independent
and normally distributed. This is manifestly not the case for some of
our experiments (the "jumpy!" realizations), and in Chapter 8 we will see
that the quantitative tests show this null hypothesis to be untenable in

other, less obvious, cases as well,

7.4 Spatial Correlation and Transformation

of the Observed Data

The numerical differentiation required to obtain the equation of
state will be done, naturally, by least squares techniques, which will
be described in preliminary fashion in the next section. The appropriate
type of least squares technique, however, depends upon whether or not
the observations a;At(a), assumed to be sampled from a normal distribu-
tion, are correlated for different values of o = 1(1)K. If such spatial
correlation is present, that is, if the covariance matrix of the theo-
retical sampling distribution is non-diagonal, then a somewhat more
complicated than usual least squares procedure should be used (see
Chapter 9). Alternatively, one can attempt to remove or reduce the
spatial correlation by an appropriate transformation of the observations.

Both a visual inspection of the control charts, examples of which
have been given in Chapters 5 and 6, and quantitative statistical tests
for spatial correlation (to be discussed in Chapter 8) show that indeed
the G(s, a) values are strongly o-correlated throughout the density range

of our calculations., On physical grounds it seemed likely that
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transformation to the '"shell populations™

Y =08(s, a) - &8s, ¢ - 1),
sQ (7.2)
G(s, 0) =0,
would lead to a considerable reduction in the apparent CG-correlation, as
indeed turns out to be the case (Chapter 8). The variables Ysa’ being

linear combinations of the variables G(s, @), are of course normally
distributed and time-independent if the latter are.

In addition to simplifying the numerical differentiation procedures,
the transformation is also helpful in the statistical tests for time-
independence and normality, in the following way. Suppose that some
test of the hypothesis of time-independence, say, is applied to each

of the K sets of observations {Y s = l(l)n} , so that we obtain a

s’
test statistic T, for each set a = 1(1)K. If the Y_, are q-uncorrelated,
then the K statistics Ta are independent of each other, This simplifies
the interpretation of the test, since we do not know of a convenient test
for time-independence within a sequence of vector stochastic variables
with correlated components.,

Accordingly, throughout our statistical analysis we will take as
the fundamental observational variables the set Ysa’ rather than the
set G(s, o). The corresponding 'theoretical' or 'true" shell population,
to which the observations Ysa converge stochastically, independently
of s, as At - @, will be denoted by

m, = G(L,) - 6(Cy ) - (7.3)

In addition to their indicated dependence on the index ¢, and on the
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system parameters such as N, 1, etc., the variables ﬂa depend upon the

observational parameter Ar2.

7.5 Numerical Differentiation by Least Squares

Regression Analysis

In order to use Eq. (2.6) to estimate the compressibility factor,
we must estimate the derivative G’/(¢) by mumerical differentiation of
the observations. The usual procedure envisages that the functional
dependence of G({) on { is known, except for certain coefficients
which appear linearly in G({). These coefficients, along with their
respective variances, would then be estimated by least squares regression
of the observations &(s, o) onto the known functional form. Substitution
of these estimated coefficients into the analytical expression for G'(o)
[obtained, of course, by differentiating the given functional form of
G(¢)] then ylelds the desired estimate of the derivative, as well as an
estimate of 1its variance.

Tn the present case the dependence of G({) on { is, of course, not
known. Since KAr2 is aiways chosen to be small compared to 62, it seems
reasonable to assume that in the interval 02 < C2 < 02 + KArE, G(¢) has
a convergent power series expansion in §2 - 02, which can be truncated
after some small number of terms with an error which is small, or at
least not large, compared to the statistical scatter of the observations.
In other words, our regression procedure will be based upon the hypothesis

that G({) is adequately represented by a polynomial of unknown degree
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v+1in g% 6%, (Note that the value of v will 1tself depend on the

experimental data: +the smaller the statistical spread of the data, other
things being equal, the larger will be the necessary value of ve) Using

Eq. (2.12) this assumption can be written
vl

G(C,) = Z na (7.%)
i=1

the coefficients 7y being unknown.
Introfucing the statistically more convenient shell populations by

use of Eq. (7.2), an equivalent assumption is that

v
Ty= ) Bt . | (7.5)
i=0

The relations between the two sets of coefficients are readily found to

be

J(v,1)
1 1 031 -1+ 23)1
71‘T51-1+—51+§ B

2 (2377 13 $P1 14057 (7.6)
J=1

where J(v,1) denotes the integer part of 3(v + 1 - i), and B, 1s the jth

J
Bernoulli nu‘m'ber.23 The surmation is to be omitted if J(v,1) = 0, and
the term %ai is to be omitted when 1 = v + 1,

The derivative G’(¢) is given by
G'(c) = 20 Lr? (7.7)
= 7 ) TeT

so that Eq. (2.6) becomes

NKT 7 (7.8)
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The regression analysis accordingly proceeds as follows. The value of
v and the corresponding coefficients Bi are estimated by least squares
techniques. A corresponding estimate of 71 is then calculated from
Eq. (7.6), and finally the compressibility factor is calculated from
Eq. (7.8).

The most important difficulty in the above program is, as will be
seen, the necessity of determining the degree v of the regression
polynomial from the data. In addition the choice of the appropriate
least squares technique (see Chapter 9) requires information about the
unknown covariance matrix of the sampling distribution of the observa-
tions Ysa’ which also can only be obtained from the observations them-

selves,
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Chapter 8

TESTS OF DISTRIBUTION

This chapter is devoted to a description of the statistical tests
which we carried out prior to the least squares reduction of the data.
As outlined in the previous chapter we are concerned here with the
credibility of the ™null hypothesis" that the observations Ysa are

rendom (i.e., s-independent), spatially-uncorrelated (i.e., a-independent)

samples from a normal distribution (of unknown mean vector and unknown,
but diagonal, covariance matrix). We will, for the sake of brevity and

precision call this 'hypothesis A",

8.1 Control Charts

The simple process of inspection of control charts such as were
presented in Chapters 5 and 6, in which &(s, a), or Yoo is plotted. against
s for one or more values of ¢, constitutes a crude statistical test of
hypothesis A, especially the assumption of time-independence.

For example, the control charts of Fig. 6.3, for the L48-molecule

realization B19 at v = 1.3, are sufficient to show the hypothesis to be
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untenable. Our only reason for applying more quantitative statistical
tests to such jumpy realizations (Section 6.1.2) was to gain experience
with their performance in such obviously ill-behaved situations in order

the better to interpret their results in more borderline cases.

8.2 Testing the Assumption of Time-Independence

Of the available tests for s-independence of a sequence of observa-
tions Y_ ; s = 1(1)n, for given @, we chose two: the number of runs
above and below the sample m.edian,21+ and the mean-square successive-
difference ratio test of von Neumann.25 The runs test has the advantage
of an exactly known distribution which is independent of the distribu-
tion of the samples (providing of course that they are really random).
It seems especially appropriate in view of the abrupt "jumps'" or shifts
in level which characterize some of our experiments.

The mean-square successive-difference ratio test is simple to apply,
and the distribution of the test statistic is known approximately when

the sampling distribution of the observations Ysa is normal. It seems

to be one of the most widely used tests of randommess.

8.2.1 The runs test.

We followed essentially the procedure of Ref., 24, concentrating
mostly on the total number R(a) of runs above and below the sample median,
but examining also the numbers Rﬁ?) of runs of length k for k > 5, for

each set of shell population observations Ysa' For convenience in

interpreting the results,we extended Olmstead's tab1e826 of the
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probabilities Pa(k; n) = Pb(k; n), Pa+b(k; n), and Pa-b(k:' n) of observ-
ing one or more runs of a specified side, on either side (a + b), and on
both sides (a + b) of the median, of length k or greater in a series of
n independent observations, up to n = 200, and up to k = k¥(n) such that
Pa¥b[k*(n); n] < 10-5. We also tabulated the cumilative distribution
P(R*; n), giving the probability of observing a total number of runs
R < R¥ in a sequence of n < 200 independent observations., This was done
slmply as a matter of convenience; the distribution P(R¥; n) is very
nearly normal for n 2 20.2h

Table 8.1 shows the application of the runs test to the observed
shell populations Y . of realization B34, with s = 2(1)50, o = 1(1)8.
Note that in this realization the first time-smoothed observation (s = 1)
was omitted from the statistical analysis; for most realizations it was
included, but in some of the earlier experiments it was omitted. Note
also that following the procedures of Ref. 24, the sample median is
omitted when the number of observations is odd, so that in the runs test
n is always even., Finally, we mention at {this point that throughout our
statistical analysis we will use the notations E(x), D°(x) = E(x°) - E-(x),
and D(x) = VDE(X) for the expected value (i.e., the theoretical mean), the
theoretical variance, and the theoretical standard deviation of a

k

stochastic variable x., Irom Ehld? we have

E(R) = 3(n +2)
(8.1)
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TABLE 8.1 RUNS TEST FOR REALIZATION B3k

s = 2(1)50;

E(R) = 25

DP(R) = 11.75;

n = 48; K=28

D(R) = 3.43

Observed Total Number

of s
Sh;ll - (lg'sn
1 29
2 25
3 29
b 25
p) 29
6 20
7 26
8 22

K
1 (@) _
z ZR = 25,625

X 2
% Z[R(O‘) - E(R)] = 10,375
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for the theoretical mean and variance of the total number of runs in a
series of n independent observations.

In Table 8.1 we note that the eight observed values of R(a) scatter
about the theoretical meen E(R) = 25 in a fashion which is qualitatively,
at least, in accord with the theoretical standard deviation D(R) = 3.43.
As we have already mentioned, the detailed interpretation of such a set
of wvalues R(a) depends upon whether the eight series of observations
{Ysoﬁ s = l(l)n} for @ = 1(1)8 are independent, i.e., on whether the
observations are spatially uncorrelated. Our procedure is to assume
tentatively, subject to subsequent correlation tests, that the observa-
tions are indeed o-independent. The runs test, as we apply it, is then
really a test of the combined assumptions of s- and -independence., Thus,
we wish now to test the hypothesis that the eight values R(a) given in
Table 8.1 are independent samples from the known distribution of R for a
series of n independent observations,

For this purpose we compare the sample variance 52 (see Table 8.1)
of these eight values Ra about their known theoretical mean E(R) with
the known theoretical variance DE(R) by means of the chi-squared.test.27
We also compare the deviation of the sample mean R (see Table 8.1) from
the theoretical mean with the known theoretical standard deviation, using
the "u-test", i.e,, the normsl deviate test.28 These tests are appropri-
ate since the distribution of R is very nearly normal for n > 20,

As shown in Table 8.1, the X_test gives a value ¥ = 7.06. with

8 degrees of freedom, which falls in the 50 to 60 percentile of the X?
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distribution.>” The u-test gives u = 0.52, for which P(u), the
cumlative probability density of the standardized normal distribution,
is about 0,70 (i.e., the chance of observing u < 0.52 is approximately
70%). These values are evidently unexceptionable, and the hypothesis
of s~ and -independence is evidently consistent with this test.

We may also examine the occurrence of runs of unusual length; con-
sidering the number of observations n in a typical realization, we
usually considered runs of 6 or more to be 'unusual'. In realization
B34 there were % runs of length 6, one below the median in the sequence
Y(s, 6), and one above the median for both @ = 7 and o = 8. There were
no runs of greater length. From our tabulations we find Pa%b(6’ 48) =
0.427%; i.e., the probabiiity of observing one or more runs of length 6
or longer, on either side of the median, in a single series of 48 obser-
vations, is 0.4273, or 42.73%. Under our assumption of -independence we
have 8 independent such series of 48 observations each, and it is clear
that 3 occurrences of the event "one or more runs of 6 or more" in 8
trials, with a probability of 0,4273 in a single trial, is certainly not
exceptionable,

Conversely, we can ask whether we perhaps have a dearth of long
Tuns? Our tables give P_.. (7, 48) = 0.2077. The probabllity of observing
no successes in 8 independent trials of an event for which the probability
of a success in a single trial is 0.2077, is (1 - 0.2077)8 ~ 0.155, accord-
ing to the binomial distribution. This value is small, but not exception-

able (unless other realizations should show a consistent tendency to have
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similarly small numbers of longer runs). Thus, the runs test applied
to realization B34 suggests that the hypothesis of s- and o~independence
is not unreasonable,

The number of "unusually" long runs and the total number of runs are
not independent statistics. Thus, in Table 8.2, where we summarize the
entire statistical analysis of the 48-molecule realizations, for the
Tuns test we report the above-mentioned statistic P(u) (see Table 8.1),
as being the best representative of the various runs test statistics for
each realization. We postpone discussion of these results until after
we have outlined the mean-square successive-difference ratio test, and

the o~correlation test.

8.2.2 The mean-square successive-difference ratio test.

We use the definitions of Bennett and Franklin,so so that if r(a)
denotes von Neumann's mean-square successive-difference ratio statistic

for a series of observations Y. 5= 1(1)n,

n-1l
@) _ 2
(o - l)sa ;g; (x s,04l T sa) ’
By 2o , (8.2)
2 h(n - 2
Fog 0

where sg is the usual unbiased estimate of the variance of the sampling

distribution,
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TABLE 8.2 STATISTICAL ANALYSIS OF THE L48-MOLECULE REALIZATIONS

Observa- Runs MSSDR (n)
Reduced o-Correlation Tests Skewnegs
Ares Reali- ttons(®)  mest(f)  rest(®)  cop(c) E(C Tegt L)
Class T zation n P(u) P(u) D(C D(C _P{u) Plu)
A 1.025 B 1l 157 0.27 0.40 - 6.56 8.60 0.9975 0.66
B 2 100 0.08 0.16 - 1.92 5.32 0.12 0.92
B3 121 0.65 0.25 + 0,22 6.53 0.78 0.88
B 100 0.78 0.98 - 0.33 5.32 0.5k 0.9
1.040 BS 100 0.24 0.62 - 1.01 5.32 0.54 0.99
1.07h4 B 6 99 0.76 0.56 + 0.03 5.61 0.11 0.98
1.075 B g 37 0.1k 0.75 - 1.00 2.77 0.8 0.03
B 50 0.08 0.12 + 0.55 2.22 0.81 0.98
1.124 B9 20 0.09 0.19 - 0.26 1.15 0.85 0.06
B10 58 0.48 0.42 + 0.68 2.68 0.69 0.98
1.125 Bll 33 0.5k 0.32 - 0.71 2.40 0.79 o.%
1.169 B13 32 0.81 0.26 + 0.06 2.59 0.28 0.
1.240 BlL 100 0.38 0.61 - 2.98 9.16 0.60 1.00
B 1.254 Bl6 75 0.02 0.01 - 0.88 6.771 0.64
1.275 Bl7 101 °’2§ 0.18 - 2.3h 7-71 0.9993
1.290 B18 50 0. 0.05 - 1.09 3.58 0.945
1.300 Bl9€ag 8 o.22 0.53 - 1.1h bbb 0.975
b 70 0.0% 0.01 - 2.47 3.82 0.
1.316 Baofcg 20 0.26 0-31 - 0.53 0.98 o.ﬁw
a 43 0,22 0.03 - 2.19 3.00 0.9871
1.325 B21 %5 0.01 <,0001 - 8.36 8.68 >.9999
1.330 B22 %5 <.0001 <,0001 - 9.ky 9.64 >.9999
1.340 B23 151 <,0001 <.0001 -1%.15 14,51 >.9999
1.350 B2L 27 0.76 0.43 - 1.30 1.84 0.86
B25 T0 <.0001 <,0001 - 5.68 5.70 >.9999
B26 71 0.012 0.0003 - L.66 s.g (not calc.)
1.355 B27 k9 0,10 0.02 - 3.02 3. 0.9939
1.375 B28 92 0,07 0.006 - k.57 7.63 0.9989
1.400 B29 0 0.26 0.01 - 3.97 10.2 0.9978
c 1.500 B30 46 0.82 0.58 - 1.48 3.97 0.67 0.99s
B3l 151 0.64 0.48 - 0.38 10.8 0.67 1.00
1.650 B32 38 0.k2 0.06 - 0.53% 3.58 0.52 0.98
1.750 B33 41 0.70 0.kl - 0.06 L. 42 0.46 0.87
2.000 B34 49 0.70 0.77 - 0.87 6.16 0.98 0.99g
2.400 B35 22 0.08 0.29 + 1.1k 2.47 0.60 0.99
3,000 B36 51 0.26 0.23 + 0.17 7.48 0.96 0.8
3.900 B37 27 0.56 0.15 - 0.65 3.7k 0.91 0.91
B38 50 0.50 0.49 0.00 3.27 0.06 0.9Gs
B39 50 0.08 0.38 0.43 3.27 0.19 0.99s
‘e The ‘[, plateau”, s = 1(1)80, see Section 6.1.2.1.1.
b The "H plateau®, s = 81(1)150, see Section 6.1.2.1.2.
¢ The I plateau", s = 20(1)39, see Section 6.1.2.2.2.
d The second “H platesu®, s = £0(1)82, see Section 6.1.2.2.3.
e The colum gives the number n of coarse-grained observations (At = 19 200) included in the
statistical analysis.
£ Section 8.2.1
g The mean-square successive-difference ratio test, see Secticn 8.2.2.
h Section 8.3.
i Section 8.5
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2
2 1 =
Sa = Bl Z (o - Ty)
s=1

n (8.3)
= 1
Ya =n }:Ysa ’

s=1

As already mentioned, this statistic tests the assumption that the
observations Ysa are sampled randomly from a normal distribution. Tables

of the approximate percentage points of the distribution of r(a) are

50,31

available, while for n > 20 its distribution is approximately
normel, with mean and variance as given in Eq., (8.2). In most cases we
have used the normal approximation.

Our procedure is exemplified in Table 8.3, again for realization B3k,
Just as with the runs test, we make now the additional assumption that
the observations are o~ as well as s-independent, so that we are actually
testing here our over-all hypothesis A, since the present test assumes
normality. Thus, the eight values of r(a) given in Table 8.3 should be
independent samples from an approximately normal distribution with mean
and variance given by Eq. (8.2). We again test this assumption by means
of the XE- and u-~tests, as shown in Table 8.3, The results are consistent
with the null hypothesis, x? falling in its 80 percentile, and u at
about its 77 percentile.

Table 8.3 suggests a systematic decrease of r(a)

with increasing Q,
which, however, does not appear in neighboring realizations and is be-

lieved to be coincidental., The largest value, r(l) = 2.69%5, is evidently
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TABLE 8.3 MEAN-SQUARE SUCCESSIVE-DIFFERENCE RATIO TEST

FOR REALIZATION B34

D?(r) = 0.07833  D(r) = 0.2799

(@)

IR

2.6935
2,1225

2.0916
1.9849
2.3922
1.9714
1.7503
1.5693

(o MR SN0 NN, BN - R U B \D I o

(@) _ 2,0720

(@ _r(r)? = o.1134

x?(K = 8) = Ks ) = 11.58; 0.80 =< P(x?) < 0.90.
r

u €D = 0.73; P(u) = 0.77.



somewhat exceptional, but not markedly so; from the normal approximastion
we Tind that the probability of obtaining so large a value, in a single
sequence of 49 independent observations, is about 0,0066. Using the bi-
nomial distribution we find the probability of obtaining, out of 8 inde-
rendent sequences, one or more values so large is 1 - (1 - 0.0066)853
0.052, The latter is not, in itself, especially exceptionable, particu-
larly in a two-sided situation,

As with the runs test, we select as the best single representative
statistic from the von-Neumann test the fractile value P(u) obtained

from the mean of the wvalues r(a)

, @ =1(1)X, In Table 8.2 this statistic
is tabulated for most of the 48-molecule realizations. Again we postpone

further discussion until the o~correlation tests have been described.

8.3 Testing for a-Correlation

As mentioned several times previously, the question of the existence
of spatial correlation is of importance in two respects; it affects our
tests for time-independence, as discussed in Sections 8.2.1 and 8.2.2;
and it also affects the type of regression analysis which is appropriate
in the numerical differentiation.

Al]l @-correlation tests of which we are aware assume that the ob-
servations are s-independent, and indeed that they are samples from a
miltivariate normal distribution., Consequently the tests which we are
about to describe are really tests of our over-all hypothesis A. In

the cases in which the tests make the hypothesis appear to be doubtful, it
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will not necessarily be obvious which of the three constituent assumptions
mey be at fault.

Even within these restrictions we are not aware of any slmple and
direct quantitative test of our hypothesis. Since the latter can be
stated as the assumption that the sampling distribution is miltivariate

normel with unit correlation matrix, it seems natural to seek a test

based on the K X K sample correlation matrix

¢ Z(Y ST, - T, (8.4)
o ~ (n-l)./s_s s '
The simplest single test statistic would appear to be the determinant
= de'b(CCﬁ) ’ (8.5)

which is discussed by Cra.mér.32 The distribution of C on the interval
(O, 1) is unknown (except for the case K = 2, where 1t 1is related to the
known distribution of the bivariate correlation coefficient), but

Cremér gives the following exact expressions for its mean end variance:

(n-2)1
E(C) =
© (nK-1)1 (n-1)%1
(8.6)
2,y 2 n(n-1) (-5
p(c) = E (C)l:(n+l-K) G KL 1] .

Ir [c - E(C)]/D(C) is, say, smaller than unity in absolute value, then
we may reasonably expect that the observations are consistent with
hypothesis A, provided that E(C)/D(C) is at least several times larger

than unity. The latter will be the case when n is large compared to K3
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otherwise D(C) and E(C) become comparable,and since C > O the test is
then of little value. Iarge values of [C - E(C)]/D(C) can sometimes be
shown to be exceptionable by means of the Tchebycheff criterion.33

In order to have a somewhat more quantitative test for a-correlation
we made use of the fact that each element CQB of the sample correlation
matrix has the distribution of the familiar bivariate correlation co-
efficient. In general the elements are not independent of each other,

but 1t is easy to see that a set { '°-} in which no subscript

C ) C )
i L R~
repeats is independent. We chose alternate next-to-theediagonal elements

(012, CBh’ 056---) and then used Fisher's normalizing z-transformation,jh

testing the assumption that the variables (ulz, Us)s cee),

1+C

1
= —é‘(n - 3)2 zn-rca‘!-q—*—i ) (8'7)

u
ol
% o, ol

are independent samples from the standardized normal distribution. For

this purpose we again used the X2- and u-tests, with

2
Yo, 01 ’

a.:l’j’ secoe

X2 (2)
(8.8)
3
u =T }; Yo o4l ?
a__.l’B’ LY
where f = 3K 1f K is even, 5(K - 1) if K is odd. The defect of this
procedure is that it uses so little of the available data, so that other
choices of an internally independent sub-set of the elements C , such

B
as (023, ChS.")’ cen give, in any given case, a different result.
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Tables 8.4a and 8.4b give the observed Q-correlation matrices for
the cumlative pair-distribution functions G(s, a) and the shell popula-
tions Ysa of realization B34, The matrices are of course symmetric; the
below-diagonal elements have been omitted. We note immediately the
presence of strong Q-correlation among the cumilative palr-distribution
function observations; all the off-diagonal elements of the correlation
matrix are positive and most are greater than one half. The correlation
matrix for the shell populations, on the other hand, shows off-diagonal
elements of variable sign and smaller magnitude, the situation which we
anticipated in Chapter 7.

Table 8.5 exemplifies the above tests as applied to both of the sample
correlation matrices of Table 8.4, We note that the determinant C lies
within one theoretical standard deviation of 1ts expected value in the
case of the shell populations, while for the cumlative pair distribution
functions it is nearly zero, the deviation being more than six times the
standard deviation. The first result can be interpreted as being con-
sistent with the hypothesis of negligible a-correlation among shell
populations, while the second merely confirms the strong correlations
apparent by inspection of Table 8.4a., However, Table 8.5 shows that the
X°- and u-tests of Eq. (8.8) give somewhat exceptional results when
applied to the shell population correlation matrix, Table 8.4b, This is
probably more indicative of the procedural defect already mentioned,
than of the presence of appreciable o~-correlation in realization B3k,

For example, the alternative set (023, ChS’ C67) gives
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TABLE 8.4 OBSERVED 0~CORRELATION MATRTCES

FOR REALIZATTION B34

(a) Cumlative Pair-Distribution Function &(s, )
o P 1 2 3 L 5 6 7 8
1 1.00 0.69 0.46 0.41 0.39 0.27 0.20 0.26
2 1.00 0.77 0.65 0.65 0.58 0.55 0.56
3 1.00 0.91 0.86 0.79 0.T4 0.71
b 1.00 0.93 0.85 0.79 0.75
5 1.00 0.9 0.89 0.86
6 1.00 0.94 0.92
7 1.00 0.96
8 1.00
(b) Shell Populations Y ot
af 1 2 3 4 5 6 7 8
1 1.00 -0.03 -0.15 0.11 0.09 =0.25 -0.1l7 0.23
2 1.00 0.08 0.02 0.19 0.31 0.1% -0.03
3 1.00 0.28 0.0% 0.1l7 -0.,07 -0,15
b 1.00 -0.00 0.06 -0.11 -0.03
5 1.00 0.4%  -0,02 0.17
6 1.00 0.06 0.0k
T 1.00 0,12
8 1.00
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P[x?(3)] = 0.05-0.10, P(u) = 0.70. Thus, we feel entitled to accept
the hypothesis of negligible o~correlation among shell populations, on
the basis of the general appearance of the sample correlation matrix,
Teble 8.4b, as well as the reasonable value of its determinant C, unless
subsequent investigation of neighboring realizations should for some
unexplained reason show a tendency towards strong correlations within
the set (Cy,, C}h"")'

In Table 8,2 we display, for most of the 48-molecule realizations,
the statistic [C - E(C)]/D(C), along with the value E(C)/D(C) for

comparison, as well as the statistic P(u) corresponding to Eq. (8.8).

8.4 Survey of the Randommess and Correlation

Tests for the 48-Molecule Reglizations;

Division Into Classes A, B, and C

Although there still remained the desirability of making more direct
tests for approximate normality of the distribution of the coarse-grained
observations, we paused at this point to assess the results of the tests
already described, which are directed primarily at the assumptions of
s- and o~independence,

Inspection of Table 8.2 immediately shows that the combined assump-
tions are certainly untenable for realizations in the mid-range of
T = 1.254 to T = 1.4 inclusive (the exact limits being, of course, rather
arbitrary). The exceptional character of these realizations is particu-

larly obvious in the colum of normal deviate fractiles [P(u)] for the
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8.4

correlation test; all of the 15 tabulated values exceed 0,5, and all but
three are greater than 0.9. The values for the randomness tests are
almost equally striking: In the runs test all but 2 out of 16 values are
less than 0.3, The probability, under hypothesis A, that more than two
values should exceed 0.3 1is greater than 0.9995.

These results were not unexpected, particularly in the case of
realizations with T = 1.3 to 1.355, whose "jumpy" control chart behavior
was sufficient warning of the inadequacy of hypothesis A, Our quantita-
tive tests verify this, and further indicate that the anomaly persists to
reduced areas appreciably to either side of the jumpy interval.

From this point on we divided the 48-molecule realizations into
classes A, B, and C as indicated in Table 8.2. There is, of course, a
considerable element of arbitrariness in the classification, since it is
based primarily upon the statistics themselves., Bowever, it seems likely
that the classification does indeed reflect in a rough way the changes in
the topology of the configuration space of the system which take place

with increasing .

8.4.1 Class A, 7 = 1.0 - 1.2k,

For each test of the hypothesis of s- and a-independence we have in
Table 8.2 a value P(u) from each of the 13 realizations in this class.,
Under our assumptions, within a given type of test each of the 13 values
of P(u) should be a random sample from the uniform distribution on the

interval (0, 1).
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8.4

Considering first the correlation test, we note that P(u) for
realization Bl is somewhat exceptionally large. However, the binomial
distribution shows that the probability of'obtaining one or more values
2 0.9975 in 13 independent samples is about 3.2%. The latter, though
small, is not extremely so. Considering the set of 13 values as a
wvhole, we find that their average P 1s ~ 0.61. The theoretical average
is, of course, 0.50, while the theoretical variance of such a mean of
13 randomly sampled values from the uniform distribution is G%g) . G%i)
= 0.00641, corresponding to a theoretical standard deviation of about
0.080. Thus, we conclude that the observed set of P(u) values -is
reasonably consistent with the hypothesis of negligible s. and Q~correla-
tion.

Applying the same conslderations to the runs test and the mean-
square successive-difference ratio test statistics in Table 8.2 for
class A, we find P = 0.41 and 0.43, respectively. These values are again
quite consistent with our assumptions. Thus, we conclude that for the
realizations of class A, {ime-smoothed shell populations with
At = 19 200 are approximately s- and o~independent, subject to further

tests of the normality of their sampling distributions.

8.4.2 Class B, 7 = 1.254 1.k,

We have already mentioned that Table 8.2 shows the combined
hypotheses of s~ and a-independence to be untenable for these realiza-
tions. The presence of s-correlation is, of course, especially noticeable
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8.k

in the case of the "jumpy" realizations, However, the statistics in
Table 8.2 also suggest the presence of less obvious types of serial
correlation, since the values of P(u) from the runs and m.s.s.d.r. tests
tend to be small both for non-jumpy realizations such as Bl6, Bl7, B28,
and B29, as well as for different '"plateaus" of jumpy realizations such
as B19 and B20. The presence of serial correlation can also be argued
in the following way. If the observations were s-independent but
positively a-correlated, then the runs or m.s.s.d.r. statistics P(u) for
independent realizations (or independent plateaus within a given reali-
zation) would be independent samples from a distribution which would no
longer be uniform on (0, 1), but which would still be symmetric about
P(u) = 0.5. In such a case, the 16 values of P(u) given in Table 8.2
for either of these randommess tests would be expected to be approxi-
mately evenly divided above and below 0.5. Such is far from the case,
so that we conclude that for realizations of this class the value

At = 19 200 is not nearly large enough for consecutive time-smoothed
observations to be time-independent.

As might be expected, investigation of larger values of At ylelded
some, but not sufficient, improvement. (The upper limit of At is in
practice limited for a realization of a given length t by the practical
worthlessness of the above statistical tests when the sample size de-

creases much below n = 20, )
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8.5

8.4.3 Class C, T = 1.5 = 3.9

Applying the procedure used for class A to the 10 realizations
in class C, we find the average P for the correlation, runs, and m.s.s.d.r.
statistics to be 0.60, 0.48, and 0,39, respectively. These compare favor-
ably with their theoretical value 0.5 and theoretical standard deviation
0.091.

Thus, we conclude that the At = 19 200 coarse-grained observations
on these realizations may be regarded as temporally and spatially inde-

pendent, again subject to further tests for approximate normality.

8.5 Tests of Normality

It remains to inquire as to whether the observations for the class
A and C realizations with At = 19 200 can be reasonably regarded as being
sampled from uncorrelated miltivariate normsl distributions, The nega-
tive results from the correlation and randommess tests on the class B
realizations make it superfluous to test them for normslity.

For this purpose we examined only the marginal distribution of eaéh
shell population sample, Of the various tests for approximate normality

we chose the coefficients of skewness Gl and excess G, defined by

2
Cra.mér,35
Gla ) - z (Ysa _?‘a)3 )
(n-—l)(n—E)sé el
(8.9)
n

(n-1) n(n+l) —
20~ ¥ -X - 3n -1
20 (n_g)(n_3)-{(n_l)252 [ szg( so a) ] 3( i}
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These statistics have a disadvantage in that their exact distributions
are unknown. Cre.mér35 gives the following exact expressions for their

means and variances:

E(Gl) = E(GE) =0 |,

2 6n (n-1

D (Gl) = (n-2)?£21)%n+3) ’ (8.10)
2,0y 2in(n-1)°

(%) = G ) @sI sy

The distribution of Gi is symmetric; that of G2 is not. For large values
of n, of course, the distributions will tend towards normality by virtue
of the central 1limit theorem.

Approximate values of the 0,01, 0.05, 0.95, and 0.99 fractiles of the

statistic

/o, = ig:gl__.g
1 1
n(n-l

for n 2 25 are tabulated by Pearson and Hartley,36 based on Pearson-type
distributions having the correct first four moments. These values for
sample sizes of interest here are compared with those of the asymptotic
normel distribution in Table 8.6, from which it is seen that for our
purposes the normal approximation is adequate,

The same author536 also give similar approximations for the statistic

b n-2)(n-3) o+ fn-l

2 = Ta-I)(n+L) 2
but only for n = 200, The distributions of these coefficients of excess

apparently approach normality much more slowly with n than do those of
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G
TABLE 8. (a) 1
6 APPROXIMATE FRACTITES OF--ﬁUE:-l-y

Sample Size Fractiles
n 0.95 0.99 I
25 1.635 2 43
30 1.631 2.424
40 1.635 2,41
50 1.633 2.41;
100 1.63g 2.385
© (normal) 1.645 2.32g

% From reference 36, The 0,0l and 0,05 fractiles follow from the
tabulated fractiles and the symmetry of the distribution.
the coefficients of skewness. Approximations of uncertain validity for
n = 40 and 100 recently discussed by Pearson37 are compared with their
asymptotic normel distribution in Fig. 8.1. The deviations are quite
large, with marked skewness even for n = 100.

Table 8.7 shows our analysis of the observed coefficients of skew-
ness of the shell populations sampled in realization B34, Under hypothe~
sis A,each value of Gla is an independent sample from a distribution
which is approximately normal with zero meen and standard deviation
given by Eq. (8.10) The preponderance of positive values makes it clear
that the hypothesis is doubtful. As with the other statistical tests,

a more quantitative measure is obtained by comparing the sample mean

ai of these K = 8 values with its theoretical standard deviation
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Fig. 8.1 Pearson approximations to the distributions of the coefficient
of excess G,, for sample sizes n = 40 and 100, compared with the asymptotic
(n = ®) norfial distribution.

TABLE 8.7

SKEWNESS TEST FOR REALIZATION B34

n = 49
K =38
D(Gla) = 0.340
o 10
1 -0,141
2 +0,110
3 0.%9
4 0.67h4
5 0.426
6 0.642
7 0.27h4
8 -0.079
Gl = 0,358
K G-
1
u = = 2.98
D Gla
P(u) = 0.9986
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Under our hypothesis and approximations, the statistic

u = 1 (8.11)
5(G,) '
should be a standardized normal deviate., The fractile value 0.9986 for
realization B34 makes hypothesis A doubtful, particularly the assumption
of normality of the sampling distribution.

The coefficients of excess GEa from the same set of observations
were analyzed as shown in Table 8.8. An approximate fractile P(G2a) was
obtained graphically from Fig. 8.1 for each shell, Under hypothesis A,
each of these eight values should be an independent sample from the
rectangular distribution on the interval (0, 1). The mean P of these
elght values should then be approximately normally distributed58 with

1
mean 0.5 and standard deviation (8 ¢ 12)72, Thus, the normal deviate
_P-05

1
8.12

u

tests the hypothesis. For realization B34 the fractile value obtained is
0.957, which would make the hypothesis of normality somewhat doubtful,
considering this realization in isolation from the others.

Because of the somewhat uncertain validity of the Pearson approxi-
mation to the distribution of the coefficient of excess, we restrict

ourselves to reporting in Table 8.2 the fractile value P(u) obtained by

applying Eq. (8.11) to the coefficients of skewness of the shell popula-

tions sampled by the 48-molecule realizations of classes A and C.
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TABLE 8.8

EXCESS TEST FOR REALIZATION B34

n = 49
K=28

D(Gaa) = 0.668

Géa

Coo/D(Cpg,) P(Gpy)

-0.224
-0.488
+2,045
-0,082
-0,018
+0.583%
+0.796
+1.420

O~ O\ WD R

P =

P(u)

0.676

-0.335 0.42
~0.730 0.22
+3,061 0.98¢
-0,123 0.52
-0.027 0.57
+0.873 0.84
+1.191 0.89
42,125 0.96
- 0.676 - 0.5 _ 1.72
1
B8.12

0.957

Note that in Table 8.2 all but two out of 23 values of the skewness

statistic are greater than 0,5, and indeed 17 are greater than 0.90.

These results, particularly in view of the known symmetry of the distribu-

tion of G, under the null hypothesis, leave little doubt that with

1

At = 19 200 the sampling distributions of the time-smoothed shell popula-

tions are appreciably positively skewed., Indeed, the control charts had

given some prior indication of this,
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Larger values of At would presumably tend to reduce the skewness,
but an investigation of class C with At = 38 LOO showed only slight
improvement, Still larger values would result in unsatisfactorily small
values of n.

The coefficients of excess, not reported in detail here, were some-
what better behaved, in particular yielding P(u) values scattering some-
what better above and below 0.5. By themselves, they might indeed be

consistent with the hypothesis of normality.
8.6 Conclusion

The results of the preceding section indicate that even for the
realizations of classes A and C, for which the time- and space-correla-
tion statistics were reasonably well behaved, hypothesis A is not
strictly valid. However, the presence of a moderate amount of skewness
is not likely to seriously invalidate the tests for the two types of
correlation, so that we feel justified in carrying out by more or less
standard techniques the numerical differentiation which is required in
order to reduce the data to values of the compressibility factor.

In class B, on the other hand, the results of the two varieties of

correlation tests strongly indicate a somewhat modified procedure.
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9.1

Chapter 9

NUMERTCAL DIFFERENTTATION BY LEAST SQUARES

REGRESSION ANALYSIS

9.1 Introduction

According to the procedure briefly outlined in Section 7.5, the
basic assumption underlying the regression analysis is that the theoretical
shell populations na for a given realization can be represented by a trun-

cated power series

\Y]
= )80, a=1LK (9.1)
i=0

the omitted terms being assumed to be in some sense small compared to the
statistical fluctuation of the observations. In Eq. (9.1) both the degree
v of the polynomial and its coefficients Bi are unknown and are to be esti-
mated from the data.

Let us suppose that v is known, and outline the familiar problem of
estimating the coefficients Bi from data consisting of a single observa-

tion Y of T, at each value @ = 1(1)X. The general minimm variance

solution to this problem was given by Aitken,39 and can be written as
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follows

b = (xf¢"lx)-le¢-lY s (9.2)

vhere b is the colum matrix (bo Dot bv5T of the estimates b, of the

2T i
unknown coefficients Bi’ and the superscript dagger indicates the trans-

posed matrix, The matrix x of K rows and y + 1 colums is

1 1 1 veo 1
1 2 4 cee 2V

x = 1 3 9 3V ) (9.3)
1 K K& e gV

while Y denotes the colum matrix (Y;, Y,, +«e Y’K)T of the observations,

and ¢ is the theoretical K-square covariance matrix of observations

Y3

oy = cov(YOga,) s o, = 1(1)K. | (9.4)
The covariance matrix of the estimates b,, 1 = 0(1) vtl, is

cov b = {cov bibi’} = (xT¢"1x)"l . (9.5)

The estimate b given by Eq. (9.2) is unbiased, i.e., the average of b in
the sampling distribution of the observations Y is B. It is the minimm
variance estimate, in the sense that of all linear unbiased estimates it
minimizes the variance of any arbitrary linear function of B.

Equation (9.2) is seldom directly applicable, since it assumes that

the theoretical covariance matrix ¢ is lknown, except for a perhaps unknown
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scalar mltiplier, In the latter case one writes

0 =0 , (9.6)
where @ is a known matrix and o- an unknown scalar. The estimate b given’
by Eq. (9.2) is evidently independent of 02, but Eq. (9.5) for its co-
variance requires an estimate s2 of 02, which can be shown to be appro-
priately (in the sense that the ensemble average of s2 is 02) taken in
the form

¥ ey v -0 - ) (9.7)

Here

y = xb (9-8)
denotes the least squares estimate (Yi’ ¥, ---yK) of the theoretical shell
population colum matrix T. The covariance matrix of b is then estimated

as

trel
(& I)c_‘f_l(y ) (xTe2x) . (9.9)

cov b =
Only in exceptional cases, of course, is the theoretical covariance matrix
known to within a scale factor.

The above equations are usually encountered in one of two specialized
forms. The next most general form is for the case of uncorrelated observa-
tions, ¢ being a known diagonal matrix, again aside from a possibly un-
known scalar, This is just the well-known 'weighted least squares' case.
Finally, if ¢ is just the unknown scalar 02 times the unit matrix, the

general equations reduce to the usual unweighted least squares procedures.

In all cases the only requirement upon the distribution from which the
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observations Ya are sampled is that its covariance matrix ¢ be positive
definite,

When more than one independent observation is available at each
value of &, say n observations Ysa? s = 1(1)n, the above equations are
unchanged, except that Y, is replacediby'T& (Eq. (8.3)], and ¢ is the
covariance matrix {cov Y;?&/} , equal to n~' times covCYagYa/S).

The advantage of a numer of independent observations at each & lies
in the possibility of testing assumptions about the covariance matrix @,
as in Chapter 8, where we tested the assumption that ¢ 1s diagonal, finding
it tenable in classes A and C, Miultiple observations also lead to the pos-—
sibility of making certain "goodness of fit™" tests, as will be described,

We should perhaps also mention that if a wrong assumption concern-
ing the form of ¢ is made, the estimate b is still unbiased, but the
estimate of its covariance matrix given by Eq. (9.9) becomes incorrect,
and in extreme cases may be grossly so.

The above discussion makes clear the role played in the regression
analysis by our assumptions of s~ and CG-independence. We note that the
third constituent of hypothesis A, the assumption of normal sampling
distributions, enters only if one wishes to obtain confidence interval
estimates from the estimated standard deviations,

The above procedures do not completely solve our data reduction
problem, since we must also estimate the degree v of the regression
polynomial. .We are not aware of any systematic statistical treatment of

this type of estimation problem., Our ad hoc procedure consists in
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calculating a sequence of regression vectors b(v) for increasing values

of v, and taking as the 'correct" degree V¥ the value at which the high

(v)
1

order coefficients b i > v¥, become statistically indistinguishable

)
from zero for VvV > v¥, The detailed procedure will be described in

Section 9.2.2.2. A similar statistical problem arises in the estimation
of virial coefficients from experimental p,V,T data, and has received a

somevhat different treatment by Michels and his coworkers.

9.2 ZRealizations in Classes A and C

9.2.1 Preliminary calculation of smoothed weights.

In Chapter 8 we saw that the hypothesis that the time-smoothed shell
populations Y_ (At = 19 200) were time-independent and spatially un-
correlated was reasonably consistent with the observations for realiza-
tions in classes A and C, In terms of the discussion of the previous
section, we may thus assume that the unknown theoretical covariance matrix
¢ 1s diagonal, and that each observation Ysa is an independent estimate of
the theoretical value ﬂa .

It remains to inquire whether or not ¢ can be reasonably assumed to
be a scalar times the unit matrix. Somewhat to our surprise we found
that in both class A and class C the sample variances si given by
Eq. (8.3) showed a systematic decrease with increasing . This 1s shown
for realizations B2 and B34 in Fig. 9.1l. This dependence was strongest
for the high density realizations of class A, but noticeable for all

realizations except B35, B36, end B37 at low density and small K.
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Fig. 9.1 Dependence of the shell population variances 52 on the shell
number @, for realizations B2 and B3L4, o

Thus, it seemed desirable to use a welghted least squares procedure
in estimating the compressibility factor. The most direct method would

have been to take the diagonal terms of the matrix ¢ [see Eq. (9.6)]

to be

o = n-ls2
P = o °

However, we decided to perform the following preliminary least squares
smoothing of the sample variances (which in retrospect seems overly
elaborate).

The standard deviation S of a set of n independent observations

from a normal distribution with variance ci is it{self approximately

normelly distributed’™ with
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2

2 o
D (sy) M stmy

Since it was somewhat more convenient to smooth s&l , and since by the

(9.10)

usual approximation
-1 o
2,.-1 < o 2 1
a 2(n-l)o’a

we carried out a linear least squares smoothing of the observed reciprocal

standard deviations by minimizing the sum of squares

K
2 - PR R, Y-
B -2) = Ywies -807 (9.12)
=1
with weight factors
v =2 - ;1_)s2 (9.13)
a (0 ’

and smoothed reciprocal standard deviations

A=l
8, =&, * a,@ . (9.1%)

The curves in Fig. 9.1 are drawn through the corresponding smoothed
values §(2x « A crude goodness of fit test of this smoothing procedure

is obtained by comparing the value of x2 (K - 2) given by Eq. (9.12) with
the fractiles of the standard chi-square distribution with K - 2 degrees
of freedom. The value for realization B2 falls in the interval 0.5-0.6,

that for B34 in the interval 0.05-0.10; both are regarded as satisfactory.
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9.2.2 Shell population regression analysis,

Our data reduction program carried ocut the least squares calcula-
tion of Section 9.1 with the observational vector Y equal to the mean
vector CYi, Té, ---Tk) for a given realization or a specified portion
(plateau) thereof, and with a number of options with regard to the
covariance matrix @, We will here be concerned with three of these
alternatives. The first and most commonly used one is that in which the
matrix is diagonal, with the diagonal elements determined by the linear

smoothing procedure of the previous section:

%a' = n"lég 6004' . (option 1) (9.15)
The second alternative was simply the usual unweighted least squares
procedure with
o/ v (option 2) (9.16)

while the third method took ¢ proportional to the unsmoothed, non-diagonal

sample covariance matrix,

n

G’ =TT L (eq = To) Mgt =T+ (option 3)  (9.17)
8=l

The last procedure corresponds, for the general case of correlated observa-

tions, to the commonly encountered weighted least squares practice of

using weight factors computed from the sample variances, i.e., using in

Eq. (9.15) the sample variances sg instead of the smoothed values gi .

263



9.2

In all three options the subsequent analyses of variance and good-
ness of fit tests are approximste only, since they proceed by way of
assumptions about the true theoretical covariance matrix ¢. In options
1 and 3, the approximation consists in the first place in assuming that
¢ 1s an unknown scalar 62 times the known matrix @, which in the second
place depends stochastically upon the observations Ysa « In option 2
the approximation consists in ignoring the apparent inhomogeneity of the
Yrue variances cg .

The matrix inversions required in the calculation of the estimate b
given by Eq. (9.2) were carried out by a row-by-row Gram-Schmidt
orthogonalization process carried out in double-~precision floating-point
arithmetic on the IBM 704 calculator. In options 1 and 2 this process

was checked for numerical accuracy by an independent single-precision

least squares method based on orthogonal polynomials.

9.2,2.,1 Analysis of variance and goodness of fit.

We will describe our procedure in detail for the most used case,
option 1; the procedures for the other alternastives were obvious modi-
fications. The general method, as already mentioned, is based upon
s'bandardprocedureshz for the situation in which ¢ is known aside from
a multiplicative scalar; in the present case ¢ is assumed to be given by
Eq. (9.6), with @ given by Eq. (9.15). Since ¢ is defined as the co-
variance matrix of the sample mean vector CTi, Y, ---Tk), under the above

approximation and for a given value of v there are available two

26k



2.2

statistically independent estimates of the scalar 02 . The first of these,
which we will designate as 3(2) , is calculated from the residual devia-

tions by means of Eq. (9.7),

2 -1 towl
@ L kvt -ty -, (9.18)
and has

f(2) =K-v-1 (9.19)

(1)°

degrees of freedom, The second, designated as S , 1s obtained from the
internal variances of the K sets of observations YsoP
K

a=1

(9.20)

NH4

Qm%JQ

and has
£ _x@m - 1) (9.21)

degrees of freedom,

Since the approximate "true" variances §§ were obtained by smoothing
the observed sample variances sg , the value of s(l) calculated from

(9.20) is always close to unity. Indeed, our statistical analysis
could equally well be carried out, with no significant change in our
conclusions, under the assumption that the "true" value of 62 is exactly
1; the F-test to be discussed in the next paragraph would then be re-
placed by a chi-squared comparison of 8(2)2 with its theoretical value 1.

If the given value of v is exactly correct, that is, if the theoreti-
cal shell populations ﬂa are exactly representable by a polynomial of

degree v, then, subject to all our other statistical assumptions and
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approximations, the ratio

(2)?
F(f(g), f(l)) ='§?1—-)—2- (9.22)

43 (2) _q £ ().

is a random sample from the F-distribution = with parameters f
Comparison of the calculated value with the tabulated fractiles of the
distribution thus affords an approximate goodness of fit test of the
given value of v,

If this test indicates that the observations are compatible with
a theoretical polynomial of degree v, an improved (in principle, at
least) estimate of the unknown scalar 62 can be obtained by the usual

pooling of the two independent estimates:

4m¢=fagaﬁ+f@gmﬁ

DN G ’
£(12) _ L) L2 (9.25)
(12)2 2
The estimate S of ¢~ is then used, in conjuction with Egs. (9.5),

(12)

(9.6), and (9.15) to obtain an estimate (with f degrees of freedom) of

the covariance matrix of the estimate b:

2
8(12) (XT$-lx)-l . (9.24)

These procedures as applied to realization B34 are illustrated in

covdb =

Table 9.1 for v =1, 2, and 3, We note that all three of the resulting

goodness of fit statistics F have non-exceptionable values. This indicates
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TABLE 9.1 GOODNESS AND DEGREE OF FIT TESTS FOR REALIZATION B3k,

UNDER WEIGHT OPTION # 1

s = 2(1) 50; n = 49, K=28

2
s _ 0.9971, 1) _ gy

2 2

v 23 B (@) say py (127 £(2)  (12)) iy

1 0.718 0.2 0.3-0.5 0.99% 390  -k.68 < 0.0005
2 0.799 0.80  0.3-0.5 0.995 389  -0.56  0.2-0.3
5 4 0,999 1.00  0.5-0.7 0,997 388  40.00 0.5

that polynomials of degree one through three can adequately represent

the observed (~dependence of the mean shell populations T& (an abnormally
large value of F would indicate a polynomial of too low a degree to
follow the indicated variation of T with &) with no apparent tendency to
reproduce the statistical fluctuations in the T& (as may be indicated by
too small a value of F). This insensitivity is typical of the behavior
of the F statistic, which is not adequate to select the appropriate
degree of fitting polynomial in cases such as ours, precisely because it

does not include any test of our convergence assumption that contribu-

tions of higher order terms of the power series are in some sense
negligible. The test is usually of use only in showing that a particular
value of v is too low. This would have been the case, for example if we

had included in Table 9.1 the value v = O,
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Thus, we see that in order to select a particular value of v we
need a test which explicitly involves an examination of the smallness

of the higher order terms of the power series.

9.2.2.2 Degree of fit test,

Let us suppose that a polynomial of degree v¥ exactly represents the
theoretical shell populations no? o = 1(1)K for a given system, Obvious-
1y a polynomial of degree K - 1 will certainly represent these K discrete
points; we require the much stronger condition that the corresponding
(by Eqs. (7.%) and (7.6)] polynomial of degree v* + 1 and zero constant
term exactly represents the theoretical cumulative palr-distribution
function G(Qa) for all @, particularly non-integral values, in the inter-
val (0, K). Consider then a regression analysis carried out with
Vv = V¥ + 1 on the observations obtained from a realization appropriate
to the system in question, and suppose that hypothesis A is satisfied.
Then the highest order theoretical coefficient Bv*+l is zero., Its esti-
mated value bv*

+1

replication of our over-all experiment (which consists of generating an

will, of course, not usually be exactly zero, but upon

independent realization of given length n with the given observational
parameters, then carrying out the least squares data reduction as de-

scribed in the previous sections, with v = v¥ + 1) the estimate should
fluctuate about zero with a variance which is estimated by Eq. (9.24%).

Ll

Thus, the usual t-test ' with

bv*+l

t(f) = p (9.25)

VL, VEHL
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which tests the hypothesis Bv*+l = 0, 1s a test of the hypothesis that
a polynomial of degree V¥ represents exactly the theoretical shell popu-
lations. In Eq. (9.25) 52 is any estimate with f degrees of freedom of
the scalar 02 of Eq. (9.6) which is statistically independent of bv*ﬁl'
Following the discussion of the previous section, it will usually be the

2
(12) with £ = f(lg) obtained from the regression

pooled variance s
analysis with v = v* + 1, but either 5(1)? or 827 with £ = £1) o £(2)
could be used.

It can be shown that the above test utilizes all the information
obtainable by comparison of the lower order coefficients of the two fits
of degree v¥ and v¥ + 1. Futhermore, if the hypothesis v = v¥ is correct,
it is easy to show that the "best" (i.e., minimm variance) estimates of
the coefficients Bi are the values bi obtained with v = v¥, The bi ob-
tained with v = v¥ + 1 are, of course, unbiased estimates of Bi’ but
have inherently greater variability [which variability is, of course,
correctly estimated by Eq. (9.24%)]. On the other hand, if the hypothesis
v = v¥ is incorrect, i.e., if we make an "error of the seconéLk:Lnd.,"l"5
the estimates obtained from the v = v¥ regression are in general biased.
Thus, it would appear to be desirable, in applying the above test, to
use rather wide rejection zones (for example rejecting the hypothesis
v = v¥ when P(t) < 0,05 or > 0.95, corresponding to making an "error of

the first kind," i.e., rejecting the hypothesis when it is true, on the

average in one experiment in ten).
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The test as outlined makes no allowance for information obtainable
by comparing still higher degrees of fitting polynomial, e.g. v = v¥ + 2,
etc. Since the largest value of v¥ which we encountered in this investi-
gation (see below) was 3, with the most common values being 1 and 2, this
defect does not seem particularly serious. The test also makes no allow-
ance for the fact that a polynomial of finite degree cannot and need not
exactly represent the theoretical shell populations, Again, since the
observational parameters were chosen with the intention that v¥ should be
small, this does not seem to be a serious defect,

A far more serious deficiency in the procedure as outlined is that
the resulting degree v of the fitting polynomial is a stochastic variable
whose choice has a considerable effect on the estimates bi (and therefore
on the estimate of vy, and on the final estimated compressibility factor),
but whose uncertainty is not taken into account in our estimate Eq. (9.2}%)
of the uncertainty of the estimated regression coefficients. We have
tried to reduce this extra uncertainty by taking into consideration,
during the data reduction for a particular realization, the indicated
behavior of v for other realizations at the same or nearby values of T,

The above-described procedure is illustrated for realization B34 in
Table 9.1, The very small value of the fractile P(t) for v = 1 indicates
that the regression polynomial of degree v = O (not computed) is in all
likelihood inconsistent with the observations. On the other hand the
values of this statistic for v = 2 and v = 3 are quite consistent with

the hypothesis v¥ = 1, a value which is also in agreement with other
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realizations with similar parameters. Therefore, we take as our 'best"
estimate of the theoretical shell populations the polynomial of degree 1,
whose coefficients are displayed in Table 9.2 along with those for v = 2
and 3, The‘tabulatediuncertainties are the estimated standard devia-
tions given by Eq. (9.24); the covariance terms are not given.,

In Fig. (9.2) the observed mean shell populations Y& are compared

graphically with the above linear regression function.

9.2.3 Estimating the compressibility factor.

From Eq. (7.8) we see that for the estimation of the compressibility
factor pV/NkT we require an estimate of the first coefficient 71 of the
truncated power series expansion, Eq. (7.4), of the cumulative pair dis-
tribution function. Equation (7.6) shows that 7, is just a linear com-
bination of the shell population coefficients Bi’ so that the appropriate

estimate is just the same linear combination of the estimates bi:

(2)

7l~bo+-§-bl+ Z (‘l)JH_BJsz . (9.26)
J=1

We use the approximately equal symbol a to indicate that the quantity on
the right is a statistical estimate of that on the left, rather than
introduce a special symbol for the estimate of 7y In matrix notation

this equation can be written

1-
YLRAD (9.27)
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TABIE 9.2 REGRESSION POLYNOMIALS FOR REALIZATTION B3k

SHELI, POPULATIONS UNDER WEIGHT OPTION # 1

(v = o022 (o = 50" (s 2 o) (o 2250 "

1  5.6189 % 0.0702 -6.372

I+

1.350
6.312 -3.785

I+
I+

2  5,5599 £ 0,1266 -2.917 6.755

49 42 2,046 £ 359.6

I+
I+

3  5,5589 % 0.2237 -2.810 * 19.92 -4,063

57 T T T T T T T T l T T T

n-(l

Mg. 9.2 Comparison of the observed shell population T& of realization

B34 with the least squares straight line computed for weight option # 1.
The vertical flags indicate one estimated standard deviation,

S = n-lsoﬁ to either side of T&. The light curves are error hyperbolas
o
drawn one estimated standard deviation 55;2) around the regression line,
o
The variation of the regression line with the different weight options
is not perceptible on this graph.
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where A\ is the columm vector with components

N =1
A =3
Ny = (1B
J=1,2,000 I (%), if v > 1; zero otherwise.
M = O

Then the estimated variance of the estimate Eq. (9.27) of 7, 1s

Tl

2 5(12)2 xf(x XN . (9.28)

71

S

Finally, this estimate of y; is used in Eq. (7.8) to obtain an
estimate of the compressibility factor un = pV/NkT, the estimated variance

of which is
si = (UE/EArE)Es§; . (9.29)

In this equation o is the hard-sphere diameter, not the theoretical scalar
of Eq. (9.6).

Table 9.3 shows these estimates as obtained for realization B3k,
using the three different weight options; the degree of fit test of Section
9.2,2.2 indicated the linear fit v = 1 in all three cases. The degrees
of freedom associated with these estimated standard deviations are so

large (f(lg)

= 390) that for purposes of assigning confidence intervals,
etc., the t-factors for f = ® can be used, providing one is willing to
accept the various approximations and assumptions involved, particularly

the uncertainty and possible bias introduced by the degree of fit
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TABLE 9,3 ESTIMATED CUMULATIVE DISTRIBUTION FUNCITONS AND

COMPRESSIBILITY FACTORS FOR REALIZATION B34

Weight Option 71'Ar2'lo2 72'(Ar2)2'10h %%&E
#1 5.587 ¥ 0,064 -3.186 ¥ 0,675 3.384 £ 0.027
#2 5.585 £ 0,062 -3.162 & 0.676 3.38% £ 0,027
#3 5.579 £ 0,063 -3.052 £ 0,628 3,38 * 0,027

selection, Section 9.2.2.2.

The rather close agreement of the estimated standard deviations given
in Table 9.3 for the different weighting procedures is due primasrily to
the use in Eq. (9.28) of the pooled estimate 3(12)2 of g°. Owing to the
large value of f(l) compared to f(g), 8(12)2 is dominated by 5(1)2, the
within-shell estimate of 02, which i1s essentially common to all three
weighting procedures. If we had chosen to base our estimates instead on
5(2)2 , the estimate of 02 obtained from the variance of the average
shell populations about the regression curve, the standard deviations
given for this particular realization in Table 9.3 would have been
slightly smaller, and for all realizations would have tended to vary more
with the weight option. Confidence interval estimates, if made, would
then, of course, use the t-factors for f(g) = 6 degrees of freedom,

Such a procedure would have the advantage that the basic statistical

assumption would then be hypothesis A, but with At equal to the entire
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length of the realization. The assumption that the sampling distribu-
tion of Y& is normal with mean ua is certainly better than the assump-
tion that the (At = 19 200) Ysa are s-independent samples from a normal
distribution, also with mean &, The assumption of negligible a-correla-
tion, on the other hand, is not necessarily improved by increasing At
(though 1t 1s not likely to become worse).

In any case, in classes A and C the analysis of Chapter 8 indicates
that the stronger assumption is reasonably tenable, and we have chosen

to use it.

9.2.4 Survey of regression analysis results.

In Table 9.4 are displayed the goodness of fit and degree of fit
statistics for the realizations of classes A and C, and the estimates
of the compressibility factor and reduced pressure as well as their
standard deviations. In each case, except for realization Bl2, the
number of degrees of freedom associated with the standard deviation
estimates 1s so large as to be effectively infinite so far as the t-test
and confidence interval estimates are concerned,

The fractile values for the goodness and degree of fit tests are
seen to be more or less reasonably distributed over the unit interval.
For the goodness of fit test this can be interpreted as additional

(1) (2)?
support for the pooling of s and s . For the degree of fit
statistic it can be taken as an indication that our procedure has not led

to a systematic blas for all realizations, but it does not exclude the
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TABLE 9.4 REGRESSION ANALYSIS RESULTS FOR CLASS A AND CLASS C REALIZATIONS

Compressibility Factor Reduced Pressure and

Reali- Weight () Goodness of Fit Degree of Fit and Standard Deviation Standard Deviation
Class T zation Option 1n v F P(F) P(t) phA/NiT pA /NKT

A 1.025 Bl 1 159 3 2,29  0.995 - 0,999 0.65 80.399 * 0.292 78.438 ¢t 0.285
B2 1 9 3 0.89 0.3 - 0.5 0.10 80.315 * 0.366 78.356 t 0.357

B3 1 120 2  0.49 0.05 - 0.10 0.70 80.64L * 0,354 78.696 t 0.3k6

B4 1 99 2 1.64 0.5 -0.975 0.61 80.9%62 t 0.388 78.987 t 0.378

1.0Lk0 BS 1 99 1 1.07 0.5 - 0.7 0.08 50.995 * 0.215 49,034 * 0.206
1.074 B6 1 98 2 0.8 0.3 - 0.5 0.34 97.199 * 0.737 90.502 * 0.686
1.075 B7 1 37 2 0.13 0.001 0.58 28.216 * 0.158 26.247 * 0.147

B8 1 49 1 0.79 0.3 0.28 28,301 * 0,146 26.326 * 0,136

1.124 B9 1 20 2 117 0.5 -0.7 0.19 29,042 % 0,208 25.838 £ 0,185

B10 1 57 2 0.7+ 0.1 -0.3 0.46 29.388 t 0.237 26,146 t 0.211

1.125 B11L 1 32 2 1.8 0.9 -0.% 0.63 17.666 * 0,084 15.703 * 0.074
1.150 nel®) o 35 2 - - 0.3 - 0.4 42.587 * 0.25h4 37,032 * 0,220
1.169  Bl3 1 32 1 2,45 0.975 - 0.99 0.86 18.545 £ 0,104 15.864 * 0,089
1.12%  BlL4 1 9 1 0.73% 0.3 . 0.5 0.92 10.277 % 0,039 8.288 t 0.032

C 1.500 B% 1 % 2 0.9% 0.5 - 0.7 0.15 6.675 * 0.065 4.450 * 0,04k
B31 1 150 2 1.17 0.5 - 0.7 0.8 6.545 * 0,032 4,363 * 0,022

1.650  B32 1 37 1 0.9 0.5 - 0.7 0.29 5.099 ¥ 0.0k2 3.090 * 0,025
1.750 B33 1 Lo 1 1.3 0.7 -0.9 0.58 L4217 * 0,036 2.530 * 0,021
2,000 B34 1 49 1 0.72 0.3 =~ 0.5 0.29 3,384  * 0,027 1,692 t 0,014
2.400 B35 2 21 1 0.08% 0.001 - 0.005 0.43 2.597 * 0,026 1.082 t 0,011
3,000 B36 2 50 1 0.9% 0.5 - 0e7 0.66 2,063 % 0,012 0.6877 £ 0,0041
3,900 B37 2 26 1 1.05 0.5 - 0.7 0.76 1.6766 % 0.0103 0.4299 £ 0,0026

B38 1 49 1 0.3 0.01 - 0.025 0.70 1.6976 * 0,0056 0.4353 * 0,0014

B39 1 49 1 1.10 0.5 - 0.7 0.38 1.6960 * 0.0055 0.4349 £ 0,001k

 Por this realization, s(2) with f(a) = 15 was used in the degree of fit tests, and in obtaining the estimated standard
deviation of the compressibility factor and reduced pressure.

b The mumber of coarse-grained (At = 19 200) observations included in the least squares data reduction.
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possibility that we have chosen a polynomial of too low degree for any
particular realization.

At five reduced areas we have more than one realization, the
replicates being regarded as statistically independent either by virtue
of having different values of the displacement parameter &, or by virtue
of the presence of low order noise introduced by code A (see Section L4.2).
Comparison of the individual estimates of the equation of state obtained
from such replicate realizations is of interest as an additional check
upon the reliability of the internal precision estimates.,

Comparison of realizations having the same observational parameters
Ar2 and K can be regarded as primarily a test of the more straightforward
of our statistical procedures, since the same degree of regression poly-
nomial would be expected to be more or less appropriate to both realiza-
tions, unless one should happen to be much longer than the other., Com-
parison of realizations with different values of these observational
parameters can be regarded as more directly testing the reliability of
the degree of fit criterion of Section 9.2.2.2.

The pairs (Bl, B2), (B3, B4), and (B38, B39) have within each pair
common values of Ar2 and K, It is immediately evident from an inspection
of the entries for these pairs in Table 9.4 that the between-realization
differences of the compressibility factor estimates are consistent with
thelr internally estimated standard deviations. Furthermore, the degrees
of freedom associated with the latter are so large that inclusion of the

between-realization differences would change the estimated standard
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deviations only trivially.

All three of these pairs also enter into the comparison of realiza-
tions with different values of Ar2 and K, so that it is convenient to
pool each of these pairs into a single value of pV/NkT and an associated
standard deviation. This is appropriately done by weighting the indi-
vidual values by their number of observations n, it having been noted
that there was no apparent dependence of the sampling variances og upon
6, even in the case of the pair (B38, B39) in which the two members had
radically different values of this parameter. The pooled results are
given in Table 9.5.

Turning now to the comparison of realizations wilth different values
of Ar® and/or K, we will designate the individual results by . %8, and

1 1

n2 + 82, where u = pV/NkT, with the convention that subscript 1 designates

the realization with larger Arz, if the values of this parameter are

different, or that with larger K if the values of Ar2 are the same. Be-

TABLE 9.5 POOLED RESULTS FOR REPLICATE REALIZATIONS

FAVING COMMON VALUES OF Ar® AND K

pv on

Pair NKT NKT
Bl, B2 80.367 * 0.228 78.407 % o,222
B3, B4 80,798 * 0,261 78.828 £ 0,255
B38, B39 1.6968 £ 0.,0039 0.4351 * 0,0010
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cause of the large numbers of degrees of freedom involved, the simple

u-test (u = standardized normal deviate) is appropriates

u = ——— . (9.30)

If the hypothesis of a common theoretical mean is acceptable (we regard
the test as really being more a test of the reliability of the estimates
5, and 52), then the individusel values can be pooled into a single esti-

mate

12 -2 -2 ’

)
v/» 2 .2
81 =+ (8] +8;7] .

This analysis is displayed in Table 9.6. The values of P(u) obtained by
use of Eq. (9.30), and shown in the table, can be best described as only
marginally in accord with expectations based upon the validity of the
internally estimated standard deviations,

It is, of course, possible to make a direct comparison of the ob-
served average shell populations Y& and the corresponding sample variance
82 for replicate realizations, grouping shells to obtain common values
of Ca when Ar2 is different, The procedure is i1llustrated in Table 9.7

for the 11 shells which are common to realizations B30 and B3l at T = 1.5,
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TABLE 9.6 COMPARISON OF REPLICATE REALIZATIONS HAVING

DIFFERENT VALUES OF Ar> AND K

DV /NkT P(u)
T Realizations n+B (Eq. 9.30)

1.025 Bl, B2 (pooled) 80,367 * 0.228

B3, B4 (pooled) 80.7 % 0,261

A1l pooled 80,553 % 0.172 0.107
1.075 B7 28,216 * 0.158

B8 28.301 * 0.146

Pooled 28,262 * 0,107 0.346
1.124 B9 29.042 * 0,208

B10 29,388 * 0,237

Pooled 29,192 % 0,158 0.13%6
1.500 B30 6.6747 £ 0.0654

B3l 6.5450 £ 0,0%324

Pooled 6.5706 £ 0,0290 0.038
3.900 B3T 1.6766 £ 0,0103

B38, B39 (pooled) 1.6968 * 0,0039

A11 pooled 1.6943 £ 0,0036 0.967

the value of Ar2 being the same in the two experiments, We first test
the assumption that for given & the internal variances cg are the same
in the two sampling distributions, by means of the F-ratio fractiles
given in the fourth columm of the table., These 11 values of

P[Fa(hs, 149)] are seen to scatter reasonably well over this unit inter-
val, Under the null hypothesis their sum should be approximately38
normally distributed with meen K/2 and variance K/12, so that an

appropriate over-all statistic is the normal deviate
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TABLE 9,7 COMPARISON OF AVERAGE SHELI, POPULATIONS OF

REALTIZATIONS B30 AND B3l

281

Internal Variences Pooled Shell Populations
s° ;LoLL Variance ¥ - 10°
04 04
Realization Reali (p)?
ization Realization sa
B30 B3], B30 B3L
fa;hs fa;lh9 P[F&(M5,1M9)] fa;l9h na;hé n =150 ta(lgu)
0 437k 0,8321 0.0L 0.7405 0.98151 0.95634 1.73%6
0.8035 0.8746 0.38 0.858L 0.9%6654 0,95080 1,008
0.7993 0.6780 0.76 0.7062 0.91173 0.91730 -0.393
0.7182 0.6673 0.63 0.6791  0.90523 0.89077 1.0kl
0.8273 0.6L4L43 0.86 0.6867 0.8823 0.88133 0,074
0.6615 0.654L 0.53 0.6560 0.,84402 0,85921 -1.113
04237 0.5840 0.11 0.5468 0.84365 0.8481L4 -0,360
0.5851 0.5341 0.66 0.5460 0.8L794% 0.81833 -0,031
0.4651 0.5731 0.21 0.5480 0.81683 0.80261 1,140
0.5994 0.5538 0.64 0.5643 0.80526 0,79256 1,003
0.3361 0.4473 0.13 0.4216 0.77293 0.77612 -0.292
sum = 4,92 sum = 3,813
u = -0.61 u=1.15
P(u) = 0.27 P(lu]) = 0.75
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(&) [( )7

For the example of Table 9.7, u = - 0.61, and P(u) = 0.27, so that the
assumption of common theoretical variances ci is reasonable. Accordingly,

2
the two sets of values sg'were pooled to obtain the values s(P)

~ given

in the fifth columm. The assumption of common theoretical means ﬂa is

next examined for each shell by means of the t-test:h6

$(B30) _ H(B31)
Y -Y
£, (194) = ——= <

(p)< 1 1 ) )
s +
o néBBO) néle)

The 11 values of this statistic are shown in the last columm of Table 9.7.
For so many degrees of freedom the t-distribution is well approximated by
the standardized normal distribution, so an appropriate over-all statis-
tic is the normal deviate

K

1
u = K"EZta(lgu) =1.15 .
a=1

Since the above equation for ta(l9h) could equally well have been written
with the opposite sign, the appropriate fractile is P(Iul), equal in the
present example to 0.75. Thus, the agreement between realizations B30
and B3l is certainly statistically reasonable, which may be interpreted
as additional support for our over-all hypothesis A for these realiza-

tions,

282




9.2

The analysis could be continued further, pooling the two sets of Ya

to form a single set

(B30)(B30) (B31)(B31)
7@ o Yo *hy Ty ,
a némo) N né1331)

then carrying out a regression analysis and calculating a compressi-
bility factor using the set ?g?) according to the procedures of Sections
9.2.2 and 9.2.3. For the realizations at T = 1.5 we did not do so, but
in the case of the four realizations at t = 1.025, for example, we first
performed the above comparison and pooling (but not the subsequent re-
gression analysis) of realization Bl with B2 (which have a common value
of Arz), and also of B3 and B4, (B3 and B4 have one-half of the Ar®
value of Bl and B2, so that their shells were first grouped in pairs
to obtain shells of width equal to those in Bl and B2). The pooled
data from Bl and B2 were then compared as outlined above with those
from B3 and Bk, The comparison statistics P( l| ) so obtained are
shown in Table 9.8 along with those from other replicate realizations
in classes A and C. The values scatter reasonably well over the unit
interval, which tends to support hypothesis A for these classes.

Our final statistical conclusion for classes A and C is that while
the statistical errors in the average shell populations ?& are reasonably
well estimated by standard techniques, our estimated compressibility

factors have an additional unestimated component of variation, and a

Possible bilas, arising from the stochastic nature of the degree of fit
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TABLE 9.8 COMPARISON OF AVERAGE SHELL POPULATIONS IN

REPLICATE REALIZATIONS

Reduced Ar2
Area - 1082 —
T Realizations 48a K P{ H )

1.025 Bl - B2 15 9 0.95
B3 - B4 15 9 0.7h
(BL - B2) - (B3 - Bl4) 15 9 0.69

1.075 B7 - B8 13 4 0.55

1.124 B9 - BlO 13 4 0.30

1.5 B30 - B3l 13 11 0.75

3.90 B38 - B39 13 1% 0.62
(B38 - B39) - B3T 13 7 0.16

parameter v, Intuitive considerations suggest that arbitrarily doubling
the estimated standard deviations tabulated for the compressibility fac-

tor would result in an ample allowance for these uncertainties,

9.3 Class B Realizations

As discussed in detail in Chapter 6, there are serious uncertain-
ties in the physical significance of our Monte Carlo calculations in the
interval 1 = 1.254-1.40, However, some of the realizations, particularly
those near the end points of the reduced area interval, are reasonably
well-behaved and possibly represent averages over physically reasonably

well-defined regions of configuration space, Therefore, it seemed
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desirable to make some attempt to apply the systematic data reduction
procedures described in the preceding sections.,

As was seen in Chapter 8, our basic statistical hypothesis A is not
valid for realizations in this class, Thus, the procedures of Section 9.2
mist be modified to take account of the circumstance that the internal,

At = 19 200 shell population "variances" sé‘l)z no longer have their pre-
vious significance, since the At = 19 200 coarse-grained observations Ysa
from which they are calculated are evidently appreciably s-correlated,
Consequently the goodness of fit test discussed in Section 9.2.2.1 is

for the most part ignored, and the degree of fit criterion of Section
9.2.2.2 18 modified to use only the variance 5(2)2 of the average shell
populations ?& (the average being taken either over the entire realization,
or over a portion thereof; see below) about the estimated regression curve.
Similarly the estimated standard deviation of the resulting compressibility
factor is calculated from 5(2)2.

As indicated in Section 9.2.3, this procedure is based on the untest-
able assumption of s-independence with At = £, where € is the number of
elementary Markov chain steps included in the averages T& . Furthermore,
neither the presence of Q-correlation nor the homoscedasticity of the
variances cg can be examined for At = t with the available data. Thus,
the choice of the appropriate weighting procedure for the least squares
data reduction is somewhat uncertain. As was mentioned in Section 9.1,

a wrong weighting choice does not in itself introduce bias into the

compressibility factor estimate, but in general leads to erroneous
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estimates of its precision. The At = 19 200 variance sg displayed the
same systematic dependence on « that was noted in classes A and C, and
since this behavior might well persist at larger values of At, we for

the most part used linearly smoothed weight factors obtained from these
At = 19 200 internal variances, as described in Section 9.2.1. It should
be kept in mind thatl the precision estimates so obtained may be consider-
ably in error due to Q-correlation among the T& .

The results obtained in this way are summarized in Table 9.9. For
those realizations in which no apparent "jumps' occurred, the averages
T&'were taken over the entire run (with the usual omission of the first
coarse-grained point). In the "jumpy" realizations, the averages were
taken over "plateaus" which in some cases are reasonably well-defined,
but in other cases were rather arbitrarily chosen., Clearly, this sub-
Jective element introduces still further uncertainty into both the
significance of the quoted average and the associated precision esti-
mate, These points have already been discussed in Chapter 6, particularly
in Section 6.1.2. Here we simply emphasize again that such results should

be regarded as only qualitative at best.
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TABIE 9.9 REGRESSION ANALYSIS RESULTS FOR CLASS B REALIZATIONS

Degree of Fit Compressibility Factor Reduced Pressure and

Reali- (a) Height (v) t Standard Deviation Standard Deviation
T zation Plateau Option n v P ( t) PV/NKT 28 /NKT

1.254  B16 (B) 1 7% 1 0.9 11.645 * 0.051 9.286 * 0.041
1.275 B17 (L) 1 100 2 0.6 - 0.7 9.280 % 0.035 7.278 t 0,027
1.290  B18 (L) 1 b 1 0.5 - 0.6 8.886 t 0,039 6.888 £ 0,030
1,300 B19 2 - 80 (L) 1 79 1 0.8 -0.9 8.747 £ 0.0%6 6.728 * 0,028
8L - 150 (H) 1 7 2 0.1 -0.2 10,484 * 0,089 8.065 * 0,068

120 - 150 (H) 1 31 2 0.2 10.732 % 0,137 8.255 * 0,105

1.316 B20 2 .19 (H) 1 18 1 0.6 -0.7 10.017 * 0,100 7.612 £ 0,076
20 - 39 (L) 1 20 1 0.8 -o0.9 8.520 £ 0,068 6.474 * 0,052

K - 82 (H) 1 ¥ 2 0.6 -0.7 9.941 * 0,094 7.554 + 0,071

1.325 B21 (L) 1 ol 2 0.1 .o0.2 8.58% + 0,061 6.478 % 0.046
1.330  B22 1 - 14 (L) 2 4 1 0.7 -o0.8 8.359 £ 0,102 6.285 £.0.077

o 15 - 26 (B) 2 12 1 0.7 -o0.8 9.9k £ 0,056 7.492 t 0,042 ©
g]D 86 - 95 (L) 2 10 1 0.8 -o0.9 8.236 * 0,060 6.192 * 0,045 w

1.340 B23 58 - 18 (L) 2 21 1 0.1 .0Q.2 8.282 £ 0,098 6.181 t 0.07%
102 - 141 (H) 1 20 1 0.8 .o.9 9.370 £ 0,082 6.993 t 0,061

1.350 B2k (8) 1 26 1 0.5 -0.6 9.238 £ 0,075 6.843 t 0,056
B25 1- 16 (L) 2 16 1 0.9 . 0.95 8.174 * 0,065 6.055 £ 0,048

28 - Lo (EH) 2 13 2 0.2 .0.3 10.050 £ 0,136 7.4k £ 0,101

B26 (E2) 1 7 2 0.5 -0.6 9.37h t 0,056 6.944 £ 0,041

Y2 - 71 (H) 1 30 2 0.6 -0.7 9.674 0,122 7.166 * 0,090

1.355 B27 (") 1 48 2 0.7 -0.8 8.941 t 0,06L 6.599 t 0,047
1.375  B2B () 1 91 2 0.2 -0.3 8.667 £ 0.047 6.303 t 0,034
1.k00  B29 (7) 1 8 2 0,05 -0.1 8.080 * 0,053 5.771 £ 0.038

& If no numerical entry is given, the entire realization, with omission of the first At = 19 200
coarse-grained observation, was averaged., The entry n -n, means that the At = 19 200 coarse-grained
observations ¥__, s = nl(ljn , were averaged. The let%er H or L in parentheses indicates that the result
18 believed to°Fstimatela regtricted average in the H or L region of configuration space (see Section 1.2.1).

v The number of coarse-grained (At = 19 200) observations included in the least squares data reduction.
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Chapter 10

COMPARISON OF EQUATION OF STATE RESULTS FOR N = 12 AND 48

The most striking difference between the 12- and 48-molecule systems,
namely, the qualitatively different topologies suggested for their config-
uration spaces by the behavior of the Monte Carlo calculations at inter-
mediate (class B) reduced areas, has already been sufficiently discussed
(Chapters 5 and 6)., In this chapter we wish to make a somewhat more
quantitative comparison of the calculated equations of state for the two
systems at the high and low density extremes, where at least a modicum of

theory is available,

10,1 High and Medium Densities

In comparing the N = 12 and N = 48 results at high demsities we
will make use of the Salsburg-Wood asymptotic analysis already discussed
at some length in Chapter 3, For 7% = 1, corresponding to systems in
which the accessible region of configuration space is & pocket surround-

ing the regular hexagonal configuration, Eq. (3.5) can be written

w(t; N) = pV/NKT =—%-—l—l ['r% Nt o) (r - 1) + O(t - 1)2] , (10.1)
e -
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10.1

vhere the coefficient b(N) is unknown. We define

3 -l
we(e; N) == (10.2)
2 . 1
so that we can write
AnN(T) = u(t; N) - w*(t; N) = b(N) + 07 = 1); (10.3)

note that #*(t; N) can be regarded as the "free-volume" equation of state
(3.6) with an Nt correction term appended.

We see that AMN(T) should approach the unknown constant b(N) as
T -1, In Fig. 10.1 we have plotted the values AnN(T) obtained by
substituting our Monte Carlo estimates (Tables 5.1 and 6.1) for n(t; N)
in Eq. (10.3), for both N = 12 and N = 48, The trend of the observations
near v = 1 is somewhat obscured by their large scatter at 1 = 1.025.
This is believed to be due mostly to the circumstance that u is becoming
rather large (~ 80 at 1 = 1.025), with the result that quite small per-
centage errors in # become large ones in AnN e The low N =12, v = 1,05
point is believed to be due to a rather too large value of the observa-
tional parameter Ar- (Section 2.3.4) having been used in this realiza-
tion. As a result the degree of fit criterion (Section 9.2.2.2) required
use of a fourth degree regression polynomial, the highest encountered in
this investigation. The abnormally high value of AnN for N = 12,
T = 1.025 is not understood.

Considering the v < 1.25 points, Figure 10.1 suggests, though it

certainly does not establish, a value b(N) ~ 0.6 for both N = 12 and 48.

289



10.1

sof | | o -
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20 4 ¥ ®(§)® -
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AKN +
1.0 |-
o X
X
1.0 20 130 40 .50

Fig. 10,1 Comparison of N = 12 (cross-hatched symbols) and N = 48 (open
symbols) results at high and medium densities: An (T) vs. T, Eq. (10.3).
The vertical extent of the plotting symbols is one estimated standard
deviation on both sides of the estimated mean; see Table 5,1 and 6.1.
Also shown (x) are the points obtained by Metropolis et al.l for their
22h-molecule system.
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It should be noted, however, that in making this estimate we are using
points well beyond the upper limits ( T = 1.136 for N = 12, 1.063 for

N = 48; see Sections 3.4 and 3.5) of reduced areas within which the
asymptotic validity of Eq. (10.1) was rigorously established. Alterna-
tively, as mentioned in earlier chapters, one can interpret Fig. 10.1 as
suggesting that the asymptotic expression may be a useful approximation
outside the rigorously established reduced area interval.

Figure 10.1 also affords a convenient comparison of the N = 12 and
48 results in the intermediate or class B density range. We should
perhaps recall here that the large scatter of "fluid-branch™ points for
N = 48, v = 1,35 arises not so much from the inherent variability of the
observations, as from the subjective uncertainties introduced in an
attempt to estimate plateau averages in realizations in which such
plateaus are at best very poorly defined.

Finally, it is probably worth observing that Fig., 10.1 supplies s
graphical indication that our estimates of precision tend to be some—
what too small, at least in some density regions.

The 224h-molecule points obtained by Metropolis et al.,l are also
shown in Fig. 10.1. Here we again used Eq. (10.3), with u*(7; N) given
by Eq. (10.2), even though this system does not, strictly speaking, have
a close-packed reduced area per molecule corresponding to 7% = 1,
Metropolis et al,, chose to use a square area V for numerical convenience,
whereas thelr initial configuration when hexagonally close-packed requires
a rectangular cell of height 4/35/7 ~ 0.98974343 and unit width. As a

result the stable limiting configuration (in the sense of Salsburg-Wbod,l8

291




10.2

presuming one to exist) of this 22h-molecule system has a reduced area
somewhere in the interval 1.0 < 7% < 7/W/3 »~ 1.010363., The large value
(Fig. 10.1) of Awg at T = 1.04269, the highest density investigated by
Metropolis et al., is presumed to be due to our use of 7% = 1 instead of
the unknown correct value, in calculating AKN.

At lower densities these early Monte Carlo points lie below the pre-
sent ones (Fig. 10.1). This could be due to a significant N-dependence
of the coefficient b(N) in Eq., (10.1) (leaving aside the additional
T¥-dependence already mentioned, which would tend to make the early points
fall still lower in Fig. 10.1), or, as suggested previously in Chapters
5 and 6 as being perhaps more likely, these points may be low because of
insufficiently long realizations, Definitive resolution of this question
mist awalt further Monte Carlo investigation of larger two-dimensional
systems than the present ones. The molecular dynamical resulis of Alder
and Wainwright for their 870-molecule system can, of course, be regarded

as supporting the latter conjecture,

10,2 Low Densities

In the low density region the analysis by Lebowitz and Percus
(Chapter 3) of the N-dependence of the virial coefficients affords a
theoretical framework for our discussion, They express the "normal'
N-dependence, that is to say, the N-dependence at an area per molecule

large enough so that the corresponding cluster integrals cannot wind
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around the torus, of the v-th virial coefficient in terms of the lower
order ( 2 through v - 1) virial coefficients of an infinite system. For
two-dimensional hard spheres, the N = « virial coefficients are known,
from the second through the fifth, from the work of Metropolis et al.l

If we write the virial expansion in the form

-]
- pv -(1i-1
M.(’l,'; N) = ‘II\])W =1 + zci(N)T ( ) , (10.}-1-)
1i=2
and for convenience abbreviate
(=) =c¢c, , (10.5)

then the values given by Metropolis et al., are

1

C, = ™2 =1.8135799 ,

4 3/3) _
Cs =3 e (1 - ,ﬁ-) - 2.57269 (10.6)
C)_‘_ = 3.179 ’

Cg = 3.38 5% .
In the calculation of Ch these authors evaluated one of the three four-
particle cluster integrals by an independent-sampling Monte Carlo
technique, while for C5 all the five-particle cluster integrals were so
estimated,
Lebowitz and Percus give the '"mormal" N-dependence of CE(N) and
03(N). Using their equations we calculated similar expressions for the

next two coefficients, obtaining
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C,(N) = C, - cNTT (10.7)
C5(N) = C5 + (202 - 303)1\1‘l + (=205 + 203)1\1‘2 , (10.8)
o, M) = ¢, + (4¢3 + 9e,C s - 6ch)1\r‘l
+ (16¢3 - erc 205 + 116, )X -2 (10.9)
+ (_1202 + 18C,C; - 6N
Co(N) = Cg + (_zuc 205 + 9c§ + 1600, - 10C; + BCZ)N-l
+ (1920203 - 510 - 96C,C, + 35C; - 8002)1\1“2 (16.10)
+ (- u08c2 5+ 9oc3 + 176C,C, - 5005 + 192012*)1\1“3
+ (zhoc2 5 - uBC 96020h + 2&05 - 120¢C, )N

In passing it is interesting to note two sum rules for the numerical
coefficients in the above relations. First, if we set N = 1 we obtain
Ci(l) = 0 for all i, corresponding to the obvious requirement that a

l-molecule periodic system must have the ideal gas equation of state.

Second, if we set all C, = et

to an equation of state

, where ¢ is any constant, corresponding

T
we, =) =25 s

then we have Ci(N) = (1 - N-l)Ci . It is not clear to us why this last
sum rule holds, and therefore, it may in fact not hold for i > 5. How-

ever, the valldity of these two relations for Egs. (10.7-10.10) affords
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some assurance that the latter are correct, in spite of their derivations
being somewhat tedious.

In principle, Egs. (10.7 - 10.10) give the normsl N-dependence
for all the virial coefficients whose numerical values for N = @ are
known. However, the quotedis% uncertainty for C5 combined with the
varying signs and rather large magnitudes of the numerical coefficients
in Eq. (10.10) result in the o(N‘l) coefficient in CS(N) being of un-

certain sign, Ths we obtain

CE(N) = 1,813799 - 1.813799N‘1 , (10.11)
Co(N) = 2.57269 - 11383000 - 1.uskzsn 2 (10.12)
C,(N) = 3,179 - 0.9U6N™" + busW™2 - 668> (10.13)
CS(N) = 3,38 + 5% o(N"l). (10.1%)

For comparison purposes it is convenient to define

i

uN’i(r) =1+ }:CJ+1(N)T"3 3 (10.15)
j=1

that is, nN,i is the '"normal'" virial expansion for a system of N molecules,
truncated to a polynomial of degree i in t . In Fig. 10.2 the differ-
ence My, = % ) 1s plotted for N = 12, 48, and «, and for i = 1(1)}4, as
well as the difference "N,MC - u.m’l+ for the Monte Carlo results, N = 12
and 48, In calculating My, We used Cs(w) = 3,38, Cs(hB) = 3.31,

05(12) = 3,10; the effect of a 5% change in this coefficient was in all

cases small compared to the difference Moy = My 3 .
) )
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10.2

Fig. 10.2 Comparison of N = 12 (open circles) and N = 48 results (solid
circles) at low density, with virial expansions to o(r-1+l) for 1 = 1(1)%.
The radii of the circles are the standard deviation estimates of Tables
5.1 and 6.1, The curves are the truncated virial expansions for the in-
dicated values of N and i, all compressibility factors being plotted rela-
tive to that of an infinite system correct to 0(7=2). The finite-N
virial coefficients include the 'normal" N-dependence only; for N = 12
tgnomalous" contributions to the fourth virial coefficient are present
(and neglected in the curves) below T = 1,78, and to the fifth
virial coefficient below’T = 2.78., The "scaled-particle" approximation
EFL of Ref. 14 is also sEown, as well as the original Monte Carlo results
(x) of Metropolis et al.
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We note that the Monte Carlo points conform to our expectations
in that the N = 12 points tend, on the whole, to fall below those for
N = 48, In addition we note that, except for the point obtained from
the short realization B37 at 7t = 5.9, all the points lie above the corres-
ponding nN,h curve, in accordance with the widely held expectation that
at least the next few (perhaps all) virial coefficients are positive.
Finally, the trend of the nN,i curves for fixed N with increasing 1 is
such as to suggest that only at 7 = 3.9 is the virial expansion to 0(1‘5)
reasonably convergent within the apparent statistical uncertainty of the
Monte Carlo values,

Thus, we conclude that the calculations appear to be in qualitative
agreement with the theoretical, low-density N-dependence. A more quanti-
tative comparison would evidently require mich more extensive calculations,
particularly at = > 4.

The Metropolis et al.l points for N = 224 are also displayed in
Fig. 10.2, and lie somewhat below the present N = 12 and N = 48 points
except at the lowest density. For this large system all virial coeffi-
cients Cv of order v < 13 have a '"normal'" N.-.dependence, which 1tself is
rather small, Insofar as this normal N-dependence is concerned, the
points for the larger system would be expected to lie above those for
the smaller ones, although we are not aware of a proof of this conjecture.
The contrary behavior of the 224-molecule points in Fig. 10.2 may possibly
be due to the "anomalous" N-dependence of the 48-molecule virial coeffi-
cients of order v 2 5, but may also be due, as mentioned repeatedly, to

the early Monte Carlo calculations being somewhat too short.
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Chapter 11

CONCLUSION

11.1 Necessity for Larger Systems

The implications of the small system results presented in this report
with respect to the behavior of a macroscopic system of hard circles have
been discussed in some detail in Section 6.5. Here we will simply remark
that the necessity for studying systems of considerably more molecules is
clearly evident., This is especially the case as regards the question of
a phase transition; the present results are not conclusive either for or
against this possibility. However, we again call attention to Alder and
Wainwright'!s recent paper15 (see Section 6.5.6) reporting a van der Waals
loop in the molecular dynamical equation of state of a system of 870 hard
clrcles.

Leaving aside for the moment the existence of these latter calcula-
tions, one might well be inclined to question the feasibility of machine
calculations with N =~ 1000, in view of the increase in complexity noted
in passing from N = 12 to N = 48 (or N = T2, in the case of the dynamical

method).
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In Section 6.5 we indicated how, in some respects, the topology of con-
figuration space might perhaps be expected to become again less complex
than for N = 48, at N >> 48, particularly at reduced areas in the "jumpy"
range. In addition, the present results contain some suggestion that the
number of Markov chain steps required for a given statistical accuracy in
pV/NkT may increase somewhat more slowly than linearly with N. For ex-
ample, Tables 5.1 and 6.1, as well as Fig., 10.2, show that for T > 1.5
the estimated standard deviations for N = 12 are in general appreciably
larger than those for N = 48, in spite of the fact that, in terms of the
number t/N of time steps per molecule, the l2-molecule realizations are

longer than those for the 48-molecule system,

1ll.2 PFaster Calculators

Calculations on larger systems are now more feasible than before,
owing to the laboratory's acquisition of faster computing machinery than
the IBM-704 machines used in these investigations. Using essentially
the existing programs, the IBM-7090 is expected to roughly seven times
as fast as the IBM-704, while the IBM-7094 (expected within a few months)
will be still faster, but probably not by so much as a factor of 2.

Speed ratios between the IBM-7030 and the IBM-7090 are quite sensi-
tive to the nature of the program, being larger for programs involving
mich "floating point" arithmetic (especially miltiplications) than for
programs consisting primarily of logical or "red-tape' work. The Monte

Carlo calculations, especially for hard spheres or circles, are
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unfortunately of the latter type, so that the IBM-7030 is likely to be
no more than twice as fast as the IBM-7090 at values of N small enough
to permit both machines to retain all the data in internal memory. The

larger IBM-7030 memory is, of course, advantageous in the latter regard.

11.3 Improvements in Programming and in

Choice of Parameters

In the paper5 describing some of the computational detailsj we men-
tioned that a significant increase in speed could be obtained if it were
proved adequate to represent the molecular coordinates (Xi’ yi) by few
enough bits to allow the Pythagorean computation of squared intermolecular
distances,

2

rij = (Xi - XJ)E + (yi - yj)z

2

to be carried out by table-look-up of (xi - xj)2 rather than by multipli-
plication. Some preliminary investigations of this possibility were
carried out on the N = 32 hard-sphere system, with results suggesting
that it was feasible at least in the "jumpy" region around v = 1l.55.
Considerably more calculations would be required in order to be certain
that adequate space resolution was being provided over the complete range
of interesting densities, Also, as faster computing machines appear,
their mltiply-time to add-time ratio tends to decrease, so that the
speed improvement obtainable by this device decreases, Finally the
required number of bits must eventually increase as N increases, slmple

1
considerations indicating proportionability to N2 ., Consequently we
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will probably not use this technique in future calculations. Some in-
crease in speed is obtainable, however, by incorporating some of the
other program improvements mentioned in Ref. 5.

There are also various other areas in which the calculation can
perhaps be improved. For example, only at T = 3.9 and for N = 48 have
we made any statistical examination of the effect of the displacement
parameter & upon the rate of convergence of the Markov chains. The
machine time per step and the observed shell population variances sz
(Eq. 8.3) changed only slightly with large changes in 6 indicating that
at least at this low density the convergence rate is not strongly de-
pendent on 6, This comparison was also useful in showing that at this

low density, at least, our previous5 rate-of-convergence criterion

involving the root-mean-square displacement

£ L
4 = {% tlzl[?i(t')(t') - Ty - 1)]2} ’

in the notation of Section 2.3.2, 1s actually a very unreliable measure
of convergence rate, at least at low density. This is evident from the
fact that realization B39 had a value of £ about 17 times that of B38,
whereas our statistical tests indicate the two realizations to be about
equally convergent.

Other areas in which more investigation might possibly be worthwhile
are the optimm values of the parameters Arz, K, and At, as well as
further statistical tests on the pseudo random number sequence. In the

latter connection it would be desirable to have several independent
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sequences, rather than to use the same sequence for all realizations.

11.4 Constant Pressure Ensemble

In Chapters 7 through 9 we saw that the numerical differentiation
required for the equation of state calculation is the source of consider-
able difficulty in the data-reduction process, in particular being re-
sponsible for the questionable validity of our estimated standard devia-
tions. Evidently, it would be desirable to calculate the pressure
directly as the simple average of a configuration function, rather than
as the derivative of such an average. Unfortunately, no such expression
is known for the petit ensemble pressure of a system of hard spheres
(or circles). However, the Markov chain method is not restricted to the
petit ensemble, and in fact we have made some fairly extensive, but
unpublished, calculations for a system of 32 hard spheres in the isother-
mal, isobaric ensemble,h7 usually called the constant-pressure ensemble
for brevity. In this ensemble the variables p, T, and N are fixed,
while the other variables, in particular the volume V, fluctuate., The
equation of state is calculated from the ensemble average of this

fluctuating volume,

n = p{V)/NKT
(V)
T ='1W .

The resulting #(t; N) relation differs from that obtained with the petit

ensemble by terms of O(N"l), which is, of course, not serious since the
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petit ensemble equation of state deviates by the same order from the
thermodynamic equation of state., Since no numerical differentiation is
required, the constent-pressure ensemble data-reduction problem is con-
siderably simplified.

The motivation for the unpublished hard-sphere calculations in this
ensemble was not, however, the easier data reduction, but rather the hope
that the fluctuation in configuration space topology produced by the
volume fluctuation would materially increase the transition probability
between different configuration space regions, e.g., regions L and H in
terms of the hourglass description. In this ensemble, strictly speaking,
all state points are accessible from each other, i.e., there are no iso-
lated pockets of configuration space, due to the always non-vanishing
(but no doubt very small, at high pressure) probability of occurrence
of arbitrarily large values of V. Most of the calculations were carried
out in the so-called ™transition region" in the vicinity of v = 1.5 to
1.6, see Fig. 1l.1. Here it will suffice to mention that the results
agreed quite well with those of the petit ensemble method. In particu-
lar, "jumps" still occurred, now of course, at constant pressure between
different levels of the fluctuating volume, indicating that at these
densities configuration space is still rather effectively compartmental-
ized. The "jumps" were perhaps slightly more frequent in terms of Markov
time steps than in comparasble petit ensemble realizations, as expected.
However, the computing time per step is also somewhat increased due to
certain additional complexities inherent in the constant-pressure formu-

lation,

303



Thus, the two methods appear to be roughly equally effective in
coping with the difficult topology of hard~sphere (or circle) configura-
tion spaces, The greater simplicity of the data-reduction problem in the
constant.pressure ensemble then makes it quite attractive for use in
future investigations. There is, however, an important difference in
the two equations of state. Whereas in the petit ensemble, so far as
is known, the exact equation of state for a finite system may possess a
"Wan der Waals loop," in the constant-pressure ensemble, (V) is known to
be a monotonically decreasing function of P. Thus, the manifestation, at
finite N, of a first-order phase transition would presumsbly be a p-V
isotherm having a nearly horizontal portion in the vicinity of the ther-
modynamic (N = ®) coexistence region.

Bowever, it is possible to obtain the petit ensemble equation of
state, as well as the constant-pressure ensemble equation of state, from a
Monte Carlo calculation based on the latter ensemble, if the probability
density ENﬁT(V) of the fluctuating volume can be estimated sufflciently
accurately.h8 To avoid confusion, in the remainder of this section we
will use the notation P for the non-fluctuating pressuré parameter of the
isobaric-isothermal ensemble, and p = p(V) for the corresponding (same N,
T) petit ensemble pressure at any fixed volume V., The probability

density PNﬁT(V) is defined as

7y (e /T

2, ()
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with
8@ = [ e 0y

and with ZN(V) given by Eq. (2.1). From Eq. (2.3) one then readily finds

the petit canonical ensemble pressure p(V) to be given by

D =P + kT avaT ) . (11.2)
N,p,T

From this relation we see that there is a one-to-one correspondence
between the presence of a van der Waals loop in the petit canonical
ensemble equation of state on the one hand, and a bimodal probability
density BNﬁT(V) on the other, The latter function can, of course, be
estimated by the Monte Carlo method. We note, however, that subsequent
estimation of the petit ensemble equation of state requires a numerical
differentiation in which we may expect many of the same statistical
difficulties as we encountered with the petit ensenmble method. Never-
theless, the above discussion lends further encouragement to use éf a
constant.pressure ensemble Monte Carlo method, since a bimodal ENﬁT(V)
should be an at least as easily detected qualitative indication of a

possible first.order phase transition as is a loop in the eguation of state,

11.5 A Word of Caution

We would like to emphasize that the finite system effects which
have been described for systems of 12 and 48 hard circles almost surely

have analogues in the previous investigations of three-dimensional
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hard-sphere and Lennard-Jones molecules, which were mostly done with 32-
and. 108-molecule systems, Thus these results, particularly any interpre-
tation in terms of the existence and location of a phase transition,
should be regarded with some skepticism until such time as it appears
feasible to examine considerably larger three-dimensional systems, With
present equipment, systems of 1000-2000 molecules would be feasible,
though time consuming. Even at these values of N, however, 'surface"
effects would be expected to be of considerable importance in three
dimensions, so that it seems preferable to first verify the behavior
reported by Alder and Wainwright for two-dimensional systems of such a

size,

11.6 Is It Worthwhile?

It is clear that the Monte Carlo method 1s certainly not a quick
and easy way of determining exact equations of state. It requires
large amounts of computing time, especially for the large values of N
vhich seem to be required, and the results require careful interpreta-
tion, The latter tends to be expensive in terms of personnel time.

On the other hand, in spite of the many recent advances in statis-
tical mechanics, reliable analytical equations of state covering the
entire density range seem to be as far in the future as ever; in particu-
lar, a theoretical proof of the existence or non-existence of a hard-
sphere phase tramsition is completely lacking. The only comparable

equation of state tool seems to be the Alder and Wainwright dynamical
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method, For systems of hard spheres (or circles), the two methods seem
to be of comparable efficiency; we regret the slow pace of our investi-
gation, which is not due to Iinherent difficulties of the technique, but
to the frequent diversion of our attention to other problems, For
continuous inter-molecular potentials the Monte Carlo method appears to
be advantageous. Furthermore, given the difficulties of interpretation
and the different theoretical foundations of the two methods, it appears
to be desirable to investigate the same or similar systems by both
techniques, at least for the present,.

Thus, it appears to us to be worthwhile to continue these investi-
gations, One of the purposes of this long report was to make it possible
to solicit the informed opinion of others, Comments by the reader who
has persevered to this point will, accordingly, be appreciatively

received,
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