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‘Ibisreport presents Monte

fxBsrRAcT

Carlo calculations of the equation of

state of two systems of hard circles (two-dimensionalhard spheres), one

consisting of 12 molecules, the other of 48. Periodic boundary condi-

tions are used in both cases.

The two-dimensional systems were considered in order to reduce

IIsufiace!leffects for a given nuniberof molecules, compared b three-

dtmensional systems, and in order to ascertain if certain phenomena ap-

pearing in previous calculations for three-dimensional systems (possibly

indicative of the existence of a solid.fluid.phase transition) would

appear in the simpler two-dimensional systems. It seemed likely that

such tight be the case, the negative results of the pioneer Monte Carlo

investigation of Metropolis et al., being somewhat suspect on the same

grounds as those of Rosenbluth and Rosenbluth for three-dimensional hard,

spheres, where the behavior in question was not detected, presumably

owing mostly to the rather slow computing machinery available at the time.

No such phenomena were found for the 12-molecule system. Except for

certain trivial regions of configuration space, the Wrkov chains seemed

to estimate adequately the over-all petit canonical ensemble pressure



throughout the entire density range. The calculated yressure was a

monotonically decreasing function of the area, and agreed approximately

with the free-volume pressure at high densities, and with the virial

expansion at low densities, when account was taken of the theoretical

N-dependence at both extremes.

me 48-molecule system gave qualitatively

at the high and low density extremes where the

different results, except

behavior was as described

for the smaller system. In the all-important tid-density region the

Markov chains were unable to estimate the ensemble average owing to a severe

compartmentalizationof configuration space into two crystallographically

distinct types of configurations. The first, or L, type is related to the

familiar regular hexagonal configurations.

In the second, or H, type, two sub-classes couldbe distinguished. One

consisted.of configurationsbest described as imw-d=j with a s~chastfc

behavior more or less like that expected.for a fluid,. The other sub-class

of H-type configurations was derived.from a defect-lattice of 49 mole-—

cules in the rectangular cell, one molecule being replaced by a hole.

Within the latter configurations, diffusion occurred over a considerable

range of densities by the hole-diffusion mechanism. At reduced areas

T in the interval 1.3 to 1.35 (~ = 1 in the close-packed regular hexagonal

configuration), the system only infrequently changed back and forth be-

tween configurations of L and H type; transitions between the two H sub-

types were rather frequent. At T <1.3, L-H transitions were not observed.

Hbwever, the system couldbe stabilized in H-type configurations of the

4



defect type by means of “compression“ from -c> 1.3, the apparent pres-

sure

same

of H

then considerably exceeding that of L-type configurations at the

reduced area. At T > 1.4 the L configurations and the defect type

configurationsprogressively disappeared, as would be expected.

We conclude that while these phenomena, which are similar to those

observed for three-dimensionalhard spheres, may yerhaps be the finite-

system manifestation of the existence of a first-order phase transition

in macroscopic systems, the present calculations certainly do not estab-

lish that such is the case. Calculations for considerably larger sys-

tems are necessary if the question is to be further investigated, as for

example in the recent dynamical calculations of Alder and,Wainwright for

a system of 870 hard circles, in which they obtained a van der Waals loop

in the equation of state.

Finally there is presented an extensive statistical analysis of the

data reduction procedures required by the present petit canonical en-

semble Monte Carlo method, in which the equation of state must be obtained

by numerically differentiating the directly estimable “cumulativepair-

distribution function.” It is concluded.that use of Nk,rkovchains conver.

gent to isothe~.isobaric ensemble averages might be advantageous. This

has been found to be feasible in some unpublished calculations for three-

dimensional hard spheres.





PREFACE

This long-overdue report describes the calculations made at the

IJX Alamos Scientific Laboratory from 1958 up to the present on systems

of twelve and forty-eight hard circles (i.e., two-dimensional hard

spheres). The previously published results for three-dimensional hard

spheres are briefly summarized, as well as some unpublished results.

It is a pleasure to express my appreciation to Dr. Berni J. Alder

and Dr. Thomas E. Wainwright of the University of California Radiation

Laboratory, Lfvermore, for many discussions in which ideas and.calcula-

tional results were exchanged.. I am also grateful to Professor

Robert D. Richtmyer of New York University, for pointing out the utility

of the l&rkov chain central limit theorem as a basis for the empirical

statistical analysis. Above all I am indebted to Mr. Jack D. Jacobson

for nearly all the calculator programs used in this investigation, as

well as for the over-all.supervision of the calculations.

v. w. wood

September, 1962
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with

GLOSSARY OF SYMBOLS

We list here the more important symbols used in this report, along

the number of the section in which each is defined.

Symbol

a

A(x)

b(N)

b
i

c

c

Ci(N)

(cm)

d

D(x)

E(x)

f(l)

f(2)

f(12)

G(c)

G(C, ~)

Description

Regular hexagonal lattice spacing.

Unit step function.

Unlmown coefficient in Salsburg-Wood theory.

Estimate of pi, q.v.

Coordination nuxiberof a close-packed configura-
tion.

Determinant of matrix (Cw).

ith
virial coefficient for a system of N molecules.

Spatial correlation matrix of a sampled set of
shell populations.

Diffusion parameter.

Theoretical standard deviation of a stochastic
variable x.

Expected (mean) value of a stochastic variable x.

Degrees of freedom of S“)2 .

Degrees of freedom of s‘2)2 .

Degrees of freedom of .‘12)2 .

Ensemble average of G(C, ~); i.e., the familiar
cumulative pair-distribution function.

cumulative pair-distribution function in con-
figuration space.

Section

2.3.3

2.1

10.1

9.1

3.3.1.1

8.3

10.2

8.3

2.3.5

8.2.1

8.2.1
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set of shell populations of shell a.

Molecule provisionally @isplaced at time t.
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circle) system.
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Standardized normal deviate. .—

Volume (area) per molecule for hard-sphere (hard- 1.2, 2.1
circle) system.

Volume (area) per molecule for face-centered 1.2, 2.1
cubic (regular hexagonal) close-packed hard
spheres (circles).

Volume (area) of systemof N hard spheres (circles). 2.1, 3,1.1
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Matrix of independent variables in regression
analysis.

Least squares estimate of ~ .

Column vector (Yl, Y2,....YK) oryl, y2,***TK).

Sample mean of a set of observed shell populations

‘la~ ‘2a’”””yna “

Observed shell population for shell a over the sth

time-smoothing interval.

Gibbs phase integral in configuration space.

Theoretical coefficient of O!lin approximating
polynomial for la .
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polynomial for G(~a) .

Maximum displacement parameter.

Dirac delta function.

G:+l- c: ●

Time-smoothing interval.
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Free-volume equation of state with an arbitrarily
appended O(N-l) correction.

Free-volume approximation for compressibility
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molecules truncated to a ~olynomial of degree
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Degree of regression polynomial approximating T&.

Diameter of a hard-sphere or hard-circle molecule.

Unknown scalar

Reduced volume
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(area) per molecule in a system of
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1.1

Chapter 1

INTRODUCTION

1.1 Preliminary Description of the Monte Carlo Method

The Monte Carlo method used in the calculations to be discussed in

this report is essentially that orginally described by Metropolis, et al.
1

Its theoretical basis has been discussed in a number of papers,2-5 so that

it will suffice t-arecall here that it is a prescription for defining a

stationary Markov

average converges

weight function.

chain with discrete states and discrete time whose time

stochastically to an ensemble average with a given

In this report we will consider only the classical me-

chanical petit ensenibleof Gibbs, whose weight function (unnormalized,)

is the usual Boltzma.nnfactor. The desired ensemble averages are then

estimated by the corresponding time averages over a particular realiza-

tion or development of the chain carried out to a large number of time

steps on a high-speed computing machine.

It will be convenient to adopt the following terminology: A system

is specified when a space or class of possible states is defined. A

(Markov) chain for such a systemis specified when a stochastic matrix of
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one-step transition probabilities between all pairs of these states is

given. A realization (or development) of such a chain is a sequence of

states actually traversed by the system In the course of a stochastic

evolution according to these transition ,probabilities.

It must be emphasized that the lltim~lmentioned in the above de-

scription has no relation to any actual physical time (except the machine

time involved in the development of the chain), nor does the motion of

the state point bear any detailed relation to any actual dynamical mrtion

of the molecular system. The procedure is a numerical method for esti-

mating classical statistical mechanical ensemble averages, and indeed

since it is a classical method (i.e., not quantum mechanical), the in-

tegrations over momentum variables involved in the ensemble averages can

be performed analytically, so that as actually carried out for a system

of N two-dimensionalmolecules the method is a random walk in the 2N-

dimensional configuration space of the system.

The original investigation reported calculations for a system of

224 hard spheres in two dimensions (hard circles), and subsequently

Rosenbluth and Rosenbluth6 considered systems of 256 three-dimensional

hard s~heres and 56 two-dimensional Lennard-Jones molecules. Our own

work began with systems of 32 and 108 three-dimensional Lennard-Jones

molecules.z From this point on, the term !bard sphere!!unless further

qualified will refer to the three-dimensional case; %srd circle,” b

two-dimensional case.

In the

had devised

the

( at the Livermre Laboratory,meantime Alder and Wainwright

their molecular-dynamicalmethod and applied it to systems of
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hard spheres. As the nsme implies, this method calculates thermodynamic

functions (as well as some transport properties) by time-averaging over

the actual dynamical phase-space trajectory of the nmlecular system,

starting from a suitable initial state,

Newtonian equations of motion over long

dynsmical equilibrium.

and integrating

enough times so

the elementary

as to attain

The lbnte Carlo statistical mechanical method

method, when applied to the same molecular system,

thermodynamic results “[atleast to O(N-l)], if the

and the dynamical

ought to give the same

quasi-ergodic hypothe.

sis of statistical mechanics is correct. This hypothesis, though widely

believed, has not been rigorously established,8 so that comparison of

results from the two methods is of some interest in itself.

The

which we

those of

our then

preliminary results of Alder and.Wainwright for hard spheres, of

were privately informed, in fact differed significantly from

Rosenbluth and Rosenbluth,b and this naturally led us to adapt

existing program for three-dimensional Lennard-Jones molecules2

to calculate the equation of state of systems of 32, 108, and 256 hard

spheres. The results indeed exhibited a behavior qualitatively different

6from that obtained by Rosenbluth and Rosenbluth, which we attribute to

their relatively slow computing machine (Maniac I); the phenomena in

question (to be described below) are likely to appear only after a rather

long ‘%imef!.

Accordingly programs especially adapted to the hard-sphere system

were prepared,5 and a re-examination of

29
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spheres by the Monte Carlo method was undertaken in collaboration with

Alder and.Wainwrightts dynamical investigation. Preliminary results by

both methods were published simultaneous ~’9 for systems of 32 and 108

molecules, as well as additional though

results,5 and a rather complete account

for systems of 4 to 500 molecules.10

still incomplete Monte Carlo

of the molecular-dynamical results

1.2 Summary of Results for Three-Dimensional %rd Spheres

The hard-sphere equation of state calculations by the Monte Carlo

method are summarized and compared,with the nmlecular-dynamical results

in Fig. 1.1, taken from Ref. 5. Also shown is the free-volume hard-

11sphere equation of state and the five-term virial equation of state of

Rosenbluth and Rosenbluth.6 In Fig. 1.1 the abscissa T is the ratio

v/v. where v is the volume yer molecule, vo is the face-centered cubic

close-packed volume per molecule, and.the other symbols have their

significance: p is the pressure, T the temperature, k Ildtzmann!s

Stant.

usual

con-

Two branches of the equation of state are shown in Fig. 1.1 for

T s 1.6. In the interval 1.52 < T s 1.6o the branches arose from sepa-

rately averaging the high and low plateaus of realizations having the

typical appearance of Fig. 1.2 (also taken from Ref. 5).

fluctuations occurred in the molecular-dynamical results,

in the same way.

Similar secular

and were treated
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(o, A) Monte Carlo method for N = 32 and 256, respectively; (+) molecular
dyntics, N = 32 (Ref. 9).
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1.2

1.2.1 !t~urglassII~del of configuration sPace.

This behavior led us to the following visualization of the geometry

of 3N-dimensional configuration space which is undoubtedly over-simpli-

fied but which affords a convenient model for the observed,behavior, and,

which motivated much of the subsequent investigation. We imagine that

at these densities the accessible region of phase space is essentially

hourglass-shaped, and we label the two chanibersof the hourglass L (low)

and H (high) according to whether an average restricted to the particular

chamber leads to a high or low pressure. This two-chamber description is

suggested by the essentially two-level appearance of Fig. 1.2. The con-

striction of the hourglass is imagined to be relatively narrow, and to

contain only a small fraction of the total accessible volume, as suggested

by the abrupt and relatively infrequent shifts in level in Fig. 1.2. The

state point representing the face-centered,cubic lattice configuration

(which is the usual starting point of the random walk) is deduced,to be

in chamber L from the fact that random walks begun from it typically

show initially a low plateau (e.g., Fig. 1.2), in this interval of T.

In these terms the random walk of Fig. 1.2 can be summarized as roughly

3.5 “ 105 steps in chamber L, 1.7 “ 105 steps in chamber H, 1.3 ●
~05

steps in chamber L, then 1.1 “ 105 steps in chamber

calculation was terminated,.

Larger values of T in the interval 1.52 to 1.6

shorter low plateaus and longer high plateaus; at T

seldom a noticeable low plateau. At smaller values

H, after which the

seemed,to lead to

> 1.6 there was

of T in this interval
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the system tended to remain in chamber L for very long times; if it

succeeded in reaching chamber H it also remained there for a long time.

(These observations should be understood to apply to the 32-molecule

system; very few calculations were performed with the larger systems in

this range of reduced volumes.) ‘1’heseobservations led us to conclude

that as -rincreases the hourglass connection widens, with the chambers

probably becoming indistinguishable at T > 1.6. There is some sugges-

tion that at T = 1.6 chauiberH is probably much larger than chamber L.

For r near 1.52 the relative volumes are unknown, and the connection

between them very constricted. For ‘c< 1.52 neither the Monte Carlo nor

the dynamical calculations observed the 32-molecule system to leave the

L chamber, when the calculation was started from the face-centered cubic

(f.c.c.) lattice.

We were naturally led b examine the geometrical structure of con-

figurations sampled from the low and high plateaus of random walks in

the interval 1.52 s T S 1.6, though the number of configurationswhich

could be investigated was rather small due to the difficulty of adequately

visualizing the three-dimensional structures. Not unexpectedly, we found

that configurations selected,from a low plateau (i.e., according b our

model, points in the L chauiberof configuration space) were recognizably

close to the f.c.c. lattice arrangement. Furthermore, we noted that

diffusion (i.e., interchanges of neighboring molecules) was very rare,

perhaps non-existent, throughout the duration of a L plateau. On the

other hand, we were unable to recognize any particular regularity in
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configurations sampled from high plateaus (i.e., points in the H chamber),

during which considerable diffision occurs.

The infrequent molecular interchanges within a L plateau indicate a

revision of our model of configuration space to show NJ chambers of type

L, corresponding to the NJ permutations of the molecules, with inter.

connections which are more constricted than the L-H connections. This is

crudely indicated in Fig. 1.3 by showing two L chambers. Two H chambers

are also shown, although one might be consistent with the observations

for 1.52 < T S 1.6, because at smaller values of T they are expected to

appear (see below). The H-H connection is shown wider than the L-H

Fig. 1.3 A schematic diagram of the hourglass model 3N-dimensional
configuration space of a system of hard spheres near T = 1.55.
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connections, in agreement with the observations above.

It is obvious that for Markov chain realizations such as that of

Fig. 1.2, the over-all time average, which should converge to the desired

ensemble average, is in fact very poorly convergent. On the other hand,

the average over a particular L or H plateau may be reasonably convergent,

and if the plateau is sufficiently long this average is not too sensitive

to uncertainties concerning the beginning and end of the plateau. Ac-

cording to our model (Fig. 1.3) such averages estimate ensemble averages

restricted to the L or H chamber, which are evidently lower and upper

bounds, respectively,

nmtivation leading to

to the complete average. Such, then, was the

the double-valued equation of state of Fig. 1.1

in the interval T = 1.52 to 1.6.

1.2.2 Possible phase transition.

The properties of the L states outlined in the preceding section

are strikingly similar to those usually associated with a solid crystal-

line phase: (1) approximately regular lattice (f.c.c.) structure; (2) in-

hibited diffusion. Similarly, the properties of the H states resemble

those of a fluid: (1) irregular structure; (2) free diffusion; (3) higher

pressures than L states at the same T. Taken in conjunction with the

considerable discussion which has been carried out in the statistical

mechanical literature concerning the existence of a solid-fluid phase

transition for systems of hard spheres, these observations naturally led

3’9 to suggest them as tentative support for the existence of such aus
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phase transition. This interpretationwas also strongly supported by the

appearance of essentially the same phenomena in the kkmte Carlo calcula-

tions for three-dimensional Lennard-Jones molecules at a pressure and

temperature in reasonable agreement with extrapolation of the experimental

melting locus of argon. On the other hand.,of course, it was possible to

believe that these phenomena were artifacts of the small numiberof mole-

cules which were used in the calculations, rather than

the behavior of macroscopic systems.

In addition to whether or not a first-order phase

characteristic of

transition exists

for hard spheres, there are also differences of opinion as to whether, if

such a transition does exist, the exact petit canonical ensemble reduced

pressure Po/kT should,be a monotonically decreasing function of volume at

fixed T and,fixed finite N, or whether it might exhibit loops more or less

similar to those of the van der Waals equation of state. The best discus-

12sion of this problem seems to be that of Hill. The only cases in which

exact calculations exist are for certain simple lattice gases with small

N, where loops in fact do occur. It is thus of some interest to exsmine

the possibilities on the basis of our simple configuration-spacemodel

(Fig. 1.3), again under the assumption that the connections ha,venegli-

gible volume. We denote the volumes of’the L and,H chanibersby ~(z,N)

and,~(T,N), and,define three pressures: P(z,N), the result of averaging

over both types of chambers; PL(T}N)} obtained from the L chambers alone;

and.p (T,N), from the H chambers.
H The usual petit ensemble theory gives

pLVo/kT . N-l(a An ~a~)N ;
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pHvo/kT .N-l(a h w#-r)N ;

if
pvo/kT =N-l[a h (~ i-@/a~ .

.

The last equation can be written by use of the first two as

p=(l- W)PL -i-wH j

w=u#u/@ ,

giving the expected result that the over-all average pressure p is just

the average of pL and p weighted in proportion to their volumes
H ~ and

WH. Now consider the variation of r at fixed.N; on the right side of

the above equation for -p,the functions W, pL, and. pH all Vary. Let us

suppose, as is intuitively plausible, that pL and pH are both monotanf-

cally decreasing functions of T, as indicated in Fig. 1.4. Suppx3e in

addition that the weight function w increases from values near zero to

values near one, as T increases over a small interval, as shown in the

figure. If this increase is abrupt enough, it is clear that van der Waals

loops will appear, as is most easily seen by considering the limiting

case in which

other hand, a

tone p. Thus

model.

w approaches the unit step

more gradual increase in w

we see that either type of

function (see figure). On the

can evidently result in a mono-

isotherm could result from our

Accepting for the moment this first-order phase-transition inter-

pretation of the observations, let us consider the effect of increasing

the nuniberof molecules. For large enough N, and values of T between

the phase boundaries, we expect that a typical confjquration should be
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Fig. 1.4 A possible mechanism for the occurrence of van d.erWaals loops
for the model of Fig. 1.3.
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one of coexistent phases, some portions of the system being crystalline,

others fluid. The failure b observe this in small systems can be reason-

ably interpreted as being due to large interracial effects. Thus at

larger values of N we would expect Fig. 1.3 to change. Regions of mixed

L and H character should appear and,be Tredcminant exce-ptnear the _phase

boundaries. Exactly how this will occur is not clear; a likely possi-

bility is that the L-H connections expand and dominate the L and H

regions.

1.2.3 Wxtended fluid!! branch of the equation of state.

As already suggested in Section 1.2.1, it seemed likely that the

failure to observe H states in the realizations started from the f.c.c.

lattice at T < 1.52 was due to constriction of the L-H connections,

rather than to the complete disappearance of the H region of configura-

tion space. The well-known phenomenon of supercooling of liquids below

their freezing point, and,the existence of !lr~d~m close-packed” hard-

13
sphere configurations also influenced ou thinking in this respect, as

a result of which we devised the following IIcompressionprocedure!!for

obtaining starting configurations in the H region at reduced volumes

below 1.52.

We begin with an arbitrarily chosen H state from a high plateau of

a realization at T > 1.52. With the centers of the nmlecules fixed

in the Nkmte Carlo cell, the molecular diameter is increased (i.e., T

is decreased) to a value at which the closest pair of molecules is just
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in contact. The standard lkmte Carlo random walk is then carried out

from this starting point until one or the other member of this pair is

successfully moved. The molecular diameter is then again increased un-

til the closest pair (usually a different pair than in the previous step)

is in contact, etc. In this way a sequence of confirmations is obtained

with decreasing reduced volumes; since the “compression”process is

rather rapid (at least in the early stages) the state point was expected,

to remain with high probability in the H region. Such configurations

were used as the starting point for the usual random walk realizations,

and.gave the points shown in Fig. 1.1 on the upper branch of the equation

of state for -G< 1.52. Without intending to prejudice the decision with

respect to a first-order phase transition, we call this part of the upper

branch the ‘!extendedfluid.llbranch of the equation of state.

It is a priori quite possible that at high densities H chambers of

qualitatively different type (i.e., not equivalent under a permutation

of the molecule labels) may be present, and their connections may be-

come very constricted.or non-existent. In such a case more than one

upper branch of the equation of state may be present (at fixed small N).

This might explain the possibly significant difference between the

“extended fluid!?points obtained by us and,those obtained,by Alder and,

Wainwright (Fig. 1.1), who

procedure.

Sample configurations

T = 1.32 and T = 1.18 were

used a similar but more gradual IIcompression!!

from these extended fluid realizations at

examined,by constructing rather crude
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three-dimensionalmodels, and various two-dimensional~rojections. At

T < 1.32 diffusion was absent, in contrast to the rather free diffusion

at T > 1.52 already mentioned. (In terms of oux model this implies NJ

regions of the H type, either disconnected.or having very constricted

connections.) The highest density (T = 1.18) configurations fluctuated

very little, and were describable as rather distorted body-centered

cubic arrangements, apparently quite different from the structure de-

scribed by Alder and Wainwright7 at about the same density (thus suggest-

ing the presence of more

types).

From Fig. 1.1 it is

equation of state has an
77

than 1?!H regions of at least two non-equivalent

clear that the !Iextendedfluid!!branch of the

apparent asymptote in rough agreement with

scottfs’-~value of T x 1.16 for !rdenserandom packing!!,but the agree-

ment is nmst likely accidental, since one would.hardly expect to dupli-

cate IIdenserandom packing!!with as few as 32 molecules (no realizations

were generated on this branch with N > 32).

1.3 Retreat to Hard Circles

The indications, described in the previous section, of a possible

phase transition in systems of hard spheres ledus to question whether

similar phenomena might also be present in systems of hard circles and
.

have been missed in the original investigation,~ again due to the slow-

ness of the calculators of that date (as well as to the relatively large

number of molecules which was chosen). As far as statistical mechanical
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theory is concerned, the situation for hard circles is the same as for

hard spheres. The first-order phase transition has not been shown tc

exist, nor has it been shown not to exist. Only in the one-dimensional

case, where the complete equation of state can be obtained analytically,

is an exact answer known: in this case, there is no transition.

Aside from an investigation of the two-dimensional case as a ques-

tion in its own right, there were important reasons of convenience for

transferring our efforts to it. At that time the available calculators

were IBM type 704, and it seemed to us that we had,about reached the

practical limit of the ability of calculators of that speed to attack

the phase-transition problem in the three-dimensional systems. The

over-all average of 32-molecule realizations like that of Fig. 1.2 clearly

could.not be determined; that realization, for example, required between

four and five hours of machine time, and.its over-all average (as dis-

tinct from the within-plateau averages) is essentially worthless. With-

out a determination of such over-all averages at a number of points in

and near the possible transition region, the nature of the p-V isotherm

even for the small system remains in question. Further, even if the

equation of state for the 32-molecule system could,be determined, and

displayed, say, a van der Waals loop, the significance of this result

for macroscopic systems would.still be in doubt. obviously, the inherent

limitation of the method to very non-macroscopic numbers of molecules

prevents one from even expecting to prove the existence of a first-order

phase transition by such means. The most that can be expected is a
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demonstration by calculations for larger systems (N -1000, say) that

the phenomena appear likely to persist as IVincreases. [For example, one

can imagine that a van der Waals loop for small N might shrink as N in-

creases in such a way as to produce a second-order transition for ~cro-

scopic systems (N + CS).I

As already mentioned, there is some reason to suspect that at larger

values of N the statistical behavior may be less difficult (appearanceof

coexistent phases, rather than secular fluctuation between the two pure

phases). However, larger values of N were already very time consuming

outside the Wransitionr!region, and could certainly not be expected to

be less so inside it. Thus, an important reason for investigating two-

dimensional systems was the fact that with calculationally feasible

vslues of N (which sre only slightly greater than in three-dimensions),

the interracial effects believed to be responsible for much of the

diffictity should be considerably reduced.

An incidental advantage of the two-dimensional case is the greater

ease with which the geometrical structure of sample configurations can

be studied.

Accordingly, in 1958 we began the calculations which will be de-

scribed in this report. Unfortunately, soon after nnst of the calcula-

tions were completed the investigationwas put aside in favor of other

unrelated. problems, and only recently have we returned to the work of

reducing the results ta a form suitable for publication. Preliminary

14results were made available to Helfand,, l?risch, and, Lebowitz, for

comparison with their approximate analytical results.
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Alder and.Wainwright have also applied their dynamical method to

hard circles,
15

and.in a recent paper _presentan isotherm displaying a

van der Waals loop for a system of 870 molecules.

In the meantime our own situation with respect to calculator speed

has improved, with the availability of IBM-7090 and IBM-7030 machines.

In the near future we will attempt to verify the molecular-dynamical re-

sult for a large system of hard circles. In this report we present

Monte Carlo results for two small systems of 12 and,48 molecules, which

are of some interest in their own right, and.whose understanding ought

to facilitate the investigation of larger systems.

A considerable effort has been made to develop data reduction

methods which can give estimates of the precision of the equation of

state results, as will be described.
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2.1

Chapter 2

THE MONTE

2.1

CARLO METHOD FOR SYSTEMS OF HARD CIRCLES

Derivation of the Equation of State

The -petit

system of hard

canonical ensemble”expression for the pressure of a

circles in terms of the value of the radial distribution

function at the molecular surface is well-known, but the usual derivat-

ion proceeds byway of an assumption of circular symmetry. This as-

sumption is not exactly valid in our calculations owing to the finite

number of molecules and to the particular boundary conditions which are

used. For this reason we Tresent here a derivation which avoids the

symmetry assumption.

hard

The Gibbs phase integral in configuration s~ace for a system of N

circles of diameter a confined to an area V is

~(v) ‘f””j ~ ‘(r.jj ‘a) & ●

v ‘(u)
(2.1)

The two-component vector giving the ~sition of the center of molecule i

4
is d.enotedby ;i, while r denotes the set of all such positions

{

++
‘l) ‘}

‘2) ““”> ‘N > and.is a 2N-vectorJ
‘ij

is the magnitude of the
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2.1

+ +
separation vector r .

s
ri between molecules i

the set of all distinct molecular pairs. The

step function,

{

Oifx<O ,
A(x) =

lif x20 .

The thermodynamic pressure is defined by

where the

shape (to

and,j; and (ij) stands for

function A(x) is the unit

(2.2)

(2.3)

variation of the area V is understood,to take place with its

be discussed in Chapter 3, along with the

held fixed. The synibolsk and T as usual stand for

stant and the thermodynamic temperature.

If the dimensionless vectors

+
x
i

-4-+V ri

‘{ -)-0

x= ‘1’ ‘2} ““”’ %‘} 9

are introduced, (2.3) can be written

with

boundary conditions)

the Boltzmann con-

where w is a ftied unit area whose shape is independent of V. Differen-

tiation under the integral sign then gives
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2.1

With use of the identities

dA(x)
ax

= 6(X)

and

A(x)8(x) = 6(’) ,

where 6(x) is Diracls delta function, we obtain

Return to the original

ah%

av If‘% V“””v

coordinates ~i gives

[II A(r
ij -

(iJ)
.)]{Z#Q@i }’ ●

(=U

Next we introduce the cumulative pair-distribution function in configura-

tion space

in which the sum is evidently the number

tance between centers in configuration ~

the corresponding ensemble average

(2.4)

of molecular pairs whose dis-

is less than or equal to ~, and

1u) G(C, ~)d~ . (2.5)
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Then we obtain

b ‘n % N~ ?X(~)

av [1‘W a~ )
C=(Y

by use of which (2.3) becomes

pv oG’(a) .-mT=l+r (2.6)

The prime denotes partial differentiationwith respect to the argument

C of G(c);the latter of course depends also onN and V.

Equation (2.6) is the desired,result, expressed for convenience in

terms of the derivative of the average cunmlative pair-distribution

function, rather than in terms of the radial distribution function be-

cause the latter cannot be directly calculated,by the Monte Carlo method..

As indicated

necessary, and in

was also avoided,.

at the outset, no assumption of circular symmetry was

fact the usual assumption of uniform singlet density

Thus Eq. (2.6) applies, with the pressure definition of

Eq. (2.3), also to crystalline

necessarily uniform (though in

conditions, see Chapter

We will frequently

u = pV@T

for the compressibility

V=vp ,

3, the

phases in which the singlet density is not

the case of systems with periodic boundary

singlet density is always uniform).

find it convenient to use the symbol

(2.7)

factor. We also define the area per molecule

sad.define the hexagonal close-packed area per molecule

v0=/%s2/2 . (2.8)
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2.2

For coverings of the infinite plane by non-overlapping circles of

16
diameter a, it is known that V. is the smallest pxsible value of the

area per molecule v. The reduced area ~ is defined as

‘G= v/v. ● (2.9)

2.2 Estimation of the Equation of State

As indicated in Chapter 1, the average cumulative pair-distribution

function G(c) defined.byEq. (2.5) is estimated by the lbnte Carlo method

as the time average of the configuration-spacefunction G(~, ;) over a

realization of a suitable

states of the system. If

the realization

petit ensemble

at time t

t) = Gc~,

Markov chain in the space of the configuration

we denote the configuration state attained by

by;(t), and the correspond~g value of

;(t)~, then the re~ultfig esti~te of the

average G(c) is
t

1=—
t

The arrow indicates

y ii(c, t’)+
tu
the stochastic

average to the ensemble average as

G(c). (2.10)

convergence of the Markov chain time

lj+mo

Thus, the essence of the method is the generation on a high speed

computing machine of a sequence of configuration states, which sequence

forms a realization of a Markov chin having this convergence property.

For each state t’ in the sequenc~ the function ~(~, t’) and its running

average Gt/(c) are calculated for an appropria~ set Of v~ues Of C-

The development is carried to an appropriately
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2.3

whereupon the estimates ~t(~) nust be numerically differentiated,to

give G’(u), from which the compressibility factor u is calculated from

Eq. (2.6). The data reduction procedures involved are discussed in

Chapters 7, 8, and 9.

2.3 Classification of Parameters

2.3.1 Parameters which syecify the system: N, V(shape), and ~.

The basic parameters which define the physical hard-circle system,

and thus the space of configuration states, are the number of molecules

N, the area V (including its shape andhoundary conditions), and the

molecular diameter d. The first two of these parameters &re discussed

in detail in Chapter 3. Together they determine v . V/N, while a deter-

mines V. byEq. (2.8), the reduced.area ~ being then given byEq. (2.9).

It is convenient to reverse this procedure and,specify the reduced area

‘cas a fundamental system parameter instead of the diameter U.

2.3.2 Parameters which define the Mrkov chain: (pij) andb.

The conditions on the stochastic matrix defining the Markov chain

which suffice for the time averages of its realizations to converge

stochastically to the corresponding yetit ensemble averages have been

discussed,in detail elsewhere.1-5 Briefly, the configuration states to

be included.in the ensemble averages must form a single ergodic class,

and the elements of the stochastic matrix must satisfy a stationarity

condition involving the Boltzmann factors for the states.
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For the case of hard circles, the configuration states to be in-

cluded (“accessiblestates?!)are ordinarily all those in which no llover-

lapfloccurs, i.e., those in which all pairs (i, j) satisfy r
ij

s U. In

exceptional cases (Section 1.2.1) only a subset of these states may be

desired. If the one-step transition probability from state j to state k

is Pjk> the stationarity condition for hard circles reduces to the

reversibility or symmetry condition

‘jk
= pkj ●

The ergodicity condition requires that between any two ‘Inaccessiblestatesll

j and k there be a non-zero transition probability in some finite number

of steps.

The matrix which we used in the present calculations is the two-

dimensional nmdification of the one used in the hard-sphere calculations.5

Rather than write out its algebraic definition, we will describe the

stochastic process by which the configuration state ~(t + 1) at time

t -I-1 is generated from the state ~(t) at time t. One of the N molecules

is selected randomly and approximately uniformly; call this molecule

i(t). The two cartesian coordinates of i(t) (giving the position ~i(t)(t)

of this ndecule at time t) are given provisional displacements random

and uniform on a certain interval (-6,6), the other molecules remaining

in their positions at time t; call this _provisionalconfiguration

;’(t). If ~’(t) contains an overlap (i.e., if as a result of its provi-

sional displacement, molecule i(t) has approached closer than the dis-

tance a to another molecule), then i(t) is returned to its former
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position, and the next state of the realization is identical.to the

pre’ViOUS State: ;(t + 1) = ;(t). If ~’(t) contains no overlap, then it

becomes the next realized state: ~(t + 1) =;’(t).

The maximzm displacement parameter 6, which appears in the above

description (and.is not to be confused.with the Dirac delta function of

Section 2.1), affects the rate of convergence of the stochastic process

(i.e., the number of steps required on the average for a certain precision

of the statistical averages), but not

the petit ensemble limit. The value

for optimum convergence. It is clear

the existence of convergence toward,

of 6 should in principle he chosen

that both very small and very large

values will lead to too gradual a motion of the state point in configura.

tion space. In the hard-sphere case> a limited investigation of this

optimization problem was made, on the basis of the intuitive criterion

of maximizing the rectified trajectory of the

have been used as a rough guide in choosing 6

vestigation.

state point. These results

during the hard-circle in-

It is evident that the above described,Markov chains satisfy the

sufficient conditions for convergence, assuming of couse that the initial

state at t = O is chosen to be an accessible state, except for one possi-

bility. The latter is the case

state point to move between two

sible) regions of configuration

in which the prescription permits the

disconnected,( i.e., utually inacces-

spacej depending on their separation

relative to 6, as indicated,schematically in Fig. 2.1 The figure is to

be understood as a schematic projection of configuration space onto the
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2.3

Fig. 2.1 A possible one-step transition between two dynamically
inaccessible regions of configuration space.

two-dimensional space of a single molecule, with states j and k differing

only in the position of this molecule. The square with state j as center

is of edge 26, and consequently dynamically inaccessible states such as

k can Tossiblybe reached.from j. Such situations me believed to be

rare, since at densities where compartmentalizationof configuration

space is important the usual values of 6 are expected to be small com-

yared to the Trobable distance between mutually inaccessible regions.
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2.3.3 Parameters which determine the realization: ;(0) and,the pseudo-
random number sequence.

The realization which will

determined,by the initial state

quence which is used to produce

be obtained on the computing machine is

Z(O), and by the pseudorandom nuniberse-

the pseubstochastic sequence of states.

The initial configuration is usually a regular hexagonal arrangement of

the molecules with the distance a between nearest-neighbor centers given

by

a2 = 2v/73-N .

The random number sequence

(2.11)

is discussed in Chapter 4.

2.3.4 Parameters which determine the observations made upon a realization:

Ar2, K, and.At.

As seen in Section 2.1, for the determination of the equation of

state of hard circles, the derivative of G(c) at ~ = u is sufficient.

The required.numerical differentiation can accordingly be carried,out

using only observations of d(~, t) near ~ = U. To date only such observa-

tions have been made, not because the radial distribution function over

wider range is without interest, but because this restriction permits a

considerable increase in the speed with which the computer can generate

the realization. This comes about because the calculations required to

a

compute the observation ~(~, t) at each step can, if ~ is so restricted,

be limited to just the interactions of the displaced,molecule i(t)

(Section 2.3.2)with its immediate neighbors.5
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{}
For convenience the set of values La , at which the

are made, is chosen to be of the form

c;=G2+cYAr2 , cz=lj2,000,K ,

observations

(2.12)

2where Ar and K are suitably chosen parameters. They determine the

fineness of detail and,the range over which the cumulative pair.d.istri-

bution function is observed. In principle they should be chosen so as to

optimize statistically the results obtained in a given computation time.

In practice they have been chosen somewhat haphazardly, in part on the

basis of graphical differentiation techniques.

The realizations used,in practice me much too long to allow the

tabulation of the observations at each step of the random walk. Also,

the running averages ~t(~a) we too slowly varying to be convenient for

the purpose of monitoring the progress of the realization. For this

~se we make comse-grained or time-smoothed observations by averaging

~(~a, t) over successive groups of At steps each. Thus, our primary ob-

servations are

SAt

@(s,CX)S*
I

~(~ajt’), U =1,2, 0=0,K, s = 1,2,*** . (2.13)

t’=(s-l)At+l

The coarse-grainingparameter At could also, in principle, be determined

optimally on the basis of statistical considerations,but in practice it

has also controlled intermittent dumping of data for restarting the cal-

culation, and has been chosen on the basis of convenience in this respect.
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ensemble

2.3.5 A—

2.3

running averages ~t(~a), which converge toward the desired

averages, are of course easily obtained at times t . sAt:

s

‘sA#~) ‘+ I G(s’,a) .

S’=1

(2.14)

yarameter which determines only the speed of the calculation: d,.

The Wiffusion distancelld.is a parameter5 which affects

speed.with which the computer generates the observations on a

realization. Its value determines the rnimberof neighbors of

only the

particular

the dis-

placed.molecule i(t) (see Section 2.3.2) whose interactions with i(t)

must be calculated,at each time step. A small value of d leads to a

small number of neighbors but more frequent updating of certain tables

of these neighbors. The balancing of these two opposing effects leads

to an opti?munvalue of d. This was the subject of a limited investigation

for the hard-sphere case,5 in which a rather broad range of nearly

optinmm values was found,. The values of this p~s,meter in the present

investigationwere selected,for the most part by analogy with the be-

havior of the three-dimensional case.
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Chapter 3

PERIODIC BOUNDARY CONDITIONS, THE AREA V,

AND TEE NUMBER OF MOLECULES N

As in all our previous Monte Carlo investigations,we have used

periodic boundary conditions in the belief that they probably afford

the best means of approximating with a finite number of molecules the be-

havior of quasi-infinite thermodynamic systems.

3.1 Definitions

3.1.1 V must be a unit cell of a planar lattice.

The first requirement of

V must be a unit cell of some

given an area V of specified

linearly independent lattice

erty. Let Vm, with m and n

these boundary conditions is that the area

lattice which covers the plme. That is,

shape and dimensions, there must exist two

vectors ~1 and 72 having the following prop-

any positive, negative, or zero integers, be

the area obtained.by applying to every pint ~ of V = Voo the translation

RJR) = R+m71+n72 .

Then V is a proper unit cell if corresponding to any point fioof the
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3.1

plane there exists a unique pair of integers m(~o) and n(~o) such that

+
‘man Contatis ‘o”

It is immediately clear that this requirement

alone considerably limits the shape of V. For example triangular shapes

are excluded. Among the satisfactory shapes

(includingrectangles) and,certain hexagons;

linear boundaries would also be admissible.

are evidently parallelograms

certain shapes with curvi-

This requirement being satsified, one next associates with each

configuration of N hard-circle molecules in the area V the infinite con-

figuration (covering of the plane by circles) of

by applying the above translations to the finite

3.1.2 Summation conventions.

density
16

N/V obtained

configuration.

The set (ij) of molecular pairs over which the

Section 2.1 are taken for any configuration is then

sums and products in

defined as follows.

The index i runs over just the N molecules of the basic cell V = Voo.

The index j runs in principle over all the molecules in all the cells

V # V , as well as over the values j > i in V
00 Ilbwever,for the00“

systems we will consider,the molecular diameter a and the relevant

values of the argument ~ of the cuxmlative pair-distribution function

will always be small enough compared to the dimensions of V so that the

equations are unaltered.,withj restricted to its values in V and.to
00

the molecules in the immediately adjacent cells. Owing to this extension

of the range of the j subscript, the set (ij) now contains more than

the N(N - 1)/2 distinct pairs obtained,if both i and,j were restricted,
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to just the molecules in Voo. lbwever, the independent variables which

syecify a configuration are still just the N position vectors ~i ranging

over V = Voo, and it is readily verified that the equations of Section

2.1 are unchanged.

3.1.3 M3xhumpacking density.

IIIthe terminology of Section 2.3.1,a Cmfiwation h= ELIIoverlaP,

and is thus not an allowed state during the randnm walk, if there is an

overlap between any pair of molecules of the infinite system. And con-

versely any configuration which is an allowed state under the periodic

boundary conditions corresponds to a non-overlapping covering of the in-

finite plane with a packing density equal to the density N/V of the

finite system. Thus, a finite system with periodic boundary conditions

cannot have a packing density greater than that possible for an infinite

system.

As mentioned in Section 2.1, the ms.ximundensity for an infinite

system is that of the familiar hexagonal close-packed arrangement, which

has a volume per nmlecule equal to Vo, as given by Eq. (2.8). It iS ob-

vious that if we wish our finite system to approximate the behavior of

nearly close-packed, quasi-infinite systems, we should choose V and N

so that the area V is an N-molecule unit cell for the regular hexagonal

lattice.
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3.1.4 Unit cells for regular hexagonal lattice.

Figure 3.1 shows several unit cells containing one or two molecules,

which themselves generate the regular hexagonal lattice, and,from which

larger composite unit cells can be constructed. Of the possible shapes,

rectangles are computationally the most convenient. The smallest such

unit Cd-l contains two molecules, as shown in the fi~e, ~d has edges

a and.6 a, where a is the nearest-neighbor distance. A rectangular array

of LM such unit cells, with

cell with an area

v = aIlk2

for a system of

N = *LM

molecules. For both of the

a rectangle with side-ratio

edges fiLa and,Ma, is accordingly a suitable

(3.1)

(3.2)

systems to be reported here, the area V is

fi/*, the ratio L/’Mbeing fixed at 2/3. The

smaller of the two systems contains 12 molecules (L . 2, M = 3), the

krge~48 molecules (L =4, M=6); see Figs. 3.2and,3.3. Both willbe

discussed in more detail in subsequent sections of this chapter.

3.1.5 Toroidal formulation.

An equivalent, often helpful, description of periodic boundary

conditions for such rectangular areas is to regard the N molecules as

moving on the surface of a torus, with a suitable definition of distance.

The periodic boundary conditions are in fact sometimes called toroidal

boundary conditions. In the above discussion we proceeded by the more
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Fig. 3.1 Unit cells for the planar regular hexagonal lattice.
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Fig. 3.2 The 12.molecule system in the regular hexagonal close-packed
configuration, r . 1.
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Fig. 3.3 The 48-molect.iLesystem in a regular hexagonal configuration.
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cumbersome lattice definitions in order to more

connection with quasi-infinite systems.

Finally it should.be mentioned.that durtig

clesrly establish the

the random walk, a dis-

placement of a molecule across the boundary of the cell V = Voo into an

adjacent cell is snowed. However, under the above definitions the

molecule simultaneously reappears in V at the opposite boundary, so that

the number of

simplicity of

molecules contained in V is conserved. (Note the greater

the toroidal formulation.)

3.1.6 Uniform singlet density; reduction of configuration space to
2(N - 1) dimensions.

Every configuration of a periodic system belongs to a two-dimensional

continuum of equivalent configurations in which the relative positions ~ij

me identical, corresponding to uniform translations around.the torus.

Due to this symmetry the singlet density of say periodic system is uni-

form. In addition the configuration space can be reduced to 2(N - 1)

dimensions by introducing coordinates of the N - 1 nmlecules i = 2,3,””*,N

relative to nmlecule 1. The position =1 of molecule 1 then disappears

from Eq.s.(2.1) and.(2.s), so that the integrations over ~1 can be carried

out to yield a factor V. This factor cancels from numerator and denomina-

tor of Eq. (2.s),with the result that the average cumulative pair-distri-

bution function G(c) is expressed as the ensemble average for a system of

N hard circle molecules having 2(N - 1) degrees of freedom, one ~lecfie

being held fixed at the origin.
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The random walk of the l.bnteCarlo method can be modified to take

place in this 2(N - I)-dimensional space by simply holding one molecule

fixed.. In some recent calculations for Lennard-Jones molecules this has

indeed.been done, since in addition to slightly increasing the calcula-

tion speed [bya factorN/(N - I)], the study of the geometrical struc-

ture of sample configurations is somewhat simplified.

3.2 Effect of Periodic I?azndaryConditions

and Finite N at Low Densities

17 have recently investigated theoretically theLebowitz and,Percus

dependence of the petit ensemble press~e on the nwber of molecules

for systems with periodic boundary conditions. They showed that there

are essentially two types of dependence of p on N at fixed v and T. One

of these, which they call the lhormalltdependence, arises from correction

terms to the virial coefficients which are of the form of polynomials in

N-l. The second, or %nomalousff dependence on N is more complex, and.

arises from the srea (for two-dimensional systems) dependence of the

virial coefficients of large enough order for the corresponding Mayer

? clusters to wind,at least once around the periodic torus. The latter

dependence can be predominant for very small values of N.

For the rectangular systems with L/M . 2/3 the reihlcedarea

rc(v, N), below which the virial coefficient of order v becomes area

dependent, is given by

Tc(v, N) = 4v2/3N.
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In Table 3.1 this critical reduced area is ta%ulated as a function of v

for the two systems of the present investigation. Ih the 12-mlecul-e

system,the second and third virial coefficient have a Vnormal!lN-depend-

ence (i.e., are volume independent) at all values of the reduced area,

while the fourth virial coefficient becomes dependent on T for T < 1.78.

b the 48-molecule system,the second,through the sixth coefficients have

normal behavior, but the seventh virial coefficient is dependent on ‘c

for T <1.36.

TABLE 3.1

ANOMALOUS

CRITICAL VALUES OF THE REDUCED AREAG

DEl?ENDENCEOF VIRIA.LCOEFFICIENTS Cv

TC(V, N)

v N =12 N= 48—

2— —

31 —

4 1.78 —

5 2.78 —

64 1

7 ~.22 1.36

8 7.11 1.78

99 2.25

10 11.11 2.78

FOR
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3.3 Effect of Periodic Boqndary Conditions

and Finite N at His& Densities

3.3.1 &immaxy of Salsburg-Wood.asymptotic analysis.

Complementing to a certain extent the results of Percus and,Lehowitz

18discussed,in Section 3.2, Salsburg and.Wood, have recently established.

theoretically the behavior of the equation of state of finite periodic

systems of hard circles or spheres in the high density limit.

from

3.3.1.1 Stable Limiting configurations.

The fundamental assumption is that as the reduced area approaches

above a certain value T+. in a system of fixed.sha-peand N. a closed. .

region of the 2(N . 1)-dimensional configuration space of Section 3.1

contracts to a single point or limiting configuration Z*. As a result

at infinitesimal expansions from the reduced.volume @ only configuration

states which are infinitesimally close to the limiting configuration

space point =* are accessible from Z*. Such a limiting configuration is

said,to be stable. No easily applicable sufficient condition for =* to

have this stability property was obtained, but a necessary condition on

the coordination number c (defined as the average number of contacts

per molecule) of the limiting configuration was shown to be

c24_ 2/N . (3.4)

In addition an obviously necessary condition is that the limiting con-

figuration be close-packed, i.e., no molecule must be able to move with
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the other molecules held.fixed..

3.3

3.3.1.2 Rree.volume equation of state is asymptotically correct.

Provided that the limiting configuration is stable, the following

asymptotic expression for the petit ensemble equation of state restricted

to configurations accessible from the limiting configurationwas obtained:— —.

pv 2(1 - N-l)=+

“m= ‘G- ~* +0(1) . (3.5)

This result agrees, neglecting terms of O(N-l) and O(1) in (’c- &),

with the free-volume equation of state
18. . .. -,..L,.–-.—.-

basea on me ssme unnzmg con-

figuration,
.+

3.3.1.3 Difficulties for large N.

This asymptotic agreement with the free-volume approx-tion

(3.6)

is the

is because T - -i7* ~st be O(N )

be inaccessible from the per-

the molecules. The latter situa-

most interesting result of the Salsburg-Wood analysis. Hbwever, it still

has to be regarded as an uncertain approximation as far as systems of

thermodynamic size are concerned. This

if the states accessible from~* are to

+
mutations of r* obtained.by renumbering

tion is necessary (though not sufficient) for the Salsburg-Wood.derivation

of Eq. (3.5). Such a range of expansion is uninteresttigly small for

thermodynamic values of N. There are intuitive reasons to believe that

Eq. (3.5) is valid for such large systems, with ‘r*= 1, but tiis kS not

been proved.
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3.3.2 Examples.

393

3.3.2.1 Stable regular hexagonal lattice.

The regular close-packed hexagonal configurationwith T* . 1 is

undoubtedly an example of a stable limiting configuration, although a

formal proof is lacking. In this case Eq. (3.6) becomes the usual free-

volume equation of state, which should consequently usefully approximate

the equation of state of finite systems at high density, provided that

the hexagonal configuration is accessible to the system. And under the

usual supposition that the vast majority of states of quasi-infinite

systems at high density sre close to the regular hexagonal configuration,

Eq. (3.6) is hopefully a useful approximation for these systems also.

3.3.2.2 Unstable honeycomb lattice.

The close-packed honeycoti lattice configuration with @ = 1.5,

Fig. 3.4, is an example of an unstable limiting configuration (for all

systems except those with very small values of N) whose coordination

nuniber(3) does not satisfy Eq.(3.4). Examination of the figure shows

that by a coordinated rotation of the molecules in one of the hexagonal

rings through one-twelfth of a revolution, the system reaches a configu-

ration in which these molecules, as well as their nearest neighbors,

all have considerable freedom of movement.
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Fig. 3.4 The unstable close-packed (~ = 1.5) honeycomb lattice of
coortiation nuxher 3.

3.3.2.3 Unstable square lattice.

Another example of an unstable limiting configuration is the close-

packed squsre lattice with N = 1.154, Fig. 3.5. Letus first consider

this configurationunder periodic boundary conditions in a squeze srea

v = NG2. We note immediately that the configuration is unstable in that

any row of molecules (except that containing the fixed molecule) can be

slipped horizontally sround the torus by an arbitrary momt. If d.ter-

nate rows sre so displaced.a distance of one hard-circle radius in the

same direction, we srrive at a configuration in which the nmlecules

within each row are still close-packed,but in which adjacent rows are
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Fig. 3.5 The close.~acked (T* = 1.154) square lattice.

no longer in contact. Alternate molecules in each row can consequently

be given small vertical displacements such that the configuration be-

comes one in which no molecules are in contact. Consequently the pres-

sure obtained.by averaging over states accessible from the close-packed.

squsre lattice is finite at ~ = 1.154. For sufficiently large N these

states may be expected to include a preponderance of states which approx-

imate a regular hexagonal arrangement of this density except for boundary

defects. The pressure is then expected to approach a~proximately the

usual (T* = 1) free-volume value.
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. .

3.3.2.3.1 Effect of rigid boundaries. The p?eceding example shows

that a configuration can be close-~acked, satisfy Eq. (3.4), and still be

unstable. Let us consider the same system with rigid.wall boundary con-

ditions. As far as we have been able b determine, this close-packed

configuration is now stable at finite N. Consequently the equation of

state under these conditions wouldbe expected.to approximate Eq. (3.6)

with T* = 1.154, for T - T* = O(N+). Bbwever, the behavior of large

systems at expansions greater than this would be quite different; as

connections appear between the square lattice configuration and the

approximately hexagonal configuration, the pressure can be expected to

shift rapidly to the lower values characteristic of the latter configura-

tions. Thus, one can argue that periodic boundary conditions are slightly

advantageous since they allow the instability of such a close-packed con-

figuration to manifest itself in finite systems.

3.3.3 Conclusion.

Comparhg the Salsburg-Wood analysis with the hard-s~here hnte Carlo

results of Fig. 1.1, we see that the approximate agreement of the high

density ~ints obtained from calculations started from the face-centered

cubic lattice (the ?tsolid~lbranch of the equation of state) is to be ex-

pected, and hopefully shouldbe characteristic of much larger systems.

The lfextendedfluid!!brsnch for the j2-molecule system wouldbe expected

to be in approximate agreement with Eq. (3.6) with N near 1.15. Ebwever,

the significance of this curve is in doubt. It might be a small s~tem
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artifact; or it might be the small system manifestation

randomly packed configurations of large systems.

The asymptotic N dependence given byEq. (3.5) my

of metastable

be expected to

be of some use in compsring Mmte Carlo calculations for systems of

different numibersof molecules, but its usefulness in this connection

may be expected,to be limited by our lack of knowledge of the N depen.

dence of the O(1) term (see Chapter 10).

3.4 The 12-MOlecule System

3.4.1 Surface molecules.

The twelve-molecule system defined.in Section 3.1 was shown in

Fig. 3.2 in its hexagonal close-packed confi~ation, -C= 1. ~ a sense

one can say that this system is almost all edge or %urface~!,although

the term requires a specisl interpretation since under periodic boun&cry

conditions there is no true one-dimensional surface (edge). ~wever, con-

sidering any specific configuration such as Fig. 3.2,

surface molecule is defined to be one which has among

hors one or more fli~geffmolecfles, i.e., one or more

we see that if a

its nearest neigh-

molecules contained

in another unit cell Vn in the notation of Section 3.1.1, then all ex-

cept two molecules (nunibers6 and 7 in Fig. 3.2) are surface molecules.

Another way of characterizing the finiteness of the system is to

note that, while in the regular hexagonal lattice arrangement the six

nesrest neighbors of each molecule are all distinct,there are only three

distinct next-nearest neighbors, instead of six as would.be the case in
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a large system. For example, in Fig. 5.2 the six next-nearest neighbors

of molecule 7 are molecules 5, 10, and 12, each being counted twice. In

this respect the 12-molecule, two-dimensional system is similar to the

32-nmlecule, three-dimensional system.

3.4.2 Toroidal topology of lattice lines.

Still another characterization of rectangular yeriodic systems is

obtained by considering the way in which the Trinci~al lattice planes, or

lines in the yresent two-dimensional case, wind around the torus. The

hexagonal lattice has three systems of such lines, which in Fig. 3.2 are

at angles of 30°, 90°, S.Ua150° with respect to the longer edge of the

cell. The vertical lines are seen to form four distinct columns (rings),

each of which contains three molecules. The inclined lattice lines,

however, fall into a single class. Proceeding from nmlecule 1 along the

1500 line, we find the sequence 1, 2, 7, 8, 9, 10, 3, 4, 5) 6> 11) 12}

1, ““” . That is, all twelve nmlecules are encountered before a repeti-

tion occurs. In geometrical terms, the 150° lattice lines of this system

in the hexagonal lattice configuration form a single spirsl around the

torus.

3.4.3 Critical ‘cfor diffusion; validity of free-volume equation of state.

In connection with the question of the reduced area range over which

the assumptions of the Salsburg-Wood analysis are valid for this system,

it is of interest to estimate the smallest vslue of -rat which the
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configuration of Fig. 3.2 and one or more of its permuted.arrangements

(obtaihedfrom Fig. 3.2 by renumbering the molecules) are connected. The

connecting path is probably one which we observed during the Monte Carlo

calculations,but which might have

It corresponds to a fluctuation in

columns of three molecules rotates

been anticipated,by study of Fig. 3.2.

which one of the above-mentioned,

one (or more) lattice distance around

the torus. The value of T required,for this fluctuation is that at which

one such column or ring has just sufficient room to rotate freely when the

other three rings are tightly nested together, as shown in Fig. 3.6. fi

the 12-molecul.esystem this requires T z 1.136.

the permuted lattice configurations are isolated,

does not follow, of course, that the free-volume

At smaller reduced areas

from each other. It

approximation is neces-

sarily good.for this system at all T < 1.136, since Eq. (3.5) is only an

( 12

( 0

( 4

Fig. 3.6 High density diffusion mechanism, showing the presumably highest
density path
possible for

between permuted regulsz hexagonal co~igu&tions, j&t -
the 12-molecule system at T = 1.136.
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asymptotic expression valid at ~ + 1.

On the other hand, it is possible that the free-volume approximation

may indeed be useful for T x 1.136, since the probability of the above

fluctuation is exactly zero at this minimum value of r. At this and

slightly larger reduced volumes, the configuration-spacevolume of the

connecting paths is small, and,the region of accessible space omitted

in the Salsburg-Wood ‘Qolytope” estimate may be negligible. In order to

form an idea of the rapitity with which the connections become Mrger as

T increases, we can calculate the reduced.area at which the above rota.

tion of a ring can

lattice locations.

would appear to be

connecting region.

take place with all other rings in their regular

Under these conditions the fluctuation in question

fairly probable, corresponding to an appreciable

The required.value of T is

volume approximation is expected to break down

area.

3.4.4 Alterns.tivetetragonal (c =4) lattice.

4/3. Thus, the free-

st some smaller reduced

Figure 3.7 shows that this 12-molecule system is also compatible

with a different regular lattice configuration which is a relative of

the square lattice of I!Lg.3.5. This lattice has a two-molecule rect-

angular unit cell of side ratio fifl, and is compatible with aKIY

rectangular srea V based on the regular hexagonal lattice for which the

ratio L/M = 2/3 (see Section 3.19. The lattice is close-packed.at

T = 48~3 x 1.116, and is probably stable since its coordination number 4

76



3.4

s

Fig. 3.7 A tetragonal close-packed.(T* = 1.1163) confi~ration which is
compatible with the 12.molecule system, as shown, as well as the 48-
molecule system.

square lattice,its lattice

some interval of reduced

is probably inaccessible

satisfies Eq. (3,4.),and,in contrast to the

lines are not orthogonal. Consequently, in

area greater them 1.H63 this configuration

from the regular hexagonal configuration. (Note that the close-packed

reduced area of this c = 4 lattice is slightly smaller than the above

estimate of the smallest reduced area at which the simplest permutations

of the hexagonal arrangement are connected.)

For some interval of reduced area close b ,T = 1.1163, then, the

equation of state obtained by averaging this system over the states

accessible from the c = 4 configuration wou.1.daccordinglybe expected

to approximate that given byEq. (3.6) with @ = 1.1163. For larger
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reduced areas, however, the equation of state wouldbe expected to shift

toward the lower values characteristic of hexagonal configurations. For

lsrge systems Fig. 3.6 suggests this should occur at expansions where the

inclined close-packed lines of nmlecules can slip along each other. For

the 12-molecule system, however, this is not a possible mechanism, since

the topology of these lattice lines is like that of the inclined lattice

lines of the hexagonal configuration: each of the two systems contains a

single class of all 12 molecules.

This configuration is mentioned in order to show the type of be-

havior which can appear in finite periodic systems. The st~cture of

the arrangement, e. g., the angle between the lattice lines, depends on

the ratio L/M, and one can be reasonably certain that for large s~tems

it is of no statistical significance.

3.5 The 48-Mlecule System

The regular hexagonal configuration of this system was shown in

Fig. 3.3. The area V for this system can be regarded as being made up

of four of those for the 12-molecule system. % a result any configura-

tion of the latter has a corresponding analogue among the configurations

of the 48-molecule system. Thus, many of the remarks already made in

connection with the smaller system apply also to the larger one. In par-

ticular, the tetragonally coordinated lattice of Fig. 3.7 is also possi-

ble with the 48-molecule system.
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Using the definition of surface molecule given in Section 3.4.1,

exactly one-half of the molecules of this system ere so ch~acterized.

In terms of the shell structure of the regular hexagonal lattice, all

neighbors of any molecule are distinct through the fifth shell. The

30° snd 150° lattice lines are found to decompose into two evenly divided

classes each. The smallest value of r at which one of the eight columnar

rings of six molecules can rotate around,the torus is 1.063, correspond-

ing to the larger concentration of lrfreearea!!possible in the larger

system. The value T = 4/3, at which this rotation is possible from the

re~lar hexagonal confi~ration is, of course, independent of the size

of the system.

The above description does not exhaust the possible structures

obtainable with this system, as we shall see when we come to the discus-

sion of the Monte Carlo results.
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Chapter 4

THE CALCULATOR PROGRAM

All the calculations to be described in this report were performed

on IBM Type 704 machines, using a two-dimensional.adaptation of the

hard-sphere program which has been descri%ed in detail elsewhere.5 With

this program a typical calculation time for one time-step of a realiza-

tion is roughly 17 milliseconds.

4.1 Random lhunbers

The pseudorandom numbers used.for all realizations were those of a

19 The cycle lengthsingle sequence of 70-bit %riLdle square” numibers.

of this sequence is unknown, but was found%y suitable tests to be

greater than

realizations

the sequence

bits) of one

four million. This iS more than is required for any of the

to be described here. Except for this test for repetition,

has not been further tested statistically. One-half (35

of these numbers

9 bits to select the nmlecule

coordinate displacements; the

was used at each time step as follows:

to be moved; 12 bits for each of its two

remaining two bits were discarded.
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4.2 Two V(?rsh)rls of the Proaam

Twd slightly different codes were used.,which we

codes A and B. In code A, through an oversight, what

low-order (less in magnitude than 2-17, unit distance

will designate as

amounts to a small

being the longer

edge of the rectangular cell) noise was introduced into the displaced

position Y! of the molecule which is moved at each time stey t
l(t)

(Section 2.3.2). The effect of this noise is small as far as the Markov

chain transition probability matrix is concerned, but at some point in

any realization its presence changes the success . failure outcome of

an attempted displacement for which this decision is borderline. Con-

sequently the configuration at the next time step of the realization in

which the noise is present differs from that in the same realization

without noise. From that point on, of course, the two realizations are

stochastically different. In the same way,two code A realizations which

are identical except for their values of the diffusion parameter d.

(Section 2.3.5) will also differ, which would not normally be the case.

In code B this noise was accordingly removed. A nuniberof realiza-

tions with identical parameters were run with both codes, and the results

were found to be in statistical agreement, as expected. Such calcula-

tions accordingly can be regarded as replicate observations on the same

system, in mch the same way as variation of the initial configuration

or the random number sequence can be used.b prodnce re~licate realiza-

tions for the same Ikrkov chain, or as variation in the displacement

parameter 6 can be used to obtain different Markov chains convergent to
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the same system averages.

4.3 Program Input and Output

The data required for input to the program are the parameters al-

ready discussed in Section 2.3: the system parameters, which are the re-

duced area T and the integers L and M which determine V andN according

to Eq. (3.1) and Eq. (3.2); the maximm displacement parameter 6 which

determines the Markov chain; and the observational parameters consisting

2
of the time-snmothing interval At and the parameters Ar and K which

determine the detail and range of the observations of the cumulative pair

distribution function. In addition the initial configuration can be

Finally the diffusion parameter d must be

the yrogram IS the set of time-snmothed values

provided; if none is give~the ~rogram positions the molecules on the

regular hexagonal lattice.

given.

The primary output of

6(s, a) of the cumulative pair-distribution function, as given byEq.

(2.13). These quantities, for Q = l(l)K, are recorded on magnetic tape

at the times t = At, 2At,==”, sAt,-””, along with sufficient additional

data ta permit the realization to be restarted at these times, in case

it is interrupted (for example, by a machine error). In particular the

configurations ~(t) at the above values of t are available on this output

tape, which is preserved.as the permanent record of each realization.

This tape is used as input to various auxiliary programs which perform,

for example the statistical reduction of the observations, as described
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in Chapters 7, 8, and,9. Another such program can be used to plot the

+
snapshot configurations r(t), available on the tape at time intervals

At, on the SC-4O2O microfilm printer-ylotter.
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Chapter 5

RESULTS FOR TRE 12-MOLECULE SYSTEM

We generated 27 realizations of varying length for the system of

12 hard circles described in Section 3.4. The parameters ~d result~g

compressibility factors are given in Table 5.1. The uncertainty esti-

mates given for the compressibility factors were obtained by statistical

techniques which will be described in Chapters 7, 8, and 9. Although

they were formally obtained as estimates of the standard deviation of

the estimated compressibility factors (whose distribution should be

approximately normal), with more than 100 degrees of freedom in most

cases, the statistical approximations involved are yrobably such as to

make them too small. Thus, caution should be exercised in any statis-

tical application such as confidence interval estimation.

As indicated by the appearance in Table 5.1 of just a single value

of pV@kT for each realization, we did not observe in this system of

12 hard circles the ?Ijumpyllor !f~o-plateau!lbehavior which was ex-

hibited by the hard-sphere systems as described in Chapter 1. This

point is discussed in more detail in Section 5.1. Section 5.2 is devoted
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TABLE 5.1 PARAMETERS AND COMPRESSIBILITY FACTORS

FOR TEE SYSTEM OF 12 HARD CIRCLES
(see footnotes on following page)

Realization(a)

Al

A2

A3

A4

A5

A6

A7

A8

A9

Alo

All

A12

A13

A14

A15

&L6

A17

A18

A19

Mo

A21

A22

A23

A24

A25

A26

A27

‘c

1.025

1.050

1.075

1.100

1.150

1.150

1.200

1.250

1.250

1.2$Xl

1.300

1.350

1.400

1.450

1.475

1.500

1.500

1.500

1.525

1.550

1.600

1.700

1.800

2.000

2.500

3.000

3.90

26
a -a

2.4

2.2

2.4

2.2

2.2

0.44

2.2

1.8

2.03

2.2

2.2

2.3

2.0

2.3

2.3

2.5

2.4

2.5

2.5

2.5

2.3

.2.?

2.5

2.5

2*9

2.8

3.0

85

K—

18

13

12

12

12

19

11

11

19

13

10

11

11

10

11

11

11

11

11

11

10

10

9

8

11

11

8

~(b)

99

14

19

23

24

19

11

29

15

16

29

32

24

42

44

42

76

30

38

39

99

23

24

16

18

23

26

pVfikT

76.EU ~ 0.55

38.06 * 0.38

26.42 f 0.17

20.62 f 0.09

14.25 * 0.07

62.9 ~ 0.87

11.20 * 0.10

9.182f 0.063

9.262? 0.098

8.4o5 k 0.076

8.328? O.O&

7.423? 0.084

6.857 f 0.079

6.272f Oo091-

6.214 t 0.047

6.033~ 0.062

5.W9~ 0.052

6.oo8~ 0.079

5.788* 0.062

5.524* 0.058

5.229* 0.073

4.660 * OoO&

“4.o66f 0.062

3.372 ~ 0.064

2.459* 0.031

2.030 ~ 0.029

1.674* 0.015



FOOTNOTES TO TABLE 5.1

a All realizations were generated using code A (see Section 4.2) with
At = 19 200, except Al, A6, A9, and A21 for which code B with
At = 4 800 was used. The value Ar2/a2 = 1202-~ was used in all cases
except Al and A6, which had a value one-eighth as large, and A26, which
had one-half the standard value. All realizations were started from
the regular hexagonal lattice (Fig. 3.2) with the following exceptions:
A6 and A9 were started from the tetragonal lattice of Fig. 3.7; AIO
was.started from a configuration generated by the ITcompressionprocessf!
(see Section 5.1.2); KL8 was started from a configuration obtained by
Alder and Wainwright after 20 000 collisions along a dynamical trajec-
tory started from the hexagonal lattice.

b This column gives the number of coarse-grained observations (of At
steps each) used in estimating pV/NkT. On all realizations the first
coarse-grained observation was not included, except for A9, where the
first five such observations were omitted.
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to the geometrical structures observed in this system. In Section 5.3

our qualitative conclusions with respect to this system are summarized.

Discussion of the quantitative aspects of the equation of state results

is postponed until

the data reduction

after the calculations for the 48-molecule system and

techniques have been described.

5.1 Statistical Behavior

5.1.1 Regular lattice realizations.

Gur principal objective in studying the 12-molecule hard-circle

system was to see whether it would exhibit phenomena -possiblyindicative

of the presence of a phase transition in large, quasi-infinite systems.

Such

true

indications might be of essentially two different types.

The first possibility is that it would be feasible to estimate the

ensemble average (over-all configurations accessible from the hexa-

gonal lattice) over the entire density range. In this case the indica-

tion of a possible phase transition would take the form of an anomaly in

the resulting p-v isotherm, presumably either a 100-pof the van der

Waals type or a more or less horizontal inflection point. It might then

also be ~ossible to obtain a.similarly complete equation of state for a

significantly larger value of N, and,thus perhaps to obtain some indica-

tion

of a

of the behavior of the anomaly with increasing N.

The second,phenomenon which might be regarded,as suggestive

phase transition is the same IIjwpy?lor l!tio-plateau~!behavior as

was obsened for hard spheres and described in Chapter 1. None of our

87



5.1

realizations of llarkovchains for the 12-nmlecule system displayed such

behavior. However, as we shall see, later calculations for the system of

48 hard.circles did display this “jumpy”behavior at reduced areas in the

interval 1.3 to 1.35. The calculations for the smaller system were al-

most all done before those of the larger one, so that at the time we had

no particulu reason to concentrate our attention in this interval of re-

duced area. As a result,for the 12-nmlecule system in this interval we

have only realizations All and A12 at ~ . 1.3 and 1.35 respectively.

The JIcontrolchsrts?!for the first three observed points G(s, 1),

d(s, 2), and g(s, 3) of the cumulative pair-distribution function for

these two realizations are shown h Figs. 5.1 and 5.2. Even in retrospect,

considering our later experience with the 48-molecule system, these control

charts are not especially noteworthy, although that for realization A12

shows some indication of non-randomness in successive coarse-grained ob-

servations.

Thus, our calculations indicated,that the ensemble averages over the

accessible configurations of this system were being reasonably well esti-

mated at all densities. It was accordingly possible ta inquire about the

presence of anomalies in the resulting isotherm which might, as already

described, be indicative of a phase transition in large systems. In

F!Lg.5.3 the estimated reduced pressure pvo/kT is plotted against the

reduced area T in the sane logarithmic representation as used in Fig. 1.1

for hard s~heres. Also shown are the virial equation of state, with

-5neglect of terms of O(T ) as given by Metropolis, et al.,
1
and the usual
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Fig. 5.2 Control charts for the first three cumulative distribution
functions of realization A12 at r = 1.35.
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Fig. 5.3 The equation of state of the system of 12 hard circles as
calculated by the Monte Carlo method in the present investigation (o).
Also shown (x) are the results of Metro~lis et al.l for 224 hard circles.
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free-volume equation of state Eq. (3.6),with @ = 1. (The free-volume

curve for T* = 1.1163 and the neighboring mint for realization A6 are

discussed in Section 5.2.4).

The results have the expected qualitative behavior at low and high

densities. In the latter region the points lie slightly below the free.

volume curve, %y an anmunt which is in at least rough agreement with the

N-l term inEq. (3.5). At low densities the lbnte Carlo values approach

agreement with the virial approximation; the scale of the figure is too

small to show whether or not the difference is O(N-l T-l) as would be

expected from the analysis of Lebowitz and Percus.

Furthermore, we note that all the points appear to lie on a reason-

ably smooth curve, includtig across the interval ~ . 1.3 to 1.35 in which,

as already mentioned, the 48-molectie system will be seen to exhibt anom-

alous behavior. Figure 5.3 is in marked contrast to Fig. 1.1, where even

if all the points in the interval T . 1.5-1.6 were ignored, and the en-

tire “extended fluid” branch as well, the remaining points for the regu-

lar face-centered cu%ic lattice realizations would clearly indicate the

presence of some sort of anomaly between T = 1.5 and 1.6. The Mnte

Carlo results for the 12-nmlecule system as plotted in Fig. 5.3 give no

hint of any sort of anomaly which might suggest a phase transition for

large systems, nor does Fig. 5.4 fn which the mid-range data are shown

in the usual linear representation.

Comparing (Figs. 5.3 and 5.4) the present results for 12 hard

circles with those of the original investigation1 of the system of 224
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Fig. 5.4. Central portion of Fig. 5.3 re@otted on a linear scale. The
radii of the points (.) correspond,approximately to the standard.
deviations given in Table 5.1.
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hard circles, we note that there is approximate agreement at both low

and.high densities, 17 adas would be expected from the Lebowitz-Percus

Salsburg-Wood
18

analyses. A more quantitative comparison at these two

extremes will be

The present

previous ones in

made in Chapter 10.

results appear to be significantly higher than the

the mid-density range T = 1.3 to 1.5, say. Two explana-

tions of this difference are possible. On the one hand, it is conceiv-

able that the two systems, one of 12 molecules in a rectangular cell, the

other of 224 molecules in a square cell, stmply have appreciably different

equations of state in this region. As will be seen when the behavior of

the 48-molecule system is described, there is reason to suspect that such

is indeed the case,but in quite a different fashion from that suggested

by the results of Ref. 1.

The other possibility is that the random walks of Metropolis et al.,

because of the rather slow calculator availa%le at the time, were not

long enough for convergence; that is, their averages are too low due ta

‘inemory”of the initial regular configuration. In our opinion this

latter possibility is quite likely since accorCtLngto Metropolis et al.,1

their random walks were all less than 22 400 steps long, only slightly

exceeding the usual time-smoothing interval for our smaller systems. We

ordinarily discard the first

a tendency to fall below the

density range.

coarse.grained,observation because it

over-all average, particularly in the

shows

mid-
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5.1.2 A single “compressor”experiment.

With the intention of seeing whether

fluid.!!branch of the 12-molecule equation

we could obtain an !Iextended

of state distinct from that

obtained by starting the realizations from the hexagonal lattice, we

carried.out one l?compressor~!experiment using the technique described in

Section 1.2.3. The configuration selected.was the last one in realiza-

tion~6 at T = 1.5. It was l’compressed.flto r = 1.29, and,the resulting

configurationused as the starting point for realization AIO. As shown

in Figs. 5.3 and,5.4 the resulting reduced.pressure is not significantly

different from that expected for a realization begun at the regular hexa-

gonal configuration.

the

our

At the time, this result was interpreted.as additional support for

absence of any behavior indicative of a phase transition. However,

subsequent experience in studying the geometrical structure of both

this and the larger system has suggested, as will be disassed fi Sec-

tion 5.2.2, that the parent configuration from realization ~6 had a

structure so close to the regular hexagonal configuration that the above

result might have been e~ected.

At this point the investigation turned to the

with results to be described.in the next chapter.

48-molecule system,

Recently the labora-

tory acquired.the high-speed,,electronic printer-plotter device (SC-4020)

mentioned,earlier, with which it has been feasible to make a nnch more

thorough study of the geometrical structure of the hard-circle system

than was possible using hand-plotting techniques. Accordingly, we
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returned briefly

trical character

in the following

to the 12-molecule system in

as a function of the reduced

section.

order to study its geome-

area -c,as will be discussed

5.2 Geometrical Structure of the 12-Molecule System

5.2.1 VOTOnOi -pOlygOns.

In characterizing the geometry

from the Markov chain realizations,

of irregular configurations sampled

we will find it convenient to employ

the ‘Voronoi~olygonsr!used by Rogers
16

in establishing his upper bound

for the greatest possible Tacking density of hard spheres, and by Banal
20

in his recent studies of the packing of hard spheres (in the three-dimen-

sional case, of course, one has ‘Voronoipolyhedra!!whose definition and

Properties are similar to those given below for two-dimensional systems).

In any configuration ~ of a system of N hard-circle nmlecules, there

is one

of all

closer

Voronoi plygon for each molecule i. It is d.eftiedas consist~g

those points of V (regarded as the surface of a torus) which are

to ~~ (the center of molecule i) than to the center of any other
J-

molecule. The boundaries of the polygon are evidently segments of some

of the N - 1 perpendicular bisectors of the line segments ~. j=l,
lj’

2,***, N, #i. From the definition it is easy b see that the N plygons

are all

In

tion of

polygon

convex and fit together so

irregular configurations a

a lbeighbor!rof molecule i

as to fill the area V.

convenient (for some purposes) defini-

is any other

shares an edge with that of molecule i;

96
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neighbors will be called the ‘Voronoi coordination number.“ These

definitions are not always equivalent in the case of re~lar lattice con.

figurations to the usual definitions of ‘hearestneighbor” and coordina-

tion number. For example, in,the regular hexagonal configuration the

definitions are equivalent, but in the tetragonal lattice of Fig. 3.7

there are six Voronoi neighbors, and only four nearest neighbors.

5.2.2 The “compressor”experiment.

Figure 5.5 shows the parent configuration, from realization &L6 at

T = 1.5, with which the compression was started,

tained after compression to T =

and the last configuration (t =

figures of this type, the bonds

1.29, from which

326 400) Of KLO.

connect ‘Voronoi

the configuration ob-

realization AIO began,

In these and.other

neighbors’!as defined.in

the preceding subsection. It should be mentioned in passing that they ‘

have been drawn in ‘by eye~!and may be in error in borderline cases in

which the shared edge is quite small or non-existent.

We note that the configuration before compression, Fig. 5.5a, is

recognizably close to the regular hexagonal configuration (comparewith

Fig. 3.2); all molecules have Voronoi coordination nuniber6, and the bonds

are not far from their regular lattice arrangement.

end,of the compression, is still tire so. Thus, the

AIO wouldbe expected to be statistically equivalent

the usual lattice, as the resulting reduced pressure

5.1.2).

Figure 5.5b, at the

ensuing realization

to one started from

indicated (Section
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(c)

(b)

Fig. 5.5 Snapshots of realization AIO at T = 1.29 (compressor experiment).
(a) parent configuration from realization Al_6at T =1.5
(b) initial conf~guration of AIO, obtained by compressing (a) to T = 1.29;
(c) find (t = 326 400) configuration of NO
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The final configuration, Fig. 5.5c, is topologically equivalent

to (b); the connectivity is identical, indicating that throughout this

realization no !~diffusion’!of the molecules took place. (This conclu-

sion is supported by an examination of all the intervening %napshotsl!

of this realization.)

5.2.3 Regular hexagonal realizations at ~ <1.3.

All seven of these realizations (Al through A5, A7,and A8) behaved

like AIO. The connectivity of the initial regular hexagonal lattice (in

the Voronoi sense, Section 5.2.1) was preserved throughout with no mole-

cular interchanges (l~diffusion!!).The longest of these realizations is

A8 at ~ = 1.250 which was developed to 576 000 time steps. Thus, the

structure of the 12-molecule system in the sampled.region of confi~ra.

tion space at these densities is definitely crystalline-like. Further-

more, in terms of the Salsburg-Wood analysis, the state point has

evidently remained over long !!times!!in the region of accessible COIlfig-

uration space associated with the initial hexagonal configuration even

at expansions appreciably above ~ = 1.136, i.e., at expansions where

the discussion of Section 3.4 shows that this configuration and some of

its permutations are connected.

This may be interpreted as experimental evidence that such connec-

tions sre extremely constricted and difficult to traverse in this range

of density. Such a state of affairs is consistent with the further

possibility that the volume of these connections is negligible in
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comparison with the regions in the vicinity of the lattice configuration,

but such is not necessarily the case. For example the situation indicated

schematically in Fig. 5.6 would also account for the behavior of these

realizations.

CONNECTION

Fig. 5.6 Schematic example of a constri~ted.connection be~een ‘w”
lattice pernmtations, which has non-negligible volume.

5.2.4 Realizations started from the tetragonal lattice of Fig. 3.7.

In order to study the significance of the tetragonal lattice struc-

ture shown in Fig. 3.7 and discussed in Section 3.4.4, and in particular

to investigate its relation in configuration space to the usual regul=

hexagonal lattice, we generated

as their starting yoints.

two realizations with this configuration
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5.2.4.1 Realization A6 at T = 1.15.

This reduced area represents an expsasion of about 3$ above the

close-packed value 1.1163 for this lattice. The development was carried

to only t = 96 000, with all “snapshot!’configurations exhibiting only

insignificant deviations from the initial arrangement. This suggests, on

the basis of the Salsburg-Wood analysis (Section 3.3) that the resulting

reduced,pressure ought to be in approximate agreement with the value cal-

culated from the free-volume theory based on this lattice, i.e., from

Eq. (3.6) with H = 1.1163. Figure 5.3 shows that such is indeed the case,
.

the difference again being roughly as expected on the basis of the N-L

correction term in Eq. (3.5).

5.2.4.2 Realization A9 at T = 1.25.

Here the initial tetragonal configuration was found to be Wnstablelt

with respect to transition to configurations of the usual hexagonal type.

Figure 5.7 shows the “snapshots” at t = O, 4 800, 9 600, and 14 400.

By t . 14 400 the structure is seen to be a nearly perfect hexagonal

arrangement for this system (comp~e Fig. 3.2). me arr~gement re-

mained unchanged,(i.e., there was no !l~f~sion!l)ttioughout the remainder

of this realization(t = 96 000).

5.2.4.3 Interpretation.

The behavior of realization A6 strongly suggests that at

the tetragonal lattice has a !~ocketr~or region of accessible

‘G= 1.15

states

#

101



5.2

(a)

(c)

(@

(d)

Fig. 5.7 Snayshots showing the relaxation of realizations A9 at T = 1.25
from the tetragonal lattice of Fig. 3.7 at t = O (a), through intermediate
structures at t = 4 800 (b) and t = 9 600 (c), to the regular hexagonal
structure at t = 14 400 (d.).
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which is at least effectively, if not actually, disconnected from the

region around the regular hexagonal lattice. (The latter region is

doubtlessly larger, since the volume of the tetragonal pocket must be-

come zero at r = 1.1163.)

At ‘r. 1.25, on the other hand, the rapid relaxation of realization

A9 shows that the two lattice points are connected, and suggests that the

‘~ocket’fassociated with the tetragonal lattice is no longer large com-

pared to all its connections with other pockets. Thus, we are led to

conclude that at ~ . 1.25 a pocket of hexagonal states is large compared

to the volume of any other configuration space region that is easily

accessible from the tetragonal configuration. At reduced areas greater

than 1.25j we would expect the tetragonal configuration to be even more

short-lived.

These inferences are all in agreement with our comments in Section

3.4 concerning the expected,unimportance of the tetragonal,type of con-

figuration. In particular its stability character a~pears to be quite

different from that of configurations on the IIextend,edfluidr’branch of

the hard-sphere system (N = 32). The latter configurations were apparent-

ly very stable with respect to transition to nearly face-centered,cubic

configurations. The only reservation is that at this stage this inter-

pretation is based,on just one observation (A9) of definite instability,

plus the more negative evidence of the non-appearance of tetragonal con-

figurations in the other realizations at r < 1.3. We will return to this

point as we discuss the realizations at larger reduced.areas.
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5.2.5 Realization AXL at T =1.3.

Realization All at T = 1.3 is the highest density realization for

the 12-nmlecule system in which different permutations of the regular

hexagonal configurationwere observed. Snapshots before and after the

first such permutation are shown in Fig. 5.8, from which it is seen that

during this interval of 19 200 step$ the column of nnlecules 1, 5, and 9

experienced a net

distance relative

to a total of 576

upward displacement around the torus of one lattice

to the other molecules. This realization was developed

000 steps, during which two other displacements of the

same type occurred.

This is the mechanism which was discussed in Section 3.4.3 as the

probable first accessible path between permutations. It is noteworthy

(a) (b)

Fig. 5.8 Snapshots showing diffusion in realization All at r = 1.3, (a)
t . 76 800 and (b), t . ~ 000. Compare with Fig. 3.6.
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that although it was there calculated that the path exists at ~ Z 1.136,

the present reduced,area of 1.3 is the smallest at which it was observed,

and furthermore this reduced area is rather close to the value ~ = 4/3

at which this rotation of the three-molecule columns is Tossible in the

regular lattice configuration itself.

It is also significant that all the snapshots of this realization

are recognizably close to the hexagonal lattice. Occasionally, molecules

with coordination numbers of 5 and 7 (in the Voronoi sense) were noticed.

The typical situation in which they appear is that sketched in Fig. 5.9.

Hexagonal connectivity can be restored by a small relative motion which

re~laces bond BD hy AC (dashed,line).

.

.

I

Fig. 5.9 The simplest occurrence (solid.lines) of Voronoi coordination
nunibers5 (moleculesA and C) and,7 (B and,D).
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These observations are further evidence that in this system the

connections between permeations of the regular hexagonal configuration

are indeed very constricted at expansions appreciably greater than the

reduced volume at which they

simple mechanism of Fig. 3.6

possesses no ‘lpocketltof the

first appear.

is concerned,

sort depicted

In addition, as far as the

the connection itself probably

in Fig. 5.6.

Figure 5.4 shows that just at this reduced area, where the system iS

first observed to make its way through this connection, the computed

yressure crosses above the free-volume curve. In terms of the Salsburg-

Wood analysis, at this density the contribution to the ~ressure of con-

figurations neglected in the polytope approximation to accessible config-

uration space becomes comparable to the effect of the finite number of

molecules (12) of this system. This would suggest, if substantiated for

larger systems, that the free-volume ~ressure may indeed be a useful

approximation at e~ansions greater than the range O(N-*) required for

the Salsburg-Wood denmnstration.

5.2.6 Realization A12 at T = 1.35.

At this density additional types of nmtion

hexagonal configurationswere observed, and the

between -permuted

extent of distortion from

the regular arrangement increased, as would be expected. But in general

the snapshot configurationswere recognizable approximations to the reg-

ular hexagonal configuration, and the appearances of pernnrtationswere

rare enough so that successive sna~shots at intervals At = 19 200 could
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be explained in terms

Examples, in addition

one-step displacement

cycle 5*4+7+6+

of a simple motion of a small number of molecules.

to the columnar motion already described, were the

of a staggered row of four molecules, such as the

5 in Fig. 3.2, or a ring shift such as

6 +10 -+IL-+7+6, also in Fig. 3.2.

The configuration at t = 614 400, Fig. 5.1o, was

arrangement can be made hexagonally connected,,in the

exceptional. The

Voronoi sense, by

replacing

hexagonal

mation to

the bond 10-11 by 6-7, but the result is not the usual regular

configuration of Fig. 3.2. Instead it is a very close approxi.

the tetragonal lattice of Fig. 3.7. (As smatter of fact, it

was this snapshot which made us aware of the existence of this alterna-

tive lattice for systems with L/M . 2/3.) The following snapshot was

I I I 1

Fig. 5.10 Snapshot showing the occurrence of the tetragonal arrangement
of Fig. 3.7 in realizattin A12 at r = 1.35; t = 614 4.00.

107



5.2

again of the usual hexagonal type, indicating that the tetragonal

arrangement probably does not posses a well-defined IQocketllof accessible

configuration syace at this reduced volume (see also Section 5.2.4).

5.2.7 Realizations at ‘r21.4.

In realization A14, at T = 1.4, two of twenty-five snapshots had

arrangements related to Fig. 3.7; ~st of the rest were recognizable

approximations to the regular hexagonal lattice. At this density con-

siderable distortion from the lattice was frequent, and considerable

relative motion often occurred between successive snapshots (At = 19 200).

As ~ increased from 1.4 to 1.6, the structures in which the regular

hexagonal lattice was recognizable decreased in frequency, while those

of irregular or random appearance increased. Occasional

of the tetragonal (Fig. 3.7) type appeared, but not very

At~= 1.5 most configurations could still be classified

configurations

frequently.

as regular

hexagonal types, e.g., Fig. 5.5a. Figure 5.11 shows four atypical

configurations of realization A17 at this reduced area. At~= 1.6 the

majority of the snapshots were best described as irregular or random.

When ~ becomes as large as 2, the configurationsbecome gas-like.

Figure 5.12 shows some examples at -c= 2.5 and 3.0.

5.2.8 s~Y.

Our over-all impression from this examination of the geometrical

structure of the system of 12 hard circles over the entire range of
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(b)

(c) (d)

Fig. 5.11 Selected atypical configurations from realization A17 at r . 1.5.
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(o)

(c)

5.2

(b)

(d)

Fig. 5.12 Sample snapshots at T =2.5 (a andb) and T =3.0 (C and d).
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interesting densities is one of gradual change from ordered hexagonal

structure at high density to random structure at low density.

One of our main objectives in making this study was to see if

structures in the intermediate density range would give any hint of a

possible IIextended-fluid“

guided in this connection

48-molecule system. This

branch of the equation of state. We were

by the results of our structural study of the

study will be described later in this report,

but was carried out before that on the smaller system. Here it will

suffice to mention in advance that in the 48-molectie system an IIextend.ed

fluid~lbranch was found, and that it had a characteristic geometrical

structure which was also quite evident at slightly larger reduced areas

in realizations started from the regular hexagonal lattice. This strut-.

tire, as we shall see, is not one which has an analogue in the 12-mole-

cule system, but it seemed,nevertheless probable that we might recognize

any systematic occurrence of a structure that might have a similar role.

AS the previous sections have indicated, no such characteristic

structure was noticed in the small system. The only

ment noticed was the tetragonal lattice of Figs. 3.7

not believed to be the basis of such a branch of the

exceptional arrange.

and 5.10, which is

equation of state

for the following reasons. First, at no reduced area is it a predominant

or frequent structure in realizations started from the usual hexagonal

arrangement. Second, it appears to be definitely unstable with respect

to transition to hexagonal structures at -ca 1.25. There appears to be

a corresponding branch of the equation of state over a small range of
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reduced areas above 1.1163, which agrees a~roximately with the free

volume theory with 7* . 1.1163, as expected from the Salsburg-Wood analy-

sis. Hbwever, this branch is expected to disappear with increasing N,

and in any case it does not have the properties of an l’extendedfluid!’

branch.

Finally, we mention again that the system remdns in the configura-

tion space ‘@ocket’lassociated with the initial hexagonal arrangement

throughout quite long realizations at reduced areas up to 1.3, although

connections with some of the permuted arrangements are known to appear

in this system at ~ = 1.136.

5.3 Resume of the Results for the 12-l@lecule System

Our main conclusion from our study of this small

it shows no behavior indicative of a phase transition

a large number of

sion are (1) the

Figs. 5.3 and 5.4

hard-circle molecules. The reasons

system is that

in system of

for this conclu-

appearance of the calculated isotherm, shown in

and.discussed in Section 5.1.1; (2) the absence of

any ‘Ijumpyf!or “two-plateau‘fbehavior of the control charts; (3) the

apparent absence of an “extended fluid” branch of the equation of state;

(4) the gradual change in structure with increasing reduced area.

The third of these observations is indirect, being based on the

failure to note any spontaneously appearing structure which seemed

likely, on the basis of our experience with the 48-molecule system (see

Section 5.2.8), to form a basis for an extended fluid branch. Further
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ltcompression“ experiments on the 12-molecule system could have been

carried out starting with some of the less regular configurations noticed

at T 2 1.4, but this did not seem worthwhile in view of the probability

of a negative result, as well as the rather tangential significance of

a positive one, due to certain

system which will be discussed

The Monte Carlo pressues

aspects of the behavior of

subsequently.

seem to

volume approximation at

Salsburg-Wood,analysis,

N-dependence being left

high densities

a more precise

for discussion

approach agreement

the 48-molecule

with the free

(Fig. 5.3) as suggested by the

correlation with the theoretical

along with results for the 48-

molecule system. Comparison of the calculated pressure with the free-

volume approximation suggests that the latter may be useful over a larger

-1
range of expansions than the O(N ‘) range required,to localize the mole-

cules in the strict sense

analysis.

At low densities the

demanded by the Salsburg-Wood asymptotic

calculated pressures appear to ap~roach agree-

ment with the virial.expansion (Fig. 5.3), a precise comparison with the

theoretical N-dependence of Le’bowitzand Percus again being left for

later discussion.
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~apter 6

6

QUALITATIVE SURVEY OF REAIJYMTIONS FOR TEE

48-MOLE- sYsmzM

The system of 48 hard circles was discussed earlier in Section 3.5,

and is shown in its regular

this systemwe generated.39

compressibility factors are

hexagonal configuration in Fig. 3.3. For

realizations, whose parameters and resulting

given in Table 6.1.

The compressibility factors are given here in order to facilitate

the qualitative discussion of these realizations. The data reduction

methods which were used to arrive

standard deviations (which follow

in Chapters 7, 8, and 9. AS with

.
at these estimates and their associated

the t signs in the table) are discussed

the 12-molecule system, the reader is

warned at this pcint that there is reason to expect the standard deviation

estimates to be too optimistic.

The reduced pressures corresponding to the compressibility factors

in Table 6.1 are plotted in Fig. 6.1 on the same logarithmic scales as

used in Fig. 5.3 for the 12-molecule system and.in Fig. 1.1 for hard

spheres. Because of the small scale of this figure some of the points in

the interval T = 1.3-1.355, and also most replicated po~ts~ are o~tted=

SL4
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TABIJI6.1 PARAMWEM ANDCOMPRESSIBILITYFACIML.SFORTRESYSTEMOF 48 BAROCIRCLES

Reali-
——Ed3

Initial

zation T Cmfig. (b )

I&’
26 -lo% —

R-u w’ K ~(c)
——

B1

B’

B3

Bk

B5

B6

B7

B8

B9

B1O

El-l

B12

B13

B14

B15

B16

B17

B18

B19

B20

B21

B“

B23

B24

B25

B26

B27

B28

B29

B30

B31

B32
B33
B~

B35
B36

B37

B38

B39

1.025
1.025
1.025
1.025
l.oko
1.074
1.075
1.075
1.124
1.124

1.125

1.150
1.169
1.240
1.250

1.254

1.275

1.29

1.300

1.316

1.325

1.330

1.340

1.350

1.350

1.350

1.355

1.375

1.400

1.500

1.500

1.650

1.750

‘.oca

2.4c0
3.mo

3.90

3.900

3.W3

A

B

B

A

B

B

A

B

A

B

A

B

A

A

B

A

A

A

B

A

A

A

A

A

A

B

A

A

A

A

B

A

A

A

A
A

A

B

B

L

L

L

L

L

c

L

L

c

c

L

I&

c

L

x)+

c

L

c

L

c

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L
L

L

L

L

2.3
2.3
‘A
‘.4

2.4

1.5

2.4

2.4

1.6

1.6

2.3

o.4k

1.8

2.2

2.03

2.0

2.2

2.3

2.4

2.3

2.3

2.2

2.2

2.2

2.0

2.2

2.3

2.2

2.2

2.0

2.2

2.5

2.5

2.6

2.9
2.9

3.0

2.2

11.2

15
15
16
16
16
16
13
15
13
15
13

16

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13
13

13

13

13

18 Ma

18 KM

18 121

18 100

18 100

17 99

1’ 38

19 50

12 21

19 58

12 33

18 40

u 33

l-l 100

L9 13

1175

13 101

13 50

17 150

13 82

IL%

10 95

10 ll!l

12 2-f

12 -/0

12 71

12 49

12 9’

99
.lJ. k7

14 151

10 38

9 41

8 50

8 22

7 51

7 27

14 50

14 50

Observa -
tions (d)

‘J.@

2-100

‘-la

‘-lm

2-lCXI

2-99

2-38

2-50

‘-’l

2-58

2-33

6-40

2-33

2-103

&
&J.399 * 0.29.2
83.315 * O.y%
8c.66A * o.35k
8a.$c.-2* 0.388

50.995 * 0.215

97.1% ~ 0.737

28.216 * 0.158

28.301 * 0.146

29.042 * 0.208

29.388 * 0.237

17.666 * 0.084

42.587 * 0.254

18.545 * 0.104

10.277 * 0.039

—
2-75

2-101

2-50

2-80

81-150

120-150

2-19

20-39

40-82

2-95

1-IA

15-26

e+yi

58-78

102-141

2-27

1-16

28-40

2-71

42-TL

249
2+2

2-93

2-47

2-151

2-38

2-41

2-50

2-22
2-51

2-27

2-50

2-50

1.1.645
9.282
8.886
8.747
10.4EII
10.732
10.017

8.520

9.9+1

8.583

8.359

9.$44
8.236

8.282

9.370
9.238

8.179J

10.050

9.374
9.6%

8.9+1

8,667

8.080

6.675

6.545

5.099

4.427

3.384

2.597

2.063

1.6766

1.6976

1.6950

* 0.051

* 0.035

* 0.039

* o.oy5

* 0.089

* 0.137

* 0.100

* 0.068

* 0.094

* 0.061

* 0.102

* 0.056

f 0.06Q

* 0.098

* 0.082

* 0.075

* 0.065

* O.lfi

* 0.056

* O.I.”

* 0.064

* 0.047

* 0.053

* 0.065

* 0.032

* O.O42

* 0.036

* 0.027

* 0.026

* 0.012

* 0.0103

* 0.0056

* 0.0055

115



FOOTNOTES TO TABLE 6.1

6

a See Section 4.2.

bL . regular hexagonal configuration (Fig. 3.3)
c = configuration obtatied,by ~tcompressorf!technique. See detailed

discussion of the realization in the text.
IA = tetragonal configuration (Fig. 3.7)

c This column gives the total nuniberof coarse-grained observations,
each of At = 19 200 time steps, in the realization. The total length
of the realization is t = 19 200 n.

d. This column gives the range of s over which the coarse-grained
(At = 19 200) observations ~(s, a) were averaged and clifferentiated
to obtain the quoted estimate of the compressibility factor and its
standard deviation.
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Fig. 6.1 Monte Carlo results for the system of 48 hard.circles. .: com-
pletely averaged realizations started from the regular hexagonal lattice.
m: realizations started.from ‘!compressed.!linitial configurations, again
completely averaged. &. l~lateau~!estimates in incompletely averaged
realizations. 7. a realization whose initial configuration was the
tetragonal lattice of Fig. 3.7. X: Metropolis et als1 for their system

of 224 hard circles. Curves shown are FV, the usual free-volume theory,
Eq. (3.6)with &= 13 FV*, Eq. (3.6) with -r++= 1 1163J V4, the viri~
expansion for N = -5OJwith neglect of terms of O(T ) as given in Ref. 1;
EJ?L,the scaled-particle approximation of Ref. 14.
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6

In Fig. 6.2 the reduced pressures in the range T = 1.2.1.5 are replotted

on the usual linear scale. Here the scale ’islarge enough to show all

the points, as well as to indicate the estimated precision.

It will be immediately noticed that Figs. 6.1 and 6.2 indicate a

double-valued.pressure curve for T S 1.35. This happens in exactly the

same way as in the hard-sphere investigation (Chapter 1). In the inter-

val T = 1.30-1.35 the realizations show a ffjumpy”or “two-plateau”be-

havior. At T < 1.30 the higher pressure curve &rises by application of

the !Icompressorlltechnique (Section 1.2.3); as before, it will be called

the IIextendedfluid!?branch of the equation of state.

Reserving a quantitative discussion until a subsequent chapter, we

note that in Fig. 6.1 the points obtained.from the regular hexagonal

realizations at high density agree quite welJ with the free volume theory.

Comparing with Fig. 5.3 for the 12-molecule system, we note that the

agreement is appreciably improved with the larger sfitem, as would be ex-

pected from the Salsburg-Wood analysis, Eq,.(3.6). At the low density

end of the curve the Monte Carlo points approach agreement with the trun-

cated virial expansion. We also note in Figs: 6.1 and 6.2 that the

14
scaled-particle approximation of Helfand, Frisch and Lebowitz agrees

quite well with the entire (T > 1.3) ‘Tfluidbranchl!of ,theMonte Carlo

results, as these authors pointed out on the %asis of the prelindmmy

version of the present data.

Also shown in Figs. 6.1 and 6.2 are the pints obtained.by Metropolis

1
et al. in their original lkmte Carlo tivestigation of a system of 224

hard circles in a square area V. As with our 12-nml@cule system, these
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Fig. 6.2 The Monte Carlo results for the 48-molec~e system for
T = 1.2-1.5, plotted.on a linear scale. All points of Table 6.1 are
shown as circles whose radii correspond.to the tabulated,standard devia-
tion. The curve labels are the same as in Fig. 6.1, and x again inticates
a result from Metropolis et al.l
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early results are in approximate agreement with the present 48-molecule

results at low densities, and also with the present regular-hexagonal

branch of the equation of state at high densities. Both of these approxi-

mate coincidences are, of course, to be expected on the basis of the low

density analysis of Lebowitz and Percus
17

and the high density analysis

18
of Salsburg and Wood. A somewhat more quantitative comparison will be

made in

In

results

Chapter 10.

the mid-density interval ‘c

lie below both branches of

= 1.3-1.5, these early hnte Carlo

the 48-nmlecule equation of state. As

in Chapter 5, we again attribute this primarily to the random walks of

Metropolis et al. being mch too shart, as will become evident when the

present Markov chain realizations in this interval, particularly for 1.3

s T s 1.35, are described in detail (Sections 6.1.2 and 6.1.3). %wever,

it must be emphasized that the long-time behavior of lkirkovchain realiza-

tions for the 224-molecule system would byno means necessarilybe identi-

cal with that of the 48-molecule system to be described in this chapter.

Ind.eed.we will see that the particul~ size (N) and shape (V) of the pre-

sent system

behavior in

belief that

appsa?entlyhave considerable influence on its statistical
.

this hid-density interval. Thus, although we incline to the
,, .. .
sufficiently long realizations for the 224-molecule system

would show a two-plateau behavior similar to that of the 48-molectie sys-

tem, it is bportant to label this statement as a conjecture. It derives

significant support from the quite similar behavior observed in the var-

ious investigations3Y5~6>9~10of three-dimensional hard sphere systems.

In the remainder of this chapter we will discuss qualitatively the

behavior of these realizations for the 48-molectie system on the basis of
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6.1

their statistical control charts, their estimates of the pressure, and.

their geometrical structure. We will begin with the realizations whose

initial configuration is the regular hexagonal lattice, and we will pro.

teed from the highest densities down through the interval T = 1.30-1.35

in which the “junpy”behavior is observed? then on through the lowest

density realizations. Next the !fextended-fluid!’branch is discussed,,

hut following the !Jcompression’1process from low tohigh density. Finally

the two realizations begun from the tetragonal lattice (Fig. 3.7) are

discussed, after which the chapter ends with a summary and,interpretation

of these results.

6.1 Regular Lattice Realizations

In this section we discuss in order of decreasing density the real-

izations begun from the regular hexagonal lattice, as well as realizations

B18 and,B20 which were started from ~’compressed~’configurations,but

whose behavior

same density.

6.1.1 T el.~.

resembles that of regular hexagonal.realizations at the

!tc~st~ltieltrealizations.

At reduced,areas less than 1.3, realizations B1 through B5, B7, B8,

Bll, B14, and.B17 had.the regular hexagonal configuration of Fig. 3.3 as

their starting points.

figuration obtained,by

plateau of realization

Realization B18 at T = 1.29 was begun from a con-

!Icompressing!lone selected from an apparent L

B23. This was done as part of an experiment which
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6.1

employed the compression procedure as a diagnostic tool in distinguishing

L and H plateaus in realizations where the plateaus are not very well de-

fined (see Section 6.1.2.2). AS seen from Figs. 6.1 and 6.2, the pressure

estimate obtained from B18 indeed falls nicely on the “crystalline”branch

of the equation of state determined by the regulsr hexagonal realizations

in the neighborhood of ‘r= 1.29.

In all of these realizations the initial configuration was main-

tained throughout the entire realization except for net displacements

small coxrrpsredto the nearest-neighbor distance. That is, in this den-

sity range we observed no lldiffusionl!(no molecular interchanges) in

these initially regular hexagonal realizations. Furthermore, the Voronoi

connectivity of the sampled “snapshot!!configurationswas predominantly

that of the regular hexagonal lattice. At ‘G= 1.24-1.29 a few cotiigura-

tions were noticed in which isolated.groups of four molecules displayed

the simple pentagonal-heptagonal connectivity of Fig. 5.9.

The control charts for these realizations exhibit no notable

anomalies, their appearance being qualitatively similar to that of the

L plateau of B19 to be discussed below.

Figures 6.1 and 6.2 show that the pressure estinmtes

these realizations agree well with the free-volume theory

sities, with the discrepancy gradually increasing with r.

6.1.2 T = 1.3-1.355, Wnnpy’f realizations.

In this reduced.area intefial we have

all of which were started from the regular

obtained from

at high d.en-

realizations B19 through

hexagonal lattice except

B26,

B20



6.1

at T = 1.316. The initial configuration of the latter was obtained by

the !Icompressiontfprocedure, but it is convenient to discuss this reali-

zation along with the others in this density range since its behavior

is qualitatively the same.

Most of these realizations showed IIjumpy!!or %wo-plateaul!control

charts reminiscent of those for the hard.-spheresystems (Chapter 1). In

the following subsections each of the realizations in this interval is

discussed individually. As a framework for the discussion it will be

convenient to employ the terrdnology of the %ourglass~!model of config-

uration space (Section 1.2.1). Let us emphasize, however, that by so

doing we by no means intend,to prejudice a decision in favor of titer-

preting the observed.behavior as indicating a first-order phase transi.

tion.

6.1.2.1 Realization B19at T =1.3.

The control charts for the observations of the first three cunda-

tive pair.distribution functions G(s, a), a . 1, 2, 3, obtained from

this realization are shown in Fig. 6.3. Because of the length of this

realization the time-smoothing parameter At used in the figure is twice

it usual value. On the other hand, the %napshotstfto be discussed,be-

low were taken at the usual interval At = 19 200, corresponding to the

entries in Table 6.1. In the discussion, therefore, we will number the

snapshots with index s’ on the latter basis, i. e., snapshot S’ shows

the configuration of the system at t . 19 200 s’. This confi~ation
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Fig. 6.3 The first three control charts for realization B19 at T = 1.3;
At = 38400.
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6.1

occurs in the middle of time-smoothing interval s = (s’ + 1)/2 of Fig.

6.3 if s’ is odd, and,at the end of interval s’/2 if s’ is even.

The “jump” or shift in level in Fig. 6.3 for s >40 (s’ >80,

t > 1 536 000) is especially striking and,naturally led us to average

configurationswith t s 1 536 000 as a ‘Z plateau!!,and those for

t > 1 536 000 as a WZplateaull.

6.1.2.1.1 The Lplateau. This plateau exhibits properties which

are a continuation of those of regular hexagonal realizations at higher

density (Section 6.1.1), not only with respect to its control charts,

but also with respect to its estimate of reduced pressure, as well as

with respect to its geometrical structure. The reduced pressure obtained

from this L plateau is the lowest of the points shown in Figs. 6.1 and

6.2at ~ = 1.30, and.clearly is in reasonable agreement with extrapola-

tion of the points obtained from regular hexagonal realizations at higher

density.

The geometrical structures of snapshots 1 through 79were almost all

describable as slightly distorted versions of the regular hexagonal

arrangement of Fig. 3.3. Snapshot 19 at t = 364 800, shown in Fig. 6.4a

was perhaps the most distorted configuration observed.during this plateau.

In this configurationwe count eight molecules with pentagonal Voronoi

coordination, and eight with heptagonal coordination. b order to re-

store the original connectivity of the regular lattice, ten diagonal

bond replacements like that of Fig. 5.9 are required, as tidicatedby

the broken lines in the figure. This is actually what happens on the
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(a)

6.1

Fig. 6.4 Snapshots from realization B19 at T = 1.3, showing the relaxation
of an atypically distorted.,L.@ateau configuration (a), t = 364 800, to
a more typically regular hexagonal configuration (b), t = 384 000.

next snapshot (Fig. 6.4b, s’ = 20, t = 384 000), in which the previous

distortion has relaxed to restore exactly the original connectivity.

Note also that the relaxed configuration is quite close to a regular

hexagonal arrangement; it is nmch more typical of the L-plateau snapshots

than is Fig. 6.4a.

Snapshots 21 through 66 showed the hexagonal lattice arrangement to

be approximately preserved, with only mhor connectivity ~ertuzbationd

of the type shown in Fig. 5.9.

Between snapshots 66 and 68, however, the two columns (5, 13, 21,

29, 37, 45) ~d (6, 14, 22, 30, 38, 46) mmed dmnwads one lattice SteP

around the torus (see the discussion of this type of motion in Sections

3.4.3, 3.5, ad 5.2.5). The intermediate snapshot 67, Fig. 6.5a, is of
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interest in that it shows this

course. In this configuration

Voronoi coordination, and four

6.1

displacement almost precisely in mid.

there are four molecules with pentagonal

with heptagonal coordination. The six

dotted bond substitutions return the system to the connectivity of snap.

shot 20 (Fig. 6.4b), whose connectivity is that of the immediately pre-

ceding snapshot 66 which is not reproduced.here. The six dashed bond

substitutions shown in Fig. 6.5a yield.the connectivity of the next snap-

shot 68, Fig. 6.5b. The latter is

regular hexagonal lattice, but one

columns of six molecules each have

again a close approximation to the

in which the above-mentioned two

moved down one step.

Snapshots 69 through 79 showed only minor distortions of the config-

uration shown in Fig. 6.5b. The final snapshot of the L plateau

(a)

Fig. 6.5 Snapshots 67 (a) and 68
t = 1 305 600, from the L plateau

(b)

(b), taken at t = 1 286 400 and
of realization B19 at T = 1.3
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6.1

(Fig. 6.6a, s’=80, t=l 536 000), however, is atypical of the Lclass

of states, and indicates that the transition to the H region of configu-

ration space, which is first signaled in the control charts by the pxlnt

for s = 41, corresponding to s’ . 81 and 82, actually occurred somewhat

before s’ = 80, t=1536 000. Thus, this snsphot is associated with

the H plateau, although the corresponding coarse-grained observation

falls in the L plateau.

6.1.2.1.2 The Hplateau.

and 83, sre shown in Figs. 6.6b

configurations are perhaps best

The next three snapshots, s’ = 81, 82,

through d. All four of these Fig. 6.6

described as irregular. In each case a

number of molecules have non-hexagonal Voronoi coordination, and although

portions of the system show local order,the over-all structure seems to

lack any regular character.

Hbwever, the next snapshot (s’ = 84, t = 1 612 800), show in

Fig. 6.7a, is (to us, at least) a most suzpising arrangement. It iS an

approximately hexagonal arrangement of the 48 molecules into 7 rows of

7 molecules each, except for one row which contains a hole instead of a

49th moleculeJ We assign molecules to rows as follows:

21 12 19 10 hole 16 21

14 13 4 11 2 98

6 44 3 42 1 48 7

46 5 36 43 41 40 47

38 45 35 34 33 32 39

30 37 28 26 25 24 31

22 29 20 27 18 17 23.
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)

(a)

(c)

(b)

(d)

Fig. 6.6 Snapshots 80 through 83, (a) through (d) respectively, of
irregular configurations at the beginning of the H plateau in realization
B19 at T = 1.3.
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6.1

(a) (b)

(c) (d)

Fig. 6.7a-d Snapshots 84 through 87 from the Hplateau of realization
B19 at T = 1.3, showing occurrence of ~f’7X71Tstructures.
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6.1

(e)

(9)

(f)

(h)

Fig. 6.7e-h Snapshots 88 through 91 from the H plateau of realization
B19 at T = 1.30.
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(i) (j)

6.1

Fig. 6.7i.j Snapshots 92 through 93 from the H plateau of realization
B19 at ‘r= 1.30.

Most Of the moleeties have hexagonal Vcxmnoi coordination; there are

two with coordination number 5 and two with coordination number 7. The

arrangement is nearly hexagonal, but differs from the standard one of

Figs. 3.3 and 6.5b, for example, in that its lattice lines are approx-

imately at 0°, 600, and 120° instead of the usual 30°, 9°, and 150°.

Arrangements of this kind will be frequently encountered, and it will be

convenient to designate them as ?!7X711configurations, reserving the term

Wregular hexagonal configuration!!to designate, as before, configurations

similar ta Fig. 3.3.

The presence of the hole naturally leads to considerable nmbility of

the ?!7X7!’structure by

shown in the following

the usual mechanism of hole diffusion, as

9 snaphots, Figs.6.’@-j. It is noteworthy that
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6.1-

in most cases one or two molecule-hole interchanges (symbolizedby mole-

cule = hole) suffice to account for the gross differences between con-

secutive Tairs of these snapshots. Thus, between sna~shots ~ and 85 we

assign the step 2 =hole; between 85 and 86, 9 =hole and,16 =hole; be.

tween 86 and 87, 23 ~hole; between 87 and,88, 31 ~hole and 39 ~ hole.

Between snayshots 88 and 89 the events are 38 ~hole and.30 =hole, with

the latter configuration displaying

structure. By the time of snayshot

noticeable irregularity in the ‘17X7!!

W, Fig. 6=7g, the events 29 ~hole,

21 = hole, 12 = hole have occurred,and in addition the pair of molecules

37 and.20 look as if they were moving down into the hole between mole-

cules 12 and.19. Hbwever, the next snapshot, Fig. 6.7h, indicates that

this did,not happen; rather this pair apparently moved back up into their

own rows, and.molecule 4 moved up into the hole.

In Fig. 6.7i, snapshot 92, there is enough distortion in the f17x7u

structure to result in considerable arbitrariness in any assignment of

molecules to rows. By the time of the next snapshot, Fig. 6.7j, most of

the distortion has disappeared. Nevertheless, the most ylausible row

assignment for this configuration, when

that during the intervening 38 400 time

seven molecules (10, 9, 42, 41, 33, 24,

compared with snapshot 91, implies

steps the staggered,column of

17) rotated one row downwards

around.the torus,

16, 8).

Snapshots 94

with the hole remaining in row (14, 13, 11, 9 or 10,

through 128, not reproduced here, continued,to exhibit

well-defined 117X711structures, after which irregular configurations such

as shown in Figs. 6.8, 6.9, and 6.1o reappear interspersed,with
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6.1

6.8

6.10 6.11

Figs. 6.8-6.SL Snapshots 132, 136, 140, and,143 from the latter part of
Hplateau of realization B19 at T = 1.3, displaying both irregular and
I17X711struc~eso
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6.1

well-defined 117x71!stmctuxes such as Fig. 6.11. There is a noticeable

tendency for the irregular snapshots to be associated with abnormally

high coerse-grained obsemations G(s, CZ)in Fig. 6.3. AS a restit the

last portion of this H plateau, in which such configurations seem to be

more frequent, leads to a somewhat larger estimate of the compressibility

factor (the third entry for this realization in Table 6.1) than that ob-

tained from the H plateau as a whole. The difference serves as an illus-

tration of the uncertainty in such estimates due to the non-random

character of these observations. Figures 6.1 and 6.2 show that either of

these two reduced pressures obtained from this H plateau (as well as the

H-plateau estimates for other realizations yet to be discussed,in the

interval T = 1.3-1.35) can %e regarded as a reasonable extrapolation of

the values obtained,from completely averaged realizations at ~ >1.35.

Section 6.2 is devoted,to a discussion of the properties of the

“7X7” st~ctie whichwe have Just seen to be so characteristic of the

H plateau of the present realization. Here it is of some interest to

display the net displacements of the molecules between snapshot 79, the

last one of the regular hexagonal lattice type, ~d snapshot ~, the first

of the )17X71!type. In Fig. 6.12 the circles represent the molecules in

the latter configurationwith their numbers omitted, while the slightly

distorted hexagonal lattice is the Voronoi lattice of snapshot 79. The

vectors show the net displacement of each nmlecule over the 96 000 time

steps between these two configurations.
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Fig. 6.12 Net molecular displacements between last Uregularhexagonal!!
and first “7x7!!configurations (snapshots79 and 84) of realization
B19 at T =1.3.
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6.1.2.1.3 SUDZIUY. At this point we will summarize our observa-

tions on this realization in terms

tion space.

The L region of configuration

properties: (1). It contains the

(2). A typical configuration from

of the hourglass model of configura-

space evidently has the following

regular hexagonal lattice point.

this region shows only slight distor-

tions from the regular lattice. (3). ‘!Diffusionllor molecular interchange

is still infrequent in this region

mechanism is the columnar rotation

3.4, 3.5, SZIa6.1.2.1.1. (4). It

at T = 1.3. When it does occur, the

sround the torus discussed in Sections

seems fair to describe these configu.

rations as being of the I@erfect crystal!!type.

The H region of configuration space for this system has more com-

plicated character. Structures of two different types are found.,namely

the 117X71!structure which predominates in this realization, and the

irregular structures such as Figs. 6.6, 6.8, 6.9, and,6.1o. The latter

type perhaps correspond, on the average, to somewhat higher values of

the cumulative pair distribution function. There is the intriguing

possibility that at this density, at least, the irregular configurations

may represent the connection between the L region of regular hexagonal

configurations and the I!H-properf?reg.jon of ff7X7ffstmctures. This con-

jecture is based mostly upon the chronological occurrence of the irregu-

lsr arrangements between those of the other two types. One can also, by

staring long enough at irregular configurations such as Fig. 6.6, con-

vince oneself that they are actually structurally intermediate between
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6.1

the two

with SO

just in

f+purefr types; that is, that they are mixtures of the latter. But

few molecules, and with the ‘jxure11structures differing nmstly

orientation, this impression seems too subjective to be given

much confidence.

At this density, and.at this point in our discussion, it is clear

that it would.le ‘prematureindeed to characterize the H states as being

Ilfluidllfi character. Diffusion is indeed relatively free, especially

in the 117X711structures, but it is evident that the latter have more

nearly the character of imperfect crystals. The irregular structures

may be more fluid-like in

are a distinctive feature

6.1.2.2 Realization

their properties, but in

of the H plateau but not

B20 at z = 1.316.

this realization they

the predominant one.

The control charts for this realization are shown in Fig. 6.13. As

indicated in Table 6.1, they were interpreted in terms of three plateaus:

coarse-grained observations s = 2-19 as a H plateau, 20-39 as a L pla-

teau, 40-82 as another H plateau.

The realization begau in the Hregion because

ration was obtained by compressing a configuration

teau of realization B23

was done, our intention

of diagnostic technique

realization B23. As we

at~= 1.34. Actually, at

was to use the compression

its initial configu-

taken from a Hpla-

the time when this

process as a sort

to test for the presence of the HTlateau in

shall later see in the discussion of the latter

realization, its plateaus are not especially well defined and.we were
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not sure, on the basis of the control charts alone, that a subdivision

into plateaus was proyer. At the time we did.not have the high speed

microfilm plotting device with which we have since acquired experience

in correlating the control chart behavior with the geometrical structuze

of the system. On the other hand, the existence of a ‘Iextendedfluid!!

branch of the equation of state of the 48-molecule system had already

been established (see Section 6.3), so that it occurred tO us to use

the approximately ~tadiabatic~lcharacter of the compression procedure

to test for a qualitative difference between two configurations, as

suggested by the control charts. In realization B23 the charts suggested

that observation s =38 (with At = 19 200) might belong to a L plateau,

while the following _points =39 might be the first of a Hplateau. The

final configuration of each of these time-smoothfig intervals was accor-

dingly selected as the starting point of a compression process.

Actually, the choice of the first of these, as a configurationtith

which to begin a compression which was expected to take place in the L

region of configuration space, was a poor one, since the L + H transition

might easily have happened near the end of cosrse-graining interval

s = 38 and still allowed this interval to give observations ~(s, a)

characteristic of the L region. Fortunately, however, the selected con-

figuration was indeed of the L type, as indicated by its structure in-

terpreted in the light of our subsequent experience, and also by the

resulttng realization B18 which began from this configuration after

compression to ~ = 1.29 (see Section 6.1.1).
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6.1.2.2;1 The first Hplateau. The s = 39 comf’i~ation, of red.

ization B23, shown in Fig. 6.14a, after compression to ~ . 1.316 as men-

tioned above, was used as the initial configuration (Fig. 6.14b) of the

present realization. Both of these configurations are of the type de-

scribed as !lirre~lu!lin our discussion of realization B19 at ‘c= 1.3.

This character was maintained,through snapshots 1 through 4, which are

not reproduced here. Figure 6.15 shows snapshots 5, 6, and 7, during

which the,system changes from this irregular arrangement to the same

“7x7” st~ctu.re previously described,in Section 6.1.2,1.2.

Snapshots 8 through 15, the last being shown in Fig. 6.16a, were

all well-defined 117x71’structures and displayed the same hole diffusion

as discussed in connection with B19. Snapshot 16, Fig. 6.16b, shows

(a) (b)

Fig. 6.14 Genesis of the initial configuration of realization B20 at

‘T = 1.316. In (a) is shown the configuration of realization B23, T = 1.34,
at t = 748 800. After compression to -c= 1.316 it was used,as the initial
configuration (b) of B20.
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(b)

(c)

Fig. 6.15 SnaTshots 5 (a), 6 (b), and 7 (c) from realization B20 at
T = 1.316, showing the transition from “i~e~l~” to “7X7” ~r~gement
during the first H.plateau.
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(cl) (b)

(c)

Fig. 6.16 Snapshots 15 (a), 16 (b), and,17 (c) taken at the terminus of
the first H plateau of realization B20 at ~ = 1.316.
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considerable distortion in the 117X7!!structure. Indeed the arrangement

might almost be described as irregular (note also ttit the associated

points in Fig. 6.13 are comparatively high). The next snapshot, Fig.

6.16c, shows somewhat less distortion, b’utcomparison with snapshot 15

shows that it still.differs appreciably from the more regular examples

of the !f7X71~arrangement.

Figure 6.17 shows the next two snapshots. The first of these, at

s = 18, resembles its predecessor (Fig. 6.16c) Ln being an appreciably

distorted ‘17X7?rarrangement. The second, at s = 19, is very different:

the arrangement is that of the regular lattice. Thus, we conclude that

between these two snapstits the system left the H region of configuration

space and.entered the L region. Since the control chsrts indicate that

(a) (b)

144

Fig. 6.17 Snapshots 18 (a) and 19 (b) from realization B20 at ~ = 1.316,
illustrating the H + L transition.



the s = 19 cosrse-grained. o~servation belongs to the L plateau, this

6.1

transition presumably occurred

figurations.

6.1.2.2.2 The L plateau.

observations s = 20 through 39

near the end of this group of 19 200 con-

As indicated in

as a L plateau,

Table 6.1, we treated

although the point s = 35

was clearly anomalous (see Fig. 6.13). And indeed

34, the last of which is shown as Fig. 6.18a, were

configurations, that is, arrangements h which the

gonal lattice is easily recognizable. Furthermore,

snapshots 20 through

all typical L-type

basic regular hexa-

during this time no

Wiffusionf! occurred (compare Figs. 6.1711 ~d 6.1(%).

The configuration at s = 35 (Fig. 6.M3b), however, is of the ir-

regular type, while the next snapshot, Fig. 6.18c, is again of the regular

hexagonal type. Thus, we interpret the observations as ind.icatlnga brief

excursion of the system into the H region of configuration space (or into

the connections between L and H, if the H region pro~er is regarded,as

consisting of l17X7?rstructures, and the irregular configurations as the

connections between L and H). Comparison of Figs. 6.Ma and 6.18c

that this excursion accomplished

bor ~splacements: 24 -i 5 + 13 +

31 + 24.

the followtig sequence of nearest

2o+1I-+12+1o+3+26 +34+

shows

neigh-

25 ~

In the remaining snapshots of the L plateau, the last of which is

shown in Fig. 6.19a, the regular hexagonal arrangement of snapshot 36

(Fig. 6.18c) is preserved.
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(a) (b)

(c)

Fig. 6.18 Snapshots 3~ (a), 35 (b), and.36 (c) from realization B20 at
‘r= 1.316, showing a brief excursion to !Iirregular!lstates during the
L plateau.
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(a)

(c) (d)

Fig. 6.lga-d Snapshots 39 through 42 of realization B20 at T = 1.316,
showing the L- to H-plateau transition.
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(e)

Fig. 6.lge Snapshot 43 of realization B20 at T = 1.316.

Figures 6.1 and 6.2 show that, just as in the case of the L-@ateau

reduced pressure of realization B19, the reduced pressure estimated from

this short L plateau lies on a smooth continuation of the curve obtained

from regular lattice realizations at higher density.

6.1.2.2.3 The second Hplateau. As indicated in Table 6.1, the

observations from s = 40 until the end of the realization at s = 82 were

treated as a H plateau. The geometric structures Wing the transition

from the preceding L plateau are shown in Fig. 6.19. Again configura-

tions of irregular structure (snapshots40 and 41) are observed between

the last regular hexagonal structure (snapshot39) and those of 117X7!!

type (snapshots42 and, especially, 43). Of the remaining 40 snapshots
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most were of 117X71!type; some (notably 71 through 76) were irregular.

None were of the regular hexagonal (i.e., L) type.

Table 6.1 and.Fig. 6.2 show that the reduced pressures estimated

from the two H plateaus of this realization are in quite good agreement,

and also, as in the case of the H-plateau estimates at T = 1.3, represent

a reasonable continuation of the ‘lfluid.~!brsmch of the equation of state

from lower densities.

6.1.2.2.4 Summary. Our observations, and the interpretations de.

rived.therefrom, on this realization are very similar to those on reali-

zation B19 at T = 1.3. The occurrence of the H+ L transition is perha~s

the principal additional pint of interest. In the yresent case, the

correlation between irre~lar structure and high control-chart points

within H plateaus is somewhat less marked than in the ~ = 1.3 realization.

On the other hand, the interpretation of the irregular structures as

constituting the L-H connections, the’H region being principally of the

‘17X711type, receives some additional support. The irregular structures

are observed frequently enough to make it somewhat questionable to assign

them a negligible statistical weight. Aside from this question of the

ap~ropriateness of treating the irre~lar and I17x711st~ctures as a

single class, the observed geometrical structures definitely support the

plateau assignments given for this realization in Table 6.1 (except, of

course, for the s = 35 excursion within the set s = 20-39, which was

evident from the control charts and ignored as a matter of crude approxim-

ation ).
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6.1.2.3 Realization B21 at T =1.325.

6.I.

This realization was started from the usual regular hexagonal

lattice. The control charts, Fig. 6.20, are in msrked contrast with

those for the two immediately preceding realizations at r . 1.3 and 1.316,

in that no well-defined two-plateau structure is apparent. Ccmqycrisonof

the values of R(s, 3) for these realizations (all three have the same

value of Ar2) shows that most of the points for the present realization

are in the range expected for the L region of configuration space, with

only occasional brief upward excursions into the range expected for the

H region. Consequently, as indicated in Table 6.1, the entire realiza-

tion was averaged, and as would be expected from the remarks of the _pre-

vious sentence, the resulting reduced yressure lies in Figs. 6.1 ad 6.2

approximately on the ‘L” or “crystalline’!equation of state as extrapo-

lated from the regular hexagonal lattice realizations at T <1.3 and

from the L plateau estimates at T =1.3 and.1.316.

Study of the snapshot configurations substantiates this interpre-

tation in some detail. Of the 95 snapshots taken at the usual interval

At = 19 200, 75 were ummibiguously classifiable as definitely of the

regular hexagonal type, five had well-defined ‘!7X7!1structures, and.the

rest were either notably distorted but recognizable versions of the reg-

ular hexagonal arrangement, or were of the irregular type discussed with

the preceding realizations.

There were a nuniberof instances in which permutations of approxi-

mately regular hexagonal structures occurred within one or two snapshot
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6.1

intervals without observation of any gross deysrture from W!! type

arrangements. For example, snapshots 1 and 3 both had weld-defined

regular hexagonal structures, but during the intervening 38 400 time

steps one column of six molecules rotated one lattice step around the

torus. The intermediate snapshot 2 showed a fairly distorted hut recog-

nizably regular hexagonal arrangement. The value of ~(3, 3) in Fig. 6.20

suggests that a brief excursion into the H region may have occurred, but

if so,the snapshot interval is too long to detect it. Other, somewhat

more complicated, dis@acements around the torus occurred, as well ag an

amusing sequence of three consecutive snapshots showing a ring-around-

the-rosey rotation of the six nearest neighbors of one nmlecule through

approximately 600. All these motions in configuration space seemed to

take place by way of L-L connections rather than by way of L -+H + L’,

as far as our snapshot time resolution and the diffuse definitions of

these regions and their associated connections permit us to state.

On the other hand, the pronounced upward excursion in the control

charts (Fig. 6.20) h the neighborhood of s = 50 was definitely associated

with appearance of ‘firregularr’structures, as shown in the sequence of

snapshots 46 through 52 in Fig. 6.21. The first of these, s=pshot 46, fS

a reasonably typical example of a L-region state, exhibiting only slight

displacements from the regulsr hexagonal lattice. The next Smpshot is

more interesting. The structure is almost hexagonal, but the only plau-

sible assignments of molecules into columns produce, instead of the eight

columns of six molecules each characterizing regular hexagonal arrangements,

152



6.1

(0) (b)

(c) (d)

Fig. 6.21a-d Snapshots 46 through 49 from realization B21 at T = 1.325,
showing an excursion into !Iirregular!tstates.
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(e)

(g)

(f)

Fig. 6.21e-g Snapshots 50 through 52 from realization B21 at T = 1.325.

154



6.1

one column of seven molecules (42, 41, 34, 26, 33, 10, 2) and one column

of five molec~es -plusone hole (21, 5, 45, hole, 12, 19) or (6, 46, 38,

hole, 29, 14). That is, this configuration contains one vacancy and one

interstitial. It is one of the few such examples which we have noticed

in our hard-circle calculations. Snapshots 48 through 51 exhibit various

irregulsx structures in which hints of both the regular hexagonal and

“7X7” ~angements can be detected. The last snapshot, 52, of this se-

quence shows the system back in a nearly regular hexagonal configuration,

but one differing from the initial snapshot, 46, of this sequence by a

number of molecular interchanges.

During the less obvious upward.excursion in Fig. 6.20 near s = 70,

we~-deffied, t!7x7~!structures were observed, as shown in the snapshots

65 through 72, Fig. 6.22. In addition to the quite pretty examples of

“7X7” st~ctures provid.ed.by snapshots 68 and 69, this sequence also dis-

plays in snapshot 71 what is perhaps our best example of a mixed,struc-

ture.

Compared to the neighboring higher density realizations B19 and,

B20, this realization is noteworthy for its brief residence times in the

H region. Indeed without the evidence provided by the snapshots we would,

not be certain that excursions into the H region had actually occurred.

The over-all average evidently contains some H-region contribution, which

can be invoked to explain the slightly high value of the reduced pressure

estimate (Fig. 6.2) compared to adjacent L points.

155



6.1

(b)

(c) (@

Fig. 6.22a-d Snapshots 65 through 68 from realization 1321at ‘r= 1.325.
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(e)

(
(
(

(
(
(

(9)

(f)

(h)

Fig. 6.22e-h Snapshots 69 through 72 from realization B21 at ~ = 1.325
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6.1.2.4 Realization B22 at T =1.33.

6.1

This realization was also started from the regular hexagonal lattice.

Its control charts are shown in Fig. 6.23. As indicated in Table 6.1,

only short sections of this realization were averaged, viz., s = 1-14 as

a L plateau, 15-26 as a H@ateau, 86-95 as a second L plateau. Figure

6.2 shows that the two L-plateau estimates are in reasonable agreement

with each other, and with the extension of the L or ‘Crystalline”equa-

tion of state from higher densities. Similarly, the H-plateau estimate

is in approximate agreement with the ?Ifluidllbranch of the equation of

state as determined by other H-plateau points and by non-jumpy realiza-

tions at ~ > 1.35.

As will be seen from the remaining discussion of this realization,

examination of the snapshot configurations substantiates the above L-

plateau classifications,but suggests that the H-plateau classification

should be regarded with a certain reserve. We will describe the snap-

shots by type, rather thm by reproducing them here, since the various

observed structures are all quite well exemplified.among the snapshots

presented for the previously discussed realizations in this density

range.

Snapshots 1 through 14, corresponding to the first L plateau, in-

deed showed the regular hexagonal type of structue which we associate

with the L region of configuration space. m Fig. 6.23 the points for

s = 9 lie well above the others in this plateau. Snapshots 8 and 9,

which precede and terminate this time-smoothing interval were noticeably
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6.1

distorted, but still of the L type. No diffusion was observed during

this L plateau; that is, snaphots O through 14 all dis_playthe same _per-

mutation of the regular hexagonal lattice. Thus, the observed structures

definitely support our classifying these observations as a L plateau.

The upward excursion at s = 9 may have been due to undetected irregular

configurationsbetween snapshots 8 and 9, but the fact that no molecular

interchanges seem to have occurred between these snapshots suggests that

no great departure from regular hexagonal or L-type structures is likely

to have taken place.

As already mentioned, points s = 15-26 were averaged as a Hplateau.

We classified the associated snapshots, in the same terminology as used

for the previous realizations, as follows: Snapshots 15 through 18 were

of the irregular type; 16 and 18, in particular, suggested description as

mixtures of regular hexagonal and “7X7” structures. Snapshots 19, 20, and

21, particularly the first two, were good examples of “7X7” structures.

In this connection it is interestfig to note that from the points for

s . 20 in Fig. 6.23, one might have guessed that the configurations

during this time-smoothing interval were of the regular hexagonal type.

The snapshots make it almost certain that they were not, and as we shall

see from the later points of this realization, at this density any one

time-smoothed observation over a sequence of “7X71!configurations may

well have a value ~ that could also be typical of a sequence of regular

hexagonal states. Snapshots 22 through 25 were agati of the irregular

type. Snapshot 26, showing the last configuration of this H plateau, was
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best described as another of our rare observations

a vacancy-interstitial combination in an otherwise

arrangement (Section 6.1.2.3 and Fig. 6.21b).

of the occurrence

regular hexagonal

Snapshots 27 through 43 were again regular hexagonal structures

last being appreciably distorted), indicating that the observations

s = 27-43 could.have been averaged to obtain an additional L-plateau

estimate of reduced pressure. The control charts indicate that such

of

(the

an

estimate would be in reasonable agreement with the existing two. Here

again, no diffusion was noticed,during these configurations.

Snapshots 44 through 67 were all of the “7X7?!type except for

snapshot 54, which was better described as irregular (which fact is prob-

ably associated with the upward control-chart excursion at this point).

Thus, we note that we might well have averaged observations s . 44-67

to obtain a reduced pressure estimate which would, on the basis of the

snapshots, be ascribed.to a more-or-less well-defined ‘17X711region of

configuration space. Figure 6.23 shows that this estimate would be

intermediate between the previously discussed L- and,H-plateau estimates,

the latter of which evidently contains an appreciable contribution from

irregular structures. This behavior may be interpreted,as a further in-

dication that we should.either distinguish two H regions of different

structure, with the irregular region tending to have higher values of

~ than the !f7X7!lregion, or else we should consider the irregular

structures as constituting the connections between regular hexagonal L

states and ‘!7X711H states. As already mentioned this is mainly a matter
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of terminology, since the irregular structures are observed frequently

enough to require them to have non-negligible statistical weight. These

remarks constitute the qualification made at the beginning of this sub-

section with respect to treating observations s = 15-26 as the only H

plateau in this realization.

Continuing the petit-by-point correlation of the snapshots with the

control charts, we classified snapshots 68 through 71 as irregular, 72

as “7X7”, 73 and 74 as irregular, 75 as a rather distorted “7X7” arrange-

ment, and 76 as irregular. Againwe note that irregular states seem ta

have larger values of & than 117x7!!states, on the average.

Snapshot 77 showed a return to regular hexagonal structure, the

first since s = 43. The corresponding control chart point s = 77 suggests

that a majority of the states during that time-smoothing interval.must

have been irregular. Snapshots 78 and 79 also displayed regular hexa-

gonsl arrangements, which correlates well with the pronounced downward

control-chart excursion at s =.78. Snapshot 80 was another case of a

regular hexagonal arrangement with a vacancy and interstitial. Snapshots

81 through 84were again irregular (note the associated large ~). Snap-

shot 85 was a rather distorted regular hexagonal configuration.

Finally, snapshots & though 95 were regular hexagonal structures,

consistent with their position in the control charts, and with our treat-

ing them as a L plateau. No diffusion was observed in this rather short

L plateau.
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In summary, this realization is perhaps chiefly notable for the al-

ready discussed strong suggestion that three regions of configuration

space should be distinguished, rather than two. Compared with the slight-

ly higher-density realization B21 at ~ . 1.325, it shows nmch longer re-

sidence times

6.1.2.5

in irregular and, especially, in 117X711configurations.

Realization B23 at T = 1.34.

The control charts

interval has again been

into four plateaus: s =

are shown in Fig. 6.24, where the time-smoothing

doubled. They suggest a rough classification

1-19 as L, PO-29 as H, 30-51 as L, 52.end as H.

The snapshots confirmed this classification, exceytto associate

the upward excursions at s = 8 and s . 40 with the occurence of irregular

configurations, and the downward excursion at s . 66.-67with the occurence

of regular hexagonal configurations.

Hbwever, as indicated in Table 6.1, only two sequences were averaged.

On the scale of Fig. 6.24 they are (approximately,since one point in the

figure corresponds to two actual observations with At = 19 200) S = 29-39

as a L ~lateau, and 52-end as a H Tlateau. In Fig. 6.2 the corresponding

reduced pressures fall as expected.

As would be expected, with increasing values of T the range of dis-

tortions observed in basically regular hexagonal (L-type) configurations

increases. Diffusion is noticeably more frequent but at the present d,en-

sity is still rare

at the interval At

enough in

= 19 200,

the L region of configuration space so that,

successive snapshots usually show the same
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6.1

permutation. In the H region similar remarks apply, except that

diffusion is, of co~se, very frequent. In this realization the observed,

sequences of !!7x7!Tsnapshots were frequently interrupted by more irreW-

lar appearing ones, in contrast to the long sequence of IT7X71!states

noticed in the previous realization.

6.1.2.6 Three realizations at -c= 1.35.

At this reduced area we have the three realizations for which sam@e

control charts are given in Fig. 6.25.

The sna~shots for the very short realization B24 were all of H

type, mostly irregular, except those for s . 1, 2, 3, and 19. Snapshot

1 showed.only slight displacements from the regular hexagonal initial

configuration. The second snapshot showed.a vacancy-interstitial combi-

nation similar to those mentioned earlier, while the third snapshot was

a quite dis~rted and permuted structure of regular hexagonal type.

Snapshot 19 was also of this type, indicating that the downward,excursion

in the control chart at this point may have been due to a transient

return of the system to the L region of configuration space; it had spent

the intervening time s = 4-18 in the Hregion, as far as our observations

indicate. All observations except the first were averaged.,with Fig. 6.2

showing that the resulting reduced pressure lies as expected along the

!Ifluid,!fbranch of the equation Of state.

Realization B25 gave cantrol charts and,snapshots which indicate

a number of excursions back and,forth between the two regions of con-

figuration space. The snapshot classificationwas approximately s = 1.14
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6.1

as L; 15-I-8as H, irregular; 19-25 as L; 24-38 as H, mostly irregular,

some 117x7!!;39.49 as L; 50-54 as H, irregular; 55-60 as L; 61.-62as H,

irregular; 63-64 as L; 65-7o as H, irregular and “7x7!?.Even within

this rather fine sub-division, configurations of the opposite type were

noted in some cases. Ckilytwo sequences were averaged, as indicated,in

Table 6.1. The interval s . 1-16 was selected,as a L plateau on the

basis of the control charts before the snapshots were obtained. The

latter, as already mentioned, indicate that at least some of the con-

figurations included in the last two yoints of this interval (and,also

point s = 6) were of H type; this sort of imprecision becomes more or

less unavoidable as -cbecomes this l~gee The resulting reduced -pres-

sure lies (Fig. 6.2) on the “crystalline!’curve, as expected. The se-

quence s = 28-4-0was taken as a Hplateau ; again the snapshots indi-

cate that some of the states were of the other type. Nevertheless,

Fig. 6.2 shows that the estimated reduced pressure is rather higher than

would,be expected from the neighboring points. This may be taken, in

part at least, as illustrative of the bias which can be introduced,by

the process of plateau classification, particulmly for so short a

sequence of observations.

The control charts for realization B26, Fig. 6.25c, suggested that

the system had spent most of its time in H states, with the low level of

s = 30-40 suggesting occurence of L states. This interpretation was

largely suyported by the snapshots, except that they suggest a somewhat

longer residence in L states, since snapshots s = 20-40 were mostly L
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type. (The pronounced upward fluctuation at s = 29 appears b have been

associated with a vacancy-interstitial combination.) Reduced pressures

were calculated from the entire set of observations (except the first),

and from the last portion,s = 42-71, which seems to consist entirely of

H states. The first estimate is clearly of no Tsrticul.arsignificance,

being a rather arbitrary mixture of L and H contributions. The second

estimate, being based on appreciably more observations than the H esti-

mates of the other two realizations, is presumably a somewhat better

average over what is evidently, at this density, a rather poorly defined

region of configuration space.

Perhaps the most striking feature of these three realizations is

the large scatter in the H-plateau estimates which is apparent in

Fig. 6.2. It is clear that in the neighborhood of this reduced area,

at least, the precision estimates given in Table 6.1 and obtafned by

methods not yet described, are not reliable. As will be seen, the

statistical analysis itself gives warning of this, and.furthermore it is

clesr that the uncertainties and subjective elements inherent in a two-

plateau classification process of this kind would be expected,to result

in such scatter.

The single L-plateau estimate at this reduced srea evidently agrees

rather better with its adjacent values than ought to be expected, has-

mzch as most of the above causes of large H-plateau estimate scatter

would also be expected to be operative in this case.

We noticed

decrease in the

among snapshot configurations of the H type an apparent

frequency of well-defined 1t7X71~configurations, compared
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with realizations at slightly higher density.

6.1

6.1.2.7 Realization B27at -G=1.355.

The control chart for this realization is shown in Fig. 6.26. From

a control-chart statisticians viewpoint it shows definite indications

of non-randomness, but no suggestion of a well-defined two-plateau

structure. We discuss it along with the !Ijumpy!rrealizations because

its reduced area is so close to that of the preceding set of three

realizations. The snapshots were classified,as follows: 1-9, mostly L;

IO-23, mostly H, both irregular and,1f7X7f!;.24,a very nice regular

hexagonal ~angement; 25-42, mostly ‘17X71!;43-49, mostly irregular.

The very frequent occurence of l~7X7rrstructures, which in a number of

cases were quite well-defined, was perhaps the most striking feature of

this experiment. The somewhat low control-chart level in the interval

s = 31-@ is apparently associated with a predominance of these configu-

rations. Along with the ayparent occurrence of L states in points 1-9,

this predominance of 17X7!’configurations is also evidently responsible

for the resulting reduced pressure shown in Fig. 6.2 (the estimated

standard deviation is evidently not to be taken very seriously) being

somewhat low compared to the H estimates at -G= 1.35.

6.1.2.8 Summary of “jumpy” realizations.

These realizations for reduced areas from 1.3 to 1.355 have been

discussed.in some detail, in order that the reader can form his own
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6.1

judgment of our impressions, which are as follows:

(1) The ‘hourglass”model of

adequate framework within which to

realizations.

configuration space forms an

discuss the behavior of these

(a) L-region states show typically small d.eviationsfrom

the regular hexagonal lattice, very restricted diffusion, and,

in general seem to merit description as ~~erfectly crystalline!!

states.

(b) The H states

types, ‘rirregularlrand,

apparently should be divided into two

!7X71’. The irregular states may,

topologically, play the role of connections between L states

and “7X7!’states, and may have on the average larger values

of 6 than “7x7!’states. The latter states have the character

of imperfect crystals,

presence of a vacancy,

way.

their primary characteristic being the

with diffusion occurring in the obvious

(2) The increasing frequency of transitions between L and,H

states as T increases implies a widening of the constricted connec-

tion between them.

(3) Not ~ch can be

of the L and H regions of

respect to the true

in

At

this interval of

the upper end of

petit

said with respect to the relative volumes

configuration space, and therefore with

canonical ensemble equation of state,

reduced areas, and particularly near ~ = 1.3.

the interval, T s 1.35, the tendency for L
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plateaus to disappear suggests that the Hregion is beginning to

dominate.

(4) As T increases, the L-L connections appear to enlarge, wfth

permutations of the regular hexagonal arrangement occurtig without

intervention, so far as we can tell, of typical H structures. It

is noteworthy that this !Idiffisionllis first observed to occur at

the same reduced area (T . 1.3) and by the same mechanism (columnar

rotation around the torus) as in the 12-molecule system, even

though in Section 3.5 we saw that this motion is possible at all

-r> 1.063 in the 48-molectie system.

6.1.3 Realizations at T 21.375.

All of these low density realizations were started from the regular

hexagonal lattice. Their ‘behaviorleaves no doubt that equivalent re-

sults would have been obtahed with any other choice of initial config-

uration.

None of these realizations disllayed a two-ylateau behavior.

Control charts for the two highest density realizations, B28 at -r= 1.375

and B29 at T = 1.4, sre given in Fig. 6.27. As will be seen later,

quantitative statistical tests for randomness indicate the presence of

significant serial correlation in these two realizations, but their con-

trol charts are clearly much more nearly normal than those obtatied for

T = 1.3-1.35.
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The snapshots show the expected trend.away from structures of

noticeable regularity of either the hexagonal or “7X7” types. In realiza-

tions B28 and B29 the typical structure, in the terminology of the pre-

vious subsections,was irregular. In B28 the larger downward fluctuations

in the control chsrts (s x 12, 33, 54, 64) were accompaniedby snapshots.

of the L type i.e., ones in which the regular hexagonal arrangement could

be detected.

It iS OU.I’opinion, based upn both the statistical and geometrical.

investigations, that the realizations at T z 1.375 are usefully conver-

gent to the true petit canonical ensemble average for this particular——

48-molectie system, although the estimated standard deviations of Table

6.1, particularly for B28 anaB29, may perhaps be too small. h Fig. 6.28

we present a typical sequence of 10 consecutive snaphots (At = 19 200)

from the realization at T = 1.4, as exhibiting the structure of this 48-

molecule system near the high density limit of complete convergence. Our

classification of these configurations was: snapshot 59, a somewhat diS-

torted regukr hexagonal structure; 60.63, 65, and 66, irregular arrange-

ments in which in some cases suggestions of the presence of both the

regular hexagonal and the M7x71!structures are present; 64, 67, and 68,

more or less distorted ‘7X7” structures.

Of the 151 snapshots obtained from the long realization B31 at

T = 1.5, the vast majority were classified as irregular. In only one

was any resemblance to the regular hexagonal arrangement noticed, and.

only two were classified as reasonably regular “7X7” types.
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1

(a)

(c)

(b)

(d)

Fig. 6.28 A typical sequence of ten consecutive snapshots from
realization B29 at T = 1.4, At = 19 200; (a).(d), snapshots 59 ttiough 62.
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(e) (f)

(9) (h)

Fig. 6.28 A typical sequence of ten consecutive snapshots from

realization B29 at r = 1.4, At = 192003 (e)-(h), snapshots 63 through 66.
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Fig.
tion

(i)

6.28 A typical
B29 at -r= 1.4,

(j)

sequence of ten consecutive snapshots from realiza-
At-= 19 200j (i) and.(j), snapsfiots67 through 68.

In the twelve other snapshots

ment was detected to describe

amount of subjective judgment

enough similarity to the latter arrange-

them as distorted,!I’7x7!!structures, but the

being exercised was annoyingly great, with

a tendency to make different classifications of the same snapshot when

viewing it at different times. The principal impression is of increas-

ingly irregular structure as -cincreases.

In the realization at ~ = 1.65, all of the 38 snapshots were classed

as irregular, as was also the case in a less detailed examination of the

snapshots from the realizations at still lower density.

We have already commented upon the convergence of the resu.lttig

reduced pressures (Figs. 6.1 and.6.2) toward,the approximate virial

expansion, as well as their approximate agreement with the scaled-particle
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a~proximation throughout this range of reduced area.

6.2 The “7X7”Arrangement at E&@ Density

As the reader will probably have anticipated from the important role

playedby the ‘17X711states in the H region of configuration space for

reduced,areas between 1.3 and 1.35, this structm?e forms the basis of

the lrextendedfluid.llbranch of the equation of state obtainedby the

!Icompressor!!technique, as will be described in Section 6.3. Before pro-

ceeding to this discussion, however, it is profitable to consider certain

requirements which at high density are imposed on the arrangement by the

periodic boundary conditions and.the shape of the area V, and which can

be deduced a priori even though in most cases they were first observed

during the calculations.

The basic characteristic of this structure, as already

and indeed.implied.in the term “7X7!!,is its arrangement in

mentioned

7 rows

(parallel to the longer edge of V) of 7 molecules each in approxhtely

hexagonal coordination, one molecule being, of course, replaced by a

vacancy. We begin, then, by first considering the properties of the 49-

molecule system,

when one of them

afterwards describing the modifications which occur

becomes a hole.

6.2.1 The 49-molecule arrangement.

At high densitywe may expect the nmlecules to be arranged in as

neuly hexagonal close-packed fashion as is compatible with the periodic
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6.2

boundary condition and the fixed shape of V. We therefore first recall.

that if a hexagonal close-packed,array of hard circles is regarded as

being composed of successive

there isan A. B.A-B~ ● *

of the circles of the second

tion points of the first row

rectilinear rows of tangent circles, then

alternation in row character: the centers

row (B) must be directly above the oscula-

(A); while the third row, its centers being

directly over those of

Now if we attempt

structure, designating

the first row, is again of type A, etc.

to make such a hexagonal.close-packed, seven-rowed

the first row as t~e A and,indicating the number

of the row by a subscript, then the arrangement dictated,by the periodi-

city requirement in the direction perpendicular to the rows is
%B2~B4

y6~’B;9 ● ●, where the primes indicate Wmage~? rows. We see that the

A - B character of hexagonal close-packing is incompatible with a periodic

structure having an odd number of rows, so that there must be a stacking

defect in which two adjacent rows a-e of the same type (
+

‘ in the above

notation).

The resulting array is shown in Fig. 6.29a, except that the stacking

defect has been moved into the interior for convenience. As can be seen

from the dimensions given in the figure, with close-packed rows this

sxray has an edge ratio of ~+1
7

, and thus csmnot fit exactly into the

rectangular area V for

(Chapter 3):

m+l 6-—
7 2

our 48.molectie system, whose edge ratio is fi/2

2-6
‘~>o “

That is, its shorter side is slightly too long.
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A’

G

F

E

D

c

B

A

G’

+
kc

l_

+’” +
A’

G

F

E

D

c

B

A

G’

..

Fig. 6.29 Two idealized “7x7!!structures of the 48-molectie system at
‘r= 1.056. The bonds connect molecules which are in contact after the
lattice is deformed h order to fit into the rectangular area V with
side ratio fi/2. In (a) the dimensions are for the system with close-
packed.rows, before deformation; the shaded molecules indicate the three
types of vacancy location. In (b) Is shown an arrangement having two
half-vacancies in row D, with the stacking defect being pxrtly between
rows C and D, and ~artly between D and E.
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In order to make the system fit, we evidently ust squeeze it to-

gether from tap and bottom, figuratively speaking, while letting it ex-

pand slightly laterally. As a result the molecules in the horizontal

rows will tend to break contact. If this is done uniformly throughout

the structure, these horizontal contacts are all lost, with only the

diagonal contacts between nested rows and,the vertical contacts along

the stacktig defect remaining. Only a slight deformation of this sort

is required,in order to fit the system inta the desired rectangle. The

calculated.change in inclination of the diagonal contact lines is only

about ~ degree, and.the free distance between circumferences of circles

in the horizontal rows is only about 1.6$ of the hard-circle diameter.

The latter is

a = 0.14046.

figure, so we

calculated to be, in units of the long edge of V,

These perturbations are too small to be apparent in a

continue to use Fig. 6.29a, keeping in mind that now only

the bonded circles are in actual contact.

We will shortly discuss the several ways in which one of these

molecules can be removed.to form the desired system of 48 molecules and,

one hole, but let us first note that the above value of u leads with use

of N = 49 and Eqs. (2.8) and,(2.9) to T = 1.034. That is, this arrange-

ment is

all the

an area

an allowable close-packed (i. e., no molecule can be moved if

others are held fixed) configuration of 49

per molecule which is 1.034 times that for

molecules in V with

the regular hexagonal

close-packed.configuration. Ibwever, it is not a stable limiting
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configuration, in the terminology of Salsburg and Wood (see Section

3.3.1.1), because it does not satisfy the contact criterion for stability,

Eq. (3.4). Figure 6.2ga shows that there are five rows in which each mole-

cule has coordination nuniber4, and two rows in which the coordination

nuniberis 3. The average coordination nuniberis thus 26/7, which fails

to satisfy Eq. (3.4). Therefore, according to the Salsburg-Wood analysis,

although this 49-molecule state is close-packed,nevertheless a configu-

ration space region of non-vanishing volume is accessible from it, and at

‘c. 1.034 the corresponding reduced

Mmiting configuration and.limiting

figuration space of this system are

regular hexagonal lattice nor z = 1,

arrangement and reduced area are not

ones.

pressure is not infinite. The true

reduced area for this region of con-

Unlulown. They are clearly not the

and we surmise

nuch different

that the limiting

from the unstable

6.2.2 The 48-molecule, l-hole arrangement.

When one of the molecules of the 49-molecule structure described

h the preceding sub-section is removed, the reduced area lecomes

‘c= 1.056 ~d = o.U@F5, N = 48; Eqs. (2.8) and (2.9)]. mere aye t~ee

different ways in which this can be done, viz.,(1) removal of a molecule

from one of the two adjacent rows which create the stacking defect (row

C or D tithe figure); (2) removal of a molecule from a row which is

adjacent to one of these defect rows (row B or E); (3) removal from a

row both of whose adjacent rows are not defect rows (rev A, F, or G).

Each case is exemplifiedby a shaded circle in Fig. 6.29a.
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In all three cases creation of the vacancy immediately gives a

structure which is no longer close-~acked,e In case (1) this is obvious

since the molecule in the defect row is now free to move back and.forth

between its own site and the vacancy site. h the te~ology of the

free-volume theory it has a relatively large free area. In addition,

even with all other molecules fixed, two of the molecules adjacent to the

vacancy in the non-defect row have much smaller free areas, which more-

over can be distributed by way of their neighbors throughout the system.

(These two molecules have three contacts after creation of the vacancy,

but two of them are diametrically opposite each other, so that these two

molecules are not fixed by their neighbors.) The free area created in

case (2) or (3) is similar to the small free areas of the last-mentioned

two molecules in case (l).

We note &at only in case (1) is the vacancy likely to be very

mobile. In all three cases, as for the parent 49-molecule system, the

exact limiting configuration and reduced srea are unknown; the latter is

obviously less than 1.056. It is possible that there are different

limiting configurations and reduced,areas depending on which of the above

three types of vacancy is present, since below some critical reduced.area

the hole may no longer be able to move from one location to another.

We also note from Mg. 6.29a that in some range of expsmsions a

probable mode of defect

error from rows C and D

migration should be movement of the stacking

to D and E, for example, by means of a fluctuation
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in which the vacancy row D moves as a unit one-half molecular diameter

in the horizontal direction. lhring such a fluctuation there will.also

be ample opportunity for horizontal diffusion of the vacancy. By a com-

bination of these two types of motion, the vacancy shouldbe able to

reach any position in the 49-site lattice.

We note that if, during a fluctuation of the above type, some, but

not all of the molecules of the vacancy row make such displacements,

then a configuration is produced in which there are two %alf-vacanciesll

and tn which the stacking defect is distributed between two pairs of

rows. Ilgure 6.29b shows an example in which two nnlecules have been

so displaced. This smrangement is also not close-packedJ two of the

molecules near each hlf-vacancy have two of their three contacts

diametrically opposed, and thus these molecules are free to nxwe sll.ght-

ly, even with their neighbors fixed.

6.2.3 SLUIMWW.

The H7X7H configurations of Figs. 6.2$?a-bevidently correspond to

one or more regions of allowable states of the 48-molectie system for

7 > To, with T < 1.056, but its exact value (or values) is unhewn.
o

Probably it is only slightly less thau 1.056.

It does not seem possihle to predict which of these various possible

117x7!!arrangements is nrmt likely to occur at high density. Clearly,

there will.be a range of T over which well-defined ~17X7!!structures

exist but in which fluctuations are large enough so that the various
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sub-types will.not be distinguishable; e.g., the ~!7x7ftstructures al.

ready described at z 2 1.3.

In any case, the corresponding region of configuration s-paceis

evidently the H region of our hourglass model (or one of several H

regions), and is probably ~ccessible from the re~lar hexagonal states

over some unknown interval T sT<Tm<l.3.
o

The last inequality follows

from the observed L + H transition in realization B19. Ilbwever,at

T = 1.3 the L-H connection is evidently quite constricted.

For T a 1.056 the calculated.psitions of the ndecules in any of

the versions of Fig. 6.29 couldbe used as initial.cotiigurations for

Msrkov chain realizations intended to investigate the corresponding

equations of state, as well as the connectivity with the regular hexa-

gonal configurations. h already indicated, this was not the procedure

which we followed. Rather, we came to the above understanding of this

type of arrangement byway of observing it in a sequence of ~’compressions~l

from lower density, H-type confQurations, as well as observing it in the

already-described !Ijumpy!!realizations. It is for this reason that we

give this discussion here rather than in Section 3.5.

!Cheimportant point is that the existence of tie IT’7X711 st~ct~es

at high density is intimately connected,with the periodic bound~y con-

ditions and with the shape of the area V required,by the latter and the

value N = 48. There is no correspmdtig configuration for the 12-mole-

cule system discussed previously, nor is it clea what the behavior of

larger systems is likely to be. For example, in the four.tties larger
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system obtained from the obvious 2X2 replication of the yresent 48-mole.

cule unit cell, there is, of course, a corres~ondtig U4X141! smm.ngement

in which there are four vacancies and two pairs of defect rows. Bbwever,

it is not clear that this woulxinecessaril ybea preferred arrangement

of such a 192-nmlecule system in any significant range of expansions.

6.3 Realizations Started.From “Chnpressedl’

Confimxrations. T ~ 1.254

The five realizations B6, B9, B1O, B13, andB16, which establish

our so-called “extendedfluid.’!branch of

all started from configurations selected

lfcoqression~l(Section 1.2.3) process.

the equation of state, were

from what amuntm to a single

The intention, of course, was to select a !!fluid~lconfiguration and

“compress” it to values of ~ less than 1.34 (where realization B23 had

given somewhat less pronounced juups than those to whichwe had become

accustomed.for the case of hard spheres), in order to see if the re-

sulting equation of state points would define a locus different from that

obtained from the regular hexagonal realizations.

The selected configurationwas that at t = 729 600 (s = 38) from

realization B29 at T = 1.4 on the l!fluid!!branch of the equation of State.

(At the time, this happened to be the last configuration of B29, which

later was developed further.)

This configuration is shown in Fig. 6.30, and is of the type whicu

we described in the previous discussion as ‘irregular,with some
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Fig. 6.30 The parent configuration of the !Iextended,fluid!!branch of the
equation of state, shown as snapshot 38 from realization B29 at z = 1.4,
At = 19 200. The initial configurations of the “extended.fluid!’branch
realizations were generated by successive compressions of this configuration.

indications of being a mixture of both structures.~1 Even in hindsight

it seems to be a reasonably typical configuration of realization B29.

In discussing these realizations we wilJ follow the compression

process from low to high density.

tions were not exceptional, so we

sna~shot configurations and their

The control charts for these realiza-

will discuss them

resulting reduced

6.3.1 Realization B16 at T = 1.254.

Compression of the configuration

produced the one shown in Fig. 6.31a,

shown in Fig.

which was the

in terms of their

pressures.

6.30 to T =1.254

starting point of the

present realization. The configuration is obviously an only slightly

distorted ~7X711structure. Figures 6.31b-c show the two subsequent
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(b)(a)

I

)

(c) (d)

Fig. 6.31 Snapshots s = O, 1, 2, and 75 (a through d) from ~’extended
fluid!!branch realization B16 at T = 1.254, At = 19 200.
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snapshots, while Ng. 6.3w shows the last configuration of the run. AU

We quite well-defined ‘~X7?~slxructures,as were all the other snapshots.

No deviation large enough to suggest description as Urregu.larllwas noted,

nor was any snapshot at all suggestive of the regular hexagonal lattice.

The snapshots displayed vacancy migrations of the expected type.

They were fnf’requentenough so that a few (in most cases one; in a single

case, five) vacancy-molecule titerchanges suffixed,to account for the

differencesbetween successive snapshots. A total of 85 such vacancy

jumps were counted in this way during the 1 440 000 configurations of

this realization. Of these, 34 were interchanges of the vacancy with an

adJacent molecule in the same row, while 51 involved an interchange with

an adjacent molecule of an adJacent row. AS Fig. 6.31 illustrates, at

this density fluctuations are large enough so that the stacking defect

of Section 6.2 is usua~y not we~.d.efined.. Consequently the vacancy

cannot usually be classified,accorq to the thee types of Fig. 6.2%.

There were, of course, a number of examples such as Fig. 6.31b in which

the vacancy is more or less distributed over the six-molecule row, but

at this density a description Ln terms of half-vacancies of the Fig 6.2gb

type did,not seem warranted.. For the purposes of the above counting of

within-row vacancy jumps, in doubtful cases we assigned the location of

the hole h such a way as ta minimize the number of jumps.

Figures 6.1 and 6.2 show, as already indicated, that the reduced

pressure calculated from this realization is ind.eedmuch above that for

a regular hexagonal realization at this reduced area, as would be
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expected from the observed geometrical structure.

In terms of the hourglass descri@ion of configuration space, all

configurations of this realization are evidently from the H region, which

moreover appears to consist entirely of !17X711states.

apparently effectively disconnected,from the L region,

irregulsr type of H state. The behavior is consistent

This Hregion is

and also from the

with our previous

conjecture that irregular

states, and therefore are

6.3.2 Real.izationB13 at

states form the connection

probably not very numerous

‘r= 1.169.

The initial configuration, shown in Fig. 6.32aj

compression of the B16 configuration of Fig. 6.31b.

between L and H

at this density.

was produced by

It iS thUS hardly

surprising that the result of the compression process was a nicely

regular !7X7ftstructure. Neither, in view of the behavior of realiza-

tion B16, is it surprising that all of the 33 subsequent snapshots, the

last of which is shown in Fig. 6.32b, were also well-defined 117x71!

=rangements.

The qualitative behavior was quite similar to that

increased density the structures were more regular, and

less frequent. There was now a noticeable tendency for

of B16. At this

vacancy ‘jumps

a mre or less

well-d.efimedstacking defect to appear. b Fig. 6.32a it is somewhat

poorly defined, and appears ta be shared between two pairs of rows (7-1

and 1-2, numbering from the lower edge of the cell upwsrds). In Fig.

6.32?Jthe defect is fairly prominent between rows 3 and4. lh all such
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(a) (b)
Fig. 6.32 The initial (a; s = O) SXLd fful (b; s = 33) s~pshots of
f~extended fluid.!!branch realization B13 at ‘r= 1.169, At = 19 200.

cases the vacancy

6.2.2]. &wever,

was in one of the defect rows [case (1) of Section

in a number of the snapshots no stacking defect was

noticeable, accommodation to the periodic structure being made by a slight

deformation of the lattice lines. For the pur’pse of counting vacancy

jumps, therefore, we i~ored the half-vacancy cases as with realization

B16, and obtained 14 within-row and only 4 between-row jumps. This

represents a notable decrease in relative jump frequency, as wc?llas a

shift b a preponderance of within-row jumps, when compared with B16. As

a result of so few jumps between rows, the vacancy was restricted to

rows 1, 2, and 3 throughout the calculation.
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6.3.3 ResJ.izationsB9 andBIO at z =1.124.

As indicated in Table 6.1, these two realizations were identical

except that different versions of the machine code were used.(see Section

4.2), andBIO hada smaller value of &2 (see Section 2.3.4). The initial

configuration, shown in Fig. 6.33, was obtainedby compression of the

t = 19 200 configuration of realization B13 at ~ = 1.169. AS wouldbe

expected from the previous discussion of the lower-density realizations

of the ‘rextended.fl~idtrbranch, this configuration and all the other

snapshots from both of the present realizations were well-deftied !’7X7°

structures. At this rather high density the stacking defect (Section 6.2)

was always quite pronounced. It was always adjacent to the six-molecule

row ~vacancylocation case (1) of Section 6.2.2], and.in atition the

Fig. 6.33 The initial configuration for realizations B9 and B1O at
‘r= 1.124.
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‘fhalf.vacancy!!configurations discussed in Section 6.2.2 were quite

predominant. That is, the typical snapshot from these realizations was

one in which the stacldng defect was shared between the six-molecule row

and both its adJacent rows, and the vacancy was split into two half-

vacancies. This observation is the principal qualitative result obtained

from these two realizations. In Fig. 6.33, for example, the best ideali-

zed

and

description seems to be the following assigyuwnt

half-vacsncy locations to the six-molecule row:

~, ~-hole, 2, 3, 10, ~-hole, 19, 15,

where the position of the Mne above or below the

cates the location of the stacking defect.

Consecutive snapshots ordinarily indicated,a

of sticktng defect

molecule numbers indi-

few half-lattice-

spacing jumps of one or both of the half vacancies. Occasionally the

latter, as a result of their nmre or less random individual motions, met

and coalesced into a full vacancy. At these times the stacking defect is

necessarily consolidated entirely to one side of the vacancy row, and

it is only at these times that a vacancy jump to another row is possible.

Thus, the latter were rather rare at this density; in B1O, the longer

of these two realizations, only three such between-row jumps occurred

during I IL3 600 configurations; b the shorter B9, one occurred in

403 200 configurations.

The above described behavior is well illustrated,by

snayshots from realization B1O, shown in Fig. 6.34. our

description of these configurations is as follows:

the last nine

idealized
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(b)

(c) (d)

Fig. 6.34a-d Snapshots 50 through 53 from l’extendedfluid!!branch
realization B1O at T = 1.1243 At = 19 200.
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(e) (f)

(g) (h)

Fig. 6.3ke-h Snapshots 54 through 57 from realization B1O a-tT = 1.124;
At = 19 200.
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(i)

Fig. 6.34i Snapshot 58 from realization B1O at T = 1.124.

Snayshot

50

51

52

53

54

55

56

57

58

Jumps Since
Six-Molecule Row ~revious Snapshots

39, 2, 3, 10, ~-hole, ~, ~-hole, 15—

23, ~, 32, 9, hole,~

23, 46, 32, 9, hole,~

233 ~> 32, ~-hole, ~ ~-hole, ~

23> 4.6,32, ~-hole, 9, 4, ~-hole, ~

~, ~-holej 32, 9, 4, ~-hole, ~

~, ~-hole, 46, 32, 9, 4, *-*ole, G

~, &hole, 46, 32, 9, &hole, ~

23, 46, 32, 9, 4, hole, 13—

9 + (+)

(+) +4

32+ (+)

46-+ (*)

4 + (+)

(+) *4; 23+ (+);

13 + (*).
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Comparison of the above tabulation with Fig. 6.34 will show the

reader the extent of the idealizations involved,in making such simplified

descriptions. Note that at the end of the calculation the configuration

would permit a vertical interchange between the vacancy in row 7 and mole.

ctie 22 in row 6.

6.3.4 Realization B6 at T = 1.07’4.

The initial configuration, Fig. 6035a, for this, our highest-density

realization on the ~textended,fluid.!!branch of the equation of state, was

obtained,by further compression of the ‘c= 1.169configuration shown in

Fig. 6.32a (the initial configuration of realization B13). As Fig. 6.35a

shows, the compression process trapped the system in a split-vacancy

(a)

Fig. 6.35 The initial (a) and final
fluid~fbranch realization B6 at T = l.uf+.

(b)

(b) configurations of “extended
,-.,-,1.
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configurationwhose six-molecule row we describe, in the notation of

the previous subsection, as

density these vacancies appear to be inmmbile, since after

time (1 900 800 configurations)the last snapshot, Fig.

the system in a configurationwhich is alnnst indistinguish-

~-hole, 39, 2, 3, 10, 19, ~-hole, ~.

At this

a quite long

6.35b, shows

able from the first.

In terms of the Salsburg-Wood analysis discussed in Section 3.3,

this suggests that the system is now confined to a region of configura-

tion space associated with a limiting configurationwhich has developed

the extra nuniberof contacts (21 or more) required for stability, in

addition to those present

of Fig. 6.2gb. Using Eq.

limiting configuration as

with the value 1.056for the unstable, idealized configuration. In

Fig. 6.3’jbone can see some indication of the extra contacts developing

within the horizontal rows, which in the idealized arrangement are not

close-packed.

in the idealized split-vacancy configuration

(3.5) we can estimate the reduced area of

‘cd.052, which compares not unfavorably

6.3.5 Summary.

above discussion of these five realizationswhich, as

6.1, establish over the interval T = 1.074-1.254 an

From the

shown in Fig.

IIextendedfluid!!branch

system, we see that the

of the equation of state of the 48-molecule

underlying geometrical structure is the 117X711

I@
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arrangement first noticed in the IJjumpy!!realizations for ~ = 1.3-1.35

and discussed in Section 6.2. With increasing density the split-vacancy

structure of Fig. 6.2gbapparently predominates. There appears to be a

stable close-packed cofligurationwhich ks a reduced area N 1.052 and an

appearance very similar to Fig. 6.29b, but which has achieved the neces-

sary additional contacts by way of slight deformation.

The term ~fextendedfluid!!is, of course, completely inappropriate as

a description of states with such a structure, which is clearly of the

imperfect-crystaltype. The implications of these observations with

respect to the over-all behavior of the 48-molecule system will be

discussed in Section 6.5. Here we again call attention to the alterna-

tive vacancy configurations of Section 6.2.2. The observed behavior at

T = 1.074 makes it likely that one or more of these, particularly the

consolidated-vacancy-in-defect-rowconfiguration, corresponds b a region

of configuration space which at T = 1.074 is disconnected,(either in the

actual sense, or in the sense of a very small transition probability)

from the split vacancy region sampledby realization B6. The correspon-

dingreduced pressures are probably not mch different. The question

could be investigated, as mentioned in Section 6.2.2, by starting

various configurations of Fig. 6.29a with T slightly greater than

This has not been done, since this type of behavior is presumably

from the

1.056.

strongly

N-dependent, and since there is clearly some limitation to our interest

in the 48-molectie system.
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6.4 Realizations Started from the Tetra~onal

Lattice of Fig. 3.7

As in the case of the 12-molecule system, two

started from the c = 4 configuration of Fig. 3.7,

reduced area is 1.J_I.6(Sections 3.4.4 and 3.5).

6.4.1 Realization B12 at z = 1.15.

realizations were

whose close-packed

The control charts for this realization diwpla~d an initial tran-

sient of lm?ge & values, which by s = 6 (At = 19 200) had decayed. For

s = 6-4o the control charts were approximately normal in appearance.

The even-numbered snapshots s = O, 2, 4, and 6 are shown in Fig. 6.36.

Note that the control chart transient was associated with a structural

change h which the two independent spirals of diagonal lattice lines

(see the discussion in Sections 3.4.2 and 3.5) slip along each other

until they

ly opposed

four close

are approximately nested together on one side and diametrical-

on the other, with each molecule now havtig five instead of

neighbors. ~is process was essentially complete at s = 6;

all subsequent snapshots showed only slight displacement from the latter

configuration (no Ildiffusion”).

The observations for s = 6-4o were averaged to obtain the reduced

pressure plotted for this realization in Fig. 6.I.. Note that it falls

about midway between the free-volume curve FV* based on the tetragonal

lattice and the locus corresponding to 117X7~tstructure. This is in
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(a)

(c). (d

Fig. 6.36 Snapshots s = O, 2, 4, and 6 (a through d.)from realization
B12 at T = 1.15, At = 19 200, showing the relaxation from tetragonal
to %lipped?r structure.
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marked contrast b the behavior of the 12-molecule realization at the same

density (Section 5.2.4.1), which gave a reduced.pressure in approximate

agreement with the FV* cumre, and in which the tetragonal arrangement was

preserved. As discussed in Sectior 3.4, this canbe ascribed tithe

fact that the smaller system has only one spiral diagonal lattice line.

6.4.2 Realization B15 at T = 1.25.

This realization also showed a pronounced initial control-chart

transient, but the first foux snapshots, Fig. 6.37, show a configuration

space behavior quite different from that of B12: The system is rearrang-

ing b the familiar “7X7” structure. Snapshots 4 to 13 were all of this

type, and the realization was not developed

pressure calculated, since the result would

realization B16.

further, nor was a reduced

only duplicate that from

For comparison we recall that at this density.

was also unstable in the tetragonal configuration,

ular hexagonal structure.

6.4.3 ~y.

the 12.molecule system

rearranging to a reg-

These two realizations show that for the 48-molecu.l.esystem the

tetragonal lattice at T = 1.25 is well connected to the 117X711states and

undoubtedly of no statistical importance. At ‘r. 1.15 it appears to be

disconnected from both the !~7X7trand.regular hexagonal states, with its
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(a)

6.4

(b)

(c) (d)

Fig. 6.37 SnaTshots s = O, 1, 2, and 3 (a through d.)from realization
B15 at T = 1.25j At = 19 200.
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own region of cofiiguration s~ace and an equation of state intermediate

between FV* (Fig. 6.1) and that of the l17x7~!states. At still smaller

values of r,this region of configuration space presumably decomgmses

into a region associated with the tetragonal lattice (this region dis-

appearing for r < 1.116) and a larger region associated with a limiting

configurationwhich probably is quite similar ta Fig. 6.36d in appear-

ance, and has a limiting reduced area between 1.05 and 1.116.

As mentioned earlier, we believe configurations of this tetragonal

type to be of no tnqmrtance in large systems, and present these calcula-

tions mostly as curiosities of interest in connection with the Salsburg-

Wood -@iS, and as additional evidence, if any be needed, of the pecu-

liarities possible in small periodic systems.

6.5 Summary of the Calculations for the 48-~lectie System

We will summarize our results for the 48-molectie systemby follow-

ing the evolution of the allowed region of configuration space with

decreasing density, as deduced from our calculations.

First, however, we make some preliminary remarks h connection with

the definition of the term !~equationof state!’for a small periodic sys-

tem. We will define the “true” equation of state (i.e., the reduced

pressure as a function of reduced area) as being the usual petit en-

semble result when averaging is restricted to just those states which

are accessible from some specified reference state (e.g., the regulm?

hexagonal lattice).
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When all allowable states are mztually accessible, forming a single

connected.region in configuration space, as will certainly be the case

at sufficiently low densities, the Wrue!l equation of state so defined

is indeyend.entof the reference state. If, however, there are densities

for which the allowable states are compartmentalized.into two or more

disconnected.and non-equivalent (by renumbering the molecules) regions,

then according to the above definition there is a Wrue’r equation of

state for each of these non-equivalent regions.

In so far as the small periodic system is considered.as an entity

in itself, such a definition is entirely appropriate, leading in either

connectivity situation to the usual correspondence (assumingthe at

least approximate validtty of a quasi-ergodic theorem or its equivalent)

between the statistical and the dynamical behaviors. It is also, of

course, the equation of state to which our Markov chains are convergent,

if the initial configuration of the random walk is the reference state

of the definition, or is accessible from it.

It should be noted, however, that this l%ruef’equation of state,

even with a fixed reference state, may easily have jump discontinuities

in its density dependence. Such a disconttiuitywill appear at a re-

duced area Td at which connections first appear between two non-equiva-

lent regions of configuration space with comparable and,non-negligible

2(N - 1)-dimensional volumes. One of the regions is assumed to con-

tain the reference state in question, and.we suppose that for r < Td the

connection disappears,while for T > Td,it fS yresent~ ~res~bly wisen-

ing with increasing r. The Wrue’1 equation of state then evidently
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jumps at T = ‘cdfrom a value intermediatebetween the reduced pressures

of each region averaged.separately to that of whichever region contains

the reference point (see Fig. 6.38).

One could remove the discontinuity,obtaining a smooth extension

of curve A13to higher densities (see figure), by defining the l%rue~!

equation of state to be that obtained by averaging over all allowable

states regardless of their accessibility. In so doing one would lose

the correspondencewith the behavior of a dynamical system, as well.as

the convergence of the present random+mlk Mm.te Carlo method. Neverthe-

less one might be tempted to believe that the result would.be a better

approximation ta the behavior of large systems. The assumption here

would be that with increasing N the qualitative properties of the two

regions remain more or less unchanged, the principal effect of larger N

being to supply connections at T < ~d. This may well be the case,

since large values of N certatily do lead to increased connectivity see

18
for example the Salsburg-Wood discussion,where it is just this phenom-

enon which renders questionable the usefulness of Eq. (3.5) for large N.

Hbwever, our present Mmited e~erience indicates that the qualitative

character (even the existence!) of one or more of the regions is likely

to depend even mre profoundly on N, so that this question, as indeed the

entire subject of the behavior of larger systems, is really one for sub-

sequent investigation rather than one which the present investigation

can answer. Thus, we will retain our first definition of the Wruell

equation of state.
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A

P

I -

‘d 7-

Fig. 6.38 J- discontinuities in the Wruelt equations of state (curves
A and AB, or B and AB, depending on whether the reference state is in
region A or B) of a small finite system in which the two regions are
disconnected fOr T < Td .
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As we remarked above, the present Monte Carlo method.is indeed in

theory always convergent to the ‘true!’equation of state corresponding

to its initial configuration. ~wever, as our calculations for the

48-molecule system abundantly illustrate, the convergence is necessarily

very _por at densities where the corresponding region of accessible states

is almost compartmentalized, consisting of two or more pockets which are

indeed interconnected,but by

sional volume compared to the

already been seen in the case

connections of

volumes of the

of the ‘fjumpy’f

very small 2(N - l)-dimen-

pockets themselves. As has

realizations at z = 1.3-1.35

(Section 6.1.2), and as will.‘befurther discussed below, our calculations

indicate that such is indeed the situation with the 48-molecule system

over a wide range of reduced areas. For such densities, then, we are

unable to estimate effectively the “true” equation of state of the system.

Instead we can estinwrte,by the partial or ‘~lateauffaveraging techniques

which have been repeatedly mentioned, the extensions to T > rd of the two

or more “true” equations of state for T < Zd (dashed curves of Fig. 6.38).

This will be the only possibility until a density is reached at which the

connections are relatively large and the %ruelr equation of state (curve

AB) canbe estimated. It is important to note that not only is the AB

curve unknown over this range of densities, but also the value of ‘rd

itself is not h general lmown a priori, and so must be inferred from the

observations. As we will see, the latter cannot usuallybe done with

any satisfactory precision at all.

what

Finally, we mention

from that discussed

that the behavior just discussed differs some-

in Section 1.2.2 as a mechanism for the production
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of a %an der Waals loop~l. In the latter we supposed that the relative

2(N - 1)-dimensionalvolumes of the two regions changed very rapidly

with density while remaining connected. In the present case we consider-

ed the situation where the relative volumes remain comparable and,their

connection disappears. One can, of course, imagine a situation in which

both a discontinuity and a loop wouldbe present.

6.5.1 T = 1.0 to 1.05.

At r = ~the allowable

ration space reduced to the

region of 2(N . 1) = 94 dimensional configu-

47~ isolated potits corresponding to the

various permutations of molecule numbers. Its volume is, of course,

zero, and the pressure infinite.

At r slightly greater than one$each of these points becomes a

region of accessible states, which will clearly be of the regular hexa-

gonal (L) type. If ‘Gis not too large these 47/ pockets will be dis.

connected from each other. In Section 3.5 we calculated that some of

these pockets are certainly connected at T >1.063, by paths correspond-

ing to columnar rotations around.the torus. This may, h fact, be the

smallest ~ at which any L-L connection appears. If so, it is interest.

ing that before these occur, there appear allowable regions of the ~7x7~!

type, which in Section 6.2 we saw to be present at T . 1.056, and even

at very slightly smaller values.

Rbwever, in the interval -G= 1.0 to 1.05 presently under discussion

we will assume, as is consistent with our observations and a priori
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calculations, that the allowable region consists solely of the k7J

disconnected L pockets, all of which are of course equivalent. Thus, in

this density range the Mmte Carlo method is convergent to the unique

‘%rue~tequation of state, and the latter in turn, according ta the

Salsburg-Wood theory, is asymptotica~y, as r+ land neglecting O(N-l)

terms, convergent to the free volume Eq. (3.6) with -c++= 1. A qu~titative

comparison has been postponed to Chapter 10, but we hs.vealready noticed

(Section 6.1.1) that realizations B1 through B5 at r = 1.025 and 1.04

sre indeed in qualitative agreement with the free volume equation of

state. This is perhaps best regarded as evidence of the over-all reli-

ability of fhe calculator programs involved in these calculations.

The question as to whether these results (at T =1.025 andl.04)

approxhate, with neglect of terms of O(N-l), the equation of state of

larger s~tems at the same reduced sxeas is essentially the same as the

fundamental question of whether the Salsburg-Wood derivation of Eq. (3.5)

can somehow be extended so as to be valid h the

connections which will exist for r + 1

reader to the Salsburg-Wood discussion

comments on the 12-molecule results in

and to subsequent remarks with respect

6.5.2 T = 1.05 b 1.1.

as?X*=.

itsel.f,18

presence of the L-L

Here we refer the

as we12 as to related

Sections 5.2.3, 5.2.5,ad 5.3,

to the 48-nmlecule system.

As mentioned in the previous subsection, at a value of T known to

be less than 1.056but probably only very slightly less, the estimated
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value being 1.052 (Section 6.3.4), pockets of ‘17X7°(“H”) states appear.

As far as is known, these ‘7X7!!pockets and the regular hexagonal (W!!)

pockets are the only allowable regions of configuration space, aside from

certain connections

As was mentioned h

between the regular

to be discussed below, in the interval -r= 1.05-1.10.

Section 6.5.1, at T >1.063 some L-L connections

hexagonal pockets are knawn to exist. Hbwever, it

will be recalled (Section 6.1.2.1) that not until T = 1.30 was the system

actually observed to traverse a L-L connection. We may thus safely infer

that these connections are very constricted indeed at ‘r<1.10. However,

this behavior is also a convenient wernhg that it is not safe to infer

the absence of connections of anyparticula.r type from a failure to ob-

serve traversals between the corresponding pocket of states.

Thus, although realization B6 at r = 1.074 (Section 6.3.4) exhibited

no excursions between different 117X7?1pockets, neither with respect to

permutations of the molecules nor with respect to different half-vacancy

configurations, it wouldbe rash to assert that at this density the f7x7fI

pockets are disconnected from each other. Presumably such will be the

case at some reduced axea above

S5milsr remarks apply atio

tions between the 17X7?!and the

T- 1.052.

with respect to the existence of connec-

regular hexagonal pockets. No traversal.

between these two regions was observed in the present density interval.

Zndeed, as will be seen in Section 6.5.3.2, the smallest reduced area at

which such L-H connections are known to be present is 1.25. They may

well be present at smaller reduced areas, the exact petit of their
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appearance being unknown in the interval

Thus, we can not be certain whether

state results from realization B6 in the

T = 1.05-1.25.

our quite precise

?!7X7~1re~on at r

equation of

= 1.074 and

from realizations B7 and.B8 in the L region at T = 1.075 sre accurate

estimates of two different Wzuert eqyations of state, or are only partial

averages over pockets which are actually connected. In the htter case

one might suppose the regular hexagonal pockets to have the larger 94-

dimensional volume at T = 1.074-1.075, since this density is only

slightly lower than that at which the 117X711~ckets contract to zero

volume. If so, the L branch of the equation of state would approximate

the Wruel~ equation of state.

This uncertainity with regard to the significance of the two

main branches of our equation of state results (Fig. 6.1) wild.be

present from T = 1.05 to 1.25. Mxreover, since the significance of the

?17X71!structure in larger systems is an open question, the present

calculations provided little information about the equation of state of

such systems. We would, of course, be rather surprised if for

‘r = 1.05-1.1 it was not

6.5.3 T=l.1 -1.25.

In this section we

close to the Lbranch of Fig. 6.1.

will mention the additional topological features

of configuration space which accompany the L (regular-hexagonal)and

E (117X7!!)pockets, keeping im mind the remarks of the last section with

respect to uncerthti significance of the two mati branches of the
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equation of state over the interval T = 1.05-1.25.

6.5.3.1 T=l.1 - 1.15.

In this interval two new pockets appear in configuration space,

namely, one associated with the tetragonal lattice of’Fig. 3.7> ~d one

associated.with the related but more stable configurationwhich developed

from this tetragonal lattice during realization B12 at ~ = 1.15 (Section

6.4.1 and.Fig 6.36). We will call this second,pocket the %lippd

tetragonal.pocket!!,and.the first-mentioned one the ‘tetragonalpocket”.

The latter is surmised.to

slipped.tetragonal pocket

small interval of reduced

exist as an entity disconnected from the

(and.also from the L and H pockets) over a

area whose lower end point M its close-packed

value T = 1.116. As realization B12 demonstrates, at r = 1.15 these two

pockets are certainly connected, the behavior suggesting that the connec-

tion is comparable in volume to the tetragonal pocket. The reticed

pressure obtatied from the realization (Table 6.1), in conjunction with

the Salsburg-Wood theory, suggests that the slipped tetrago~l pocket

may have a limiting configurationwith r = 1.10.

At ‘G= 1.15 we do not kmwwhether or not the conibinedtetragonal -

slipped tetragonal pockets are connected to either the L or H pockets.

As has been emphasized repeatedly, both of these regions are ~ti-

facts of the k8-molecule system, in the sense that we are quite certati

that they are of no importance in large systems, as contrasted with the

117x711states about whose significance in larger syBtems We are mcefiafi.
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Finally, we recall that realizations B9 and.BIO at r = 1.124 demon-

strate that at that density the

each other.

6.5.3.2 ~ =1.15 -1.25.

At the lower reduced areas

various I~X7’rpockets are comected with

of this interval our 48-molecule system

appears to have three well-def’tiedtypes of pockets, viz. the L, H, and

slipped tetragonal pckets. At~= 1.25firealizationB15 (Section 6.4.2).

demonstrates that the slipped tetragonal region is connected to the

f~7X71fregion, the behavior suggesting that the former pocket is no longer

very well defined.

More interestingly, comparison with the 12-molecule realization A6

(Section 5.2.4.1) at the same density permits us to deduce the existence

in the 48-molecule system of L-H connectionswhich at this density have

not %een directly observed. The argument is as follows: The 12-nmlecule

system relaxed ta L-type states, while the 48-molectie system relaxed to

the H-type (1f7X7!!)states, both starting from the tetragonal

Fig. 3.7. Now any allowable state of the 12-molecule system

to the essentially identical and allowable 48-molectie state

by a 2X2 array of the 12-molecule configuration. Therefore,

lattice of

corresponds

obtained

the 48-

molecule system could lm.verelaxed to the L pocket, by simply following

the sequence of 12-molecule states realized h A6. Thus, the 48-molectie

combined tetragonal - slipped tetragonal pocket is connected at T = 1.25

to %oth the L and Hpocket systems, so that the latter are themelves
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connected, at least by the way of the ~robably poorly defined tetragonal

pockets.

As remarked earlier, L-L connections are known to be present,

though not observed,

of fairly frequently

while realizations B13 and B16 show the presence

traversed H-H connections.

6.5.4 T s 1.25 to 1.30,

As discussed in the previous section, at T = 1.25 configuration

space appears to consist principally of L (regular hexagonal) and H

(~X7”) regions which are known to be connected. Thus, for -r= 1.25 to

1.375, where the L-H connections begti to become large enough for the

random walk to estimate the over-all Wrue~r average, the two branches

of oux equation of state definitely correspond to extensions to lower

densityof different “true’’highdensity equations of state (Fig. 6.38).

At T = 1.30 we first observed directly the L-H connections, by

virtue of the !~jumpy~?behavior of realization B19 (Section 6.1.2.1)..

At the same time there also appear the type of states which we described

as r!irregular~!.These have not been observed

cept possibly for the transient states during

tion B15 at ~ = 1.25 (Section 6.4.2) from the

“7X71!states. As described in Sections 6.1.2 ,

at higher densities, ex.

the relaxation of realiza-

tetragonal lattice to

and,6.1.3, irregular states

become increastigl.yprominant at lower densities. Their fate at T < 1.3

constitutes one of the most important questions left unanswered,by the

present investigation. As mentioned in Section 6.1.2, there are some
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indications that these states may actually be connectzhg states between

the L (regularhexagonal) and H (~!7X7r1)pockets. Zn this case they

probably indeed effectively disappear at T <1.30, as the L-H connections

contract and ap~ently become negligibly small in comparison with the

L and H pockets themselves. See however, the qualifications discussed

in Section 5.2.3 (particularlyFig. 5.6), which apply as well to the

48-nmlectie system. The question couldbe investigated to some extent

by means of a nuniberof compression experiments starting from irregular

configurations obtained.at r a 1.3. This has not been done, nnstly owing

to our desire to terminate this long drawn out investigation of the 48-

molecule system.

6.5.5 7> 103

As discussed in detail in Section 6.1.2.8, in the interval T = 1.3-

1.35, configuration space appears to consist of regular hexagonal (L)

pockets, t7X711(H) pockets, and irregular states. The izzregularstates

possibly constitute the L-H connection, and in any case are numerous

enough to have appreciable statistical weight. Whatever the nature of

the L-H connection, however, it is still too constricted to allow the

Wrue’! equation of state to be determined, although at ~ = 1.35 it seems

likely that it will be in the vicinity of the Hor Yluid~lbranch (Figs.

6.1 and 6.2).

At ~ 21.375, as described.in Section 6.1.3, we believe that our

realizations estimate the Wxrue~lor over-all equation of state of the
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48-molede system. AS Table3.1 shows, for these Msities the virial

-b
coefficientup to and including the coefficient of ~ in the e~ansion

of the compressibilityfactor pV/NkT will have their lhormall~N-dependence

17 %wever, as weaccording b the analysis of Lebowitz and Percus.

shall see in Chapter 10, from ~ = 1.375 to at least 1.5, terms of 0(r-6)

and beyond proba%ly make appreciable contributions to the compressibility

factor, so that only perhaps beyond T = 1.5 csnwe be reasonably certain

that the

within a

48-molecule results estimate the

few per cent.

themo@laInic equation of state

6.5.6 Finalremarks and comparison with Alder and Wainwrightts 870-
molecule dynamical results.

It is quite clear that the above-d,escribed.kimte Carlo results for

the 48-molecule system are such as to prevent one from drawing any con-

clusion whatever with respect to the presence or absence of a first-

order, fluid-crystallinephase transition. At r = 1.35 the frequently

occurring “irregular!!states, whose contributions are included in the

!!HI1or !!fluidrrbranch of the equation of state for T > 1.3 in Figs. 6.1

~d 6.2, are suggestive of a fluid phase, but by T = 1.30 the ‘VX7° or

vacancy-defect structures are predominant on this branch of the eqution

of state, whose statistical weight relative to the ‘Jcrystdltie’ror ‘%”

branch can no longer even be guessed..

Thus, it fs clear that if the existence of a hard-circle phase

transition is to be further investigated,by the present numerical

technique, lsrger systems wi~ have to be employed. As mentioned ti
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Chapter 1, Alder and Wainwright have already investigated a system of

870 hard circles. ~ Fig. 6.39 we compare their results for this large

sWtem, as we~ as their results for a system of 72 molecules, tith our

48-molectie points from Fig. 6.2. There is rough agreement between the

two small-system points, the 48-molecule Mmte Carlo points tending to

Me somewhat below the 72-molecule dynamical Ptits, Wt We I?~ci@

point of interest is of course the van der Waals loop in the 870-nmlecu.le

system. It is noteworthy that it lies nicely between the L and H curves

for the smaller systems, the solid terminus of the horizontal tie line

being approximately on the L curve, its fluid terminus on the H curve.

It would be titeresting to know if any analogue of the 48-nmlecule,

117x711or Vacucy-iiefec-tstructure appears in the large system.

Ih the near future we hope to investigate a similarly large system

by the Mnte Carlo method..
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Fig. 6.39
72 (A)~a
except for

Comparison of the 48-molectie Monte Ca o results (o) with the
870 (bars) molectie dynamical restits.f% The figure is adapted,,
the Mnte Carlo points, from Ref. 15. The heavy curve and tie

line are Alder and Wainwrightfs15 phase transition interpretation of their
data, the light curves their L and H (in our terminology) branches for
the 72-molecule system. Their dashed curve indicates a branch of the
870.molecule equation of state corresponding to a ‘~glassyf!region of con-
figuration space.
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Chapter 7

OUTLINE OF TEE DATA REDUCIION PROBLEM

The rematiing chapters of this report will be mainly devoted to a

description of the statistical techniques which we have used to reduce

our l!experimentalobservations!!to the equation of state esttmates al-

ready given in Tables 5.1 and 6.1. Here we will outline the over-all

data reduction process, reserving detailed discussion of the various

steRs for Chapters 8 and 9.

7.1 The KExpertientalObservations’r

It is convenient to regard a single realization of a particular

Markov chain for a given molecular system as constituting a single

lrexpertient.‘1 The parameters which define a particular Markov chati,

as well as those which determine a particular pseudostochastic realiza-

tion of such a chain, were discussed in Sections 2.3.2 and 2.3.3.

The “experimentalobservations” are then the set of values ~(s, (x),

s = l(l)n, a = l(l)Kj of the time-smoothed or coarse-gratied cumulative

pair distribution function, as defined in Section 2.3.4. The parameters

K and Ar2 determine the spatial range and spatial resolution of these
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observations; the parameter At (time-smoothinginterval, see Section

2.3.4) determines the time-resolutionof the observations; and the

parameter n reflects the duration of the rand.omwalk or Mrkov chaj,n

realization constituting the eqeriment.

The n values ~(s, a) for each a are of course ultimately averaged,

according to Eq. (2.14), to obtain the over-all estimate ~~~(ca) of

G(Ga), the theoretical or “true” cumulative pair-distribution function of

the systemat ~ = ~a= &2 + @r2 . However, it is not these quantities

which we wish to estimate, but rather the derivative G’(u) from whtch the

compressibilityfactor of the system is obtained.by Eq. (2.6). Our basic

data reduction problem is thus that of numerically differentiating the

nAt(O!). This leads us to inquire as to the samplingobserved averages ~

distribution of

7.2

these quantities.

The Central Limit Theorem for Markov Chains

n&(ga), w~chhenceforthw ew illw rite as~tit(a), isThe quantity~

the average value of the state function G(~a) over nz% consecutive states

of a particular stochastic realization of a kkov chain. According to

the central limit theorem for ergodic lkrkov chains,21 such an average

has a sampling distributionwhich is asymptotically (i.e., as nAt + -)

independent of the initial (t = ())s~te of the system, ~a which is

asymptoticallynormal with a mean equal to the theoretical value G(~a)

~a a vari~ce D2[Etit(CZ)]which *creases as (tit)-’:

D2[~nAt(~)]=~~nAt . (7.1)
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No simple expression is known for the multiplicative factor 3; , which

a
must be non-zero in order for asymptotic normality to hold.

Considering the set of values ~fit(a), a= l(l)K, as avedor

22 ~s
stochastic variable, its sampling distribution

multivariate-normalwith the mean vector G(&), a =

asymptotically

l(l)K, and a covari-
.

ante matrix which decreases as (nAt)-L .

7.3 Testing for Approximate Normality

and Time-Independence

The central limit theorem outlined in the previous section shows

that if t = nAt is

a given experiment

‘buted,so that the

(though not, as we

Kkrge enough” then the values ~t(a), a = l(l)K, from

will be approximately multivariate-norndly distri-

usual methods of applied statistics become available

shall see, without certain difficulties) for the

estimation of the equation of state. We know of no way of selecting an

a priori !hrge enough)!value of t, so that it seemed to us worthwhile

to devote some effort to an empirical statistical investigation of this

question. (The behavior of the “jumpy” realizations described.in Section

6.1.2 was adeqpate warning that under some conditions, at least, even

very large values were by no means adequate.)

This phase of the data analysis requires then, in the terminology

of Chapter 2, values of ~t(a) from a nuniberof independent realizations

of a given Markov chain, each realization being of length t. We wish

to test the hull hypothesis!!that they are each an independent sample
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from a normal distributionwith unknown mesn G(~a) and unknown variance

u2(a). As discussed in Section 2.3.3, different realizations of a given

chain can be obtained by varying the random number sequence or the

initial configuration. Such realizations will be statistically indepen.

dent, however, only if t is again ?Iarge enough~~.

The simplest procedure, then, appears ta be to decompose a given

realization of length nAt into a number n’ of shorter Wsub-realization sl?

of equal length, and apply standard statistical tests for %ime-independ-

encel!of the resulting n’ values ~~t(a). If these tests are satisfac-
1

tory, the values are then tested far approxtite normality. Both types

of tests will be described in

haps mention ttit in practice

normality of distribution are

detail in Chapter 8. Ekre we shou.ldper-

the tests for time-independence and

not independent of each other (i.e., some

of the more convenient tests of the null hypthesis

assume a normal sampling distribution as well); nor

tests completely independent of the presence of the

to be mentioned in the following section.

of time.independence

are either of these

spatial correlations

The statistical tests for absence of time-correlation and,normality

of distribution are, of course, more powerful the larger the nunibern’

of supposedly independent samples. This naturally suggests trying n’ = n,

that is, taking the largest number of time-smoothed.observations avail-

able from the magnetic tape output of the main Monte Carlo code. Thus,

we

19

begin with the

200) is Tlsrge

null hypothesis that the

enough~~accordtng to the

value At (h most cases,

central limit theorem, for the
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observations G(s, c%)(see Eq. 2.13) to be approximately s-independent

and nomnally distributed. This is manifestly not the case for some of

our experiments (the ‘IjUmpyfrrealizations), and in Chapter 8 we will see

that the quantitative tests show this null hypothesis ta be untenable in

other, less obvious, cases as well.

7.4 Spatial Correlation and llmnsformation

of the Observed.Data

The numerical differentiation required to obtain the equation of

state will be done, naturally, by least squares techniques, which will

be described in preliminary fashion in the next section. The appropriate

type of least squares technique, however, depends upn whether or not

the observations~tit(a), assumed to be sampled from a normal distribu-

tion, are correlated for different values of a = l(l)K. If such spatial

correlation is present, that is, if the covariance matrix of the theo-

retical sam@ing distribution is non-diagonal, then a somewhat more

complicated than usual least squares procedure should be used (see

Chapter 9). Alternatively, one can attempt to renmve or reduce the

spatial correlation by an appropriate transformation of the observations.

Both a visual inspection of the control charts, examples of which

have been given in Chapters 5 and 6, and quantitative statistical tests

for spatial correlation (to be discussed in Chapter 8) show that indeed

the 6(s, a) values are strongly u-correlated throughout the density range

of our calculations. On physical grounds it seemed likely that
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transformation to the %hell populations?!

Y~a = H(S, a) - G(s, a - 1),

a(s, o) =0 ,

would lead to a considerable reduction in the

indeed turns out to be the case (Chapter 8).

linear combinations of the variables G(s, a),

(7.2)

apparent C&correlation, as

The variables Y~a, being

are of course normally

distributed and time-independent if the latter are.

liIaddition to simplifying the numerical differentiationprocedures,

the transformation is also helpful in the statistical tests for time-

independence and normality h the follow- way. Su2pose that some

test of the hypothesis of time-independence,say, is applied to each

{of the K sets of observations Y.-, s = l(l)n} , so that we obtain a

test statistic Ta for

then the K statistics

the interpretation of

for time-independence

L bcJt- J-

each set a = l(l)K. If the Ysa are C&unconelated,

Ta are independent of each other. This simplifies

the test, since we do not know of a convenient test

withjn

with correlated components.

Accordingly, throughout

a sequence of vector stochastic variables

our statistical analysis we will take as

the fundamental observational variables the set Ysa, rather than the

set G(s, a). The corresponding lkheoretical~lor ‘%ruelfshell population,

to which the observations Ysa converge stochastically, independently

of s, as At ~ ~, will be denoted by

‘oa = G(~a) - G(Ca_l) . (7.3)

In addition to their indicated dependence on the index a, snd on the
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system parameters such as N, r, etc., the variables Ta depend UPOn the

2
observational parameter Ar .

7*5

In order to

we must estimate

Numerical Differentiationby Least Squares

Regression Analysis

use Eq. (2.6)to estimate the compressibility factor,

the derivative G’(a) hy -erical differentiation of

the observations. The usual procedure envisages that the functional

dependence of G(c) on ~ is known, except for certain coefficients

which aypear linearly in G(c). These coefficients, along with their

respective variances, would then be esthated by least squares regression

of the observations G(s, a) onto the known functional form. Substitution

of these estimated coefficients into the analytical expression for G’(a)

Cobtained, of course, by differentiating the given functional form of

G(c)] then yields the desired estimate of the derivative, as well aS an

estimate of its variance.

In the present case the dependence of G(c) on ~ is, of course, not

known● Since KAr2 is always chosen to %e small compared to 62, it seems

2 2+mr2
reasonable to assume that in the interval a2 ~ G ~ CT , G(c) kE3S

a convergent power series e~ansion in ~2 - IS2,which can be truncated

after some small number of terms with an error which is small, or at

least not large, compared to the statistical scatter of the observations.

@ other words, our regression procedure will be based upon the hypothesis

that G(c) is adequately representedby a polwotial of unknown degree
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v+ling2-u2. (Note that the value of v will itself depend on the

experimental data: the smaller the statistical spread of the data, other

things betig equal, the larger will be the necessary value of v.) Using

Eq. (2.12) thfs assumption can be written

the coefficients

Introducing

1=1

7i befig un~o~”

the statistically more convenient

use of Eq. (7.2), an equivalent assumption is that

v

IdTa= Pi .
i=o

The relations between the two sets of coefficients

be

(7.4)

shell populations by

(7.5)

are readily found to

kJvi)Yi
(-l)~+l(i -l+2j)J= + Pi-l +;pi.t

(2j)J i! ‘j~i-l+2j’ (7.6)
j=l

where J(v,i) denotes the integer part of *(v + 1 - i), and,B is the jth
s

23 The summation is to be omitted if J(v,i)Bernoulli nuniber. = 0, and

the term~pi is to be omitted when i = v + 1.

The derivative G’(u) is given by

G’(u) = f%71Ar2,

so that Eq. (2.6) becomes

pv 71cf2

m=l+2&2 “

(7.7)

(7.8)
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The regression analysis accordingly proceeds as follows. The value of

v and the corresponding coefficients pi are estimated by least squares

techniques. A corresponding estimate of 71 is then calculated from

Eq.

Eq.

(7.6 ), and finally the compressibility factor is calculated from

(7.8).

The most important difficulty in the above program is, as will be

seen, the necessity of determining the degree v of the regression

polynomial from the data. In addition the choice of the appropriate

least squsres technique (see Chapter 9) requires hformation about the

unknown covariance matrix of the sampling distribution of the observa-

tions Ysa, which also can only be obtained from the observations them-

selves.
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Chapter 8

TESTSOF DISTRIBUTION

This chapter is devoted to a description of the statistical tests

which we carried out prior to the least squares reduction of the data.

As outlined,in the previous chapter we are concerned here with the

credibility of the %mll hypothesis” that the observations Y are
Isa

random (i.e., s-independent), spatially-uncorrelated (i.e., a-independent)

samples from a normal distribution (of unknown mean vector and unknown,

but diagonal, covariance matrix). We will, for the sake of brevity and

precision call this %ypothesis A~l.

The simple process

presented.in Chapters 5

8.1 tintrol marts

of inspection of control

and 6, in which ~(s, a),

charts such as were

or Ysa, is plotted,agafnst

s for one or more values of cl,constitutes a crude statistical test of

hypothesis A, especially the assumption of time-independence.

For example, the control charts of Fig. 6.3, for the 48-molectie

realization B19 at T = 1.3, are sufficient to show the hypothesis to be
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untenable. Our only reason for applying more quantitative statistical

tests to such jumpy realizations (Section 6.1.2) was to gain experience

with their performance in such obviously ill-behaved situations in order

the better to interpret their results in more borderline cases.

8.2 Testing the Assumption of Time-lhdependence

Of the available tests for s-independence of a sequence of observa-

tions Ywj s = l(l)n, fOr given 0!,we chose two: the nudber of runs

24
above and below the sample median, and the mean-square successive-

difference ratio test of von Neumann.
25

The runs test has the”advantage

of an exactly lmown distributionwhich is tidependent of the distribu-

tion of the samples (providingof course that they are really random).

It seems

W level

The

especially appropr~ate in view of the abrupt ‘rjumpsr!or shifts

which characterize some of our experiments.

mean-square successive-differenceratio test is simple to apply,

and the distribution of the test statistic is known approx~tely when

the sampling distribution of the observations Ysa is normal. It seems

to be one of the most

8.2.1 The runs test.

widely used.tests of randomness.

We followed essentially the procedure of Ref. 24, concentrating

mostly on the total number R(a) of runs above and below the sample median,

(a)but examining also the nunibers~ of runs of length k for k > 5, for
A

each set of shell population observations Ysa.

interpreting the results,we extended 01.mstead~s
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Pa(k;n) = Pb(k~ n), Pa+b(k; n), and Paab(k; n) of observ.

ing one or more runs of a specified side, on either side (a + b), and,on

both sides (a . b) of the median, of length k or greater in a series of—

n independent observations, up to n = 200, and Up to k . k*(n) such tkt

‘a+b[w(n); n] <10-5. We also tabulated the cumulative distribution

P(IN+;n), giving the probability of observing a total nuniberof runs

R s H in a sequence of n < 200 independent observations. Th~s was done

simply as a matter of convenience; the distribution P(R*; n) is very

24nearly normal for n > 20.

Table 8.1 shows the a~lication of the runs test to the observed

shell.~pulations Ysa of realization B34, with s = 2(1)50, a = 1(1)8.

Note that in this realization the first time-smoothed observation (s . 1)

was omitted from the statistical analysis; for most realizations it was

included.,but in some of the earlier experiments it was omitted. Note

also that following the procedures of Ref. 24, the sample median is

omitted when the number of observations is odd, so that in the runs test

n is always even. Finally, we mention at this pint that throughout our

statistical analysis we will use the notations E(x), D2(x) = E(x2) - E2(x),

and.D(x) = w for the expected value (i.e., the theoretical mean), the

theoretical variance, and the theoretical standard deviation of a

stochastic variable x. ~om ~d24 we have

E(R) =~n +2) ,

(8.11.,
n(n - 2)

‘2(R)=~ ‘
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TABLE8.1 RUNS

s = 2(1)50;

E(R) = 25

TEST

n

D2(R) = 11.75;

Shell
a

1

2

3

4

5

6

7
8

FOR REALIZATION

= 48; K= 8

D(R) = 3.43

B34

Observed Tbtal ~ber
of Runs
R(a)

29

25

29

25

29

20

26

22

K

x=$
I

R(a) = 25.625

C!%l

~2 1
1[
K R(a) - E(R)]2

‘1?
= 10,375

W-1

X2(K = 8) KS2= — = 7.o6; 0.50s P(X2)s 0.60
D2(R)

~ = ~~ - E(R)]n* = o 52;
D(R) . P(u) # 0.70
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for the theoretical mean and variance of

series of n independent observations.

In Table 8.1 we note that the eight

the total number of runs in a

observed values of R(a) scatter

about the theoretical mean E(R) = 25 in a fashion which is qualitatively,

at least, in accord with the theoretical standard.deviation D(R) =3.43.

As we have already mentioned, the detailed interpretation of such a set

of values R(a) depends u~n whether the eight series of observations

{
Y s=sa~ l(l)n} for U= 1(1)8 are independent, i.e., on whether the

observations are spatially uncorrelated. Our procedure is to assume

tentatively, subject to subsequent correlation tests, that the observa.

tions are indeed.c&independent. The runs test, as we apply it, is then

really a test of the combined assumptions of s- and ~-independence. Thus,

we wish now to test the hypothesis that the eight values R(a) given h

Table 8.1 are independent samples from the known distribution of R for a

series of n independent observations.

For this ~ose we compare the sample variance S2 (see Table 8.1)

of these eight values Ra about their known theoretical mean E(R) with

the known theoretical variance D2(R) by means of the chi-squared,test.27

We also compare the deviation of the sample mesm~ (see Table 8.1) from

the theoretical mean with the known theoretical standard.deviation, using

the lti-testl!,i.e., the normal deviate test.28 These

ate since the distribution of R is very nearly normal

As shown in Table 8.1, the %-test gives a value

tests are appropri-

for n >20.

% = 7.o6. with

8 degrees of freedom, which falls in the 50 to 60 percentile of the X2
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29 The u-test gives u =distribution. 0.52, for which P(u), the

cumulative probability density of the standardized normal distribution,

is about 0.70 (i.e., the chance of observing u S 0.52 is approx-tely

70$). These vslues are evid.entlyunexceptiomble, and the hypothesis

of s- and a-independence is evidently consistent with this test.

We may also examine the occurrence of runs of unusual length; con-

sidering the number of observations n in a typical realization, we

usually considered.runs of 6 or more to be %nusual”. In realization

B34 there were 3 runs of length 6, one below the median in the sequence

Y(S, 6), and one above the median for both ~ = 7 SJIaa = 8“ mere were

no runs of greater length. l?romour tabulations we find Pa+b(6, 48) =

0.4273; i.e., the probability of obse~- one or ~re ~ ‘f length 6

or longer, on either side of the median, in a single series of 48 obser-

vations, is 0.4273, or 42.73$. Under our assumption of a-independence we

have 8 independent such series of 48 observations each, and it is clear

t~t 3 occurrences of tie event !’oneor more runs of 6 or more” in 8

trials, with a probability of 0.4273 in a single trisl, is certiinlY not

exceptionable.

Conversely,we can ask whether we perhaps have a dearth of long

runs? Our tables give Pa+b(7, 48) .0.2077. The probability of observing

no successes in 8 independent trials of an event for which the probability—

of a success in a single trial is 0.2077, is (1 - 0.2077)8 & 0.155) accord-

ing to the btiomial distribution. This value is small, but not exception-

able (unless other realizations should show a consistent tendency to have
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similarly smll numbers of longer runs). Thus, the runs test applied

to realization B34 suggests that the h~thesis of S. ~d C&fidepmdence

is not unreasonable.

The nuniberof %nusually!rlong runs and,the total nuniberof runs are

not independent statistics. Thus, in Table 8.2, where we summarize the

entire statistical analysis of the 48-molectie realizations, for the

runs test we report the above-mentioned statistic P(u) (see Table 8.1),

as being the best representative of the various runs test statistics for

each realization. We postpone discussion of these results until after

we have outlined the mean-square

the a-correlation test.

successive-difference ratio test, and

8.2.2 The mean-square successive-differenceratio test.

We use the definitions of Bennett and Franklti,30 S0 that if r(a)

denotes von Neumann!s mean-square successive-differenceratio statistic

for a series of

r(a)

E(r(a))

D2(ra)

where s: is the

distribution,

observations Ysa, s = l(l)n,

= 2,

= 4(n - 2)

n2-1 ‘

(8.2)

usual unbiased estimate of the variance of tie sampling
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Tf!BI.E8.2 STATISTICAL ANALYSIS OF TKJIk8.MOIJWOIE REALIZATIONS

Reduced
Area

class ?——

A 1.025

1.040
1.074
l.o~

1.12h

I.125
1.169
1.240

B 1.254
1.275
1.293
1.300

1.316

1.325
1.330
1.340
1.350

1.355
1.375
1.400

c 1.503

1.650
1.750
2.000
2.400
3.mo
3.9

Rea.l.i-
zation

B1
B2
B3
B4

B9
B1O
ml
B13
B14

B21
B22
B23
B24
B25
B26
B27
B28
B29

B~
B31
B32
B33
B34
B35
B36
B37
B38
B39

Observa-

tion
n
ly/
153
121
100
100

??
50
20
58

$
Loo

75
101
50
W
70
20
43
5
95
Ml
27
70
71
49
w
w

46
l’jl
38
41
49
22

z

g

2%
X4__
0.27
0.08
0.65
0.78
0.24
0.76
0.14
0.08
0.09
0.48
0.54
0.81
0.38

0.02
0.1
O.d
0.22
0.04
0.26
0.22
0.01
<.oml

0.76
<.oem
0.012
0.10
O.q
0J26

0.82
o.6k
0.42
0.70
0.70
0.08
0.26
0.56
0.50
0.08

WSDR

~e=t(g)

XL

0.40
0.16
0.25
0.98
0.62
0.56
o.~
0.12
0.19
0.42
0.32
0.26
0.61

0.01
0.18
0.05
0.53
0.01
0.31
0.03
<.lxlol
<.0001
<.cool
0.43
<.0001
o.cc03
0.02
0.006
0.01

0.58
0.48
0.06
0.44
0.77
0.29
0.23
0.15
0.49
0.38

a-(!orrelatd.onTests
(h)

3&_.-M
-6.56
- 1.92
+ 0.22
- 0.33
- 1.01
+ 0.03
- 1.00
+ 0.55
- 0.26
+ 0.68
- 0.71
+ 0.C6
- 2.98

- 0.88
- 2.34
- 1.09
-1.14
- 2.47
- 0.53
- 2.19
-8.36
9.44

:14.15
- l.yl
-5.68
- 4.66
-3.02
-4.57
-3.97

- 1.48
-0.38
- 0.53
- 0.C6
- 0.87
+ 1.14
+ o.17
- 0.65
O.ca
0.43

8.6o
5.32
6.53
5.32
5.32
5.61
2.77
2.22
1.15
2.68
2.40
2.59
9.I.6

6.77

:::$j

3:82
0.5$
3.00
8.68
9.64
14.51
1.84
5.70
5. 9
3.t4
7.63
10.2

lW
{.;:

6:16
2.47
;.;

;:~
.

P(u)

0.9975
0.12
0.78
0.54
0.54
0.11
O.t?a
0.81
0.85
0.69
0.79
0.28
0.60

0.64
0.9993
0.945
0.975
0.
0.
0.r 71
>.9999
>.9999
=-.9999
0.86

(:%?. .)
fJ.9939
o.99i39
0.9978

0.67
0.67
0.52
0.46
0.96
0.69
0.%
0.91
0.06
0.19

me tz~latiutt,~ s I(I)W, see .Sectfon6.1.2.1.1.
: The w platetul8*>s = 81(1)150,see Section 6.1.2.1.2.
c The % plateau!!,s = ~(1)39 see Section 6.1.2.2.2.
d The second !!Hplataau!!,s = &3(l)82, see Section 6.1.2.2.3.
c The column gives the number n of coarse-grained observations (At .19200 ) Included in the

%w’
-34-
0.66
0.92
0.88
0.94
0.99
0.99
0.03
0.9
0.06
O.*

::3
1.00

o.%

::$
OAT’
0.99.J
0.99
0.80
O.$n
O.*
0.99.J

statistical anslyt$is.
f Section 8.2.1
g me mm-squexe successive-d3f’ference ratio test, see Szcticm 8.2.2.
h Section 8.3.
i Section 8.5
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n

~2 1
a ‘a I

(Y~a - Y’)2 ,

S=l

n (8.3)

8.2

As already mentioned,,this statistic tests the assumption that the

observations Y
Sa are sampled randomly from a normal distribution. Tables

of the approximate percentage points of the distribution of r(a) =,

available,30$31while for n > 20 its distribution is approximately

normal, with mean and variance as given in Eq. (8.2). b

have used the normal approximation.

Our procedure is exemplified in Table 8.3, again for

mOSt cases we

realization B34.

Just as with the

the observations

testing here our

normality. Thus,

runs test, we make now the additional assumption that

are a- as well as s-independent, so that we are actually

over-all h~thesis A, since the present test assumes

the eight values of r(a) given in Table 8.3 shouldbe

independent samples from an approximately normal distributionwith mean

and.variance given by Eq. (8.2). We again test this assumption by means

of the X2- and,u-tests, as shown in Table 8.3. The results are consistent

with the null hypothesis, X2 falling in its 80 percentile, and u at

about its 77 percentile.

Table 8.3 suggests a systematic decrease of r(a) with increasing a,

which, however, does not a~ear in neighboring realizations and is be.

lieved,to be coincidental. The largest value, r(1) = 2.6935, is evidentlY
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TABLE 8.3 MEAN-SQUARE SUCCESSIVE-DIFFERENCE

FOR REALIZATION B34

n= 49, K=8

E(r) = 2

D2(r) = 0.07833 D(r) = 0.2799

Q!
+)

—

1 2.6935

2 2.1225

3 2.0916

4 1.9849

5 2.3922

6 1.9714

7 1.7503

8 1.5693

RATIO TEST

1EF=—K

~2 1
‘E

K

z

r(a) = 2.0720

0%1

K

I
[r(a) -E(r)]2= 0.1134

Oa

KS2
X2(K=8). —. u.58; 0.80 ~ P(%) ~ O.go.

D2(r)

u‘+= 0073; ‘(u)“00770
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somewhat exceptional, but not markedly so; from the normal approximation

we find that the probability of obtaining so large a value, in a single

sequence of 49 independent observations, is about 0.0066. Using the bi-

nomial distributionwe find the probability of obtaining, out of 8 inde-

pendent sequences, one or more values so large is 1 - ( 1-0.0066)8%

0.052. The latter is not, in itself, especially exceptionable, particu-

larly in a two-sided situation.

As with the runs test, we select as the best single representative

statistic from the von-Neumann test the fractile value P(u) obtained

from the mean of the values r(a), ~
= l(l)K. b Table 8.2 this statistic

is tabulated for most of the 48-molecule realizations. Again we postpne

further discussion until the a-correlation tests have been described.

8.3

As mentioned several

of spatial correlation is

Testing for cx-Correlation

times previously, the question of the existence

of

tests for time-independence,

and it also affects the type

importance in two respects; it affects ouz

as discussed in Sections 8.2.1 and 8.2.2;

of regression analysis which

in the numerical differentiation.

All a-correlation tests of which we are aware assume

is appropriate

that the ob-

servations are s-independent, and.indeed that they are samples from a

nmltivariate normal distribution. Consequently the tests which we are

about h describe are really tests of Our over-all hypothesis A. In

the cases in which the tests make the hypothesis appear to be doubtful, it
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will not necessarily be obvious which of the three constituent assumptions

may be at fault.

Even within these restrictions we are not aware of any simple and

direct

stated

normal

quantitative test of our hypothesis. Since the latter Cm be

as the assumption that the sampling distribution is mdtivariate

with unit correlation matrix, it seems natural to seek a test

based on the K X K sample correlation matrix

n
1 I (Ysa -Qcqp +J “c@=(n-l)J~5=l

(8.4)

The simplest single test

c = det(C@)

statistic would appear to be the determinant

9 (8.5)

32 The distribution of C on the intervalwhich is discussed by Cram4r.

(O, 1) is unknown (except for the case K .2, where it is related to the

known distribution of the bivariate correlation coefficient),but

Crs&r gives the following exact expressions for its mean and variance:

E(C) =
(n-2)j

(n-K-1)J (n-l)K-l ‘
(8.6)

D*(C) = E*(C)
[T

n (n-1) 1@P.-l.
n+l-K)(n-K)

(n+l)K-l

If [C - E(C)]/D(C) is, say, smaller than unity in absolute value, then

we may reasonably expect that the observations are consistent with

hypothesis A, provided that E(C)/D(C) is at least several times larger

than unity. The latter will be the case when n is large compared to K;
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otherwise D(C) and E (C) become comparable,and since C > 0 the test is

then of little value. Large values of [C . E(C)]@(C) can sometimes be

shown to be exceptionable by means of the Tchebycheff criterion.33

In order to have a somewhat nmre quantitative test for a-correlation

we made use of the fact that each element C
@

of the sample correlation

matrix has the distribution of the familiar bivariate correlation co-

efficient. In general the elements are not independent of each other,
.

but it is easyto see that a set {C
%%’ c%%’ }

““* in which no subscript

repeats is independent. We
d--l. cc

chose alternate next-to.the.d.iagons,lelements

“12’ C34’ 56
C ●*O) and then

testing the assumption that

used.Fisher?s

the variables

‘a, C&l-l= *(n - 3)+ h ~~~wl
- a,Cz+l

normalizing z-transformation,34

(U12Y U34, “““),

> (8.7)

are independent samples from the standardized,normal distribution. For

this purpose we again used the X2- and u-tests, with

x2(f) =
I

~2
a,a-i-l 9

W-1,3,““”
(8.8)

u=
f+

z ‘Cx,a+l ~

*1,3,”””

where f = % if K is even, *(K - 1) if K is odd,. The defect of this

procedure is that it uses so little of the available data, so that other

choices of an internally independent sub-set of the elements C@ such

as (C23) C45“=*), can give, in any given case, a different result.
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Ta%les 8.4aand 8.4b give the observed a-correlation matrices for

the cumulative pair-distribution functions G(s, a) and the shell popula-

tions Ysa of realization B34. The matrices are of course symmetric; the

below-diagonal elements have been omitted. We note immediately the

presence of strong c&correlation among the cumulative pair-distribution

function observations; all the off-diagonal elements of the correlation

matrix sre positive sad most are greater than one half. The correlation

matrix for the shell populations, on the other hand, shows off-diagonal

elements of variable sign and smaller magnitude, the situation which we

anticipated in Chapter 7.

Table 8.5 exemplifies the above tests as applied,to both of the sample

correlation matrices of Table 8.4. We note that the detirminant C lies

within one theoretical standard deviation of its expected value in the

case of the shell ~pulations, while for the cumulative pair distribution

functions it is nearly zero, the deviation being nnre than six times the

standard deviation. The first result can be tnterpretedas being con-

sistent with the hypothesis of negligible a-correlation among sheld.

Popuktiom, wmle the second merely confirms the strong correlations

apparent by inspection of Table 8.4a. However, Table 8.5 shows that the

x2- and u-tests of Eq. (8.8) give somewhat exceptional results when

applied to the shell population correlation matrix, Table 8.4b. This is

probably more indicative of the procedural defect already mentioned,

than of the presence of appreciable a-correlation in realization B34.

For example, the alternative set (C23> C45) C67) gives
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TABLE8.4 OBSERVED o!-CORREIJH!IONWRICES

FOR REALIZATION B34

(a) Cumlative Pair-Distribution Fu,nction~(s, o!)

d 1——

1 1.00

2

3
4

5

6

7

8

2 4>. 6-z.
a 0.46

7
0.41 0.39 0.27 0.20

1.00 0.77 0.65 0.65 0.58 0.55

1.00 0.91 0.86 0.79 0.74

1.00 0.93 0.85 0.79

1.00 O*96 0.89

1.00 0.94

1.00

(b) Shell Populations Y=

C/l 2 3 4 5—— _,
1 1.00 -0.03 -0.15 0.11 0.09

2 1.00 0.08 0.02 0.19

3 1.00 0.28 0.03

4 1.00 -0.00

5 1.00

6

7

8

6

-0.25

0.31

0.17

0.06

0.43

1.00

7

-0.17

0.14

-0007

-0.11

-0.02

0.06

1.00

8

0.26

0.56

0.71

0.75

0.86

0.92

0.96

low

8

0.23

-0.03

-0.15

-0.03

0.17

0.04

-0.12

1.00
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P[X2(3)] =0.05-0.10, P(u) = 0.70. Thus, we feel entitled,to accept

the hypthesis of negligible c&correlation ~ng shell populations, on

the %asis of the general appearance of the sample correlation matrix,

Table 8.4b, as well as the reasonable value of its determinant C, unless

subsequent investigation of neighboring realizations should for some

unexplained reason show a tendency towards strong correlations within

the set (C12, C34,”””).

In Table 8.2 we display, for most of the

the statistic [C - E(C)]~(C), along with the

48-molectie realizations,

value E(C)/h(C) for

comparison, as well as the statistic l?(u)corresponding to

8.4 Survey of the Randomness and Correlation

Tests for the 48-Wlecule Realizations;

Division Into Classes A, B, and.C

Eq. (8.8).

Although there still remained the desirability of making more direct

tests for approximate normality of the distribution of the coarse-grained

observations,we paused at this point to assess the results of the tests

already described, which are

s- and.a-independence.

Inspection of Table 8.2

8.4

directed primarily at the assumptions of

immediately shows that the combined assump-

tions are certainly untenable for realizations in the mid-range of

‘c= 1.254 to T = 1.4 inclusive (the exact limits being, of course, rather

arbitrary). The exceptional character of these realizations is particu-

larly obvious in the column of normal deviate fractiles [P(u)] for the
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correlation test; all of the 15 tabulated values exceed 0.5, and all but

three are greater than 0.9. The values for the randomness tests are

almost equally striking: IU the runs test all but 2 out of 16 values are

less than 0.3. The probability, under hypothesis A, that more than

values should exceed 0.3 is greater than 0.9995.

These results were not unexpected, particularly in the case of

realizations with ‘c= 1.3 to 1.355, whose “$unpy~’control chart behavior

was sufficient warning of the inadequacy of hypothesis A. our quantita-

tive tests verify this, and further indicate that the anomaly persists to

reduced areas appreciably to either side of the jumpy interval.

From this -@n-t on we divided the 48-molecule realizations inta

classes A, B, and.C as indicated in Table 8.2. There is, of course, a

considerable element of arbitrariness in the classification, since it is

based @marily upon the statistics themselves. Bbwever, it seems likely

that the classification does ~deed reflect in a rough way the changes h

the topology of

with increasing

the

‘c.

configuration space of

8.4.1 Class A, T =1.0 - 1.24.

For each test of the hypothesis of s-

Table8.2 a value P(u) from each of the 13

Under our assumptions, within a given type

of P(u) should be a random sample from the

interval (O, 1).

the system which take place

and c&independencewe have in

realizations in this class.

of test

uniform

each of the 13 values

distribution on the
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Considering first the correlation test, we note that P(u) for

realization B1 is somewhat exceptionally large. Bbwever, the binomial

distribution shows that the probability of obtaining one or more values

20.9975 in 13 independent samples is about 3.2$. The latter, though

small, is not extremely so. Considering the set of 13 values as a

whole, we ftid that their average ~ is * 0.61. The theoretical average

is, of course, 0.50, while the theoretical variance of such a mean of

13 randomly sampled values from the uniform distribution is (~) ● (~)

= 0.00641, corresponding to a theoretical standard,deviation of about

0.080. Thus, we conclude that the observed set of P(u) valuesis

reasonably consistent with the hygmthesis of negligible s. and &correla.

tion.

Applying the same considerations to the runs test and the mean-

sqzare successive-differenceratio test statistics in Table 8.2 for

class A, we find~ = 0.41 and 0.k3,respectively. These values are agati

quite consistent with our assumptions. Thus, we conclude Ijkt for the

realizations of class A, time-smoothed shelJ_populations with

At = 19 200 are approximately s- and &tidependent, subject to tither

tests of the normality of their sampling distributions.

8.4.2 Class B, z =1.254 - 1.4.

.Wehave already mentioned,that Table 8.2 shows the combined

hyptheses of s- and c&independence to be untenable for these realiza-

tions. me presence of s-correlation is, of couse, especia~y noticeable
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in the case of the “jumpy” realizations. However, the statistics h

Table 8.2 also suggest the presence of less obvious types of serial

correlation, since the values of P(u) from the runs and m.s.s.d.r. tests

tend to be small both for non-$mxpyrealizations such as B16, B17, B28,

ma B29, as well as for different ‘plateaus”of @RQY realizations such

as B19 and B20. The presence of serial correlation can also be argued

in the following way. If the observations were s-independentbut

positively c&correlated, then the runs or m.s.s.d.r. statistics P(u) for

independent realizations (or independent plateaus within a given reali-

zation) would be tid.ependentsamples from a distribution which would no

longer be uniform on (O, 1), but which would still be symmetric about

P(u) = 0.5. In such a case, the 16 values of P(u) given in Table 8.2

for either of these randomness tests wouldbe expected to be approxi-

mately evenly divided above and below 0.5. Such is far from the case,

so that we conclude that for realizations of this class the value

At = 19 200 is not nemly large enough for consecutive time-smoothed

observations to be time-independent.

As tight be expected, investigation of larger values of At yielded

some, but not sufficient, hprovement. (The upper limit of At is in

practice limited for a realization of a given length t by the practical

worthlessness of the above statistical tests when the sample size de-

creases much below n = 20.)
.
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8.4.3 classC, T = 1.5 - 3.9

Applying the procedure used for class A to the 10 realizations

in class C, we find the average ~ for the correlation, runs, and m.s.s.d..r.

statistics to be 0.60, 0.48, and.0.39, respectively.

ably with their theoretical value 0.5 and theoretical

0.091.

These compare favor-

standard deviation

Thus, we conclude that the At = 19 200 coarse-grained observations

on these realizations may be regarded.as temporally and,spatially inde-

pendent, again subject to further tests for approximate normality.

8.5 Tests of Normality

It remains to inquire as to whether the observations for the class

A and C realizations with At = 19 200 can be reasonably regarded as being

sampled from uncorrelated,multivariate normal.distributions. The nega-

tive results from the correlation and.randomness tests on the class B

realizations make it superfluous to test them for normality.

For this purpose we examined only the marginal distribution of each

shell population sample. Of the various tests for approximate normality

we chose the coefficients of skewness Gl and excess G2 defined by

Cram&,35
n

n
‘la = Z( Y T)3Y

7 Sa-a
(n-l)(n-2)s~ 9=1

(n-1)

{

n (n-l-l)
‘2a =

(n-2)(n-3) (n-l)2s~

(8.9)
n

[1
(Ysa - TJ+ 1-3(n-‘$sU1
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These statistics have a disadvantage in that their exact distributions

are unknown. Crame!#5 gives the following exact e~ressions for their

means and variances:

E(G1) =

D2(G1) =

D2(G2) =

E(G2) = O ,

6n(n-1)
(n-2)(n-l-l)(n+3) 9

24n(n-1)2
(n-3)(n-2)(n+3)(n&) “

(8.10)

The distribution of G1 is symmetric; that of G2 is not. For large values

of

of

n, of course, the distributionswill tend towards normalityby virtue

the central limit theorem.

Approximate values of the 0.01, 0.05, 0.95, and 0.99 fractiles of the

statistic

6G=T-
for n ~ 25 are tabulated

distributions having the

sample sizes of interest

1

by Pearson and Hartley,
36 based on Pearson-type

correct first four moments. These values for

here are

normal distribution in Table 8.6,

~ses the normal approximation

The same authors36 also give

compared with those of the asymptotic

from which it is seen that for our

is adequate.

similar approxktions for the statistic

but only for n ~ 200. The distributions of these coefficients of excess

apparently approach normality nmch more slowly with n than do those of
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8.5

8.6 APPROXIMATE

Saqle Size

n

25

30

40

50

100

“ (normal)

FRAcTIms(’)0,&
-!1-

Fractiles

0.95 0.99

I-.633 2.437

1.631 2.423

1.632 2.417

1.633 2.411

1.63= 2.3%

1.645 2.32=

a Ilromreference 36. The 0.01 and 0.05 fractiles follow from the
tabulated fractiles and the symmetry of the-distribution.

the coefficients of skewness. Approximations of uncertain validity for

n = 40 and 100 recently discussed by Peaz’son37are compared with their

asymptotic normal distribution in Fig. 8.1. The deviations are quite.

large, with marked skewness even for n = 100.

Table 8.7 shows our analysis of the observed coefficients of skew.

ness of the shell populations sampled in realization B34. Uhder hypothe-

~a is an independent sample from a distributionsis Leach value of G

which is approxhately norml with zero mean and standard deviation

given by Eq. (8.1o) The preponderance of positive values makes it clear

that the hypothesis is doubtful. As with the other statistical tests,

a more quantitative measure is obtained by comparing the sample mean

~1 of these K = 8 values with its theoretical standard deviation

251



8.5

5 I 1 I 1 1 1 I I 1 1 I I I I 1/ 1 I

4

3

2

Gz ‘
D(G2)~

-L
-11-

-4[ I I I I I ! 1 I 8 1 I I I I I I

.000I.001.01 .05.10 .50 .0s.95 .99 .999.9s99

Fig. 8.1 Pearson approximations to’the distributions of the coefficient
of excess G , for sample sizes n = 40 and 100, compared with the asymptotic
(n = ~) nor&al distribution.

TABLE 8.7

SKEWNESS TEST FOR REALIZATION B34

n= 49

K=8

D(Gla) = 0.340

a

1
2
3

;
6
7
8

‘la
-0.141
+0.110
0.939
0.674
0.426
0.642
0.274
-0.079

7S1= 0.358

&K @l
u= =2. 98

D ‘la

P(u) = 0.9986
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Under our hypothesis and approximations,the statistic

G1
u

‘q
(8.11)

should be a standardized normal deviate. The fractile value 0.9986 for

realization B3J+makes hypothesis A doubtful, particularly the assumption

of normality of the sampling distribution.

The coefficients of excess G2a from the same set of observations

were analyzed as shown in Table 8.8. An approxkte fractile P(G2a) was

obtained graphically from Fig. 8.I.for each shell. Under hypothesis A,

each of these eight values should be an independent sample from the

rectangular distribution on the titerval ((),1)0 The mean ~of these

38eight values should then be a~proximately normally distributed, with

mean 0.5 and standard.deviation (8 ● 12)-$. !llIus,the normal deviate

u F- 0“5=—

f +

tests the hypothesis. For realization B3k the fractile value obtained is

0.957,which would make the hypothesis of normality somewhat doubtful,

considering this realization in isolation from the others.

Because of the somewhat uncertain validity of the Pearson approxi-

mation to the distribution of the coefficient of excess, we restrict

ourselves to reporting in Table 8.2 the fractile value l?(u)obtained,by

applying Eq,.(8.11) to the coefficients of skewness of the shell popula-

tions sampled,by the 48-molecule realizations of classes A and.C.
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TABLE8.8

EXCESSTEST!FOR REALIZATION B34

n = 49

K= 8

D(G2J = 0.668

G2CZ! G2Jm2a)

-0.224 -0.335
-0.488 -0.730
+2.045 -I-3.061
-0.082 -0.123
-0.018 -0.027
+0.583 +0.873
+0.796 -1-1.191
+1.420 +2.125

~ti 0.676

p(G2a)

0.42
0.22
0.%
0.52
0.57
0.84
0.89
0.~

0.676- 0.5
u= = 1.72

r &

P(u) = 0.957

Note that in Table 8.2 all but two out of 23 values of the skewness

statistic are greater than 0.5, and indeed 17 are ~eater t~ 0.90.

These results, particularly in view of the lmown symmetry of the distribu-

tion of G1 under the null hypothesis, leave little doubt that with

At = 19 200 the sampling distributions of the time-smoothed shell popula-

tions are appreciably positively skewed. Indeed, the control ckts kd

given some prior indication of this.
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Larger values of At would,presumably tend to reduce the skewness,

but an investigation of class C with At = 38 4.00showed only slight

improvement. Still larger values would result in unsatisfactorily small

values of no

The coefficients of excess, not reported in detail here, were some-

what better behaved, in particular yieldlng P(u) values scattering some-

what better above and.below 0.5. By themselves, they might indeed%e

consistent with the hypothesis of normality.

8.6 Conclusion

The results of the preceding section indicate that even for the

realizations of classes A and C, for which the time- and space-correla-

tion statistics were reasonably well behaved, hypothesis A is not

strictly valid. However, the presence of a moderate amount of skewness

is not likely to seriously invalidate the tests for the two types of

correlation, so that we feel justified in carrying out by more or less

standsrd techniques the numerical differentiationwhich is required in

order to reduce the data to values of the compressibility factor.

In class B, on the other hand, the results of the two varieties of

correlation tests strongly indicate a somewhat modified procedure.
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chapter 9

NUMERICAL DIFFERENTIATIONBY LEAST SQUARES

REGRESSION ANALYSIS

9.1 Introduction

According to the procedure briefly outlined in Section 7.5, the

basic assumption underlying the regression analysis is that the theoretical

shell populations ~ for a given realization can be represented by a trun-

cated power series

v

Idha= Pi

i=o

9 a= l(l)K , (9.1)

the omitted terms being assumed to be in some sense small compsred to the

statistical fluctuation of the observations. InEq. (9.1) both the degree

v of the ~lynomial and its coefficients 13iare unknown and are to be esti-

mated.from the data.

Let us suppose that V is known, and outltie the familiar problem of

estimating the coefficients pi from data consisting of a single observa-

tion Ya of ~a at each value a = l(l)K. The general minimum variance

solution to this problem was given by Aitken,39 and can be written as
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f Ollows

b = (x+(p-lx)-lx+c#Y , (9.2)

9.1

where b is the colunm matrix (bo, blo== bti~+of the estimates bi of the

unkmwn coefficients @i, and the superscript dagger indicates the trans-

posed matrix. The matrix x of K rows and v + 1 columns is

[ 1
1 1 1 yeo 1

1 2 4 ● a. 2V

x = 1 3 9 ““” 3V >

. ● ● ● ●

● ● ● 9 .
● ● ● ● ●

lK ~2 .OO
Kv

while Y denotes the columu matrix (Yl, Y2, ... YK)+ of

and q is the theoretical K-square covariance matrix of

Ya:

Cpmt = cov(Y&/) , cx,cx’= l(l)K.

(9.3)

the observations,

observations

(9*4)

The covariance matrix of the estimates bi, i = O(1) v+l, is

COV b =
{ }(

= Xtv-lx)-l
Cov bibi’ ● (9.5)

The esttmate b given byEq. (9.2) is unbiased, i.e., the average of b in

the sampling distribution of the observations Y is j3. It is the mininmm

variance estimate, in the sense that of all linear unbiased.estimates it

minimizes the variance of any arbitrary linear function of f3.

Equation (9.2) is seldom directly applicable, since it assumes that

the theoretical covariance matrti q is known, except for a perhaps unknown
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scalar nmltiylier. In the latter case one mites

2-
V= ~vY (9=6)

where @ is a known matrix and U2 an unknown scalar. The estimate b given’

byEq. (9.2) is evidently independent of U2, but Eq. (9.5) for its CO-

2
variance requires an estimate s of u2, which can be shown to be appro-

priately (in the sense that the ensemble average of S2 is a2) taken in

the form

S2
=*(Y. Y)+&(Y-Y) .

Here

Y

denotes the

population

as

= xb

least squares

column matrix

.Ovb=(y-y[y;(y-y)(xtq-’x)-’ .--

(9=7)

(9.8)

estimate (Yl} Y2 ●O*yK) of the theoretical shell

~. The covariance matrixofb is then estimated

.

(9.9)

Only in exceptional cases, of course, is the theoretical covariance matrix

lmown to with a scale factor.

The above equations are usually encountered in one of two specialized

forms. The next most general form is for the case of uncorrelated observa-

tions, y being a Wown diagonal matrix, again asid-efrom a possibly un-

known scalar. This is just the well-known ‘tieightedleast squsres” case.

??hmlly, if q is just the unknown scalar 62 times the unit matrix, the

general equations reduce to the usual unweighed least squares procedures.

In all cases the only requirement upon the distribution from which the
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observations Ya sre sampled is that

definite.

When more than one independent

value of CZ,say n observations Ysa,

its covariance

observation is

s = l(l)n, the

matrix q be yositive

available at each

above equations are

unchanged, except that Ya is replaced by~a CEq. (8.3)], and,q is the

C“v=imce‘trti {- w.,}, ‘Qd b ‘i’-‘ties C“%!A4

The advantage of a numer of independent observations at each a lies

@ the possibility of testtig assumptions about the covariance matrix ~,

as in Chapter 8, where we tested the assumption that q is diagonal, finding

it tenable in classes A and C. lhltiple observations also lead to the pos.

sibility of making certiin ~!goodnessof fit!!tests, as will be described.

We should perhaps also mention that if a wrong assumption concern-

ing the fozm of q is made, the estimate b is still unbiased,

estimate of its covariance matrix given by Eq. (9.9) becomes

and in extreme cases may be grossly so.

The above discussion makes clear the role played in the

but the

incorrect,

regression

analysis by our assumptions of s- and O&independence. We note that the

third constituent of hypothesis A, the assumption of normal sampling

distributions,

estimates from

The above

problem, stice

enters only if one wishes to obtain confidence interval

the estimated standard,deviations.

procedures do not completely solve our data reduction

we must also estimate the degree v of the regression

polynomial. .Weare not aware of any systematicstatistical treatment

this type of estimation problem. k ad.hoc proceduxe consists in

of
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calculating a sequence of regression vectors b
(v)

for increasing values

of v, and taking as the !Icorrectlldegree v+ the value at which the high

(v)
order coefficientsbi , i > v*, become statistically indistinguishable

from zero for v > W. The detailed.procedure will be described in

Section 9.2.2.2. A similar statistical.problem arises in the estimation

of virid coefficients from emerimen.td P~V)T titaj ~d ~S recefved a

40
somewhat different treatment by Michels and his coworkers.

9.2 Realizations in Classes A and C

9.2.1 l?relimrharycalculation of snmothed weights.

b Chapter 8 we saw that the hypothesis that the time-snmothed shell

populations Ysa (At = 19 200) were time-independent and spatisJ-lyun-

correlated was reasonably consistent with the observations for realiza-

tions in classes A and C. b terms of the discussion of the previous

section, we may thus assume tba.tthe unknown theoretical covariauce matrix

q is diagonal, and that each observationYsa is an independent estimate of

the theoretical value %“

It rematis to inquire whether or not cpcan be reasonably assumed

be a scalar times the unit matrix. Somewhat to our surprise we found

that in both class A and class C the sample variances s: given by

to

Eq.

for

for

(8.j)showed asystematic decrease with ticreasi.ngcU This is show

realizations B2 and B34 in Fig. 9.1. This dependence was strongest

the high density realizations of class A, but noticeable for all

realizations except B35, B36, and B37 at low ~nsitY ~a s- K.
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Is— —

●

●

10—

●

●

5– ● ●

A ●
●

A

A B2

Fig. 9.1 Dependence of the shell population variances s: on the shell
number a, for realizations B2 and B34.

Thus, it seemed desirable to use a weighted least sqyuxresprocednre

in estimating the compressibilityfactor. The most direct method.would

have been to take the diagonal terms of the matrix @ [see Eq. (9.6)1

to be

-1 2
+W=n s~ “

However, we decided.to perform the following preMninary least squares

smoothing of the sample variances (which h retrospect seems overly

elaborate).

The standard deviation sa of a set of n independent observations

from a nozmal distributionwith variance ts~is itself approximately

41
normally distributed with
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E(sa) s Ua ,

cr’
D’(Sa) = ‘~) “

Since it was somewhat more convenient

usual approximation

-1

r)

22D2(S’&l)a &g D (Sa) x
a

we carried out a linear least squares

standsrd deviations by minimizing the

K

(9.10)

to smooth S~l , and since by the

1 (9.IL)
2(n-l)a~ ‘

smoothing of the observed reciprocal

sum of squares

Z(X2(K-2) = ‘ S-l -#)2 ,‘a a
0%1

with weight factors

(9.12)

(9.13)

and smoothed reciprocal standard deviations

/A.-
=&o-F alCX s (9.14)

a

The curves in Fig. 9.1 are drawn through the correspontig smoothed

A’
values sa“

A crude goodness of fit test of this smoothing procedure

is obtainedby compsring the value of X2(K - 2) given byEq. (9.12)with

the fractiles of the standard.chi-square distributionwith K - 2 degrees

of freedom. The value for realization B2 falls in the interval 0.5-0.6,

that for B34 in the interval 0.05-0.10; both are regarded as satisfactory.
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9.2.2 Shell population regression anal~is.

Our data reduction program carried out the least squares calcula.

tion of Section 9.1 with the observational vectorY equal to the mean

—
vector ~1, Y2, ...TK) for a given realization or a specified portion

(plateau)thereof, and with a nuniberof options with regard lm the

covaxiance utrix ~. We will here be concerned.with three of these

alternatives. The first and most commonly used one is that in which the

matrix is diagonal, with the diagonal elements determined by

smoothing procedure of

The second alternative

procedure with

while the third,method

the previous section:

6w~ . (option

was simply the usual unweighed least

~ (option

the linear

1) (9.15)

squzmes

2) (9.16)

took ~ proportional.to the unsoothed, non-diagonal

sample covariance matrix,

n

qm, = x(& ‘m - %) (Ysa’ “ ‘cd “ (option s)
(9.17)

S=l.

The last procedure corresponds, for the general case of correlated observa-

tions, to the conmxmly encountered weighted least squsres practice of

using weight factors computed from the sample variances, i.e., using in

Eq. (9.15)the sample variances s; instead of the smoothed values $0 .
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In all.three

ness of fit tests

assumptions about

options the subsequent analyses of variance and good-

are approxhate only, since they proceed by way of

the true theoretical covariance matrix q. In options

1 and 3, the approximation consists in the first place in assuming that

cpis an unknown scalsx U2 times the known matrix @j which in the second

place depends stochasticallyupon the observations Ysa . In option 2

the approxhation consists in ignoring the

true variances u: .

The matrix inversions required in the

apparent inhomogeneity of the

calculation of the estimate b

given by Eq. (9.2)were carried out by a row-by-row Gram-Schmidt

orthogonalizationprocess carried out in double-precisionfloattig-point

arithmetic on the IBM 704 calculator. In options 1 and 2 this process

was checked for numerical accuracy by an independent single-precision

least squares method based on orthogonal polynomials.

9.2.2.1 Analysis of variance and goodness of fit.

We will describe oux procedure in detail for the nmst used case,

option 13 the procedures for the other alternatives were obvious modi-

fications. The general method, as already mentioned, is based upon

standard procedure#2 for the situation h which q is known aside from

a multiplicative scalar; in the present case q is assumed to be given by

J@. (9.6),with ~givenby Eq. (9.15). Sincev is

variance matrix of the sample mean vector (3?1,~2,

approximation and for a given value of v there are

defined as the co-

...~K).~d.er the above

available two
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statistically independent estimates of the scalar 02 . The first of these,

which we will designate as s
(2)2

, is calculated from the residual devia-

tions by means of Eq. (9.7),

J2)2
=(K-v- l)-l(y -Y)+@-l(y -Y) , (9.18)

and has

J2)= K-V-1 (9.19)

degrees of freedom. The second, designated as
S(1)2

, is obtained.from the

internal variances of the K sets of observations Ysa,

and has

f(l)
= K(n - 1)

(9.20)

(9.21)

d.egees of freedom.

Since the approximate Mmet’ variances KU were obtained,by smoothing

the observed sample variances S: , the value of S
(1)2

calculated from

Eq. (9.20)is always close to unity. lnd.eed,our statistical analysis

could.eq,,lly well be carried out, with no significant change in our

conclusions,under the assumption that the “true” value of U* is exactly

1; the F-test to be discussed.in the next paragraph would then be re-

placedby a chi-sq.uaredcomparison of s
(2)2 with its theoretical value 1.

If the given value of v is exactly correct, that is, if the theoreti-

cal shell Copulations ~a are exactly representable by a polynomial of

degree V, then, subject to all our other statistical assumptions and
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approximations, the ratio

J2)2
F(f(2), f(l)) =— (9.22)

J1)2

is a random sample from the F-distribution
43 with parameters f

(2)
and f(l

Comparison of the

distribution thus

given value of V.

If this test

calculated value with the tabulated

affords an approximate goodness of

indicates that the observations are

a theoretical polynomial of degree ~, ~ ~ovea (fi

fractiles of the

fit test of the

compatible with

principle, at

least) estimate of the unknown scalar 62 can be obtained by the usual

pooling of the two independent estimates:

J12)2 = f(l)s(l): + f@~s@2 ,
fi~) + fi~)

J12) = f(l) + f(2) .

The estimate s
(12)2 of U2 is then used,

(9.6), sd (9.15) to obtain an estimate

the covariance matrix of the estimate b:

(12)2(xt@-1x)-1.covb=s

(9.23)

in conduction with Eqs. (9.5),

(with f(12) degrees of freedom) of

(9.24)

These procedures as applied to realization B34 are illustrated in

Table 9.1 for v =1, 2, and 3. We note that all three of the resulting

goodness of fit statistics F have non-exceptionablevalues. This indicates
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TABLE9.1 GamNEss

s =

AND DEGREE OF FIT TESTS

UNDER WEIGKI!OPTION # 1

2(1) 50; n= 49,

FOR REALIZA!ITOJ!IB34,

K= 8

1. \2 f-!\

“ J2) ~(2)2
F(f(2) 384) P(F) $12)2 f(12) ~(f(12)) P(t)—— — —.

1 6 0.718 0.72 0.3.0.5 0.993 390 -4.68 c 0.0005

25 0.799 0.80 0.3-0.5 0.995 389 -0.56 0.2-0.3

34 0.999 1.00 0.5-0.7 0.997 388 +Q.00 0.5

that polynomials of degree one through three can adequately represent

the observed c&dependence of the mean shell populations ~a (an abnormally

large value of F would,indicate a polynomial of too low a degree to

follow the indicated variation of ~ with a) with no appsrent tendency to

reproduce the statistical

tmo smalJ a value of F).

of the F statistic, which

fluctuations in the ~a (as maybe indi.cated,by

This insensitivity is typical of the behavior

is not adequate to select the appropriate

degree of fitting polynomial in cases such as ours, precisely because it

does not include any test of our convergence assumption that contribu.

tions of higher order terms of the power series are in some sense

negligible. The test is usually of use only in showing that a particular

value of V is too low. This would have been the case, for example if we

had.included in Table 9.1 the value v = O.
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Thus, we see that in order to select a particular value of v we

need a test which explicitly involves an examination of the smallness

of the higher order terms of the power series.

9.2.2.2 Degree of fit test.

Let us supyose that a polynomial of degree V* exactly represents the

theoretical shell ~pulations Ila,a = l(l)K for a given system. Obvious-

ly a polynomial of degree K - 1 will certainly represent these K discrete

points; we require the wch stronger condition that the corresponding

[bY EqS. (7.4) and (7.6)] polynomial of degree @ + 1 and zero cons~t

term exactly represents the theoretical cumulative yair.distribution

function G(~a) for all a, Particularly non-integral values, in the inter-

val (O, K). Consider then a regression analysis carried out with

v = @ + 1 on the observations obtained from a realization a~yropriate

to the system in question, and suppose that hypothesis A is satisfied.

Then the highest order theoretical coefficient ~v*+l is zero. Its esti-

mated value

replication

independent

parameters,

bV*+l wf~~ of course, not usually be exactly zero, but upon

of our over-all experiment (which consists of generating an

realization of given length n with the given observational

then carrying out the least squares data reduction as de-

scribed in the previous sections, with v = W + 1) the estmte shotia

fluctuate about zero witha variance which iS estWtedWEq* (9~24)~

Thus, the usual t-test
44

with

b
t(f) =

V*+1

s2[(x~@-lx)-1IV*+l
>

, W+l

(9.25)
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which tests the hypothesis 13V*+1= O, is a test of the hypothesis that

a polynomial of degree @ represents exactly the theoretical shell popu-

lations. In Eq. (9.25) S2 is any estimate with f degrees of freedom of

the scalar a2 of Eq. (9.6) which is statistically independent of b
“*+1“

Following the discussion of the yrevious section, it will usually be the

pooled variance

analysis with v

could be used.

~(12jz
withf=f (12)

obtained from the regression

= V% + 1, but either s(1)2 or s@)2 with f’= f(l) .~ f(p)

It can be shown that the above test utilizes all the information

obtainable by comparison of the lower order coefficients of the two fits

of degree V* and V* + 1. Furthermore,if the hypothesis v = V* is correct,

it is easy to show that the

the coefficients pi are the

tained with v = V* + 1 are,

‘fbestff(i.e., minimum variance) esthmtes of

values bi obtained,with v = W. The hi ob-

of course, unbiased,estimates of p4, but
J-

have inherently greater variability [which variability is, of course,

correctly esttmatedby Eq. (9.24)]. On the other hand,,if the hypothesis

v = @ is incorrect, i.e., 45if we make an !Ierrorof the second kind,!!

the estimates obtained from the v = v* regression are in general biased.

Thus, it would appear to be desirable, in applying the above test, to

use rather wide rejection zones (for example rejecting the hypothesis

v = V* when P(t) < 0.05 or > 0.95, corresponding to making an lferrorof

the first kind,,!!i.e., rejecting the hypothesis when it is true, on the

average in one experiment in ten).
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The test as outlined makes no allowance

by compartig still higher degrees of fitting

etc. Since the largest value o’f~ which we

for information obtainable

polynomial, e.g. v = v* + 2,

encountered in this investi-

gation (see below) was 3, with the most common values being 1 and 2, this

defect does not seem particularly serious. The teSt a150 makes no allOw-

ance for the fact that a polynomial of finite degree cannot and need.not

exactly represent the theoretical shell populations. Again, since the

observational-parameterswere chosen with the intention that ~ should be

small, this does not seem to be a serious defect.

A far more serious deficiency in the procedure as outltied is that

the resulting degree v of the fitting polynomial is a stochastic variable

whose choice has a considerable effect on the estimtes b. (and therefore

on the estimate of yl

but whose uncertainty

Of the uncertainty of

J.

and on the final estimated compressibilityfactor),

is not taken into account in our estimate Eq. (9.24)

the esttmated regression coefficients. We have

tried.to reduce this extra uncertainty by taking into consideration,

during the data reduction for a p=ticular realization, the indicated

behavior of v for other realizations at the same or nearby values of r.

The above-describedprocedure is illustrated.for realization B34 in

Table 9.1. The very small value of the fractile P(t) for v = 1 indicates

that the regression polynomial of degree v = O (not com~ted) is in all

likelihood inconsistentwith the observations. On the other hand the

values of this statistic for v = 2 and v = 3 are quite consistent with

the hypothesis v* = 1, a value which is also in agreement with other
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realizationswith similar parameters. Therefore, we take as ou ?bestf!

estimate of the theoretical shell populations the polynomial of degree 1,

whose coefficients are displayed in Table 9.2 along with those for v = 2

and 3. The tshulated uncertainties are the estimated standard devia-

tions given by Eq. (9.24); the covariance terms sre not given.

In Fig. (9.2) the observed.mean shell ~pulations ~a are compared.

graphically with the above linesr regression function.

9.2.3 Estimating the compressibility factor.

FromEq. (7.8)we see that for the estimation of the compressibility

factor pV/kid!we require an estimate of the first coefficient 71 of the

truncated power series expansion, Eq. (7.4), of the cumulative pair dis-

the shell population

Just the same linear

tribution function. Equation (7.6) shows that y, is just a Uuear com-

bination of

estimate is

.

coefficients pi, so that the

combination of the estimates

appropriate

b<:
1.

I(:)

71 d)o++hl+ ~ (-l)J+%jb2j .

j=1

(9.26)

We use the approxtitely equal symbol ~ to indicate that the quantity on

the right is a statistical estimate of that on the left, rather than

introduce a special symbol for the estimate of 71. In matrix notation

this equation can be written

(9.27)
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v

1

2

3

TABLE 9.2 REGRESSIONPOLYNOMIAL FOR REALIZATIONB34

SHILL POPULATIONS UNDER WEIGRI OFTION # 1

( (12) .102 ~lt&2) .104 ~2*.&) .105 ~3#) .~07b. * Sb
)( 1 )( )( b3 )

o“

5.6189*

5*5599k

5.5589f

o.0s702

0.1266

0.2237

-6.372* 1.350

-2.917~ 6.312 -3.785* 6.755

-2.810* 19.92 -4.o63*49.42 2.046* 359.6

53 I I I ! 1 I 1 i , I I I I I 1

5.6

5.5

54k T\
T

T

I + W .
5.3

1- 1 ‘\\\T
J-

%

\

\

s.o~ ! I ! I I ! 1 ! \l I
5 1(

a

Fig. 9.2 Comparison of the observed shell population ~’ of realization

B34with the least squares straight line computed for weight option# 1.
The vertical flags indicate one estimated standard deviation,

-1
%a= n ‘a’

to either side of ~a. The light curves are error hyperbolas

drawn one estdmated standard deviation s
(12) around the regression line.
Y(2!

The variation of the regression line with the different weight options
is not ‘perceptibleon this graph.
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where A is the column vector with components

9.2

?bO=l

Al=+

A2j = (.l)j+%j
()j=l,2, .** I ~, if v > 1; zero otherwise.

‘2j+l = 0

Then the estimated variance of the estimate Eq. (9.27) of yl is

S2 ~(12)2

Y~ =
A+(x+@-lX)x . (9.28)

Finally, this estimate of yl is used in Eq. (7.8) to obtain an

estimate of the compressibility factor M . @V/NkT, the estimated variance

of which is

(9.29)

In this equation u is the har~sphere diameter, not the theoretical scalar

of Eq. (9.6).

Table 9.3 shows these estimates as obtained.for realization B34,

using the three different weight options; the degree of fit test of Section

9.2.2.2 indicated the linear fit v = 1 in all three cases. The degrees

of freedom associated with these estimated standard deviations are so

large (f’12) = 3X) that for purposes of assigning confidence intervals,

etc., the t-factors for f = m can

accept the various approximations

the uncertainty and possible bias

be used, providing one is willing to

and.assumptions involved.,particularly

introticedby the degree of fit
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T&BLE 9.3 ESTIMATEDCUMULATIVEDISTRIBUTIONFUNCTJX3NSAND

COMPRESSIBILITYFACWORSFOR REAIJZATIONB34

Weight Option

#1

#2

#3

Y1“Ar2”lo2y20 (Ar2)20104
pv
m7

5.587* 0.064

5.585~ 0.062

5.579~ 0.063

.3.186f 0.675

-3.162f 0.676

-3.052~ 0.628

3.384~ 0.027

3.383~ 0.027

3.3e0* 0.027

selection, Section 9.2.2.2.

The rather close agreement of the estimated standard.deviations given

in Table9.3 for the different weighting procedures is due primarily to

the use in Eq. (9.28)of the

lsrge value of f
(1) compared

within-shell estimate of CJ2,

weighting procedures. If we

pooled estimate S(12)2 of <. Owing to the

~ f(2), ~(12)2 is dominated by s
(1)2, the

which is essentially common to all three

had chosen to base our estimates instead on

8(2)2
, the estimate of 02 obtatied from the variance of the average

shell ~opulations about the regression curve, the standard.deviations

given for this particular realization in Table 9.3 would have been

slightly smaller, and.for all realizations would have tended to vary more

with the weight option. Confidence interval estimates, if made, would

(2) = 6 ~e~ees of freedom.then, of course, use the t-factors for f

Such a procedure would have the advantage that the basic statistical

assumption would then be hypothesis A, but with At equal to the entire
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length of the realization. The assumption that the sampling distribu-

tion of ~a is normal with mean ~ is certainly better than the assump.

tion that the (At = 19 200) Y~a are s-independent samples from a normal

distribution, also with mean ct. The assumption of negligible a-correla-

tion, on the other hand.,is not necessarily improvedby increasing At

(though it is not

In any case,

that the stronger

to use

9.2.4

likely to become worse).

in classes A and C the analysis of Chapter 8 indicates

assumption is reasonably tenable, and we have chosen

it.

Survey of regression analysis results.

In Table9.4 are displayed the goodness of fit and degree of fit

statistics for the realizations of classes A and C, and the estimates

of the compressibility factor and reduced pressure as well as their

standard,deviations. In each case, except for realization B12, the

number of degrees of freedom associated with the standard deviation

estimates is so large as to be effectively infinite so far as the t-test

and confidence interval estimates are concerned.

The fractile values for the goodness and degree of fit tests sre

seen to

For the

support

be more or less

goodness of fit

for the ~oling

reasonably distributed,over the unit tnterval.

test this can be interpreted as additional
f-.\2 1-\2

of SQ) and.S(z) . For the degree of fit

statistic it can be taken as

to a systematic bias for all

an indication

realizations,

that our procedure has not led.

but it does not exclude the
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possibility that we have chosen a polynomial of too low degree for any

particular realization.

At five reduced areas we have more than one realization, the

replicates being regarded as statistically independent either by virtue

of having different values of the displacement psrameter 6, or by virtue

of the presence of low order noise introduced by code A (see Section 4.2).

Comparison of the individual estimates of the equation of state obtained,

from such replicate realizations is of interest as an additional check

u~n the reliability of the internal precision estimates.

Comparison of realizations having the same observational parameters

Ar2 andK can be regarded as primarily a test of the more straightforward,

of our statistical procedures, since the same degree of regression poly-

nomial would,be expected,to be more or less appropriate to both realiza.

tions, unless one should happen to be mch longer than the other. Com-

parison of realizations with different values of these observational

parameters can be regarded as more directly testing the reliability of

the degree of fit criterion of Section 9.2.2.2.

The pairs (Bl, B2), (B3, B4), and,(B38, B39) have within each pair

common values of Ar2 and K. It is immediately evident from an inspection

of the entries for these pairs in Table 9.4 that the between-realization

differences of the compressibility factor estimates are consistent with

their internally estimated standard deviations. mthermore, the degrees

of freedom associated,with the latter are so lsrge that inclusion of the

between-realization differences would,change the estimated standard
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deviations only trivially.

All three of these yairs also enter into the comparison of realiza-

tions with different values of Ar2 and,K, so that it is convenient to

pool each of these ~airs into a single value of pV/NMl?and an associated,

standard deviation. This is a~propriately tine byweighttig the tidi-

vidual values by their number of observations n, it having been noted

that there was no apparent

b, even in the case of the

radically different values

given in Table 9.5.

dependence of the sampling variances ty~upon

Pair (B38, B39) in which the two members had

of this

Turning now to the comparison

of Ar2 and/or K, we will designate

pxtatneter. The pooled results are

0$ realizations with different values

the individual results by K1 +sl and

n2 & 82, where n ~ pV/’NkT,with the convention that subscript 1 designates

the realization with larger Ar2, if the values of this parameter are

different, or that with larger K if the values of Ar2 are the wxme. Be-

T.ABLE9.5 POOLED RESULTS FOR RE~CATlz REALIZATIONS

BAVING COMMON VALUES OF Ar2 AND K

Pair

Bl, B2 &.367 k 0.228 78.407 30.222

B3, B4 80.798 * 0.261 78.828 * 0.255

B38, B39 1.6968* 0.0039 0.4351* 0.0010

278



9.2

cause of the large numbers of degrees of freedom involved, the simple

u-test (u = standardized nomal deviate) is appropriate:

‘1 - ‘2
u=

fi”

(9.30)

If the hypothesis of a common theoretical mean is acceptable (we regsrd

the test as really being nmre a test of the reliability of the estimates

‘1
and S2), then the individual values can be pooled,into a single esti-

mate

-2 -2
‘lsl + ‘2s2

’12 = -2 + S-2 )

‘1 2

A -2 +s-2 -=
’12 = ‘1 21 ●

This analysis is displayedti Table 9.6. The values of P(u) obtainedby

use of Eq. (9.30), and shown in the table, can be best described as only

marginally in accord with expectations based upon the validity of the

internally estimated standard deviations.

It fs~ of course> ~ssfble to tie a direct compsxison of the ob-

served average shell populations ~a and the corresponding sample variance

s: for replicate realizations, grouping sheus

of ~a when Ar2 is different. The procedure is

for the 11 shells which are common

to obtain common values

illustrated,in Table 9.7

to realizations B30 and B31 at 7 = 1.5,

27$)
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TABLE 9.6 COMPARISONOF REPLICATEREALIZATIONSIL4VING

‘r

1.025

1.075

1.124

1.500

3.900

DIFFERENT VALUES OF Ar2 AND K

Realizations

Bl, B2 (~oled.)
B3, B4 (pooled.)
All pooled

B7
B8
Pooled

B9
B1O
Pooled

B30
B31
Pooled.

B37
B38, B39 (pooled)
All pooled

pV/NkT

U* P

80.36
J

* 0.228
80.7 * 0.261
8Q.553 + 0.172

28.216 k 00158

28.301 * 0.146
28.262 ~ 0.107

29.042 * 0.208
29.388 k 0.237
29.192 * 0.158

6.6747 * 0.0654
6.5450 * 0.0324
6.5706 * 0.0290

1.6766 * 0.0103
1.6968 * 0.0039
1.6943 * 0.0036

P(u)

(Eq. 9.30)

0.107

0.346

0.136

0.038

0.967

the value of Ar2 being the same in the two experiments. We first test

the assumption that for given a the titernal variances a: are the same

in the two sampltig distributions,by means of the F-ratio fractiles

given in the fourth column of the table. These 11 values of

P[Fa(45, 149)] are seen to scatter reasonably well ~r this unit inter-

val. Under the null hypthesis their sum shouldbe approximate ?
8

normally distributed.with mean K/2 and variance K/12, so that an

appropriate over-all statistic is the normal deviate
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,------ - — -.. —. -—---- -— .-—
‘.IJW.My.“( WIWAKIS(JN OF AVERAGE SHELL POPULATIONSOF

&

1

2

3

4

5

6

7
8

9

10

11

Internal Variances
S2
~ ● 104

REALIZATIONS B30 AND B31

RealizationRealization

B30 B31

fa=45 fa=14g P[Fa(45,149)]

0.4374 0.8321

o.&135 0.874.6

0.7993 0.6780

0.7182 0.6673

0.8273 0.6443

0.6615 0.6544

0.4237 0.584.0

0.5851 0.5341

0.4651 0.5731

0.5994 0.5538

0.3361 0.4473

sum = 4.92

U = -0.61

P(u)= 0.27

0.01

0.38

0.76

0.63

0.86

0.53

0.11

0.66

0.21

0.64

0.13

Pooled

Vsxiance

JP)2
(2

fa.lg4

0.7405

0,8581

0.7062

o.67$n

o.6&7

0.6560

0.54.68

0.5460

0.5480

0.5643

0.4216

ShellPopulations

Ya ● 102

--
na=46 na=150 ta(lg4)
——

0.98151 0.95634 1.736

0.$%654 0.95080 1.(x)8

0.91173 0.91730 .0.393

0.90523 0.89377 1.041

0.88236 0.88133 0.074

0.84402 0.85921 -1.113

0.84365 0.84814 -0.360

0.81794 0.81833 -0.031

0.81683 0.80261 1.140

0.80526 0.79256 1.003

0.77293 0.77612 -0.292

sum = 3.813

u = 1.15

P(lul)=0.75
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.=(~y[(f,(.a,).;] ●

0!=1

For the example of Table 9.7,u = - 0.61,andp(u) = 0.27,so tkt the

2
assumption of conmmn theoretical variances u~ is reasonable. Accordingly,

(P)2the two sets of values s~were pooled to obtain the values Sa given

in the fifth column. The assumption of comnnn theoretical means ‘ilais

46next examined for each shell by means of the t-test:

y(133@ -y$3Q
t#g4) =

(
~(p)a 1

)

●

~ W)+*
a

The 11 values of this statistic are shown b the last columu of Table 9.7.

For so many degrees of freedom the t-distribution is well approximatedby

the standardized.normal distribution, so an appropriate over-all statis-

tic is the norml deviate

K

u=
I

K-+ ta(19J+)=1.15 .

(X=1

Since the above equation for ta(194) could equally well have been written

with the op~site sign, the appropriate fractile is P(lul), equal in the

present example to 0.75. Thus, the agreement between realizations B30

and B31 is certainly statistically reasonable, which may be interpreted

as additional support for our over-all hypothesis A for these realiza-

tions.
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to

The analysis could.be continued further, pooling the two sets of ya

form a single set

JB30)#B30 ) + ~(B31)y(B31)
yy=a ~ a a

(B30]+~(B31] 9
‘a a

then carrying out a regression analysis and calculating a compressi-

–( )bility factor using the set Yap accor~g to the procedures of Sections

9.2.2 and 9.2.3. For the realizations at z = 1.5 we did.not do so, but

in the case of the four realizations at T = 1.025, for example, we first

performed the above comparison and.pooling (but not the subsequent re-

gression analysis) of realization B1 with B2 (which have a common value

of Ar2), and also of B3 and B4. (B3 and B4 have one-half of the Ar2

value of B1 and B2,

to obtain shells of

data fromBl and.B2

so that their shells were first grouped in pairs

width equal to those in B1 and,B2). The pooled

were then compared as outlined above with those

from B3 andB4. The comparison statistics P( ~ ) so obtained are

shown in Table 9.8 along with those from other replicate realizations

in classes A and,C. The values scatter reasonably well

interval, which tends to support hypothesis A for these

Our final statistical conclusion for classes A and

over the unit

classes.

C is that while

the statistical errors in the average shell populations ~a are reasonably

well estimated by standard techniques, our estimated compressibility

factors have an additional unestinwted component of variation, and a

possible bias, arising from the stochastic nature of the degree of fit
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TABLE9.8 COMPARISONOF AmMGE SHELLPOPULATIONSIN

Reduced
Area
n-

REPLICA!I’EREALIZA!I?IONS

Realizations

~2
- log2—

48a2

I..025

1.075
1.124

1.5

3~w

B1 - B2

B3 - B4

(Bl - B2) - (B3 - B4)

B7-B8

B9 - B1O

B30 - B31

B38 - B39

(B38 - B39) - B37

15

15

15

13

13

13

13

13

K—

9

9

9

4

4

11

14

7

KbLl
0.95

0.74

0.69

0.55

o.~

0.75

0.62

0.16

parameter v. Intuitive considerations suggest that arbitrarily doubling

the esttited standard deviations tabulated for the compressibility fac-

tor would result in an ample allowance for these uncertatities.

9*3

As discussed h detail

Class B Realizations

in Chapter 6, there sre serious uncertain-

ties in the physical significance of our Mmte Carlo calculations in the

interval T = 1.254-1.40. Hnwwer, some of the realizations, particularly

those near the end pints of the reduced area interval, are reasonably

well-behaved

well-defined

and possibly represent averages

regions of configuration space.
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desirable to make some attempt to apply the systematic data reduction

procedures described in the preceding sections.

As was seen in Chapter 8, our basic statistical hypothesis A is not

valid for realizations in this class. Thus, the procedures of Section 9.2

must be modified to take account of the circumstance that the internal,

(1)2At = 19 200 shell population %miances!! $a no longer have their _pre-

vious significance, since the At = 19 200 coarse-grained.observations Ysa

from which they are calculated are evidently appreciably s-correlated..

Consequently the goodness of fit test discussed in Section 9.2.2.1 is

for the most part ignored, and the degree of fit criterion of Section

9.2.2.2 is modified to use only the variance s(2)2 of the average shell

_populations~a (the average being taken either over the entire realization,

or over a portion thereof; see below) about the estimated regression curve.

Similarly the estimated standard deviation of the resulting compressibility

factor is calculated from s(2)20

As indicated in Section 9.2.3, this procedure is based on the untest.

able assumption of s-independencewith At = $, where % is the n~ber of

elementary Mrkov chain steps included in the averages ~ Furthermore,
a“

neither the presence of c&correlation nor the homoscedasticity of the

variances a; can be examined,for At = % with the available &.taO Thus,

the choice of the appropriate weighting procedure for the least squares

data reduction is somewhat uncertain. As was mentioned in Section 9.1,

a wrong weighting choice does not in itself introduce

compressibility factor esttite, but h general leads

bias into the

ta erroneous
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estimates of its precision. The A.t. 19 200 variance s: displayed the

same systematic dependence on a that was noted in classes A and C, and

since this behavior might well ~ersist at larger values of At, we for

the most part used linearly smoothed weight factors obtained from these

At = 19 200 internal variances, as described in Section 9.2.1. It should

be kept in mind that the precision estimates so obtained maybe consider-

ably in error due to a-correlation among the ~a .

The results obtained in this way are sumrrm,rized in Table 9.9. For

those realizations in which no apparent ‘jumps!!occurred, the averages

~awere taken over the entire run (with the usual.omission of the first

coarse-grained point). In the ~rjumpyflrealizations, the averages were

taken over l~lateaus!’which in some cases are reasonably well-defined,

but h other cases were rather arbitrarily chosen. Cleerly, this sub-

jective element introtices still further uncertainty into both the

significance of the quoted average and,the associated precision esti-

mate. These ~oints have already been discussed in Chapter 6, particularly

in Section 6.1.2. Here we simply emphasize again that such results should

be regarded as only qualitative at best.
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Chapter 10

COMPARISON OF EQUATION OF STATE RESULTS FORN = 12 AND 48

The most striking difference between the 12- and 48-molectie systems,

namely, the qualitatively different topologies suggested for their config-

uration spaces by the behavior of the hbnte Carlo calculations at inter-

mediate (class B) reduced areas, has already been sufficiently discussed

(Chapters5 and 6). In

quantitative comparison

systems at the high and

theory is available.

this chapter we wish to make a somewhat more

of the calculated equations of state for the two

low density extremes, where at least a modicum of

10.1 El@ and Medium Densities

liIcomparing the N = 12 andN = 48 results at high densities we

will make use of the Salsburg-Wood asymptotic anal~is abeady discussed

at some length in Chapter 3. For @ = 1, corresponding to systems in

which the accessible region of configuration space

ing the regulsx hexagonal configuration,Eq..(3.5)

is a pocket surrounL

can be written

)t(~;N) = pV@ =
1 ~+ -N-l

‘~ [
+~b(N) (z - 1) +0(~ - 1)2] , (10.1)

-1
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where the coefficient b(N) is

K*(T;N) = T+-N-l

T+.-l

so that we can write

10.1

unknown. We define

)

AK#) = X(T;~) - )t*(T;N) = b(N) + O(T - 1);

(10.2)

(10.3)

note that w*(T; N) can be regarded as the ‘!free-volumel!equation of state

(3.6) With an N-l correction term appended.

We see that A~(T) should approach the unknown constant b(N) as

T ~ 1. In Fig. 10.1 we have plotted the values ~(r) obtained by

substituting our Monte Carlo estimates (Tables 5.1 and 6.1) for X(T; N)

in Eq. (10.3), for both N = 12 and N = 48. The trend of the observations

near T = 1 is somewhat obscured by their large scatter at T . 1.025.

This is believed to be due mostly to the circumstance that x is becoming

rather lsrge (~ W at T = 1.025), with the result that quite small per-

centage errors in x become large ones in A
%“

The 10wN = 12, T = 1.05

~oint is believed to be due to a rather too large value of the observa.

tional pexameter Ar2 (Section 2.3.4) having been used in this realiza.

tion. As a result the degree of fit criterion (Section 9.2.2.2) required,

use of a fourth degree regression polynomial, the highest encountered in

this investigation. The abnormally high value of A~ for N .12,

z = 1.025 is not understood.

Considering the T $ 1.25 points, Figure 10.1 suggests, though it

certainly does not establish, a value b(N) ~ 0.6 for both N = 12 and 48.
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2.C

AKN

I.C

o

10.1

@

o-+

I v I I I II.0 1.10 1.20 1.30 1.40
r

)
)

1’

}0

Fig. 10.1 Comparison of N = 12 (cross-hatchedsymbols) andN = 48 (open
symbols) results at high and medium densities: AM.&) VS. ‘r,Eq. (10.3)0
The vertical extent of the plotting symbols is one estimated standard
deviation on both sides of the estimated mean; see Table 5.1 and 6.1.
Also shown (x) are the points obtained by Metropolis et al.l for their
224-molecule system.
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It should be noted, however, that in making this estimate we are using

points well beyond the upper limits ( T = 1.136 for N = 12, 1.063 for

N = 48; see Sections 3.4 and 3.5) of reduced areas withtiwhich the

asymptotic validity of Eq. (10.1)was rigorously established. Alterna.

tively, as mentioned in earlier chapters, one can interpret Fig. 10.1 as

suggesting that the asymptotic expression may be a useful approximation

outside the rigorously established reduced area interval.

Figure 10.1 also affords a convenient comparison of the N = 12 and.

48 results in the intermediate or class B density range. We should

perhaps recall here that the large scatter of !Ifluid-branchl!points for

N = 48, ~ = 1.35 arises not so much from the inherent variability of the

observations, as from the subjective uncertainties introduced in an

attempt to estimate plateau averages in realizations in which such

plateaus are at best very poorly defined.

Ftially, it is probably worth observing that Fig. 10.1 supplies a

graphical indication that our estimates of precision tend to be some-

what too small, at least in some density regions.

The 224-molecule points obtained,by MetropoMs et al.,1 are also

shown in Fig. 10.1. Here we again usedEq. (10.3),with n*(r; N) given

by Eq. (10.2), even though this system does not, strictly speaking, have

a close-packed reduced area per molecule correspontig ta H = 1.

Metropolis et al., chose to use a square ~ea V for numerical convenience,

whereas their initial configurationwhen hexagonally close-packed.requires

a rectangular ce~ of height ~s 0.98974343and unit wid,th. AS a

result the stable limiting confi~tion (in the sense of Salsburg-Wood,18

291



10.2

presuming one to exist) of this 22&@lecule system has a reduced,area

somewhere in the interval 1.0 c ‘c*< 7~ss 1.o1o363. The large value

(Fig. 10.1) of A~at z= 1.04269, the highest density investigated by

Metro@is et al., is presumed to be due ta our use of N = 1 instead of

the u.rknowncorrect value, in calculating A%..

At lower densities these early Monte Carlo points lie below the pre-

sent ones (Fig. 10.2). This could be due to a significant N-dependence

of the coefficient b(N) in Eq. (10.1) (leaving aside the additional

H-dependence already mentioned, which would tend to make the early points

fall still lower h Fig. 10.1), or, as suggested previously in Chapters

5 ~a6 as being perhaps more likely, these points maybe low because of

insufficiently long realizations. Definitive resolution of this question

must await further Monte

systems than the present

and Wainwright for their

as supporting the latter

Carlo investigation of larger two-dimensional

ones. The molecular dynamical results of Alder

870-molecule system can, of course, be regarded

conjecture.

10.2 Low Densities

In the low density region the analysis by Lebowitz and Percus

(Chapter 3) of the N-dependence of the virial.coefficients affords a

theoretical frmework for our discussion. They express the ‘tiormal’f

N-dependence, that is to say, the N-dependence at an area per molecule

large enough so that the corresponding cluster integrals cannot wind
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around the torus, of the v.th virial coefficient in terms of the lower

order ( 2,through v - 1) virial coefficients of an infinite system. For

two-dimensionalhard spheres, the N = ~ virial coefficients are known,

from the second through the fifth, from the work of Metropolis et al.1

If we write the virial expansion in the form

es

fi(T;N) ❑

and for convenience

I Cf(N)T-(iJ) ,
L=2

abbreviate

Ci(=)= c~ >

then the values given by Metropolis

1

C2
= Tr3-== 1.813799 ,

et al., sre

c3=; #(l-~) = 2.57269 ,

(10.4)

(10.5)

(10.6)

C4 =3.179

C5
=3.38 k

In the calculation of

Y

5$ ●

C,.these authors eval~ted, one of the three four-
4

particle cluster integrals by an tidependent-sampltigMonte Carlo

technique, while for C
5

all the five-yarticle cluster integrals were

estimated.

Lebowitz and Percus give the ‘formal’’N.depend.enceof C2(N) and

so

C3(N). Using their eqyations we calculated similar expressions for the

next two coefficients, obtaining
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.1
c2(m = C2 - C2N Y

C5(N) =

-2
C3 + (2< “ 3c3)~‘1 + (-2c: +- 2C3)N ,

C4(N) = C4 + (dtc~ +

+ (16c~-

9C2C3-
6C4)N-1

-2
27c2c3+ ~c4)N

(10.7)

(10.8)

(10.9)

-i- (-12? + 18C2C5- 6)N-3 ,

C5(N) = C5 + (-24C:C3
4 -1

+ 9c~ + I_6C2C4- 10C5 -i-8C2)N

+ (192C:C3 - 51C; - %C2C4+ 35C5 - 80C;)N-2
(10.10)

+ (-408c~c3I-90C~ + I-76C2C4- 50C5 -1-192C;)N-3

+ (240C:C5 - 48c: - 96c2c4+ 24c5 - 120C;)N-4

b passing it is interesting to note two sum rules for the numerical

coefficients in the above relations. First, if we set N = 1 we obtain

Ci(l) = O for all i, correspxding to the obvious requirement that a

l-molecule periodic system must lmve the ideal gas equation of state.

Second, if we set

to an equation of

M(’r,=)

thenwe have Ci(N) = (1 -N-l)Ci . It is not clear to us why this last

sum rule holds, and therefore, it may in fact not hold for i s 5. %W-

ever, the validity of these two relations for Eqs. (10.7-10.10)affords

all c, = 2-1, where c is any constant, corres~nd3ng

state

‘r
‘G ‘
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some assurance that the latter are correct, fn spite of their derivations

being somewhat tedious.

In principle,Eqs. (10.7- 10.10)give the normal

for ald the virial coefficientswhose numerical values

N-dependence

for N =~are

lmown. Ibwever, the quoted 5% uncertainty for C5 combined with the

var@ng signs and rather large magnitudes of the numerical coefficients

in Eq. (10.10) result h the O(N-l) coefficient h C=(N) being of un-

certain sign. Thus we obtain

C2(N) =1.813799 - 1.813799N-1

C3(N) = 2.57269 - 1.13834N-1 -

Y

1.4343fjN-2 ,

C4(N) = 3.179. o.94.6N-L+ 4.45N= - 6.6x-3

C5(N) = 3.38 & 5$- O(N-l).

For comparison purposes it is convenient to define

A

?$#) = 1 + I CJ+l(N)# ;
j=l

(10.II)

(10.12)

> (10.13)

(10.14)

(10.15)

that is, ~,i is the ‘bormal’!Virial expansion for a system of N molecules,
.

truncated to a polynomial of degree i in T-l . In Fig. 10.2 the Mffer-

‘nce %,i - “=,4
is plotted for N = 12, 48, and.~, and,for i = 1(1)4, as

well as the difference
?N,MC - ‘c0,4for the Monte Carlo results, N = 12

and.48. In calculating %,4 we used C5(m) = 3.38, C5(48) = 3.31,

C5(12) = 3.10; the effect of a 5$ change in

cases small compared to the difference
%,4

this coefficient was in all

- %,3 “
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Fig. 10.2 Comparison of N = 12 (o-pencircles) and N = 48 remits (Solid
circles)at low density, with virial expansions to O(r-i+l) for i = 1(1)4.
The radii of the circles are the standard deviation estimates of Tables
~.1 ~a6.1. The curves are the truncated virial expansions for the in-
dicated values of N and i, all compressibilityfactors being plotted rela-
tive to that of an infinite system correct to 0(T-5). me finite-N
virial coefficients include the ‘hormalllN-dependence only; for N = 12
%nomalous’!contributions to the fourth virial coefficient are present
(ad ne~ectea in the ~ ~ c~7es~ below T = 1.78, md to the fifth
virial.coefficient %elow’~ = . me %caled-particle!!approximation

~ of Ref. 14 is also s own, as well as the orig~ ~nte C~10 res~ts
(x) of Metropolis et al.?
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We note that the Mmte Wrlo points conform to oux expectations

in that the N = 12 points tend, on the whole,

N = 48. In addition we note that, except for

the short realization B37 at T = 3.9, all the

to fall below those for

the petit obtained.from

points lie above the corres-

wn~g ~,4

at least the

Finally, the

curve, in accordance with the wid,elyheld expectation that

next few (perhaps all) virial coefficients are positive.

trend of the ~, , curves for fixed.N with increasing i is
J.U,J.

such as to suggest that only at T = 3.9 is the virial

reasonably convergent within the apparent statistical

Monte Carlo values.

expansion to 0(r-5)

uncertainty of the

Thus, we conclude that the calc~ations s,ppe~ to be in qualitative

agreement with the theoretical, low-density N-dependence. A mOre quanti-

tative comparison would,evidently require nmch mre extensive calculations,

particularly at ~ >4.

The Metropolis et al.1 points for N = 224 are also displayed in

Fig. 10.2, and lie somewhat below the present N = 12 and N = 48 points

except at the lowest density. For this large system all virial coeffi-

cients C of order v S 13 have a ‘!normal”N-dependence, which itself is
v

rather small. Insofsr ZLB this normal N-dependence is concerned.,the

points for the larger system would.be expected to lie above those for

the smaller ones, although we are not aware of a proof of this conjecture.

The contrsry behavior of the 224-molecule points in Fig. 10.2 may possibly

be due ti

cients of

the early

the %nomalouslrN-dependence of the 48-molecule virial coeffi-

order v 2 5, but may also be due, as mentioned.re~eatedly, to

Monte Carlo calculations being somewhat too short.
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Chapter 11

CONCLUSION

11.1 Necessity for Larger Systems

The implications of the small system results presented in this report

with respect ta the behavior of a macroscopic system of hard circles have

been discussed in some detail in Section 6.Ij. Here we will simply remark

that the necessity for studying systems of considerably nnre molecules is

clearly evident. This is especially the case as regards the question of

a phase transition; the present results are not conclusive either for or

against this possibility. @wever, we again call attention to Alder and

Wainwright~s recent paper15 (see Section 6.5.6) reporttig a van der Waals

100T in the molecular dynamical equation of state of a system of 870 hard

circles.

Leavtig aside for the moment the existence of these latter calcula.

tions, one might well be inclined to question the feasibility of machine

calculationswith N x 1000, in view of the increase in complexity noted

in passing fromN = 12 to N = 48 (or N = 72, in the case of the dynamical

method.).
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In Section 6.5 we indicated how, in some respects, the tqnlogy of con.

figuration space might perhaps be expected to become again less complex

than for N = 48, at N >> 48, particularly at reduced areas in the ‘IjumpyII

range. In addition, the present results contain some suggestion that the

number of kkrkov chain steps required for a given statistical accuracy in

pV/NkT may increase somewhat more slowly than linearly with N. For ex-

ample, Tables 5.1 and,601, as we~ as Fig. 1002, sh~ t~t for T >le5

the estimated standard deviations for N = 12 are in general appreciably

larger than those for N = 48, in spite of the fact that, in terms of the

nunber t/N of time steps per molecule, the 12-molecule realizations are

longer than those for the 48-moletie system.

11.2 Faster Calculators

Calculations on larger systems are now more feasible than before,

owing to the laboratoryls acquisition of faster computing machinery than

the IBM-704 machines used.in these investigations. Using essentially

the existing programs, the IBM.7090 is expected,to roughly seven times

as fast as the IBM-704, while the IBM-7094 (expectedwithin a few months)

wilJ be still faster, but Trobably not by so mch as a factor of 2.

Speed ratios between the IBM-7030 and the IBM-705D are quite sensi-

tive to the nature of the program, being larger for programs involving

m.zchWloating point” arithmetic (especiallymultiplications) than for

programs consisting primarily of logical or Ured-tape!!work. The Monte

Carlo calculations, especially for hard.spheres or circles, are
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unfortunately of the latter type,

no more than twice as fast as the

to permit both machines to retain

so that the IBM-7030 is likely to be

IBM-7090 at values of N small enough

all the data in internal memory. The

larger I13M-7030memory is, of course, advantageous in the latter regard.

11.3 Improvements in Programming and in

Choice of Parameters

In the paper5 describing some of the computational titails~ we men-

tioned that a significant increase in speed couldbe obtained if it were

proved adequate to represent the molecular coordinates (xi,

enough bits to allow the Pythagorean computation of squared

distances,

yi) by few

intermolecular

2
‘ij

s(xi-x J2+(yi-yJ)2 ,

to be carried out by table-look-u~ of (xi - Xj)2 rather than by nn_zltipli-

@ication. Some prelimbxary investigations of this possibility were

carried out on the N = 32 hard-sphere system, with results suggest~g

that it was feasible at least in the ~fjumpyflregion sround T = 1.55.

Considerablynmre calculationswould.be required in order to be certain

that adequate syace resolution was being provided over the complete range

of interesting densities. Also, as faster computing machines appear,

their multiply-time to add-time ratio tends to decrease, so that the

speed improvement obtatiable by this device decreases. Finally the

required nuxiberof bits must eventually increase as N ticreases, sqle
,

considerations indicating proportionability to N* . Consequentlywe
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will probably not use this technique in

crease in speed is obtainable, however,

other program improvements mentioned in

There are also various other areas

Terhaps be improved. For example, only

future calculations. Some in.

by incorporating some of the

Ref. 5.

in

at

we made any statistical examination of the

which the calculation can

T = 3.9 andforN = 48have

effect of the displacement

parameter 6 upon the rate of convergence of the kkmkov chains. The

machtie time per step and the observed shell.copulation variances sz
o!

(Eq. 8.3) changed only slightly with large changes in 6 indicating that

at least at this low density the convergence rate is not strongly de-

pendent on 6. ‘Thiscomparison was also useful in showing that at this

low density, at least, our previous> rate-of-convergence criterion

involving the root-mean-square displacement

in the notation of Section 2.3.2, is actually a very unreliable measure

of convergence rate, at least at low density. This is evident from the

fact that realization B39 had a value of J?

whereas our statistical tests indicate the

about 17 times that of B38,

two realizations to be about

equally convergent.

Other areas in which

are the optinmm values of

further statistical tests

more investigation might possibly be worthwhile

the parameters ArZ, K, and At, as well as

on the pseudo random number sequence. In the

latter connection it would be desirable to have several independent

301



U-.4

sequences, rather than to use the same sequence for

11.4 Constant Rressure Ensemble

all realizations.

In Chapters 7 through 9 we saw that the numerical differentiation

required.for the equation of state calculation is the source of consider-

able difficulty in the data-reductionyrocess, in particular being re-

sponsible for the questionable

tions. Evidently, it wouldbe

directly as the simple average

validity of our estimated standard devia-

desirable to calculate the pressure

of a configuration function, rather than

as the derivative of such an average. Unfortunately, no such expression

is known for the petit ensemble pressure of a system of hard spheres

(or circles). Ibwever, the Markov chain method is not restricted ta the

petit ensemble, and in fact we have made some fairly extensive, but

unpublished, calculations for a system of 32 hard spheres in the isother.

real,isobaric ensemble,
47

usually called the constant-pressureensemble

for brevity. In this ensemble the variables p, T, adN me ftied,

while the other variables, in particular the volume V, fluctuate. me

equation of state is calculated from the ensemble average of this

fluctuating volume,

u =~(v)/NkT ,

The resulttig M(T; N) relation differs from that obtained with the petit

ensemble by terms of O(N-l), which is, of course, not serious since the
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petit ensemble equation of state deviates by the same order from the

thermodynadc equation of state. Since no numerical differentiation is

req,uired,theconstant-pressureensemble ti~-re~ction problem is con-

siderably simplified.

The motivation for the unpublished hard-sphere calculations in this

ensemble was not, however, the easier data reduction, but rather the hope

that the fluctuation b configuration space topology producedby the

volume fluctuation would materially increase the transition probability

between different configuration space regions, e.g., regions L and H in

terms of the hourglass description. b this ensemble, strictly spea~g~

all state points are accessible from each other, i.e., there are no iso-

lated pockets of configuration space, due ta the always non-vanishing

(but no doubt very small, at high pressure) probability of occurrence

of arbitrarily large values of V. Most of the calculations were carried

out in the so-called !hransitionregionftin the vicinity of r = 1.5 to

1.6, see l?ig.1.1. Here it will suffice to mention that the results

agreed quite well with those of the petit ensemble method.. In _particu-

1s3?,“jumps” still occurred, now of course, at constant pressure between

different levels of the fluctuating volume, indicating that at these

densities configuration space is still rather effectively compartmental-

ized.. The l’jumps”were perhaps slightly nme frequent in terms of Markov

time steps than in comparable petit enseniblerealizations, as expected.

However, the computing time per ste~ is also soxnewhatincreased due to

certain additional complexities inherent in the constant-pressure formu-

lation.
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Thus, the two methods appear to be roughly equally effective in

coping with the difficult topology of hard-sphere (or circle) configura-

tion spaces. The greater simplicity of the data-reduction problem in the

constant.pressure enseniblethen makes it quite attractive for use in

ftrtureinvestigations. There is, however, an important difference in

the two equations of state. Whereas in the petit ensemble, so far as

is known, the exact equation of state for a ftiite sWtem~Y Possess a

‘Van der Waals loop,!!in the constant-pressure ensenible~(V) is known to

%e a monotonically decreasing function of P. Thus, the manifestation, at

finite N, of a first-order phase transition

isotherm having a nearly horizontal portion

modynamic (N = m) coexistence region.

would presumably be a P-V

in the vicinity of the ther-

However, it is possible to obtain the petit ensemble equation of

state, as well as the constant-pressure ensemble equation of state, froma

Monte Carlo calculation based on the latter ensemble, if the probability

density PNfiT(V)of the fluctuating volume can be estimated sufficiently

accur8tely?8 To avoid,confusion, in the remainder of this section we

will use the notation fifor the non-fluctuating pressure parameter of the

isobaric-isothermalensemble, andp = p(V) for the corresponding (same N,

T) petit enseniblepressure at any fixed volume V. The probability

density PNfiT(V)is defined as

(SL.1)
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with

andwith ~(V) given

the ~etit csaonical

P =~+k’1

byEq. (2.1). lRromEq. (2.3) one then readily finds

ensexble yressure Q(V) to be given by

a h PNfT(V)

( Av ). ● (11.2)
\ Uv ~N,& T

From this relation we see that there is a One-to.one correspondence

between the presence of a van der Waals loop in the petit canonical

ensexribleequation of state on the one hand, and a bimodal probability

d,ensityPNfiT(V)on the other. The latter function can, of course} be

est~ted, by the Monte Carlo method. We note, however, that subsequent

estimation of the petit ensemble equation of state requires a numerical-

differentiation in which we may e~ct many of the same statistical

difficulties as we encountered with the petit ensemble method.. Never-

theless, the above discussion lenti mher encouragement to use of a

constant-pressure ensemble M3nte Carlo method.,since a bimodal PNp~(V)

should be an a% least as easily detected qualitative indication of a

possible first-order phase transition as is a loop in the equation of state.

have

have

11.5 AWord of Caution

We would,like to emphasize that the finite system effects which

been described for systems of 12 SM 48 lxxrdcircles almost surely

analogues in the yrevious investigations of three-dimensional
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hard-sphere and Lennard.-Jonesmolecties, which were ~stly ~ne with 32-

and,108-molectie systems. Thus these results, particularly any interpre-

tation in terms of the existence and location of a phase transition,

should be regarded.with some skepticism until such time as it appears

feasi%le to examine considerably larger three-dimensional systems. With

present equipment, systems of 1000-2000 molecules would be feasible,

though time consuning. Even at these values of N, however, “surface”

effects would be expected to be of considerable importance in three

dimensions, so that it seems preferable to first verify the behavior

reported by Alder and Wain=ight for two-dimensional systems of such a

size.

II-.6Is It Worthwhile?

It is clear that the Monte Carlo method is certainly not a quick

and easy way of determining exact equations of state. It requires

large sanunts of computing time, especially for the large values of N

which seem to be required, and the results require caref’ulinterpreta-

tion. The latter tends to be expensive in terms of personnel time.

On the other hand, in spite of the many recent advances ti statis-

tical mechanics, reliable analytical equations of state covering the

entire density range seem to be as far in the future as ever; ti particu-

lar, a theoretical proof of the existence or non-existence of a hard-

sphere phase transition is completely lacking. The only comparable

equation of state tool seems to be the Alder sad Watiwright dynamical
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method,. For systems of hard.spheres (or circles), the two methods seem

to be of comparable efficiency; we regret the slow pace of our investi-

gation, which is not due to inherent difficulties of the technique, but

to the frequent diversion of our attention to other problems. For

continuous inter-molecularytentials the Nkmte Carlo method appeas to

be advantageous. Furthermore, given the difficulties of interpretation

and the different theoretical foundations of the two methods, it appears

b be desirable to investigate the same or similar systems by both

techniques, at least for the present.

Thus, it appears to us b be worthwhile to continue these investi-

gations. One of the purposes of this long report was to make it possible

to solicit the informed optnion of others. Comments by the reader who

has persevered,to this point will.,accord3mgly, be appreciatively

received..
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