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The charge exchange X(ZAN15-, AN+,)Y can be reduced

in a fully antisymmetrized description to one of elementary

nature, n+p+=n’+p’. The t-matrix for the latter has, of

course, to be averaged over the momenta distribution of

the bound constituents. For sufficiently large bombarding

energies and small Q values, the nucleon carried by the

incident system may be considered as quasi-free. That car-

ried by the outgoing system is then described in a similar

fashion. This sort of approximation is consistent with the

determination of t from an equation of the Bethe-Goldstone

type. Solutions of this equation are sought which apply to

the finite nucleus. Here, however, in contrast to the more

usual situation one of the nuclear constituents is viewed

as being in continuum states, the other in bound states.

The application of the development to Be9 (He3,T)B9*

is solely for the purpose of concreteness. A major aspect

of the analysis Is that the virtual excited states of the

intermediate system are taken into account. This is done

by making specific assumptions concerning the single par-

ticle transitions brought about

nucleon to the target nucleus.

ty of a collective intermediate

by the addition of a

In addition, the possibili-

state excitation is con-

sidered. This is described through the introduction of a

continuum two-particle bound state. Such a state gives
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rise to the principal renormalization of the two-particle

transition operator.

The final form of the elementary transition operator

is one having a single-particle spectrum of excitations,

renormalized by the coupling to the collective state.

The transition operator is additive and can be classified

both as to diagonality of its matrix elements and

according to the resonance structure of these. In its

form as a sum of diagonal and non-diagonal operators, the

former is responsible for nuclear distortions, the latter

for the physical change of state. It is the non-diagonal

operator which determines the direct interaction processes.

It, in particular, induces changes of state for just a few

target constituents. The diagonal part of the interaction

operator is moreover expressible as a sum of resonant and non-

resonant terms. These are respectively contributions arising

from the continuum bound state and those described as po-

tential scattering. The latter again include virtual tran-

sitions of the interacting constituents.

Emphasis is put upon viewing the reaction problem in

terms of the self-consistency requirements of the H-F method.

This, together with procedures arising out of Brueckner theory,

leads to the characterization of the interaction dynamics in

the manner just described.
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Introduction

We shall be dealing with the direct

process. In particular, we consider here

exchange as described on such a picture.

interaction

nuclear charge

The charge ex-

change process is an interesting one since for low Q-

values and large bombarding energies it is nearly an

elastic process. It, on the other hand, can connect ex-

cited and ground state nuclear configurations. This means

that it has a specific utility for the investigation of the

properties of nuclear excited states.

In light nuclear systems where the role of the

Coulomb force may be neglected, the isotopic spin may be

considered a good quantum number. Thus in collisions in-

volving such systems, we have a selection rule governing the

transition which can occur. Rather than attempting to use

the exchan~e reaction as a means of extracting information

about the two-nucleon force, we assume this to be known.

The force is considered to be charge-independent and its

parameters given, for example, by the analysis of Gammel

and Thaler (1).

What one does seek to do with the exchange reaction

is to take into account the renormalizations of the two-

body force. The concept of the direct interaction involves

a statement that a few nucleons are involved in the reaction

process. Additionally, or consequently, the energy sharing

-5-



between interacting systems ought to be slight. It is

then consistent to argue that the renormalization of the

two-body force is small. However, the simple picture is

not altogether valid. We can get at the necessary modi-

fications by considering those processes which give rise

to a large shift of energy in the single quasi-particle

states which define the self-consistent Hartree-Fock, (H-F),

potential.

The modificationsin the direct interaction picture

have to do with the accounting for possible dynamical corre-

lations which may occur in the two-nucleon system. In parti-

cular, the two-particle bound state of Brueckner, Eden and

Francis (2) is an example of the correlated motion of which

we speak. We shall see that the existence of this positive

energy bound state has to do with the coupling of collective

motions into the single quasi-particle spectrum. This

special configuration, characterized by a large shift in

energy for a single quasi-particle state, is not alone re-

sponsible for all of the couplings to collective excitations.

There are other configurations which depend for their

existence upon the couplings of three bodies, e.g., two

particles and a hole. Some, not all, of these configurations

are summed by the canonical transformation technique of

Bogoliubov and Valatin (3 ). on the other hand, an alter-——

native characterization of the coupling to the collective

-6-



motions is given by the Brueckner theory (4). Here one

speaks of the direct excitation of a collective motion by

a single quasi-particle. However, when both computations,

that of the canonical method and that of the reaction-

matrix method, are done self-consistently the condition

emerging for the energy shift is a single one. There are

to exist two quasi-particle states, one of which is an

intermediate state. The difference in energy between these

two states is to be approximately equal to the excitation

energy for a given collective motion. (5,6) This remarkably

simple result seems so intuitively obvious. It, on the

other hand, is not a trivial statement. This is so for the

reaction problem, at least, as long as we attempt to con-

struct a self-consistent description in terms of the non-

hermitian scattering matrix. Estimates made in a non-self-

consistent way, and we shall always mean the self-consistency

implied by the H-F method, (7) are unreliable, these being

devoid of theoretical foundation. For the first thing,the

force coupling a particle to a collective motion is not

otherwise known, nor can it be estimated. The nature of

the assumption concerning the long or short range character

of the force presupposes the answer to the problem. Next,

we know that the readjustments in the quasi-particle spectrum

must not be so large as to imply correspondingly gross

corrections in the ground state energy computations. The

effects of the collective couplings are then to alter the

-7-



quasi-particle lifetimes, in the main. Lifetimes depend

in a very delicate way upon the dynamical correlations.

Here there is altogether no reason to trust other than self-

consistent estimates.

We adopt the point of view that the reaction-matrix

and canonical transformation methods are procedures whereby

the program of successive diagonalizations in the H-F method

is achieved. A unique answer exists in the overall scheme.

Such being the case, one is entitled to take their common

result, together with the more transparent physical state- .

ment, that already given, as a basis for unaerstanding the

two-particle bound state. In another language, this state

is responsible for fluctuations about the neutron giant re-

sonance.

A fully self-consistent program is difficult to carry

out. Moreover, if we just wish to understand how the direct

interaction model is to be corrected, it is equally unneces-

sary. The basic features which we hope will survive in an

exact analysis are extracted from some naive models. Thus

the discussion of SecticInII describes charge exchange as

deriving from the interaction of two nucleons moving in a

given potential well. One of the pair is in continuum states

and the other in a bound state. An oscillator representation

is used for the well. And, as we consider the reaction

B% (H: ,T)13g* for explicitness, only the states, those of
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the p- and (s,d)-shell, of two major shells are taken into

account. The relationship of the elementary two-nucleon

charge exchange, proceeding through given virtual states,

to the overall nuclear exchange is discussed in Section I.

To approximate the description of two nucleons moving

in the self-consistent field of other nuclear constituents

a many-particle formalism ought to be employed. Consequent-

ly, an equation of the Bethe-Goldstone type @ is to be

. solved. It is also possible to arrive at an equally satis-

factory description of the pair motion by classical techniques

owing to reaction theory. We think here of the resonating

group method as modified by certain elements from Watson’s

formulation of multiple scattering theory. ~ Such a com-

posite representation can be put on a variational basis. This

is enough to guarantee the required self-consistency of the

rePresentation. However, we do not carry out the program

of systematic evaluation which is thereby implied. Nonetheless,

it is this point of view which forms the basis of our entire

discussion.

Apart from the single particle transitions to inter-

mediate states, there may be others involving smaller energy

denominators. These excitations may be described as collec-

tive. It is possible to include the contribution to the

charge exchange made by virtual excitation of collective

motions. This is done by carrying out a diagonalization of

the two-nucleon force with respect to a given set of inter-
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mediate states. Such is equivalent to the introduction

of configuration mixing. The deduction of a collective

state excitation is achieved by means of the specificity

approximation to the internucleon force. Only T = O collec-

tive states are described by our analysis here.

Knowledge of the two-particle wave function is equi-

valent to that of a two-body transition operator. We shall

refer to either of these according to convenience. It iS

possible to simply add the t-matrices for single particle

and collective excitations. The result is an overall, or

total, two-body operator describing, here, the charge ex-

change process. The underlying notion is that one contri-

bution contains the scattering states of the two-particle

spectrum of excitations. The remaining contribution repre-

sents the bound states of the spectrum. Such a simple pro-

cedure is not altogether correot. It, at the least, violates

any sum rule which we might be able to construct for the

two-particle strength function. Put more simply, part of

the force considered to be available in the scattering

states, has been last in making up the bound states. This

introduces the notion of renormalization. In correcting the

simple addition of t-matrices, we are then led to this aspect

in a natural way. Section III contains the relevant analysis.

In carrying out the renormalization discussion, certain

additional features appear. !Che nuclear system to which a

nucleon is added, thereby initiating the charge-exchange

process, undergoes fluctuations of states. Accordingly,
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that state in which we seek to add a particle may already

be occupied. We account for the possibility of such processes

by sketching the corresponding self-energy computation.

The remainder of Section III is concerned with

topics departing somewhat from logical order.

tation of nucleon self-energies is achieved by

Green’s function representation. This has the

formal compactness. A procedure is considered

diverse

The compu-

means of a

advantage of

for intro-

ducing nucleon-nucleus distortions in initial or final states,

in an explicit way, which is just another way of expressing

H-F self-consistency. A technique familiar from the formal

theory of scattering is used to achieve this result.

There is to be found in Section IV a summary of our

methods and some comparison of these with those familiar

from earlier investigations. An enumeration of our approxi-

mations is also made, and as well that of the area of appli-

cation of the analysis. Among the former is to be found:

a statement of the ambiguity, here, of going off the energy

shell; that relating to choice of a “chosen configuration’!;

and some consideration of t-matrix expansions as expressed

by multiple scattering corrections.

I. Formal Preliminaries

The contents of this section have to do with the

construction of an elementary two-body transition operator

or t-matrix. From the latter it is possible, in a fully
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antisymmetrized theory, to obtain the overall transition

operator for a reaction between complex nuclear systems.

We are restricted, by choice, to a discussion of nuclear

charge exchange. In view of the fact that some advantage

is offered by dealing with a concrete process~ the reaction

Beg(He3,T)B9* will serve to illustrate our procedures.

Additionally, recent data, for 25 MeV He3, by Wegner and

Hall (10) require, we believe, all of the features treated

here for its explanation. This data actually motivated

the present analysis. However, the methods presented here

have a more general validity. As such, they are not re-

stricted to the specific reaction under discussion.

The exact transition amplitude for the given reaction

is

We form, ignaring Coulomb forces, the objects (He3,T) =

(T+,T-) and (Beg,Bg) = (b~,ll~) characterized by a given

value of the isotopic spin I; I = 1/2 in the ground

state. In the space of isotopic spin there exists a 2 x 2

representation of the pairs of mirror nuclei involved in

the reaction. TheA=9 isotopic spin multiples form the

basis of an irreducible representation of dimensionality

four, corresponding to j ‘3/2, in the space of total angular

momentum, in their ground states. Otherwise, the quantum

numbers for excited states must be characterized by p =

(aJ, ~ ~,mJ) giving the energy, relative to the ground state,

parity and angular momentum, J,-J< mJ< J of a given Statec

-12-



Tne A=3 multiples have a ground state spin ofl/2. Stanaard

notation has been used for the quantities appearing in the

matrix elements: V ‘+) is the stationary state of inter-

action, and has outgoing scattered wavesat infinity; v o is

the interaction between the intial systems, having coordinates

‘B and s~; # is the plane wave state describing, here,

the relative motion of final systems, the cm. momentum

being Icf and the relative coordinate being R .-’3

‘l’heactual interaction between initial systems is re-

placed by a matrix F , using the statement

An integral equation can be derived for F in the usual way.

We observe that F carries the instruction to antisymmetrize

the product function upon which it acts. At this point,

fractional parentage representations are introduced for

the nuclear systems. ?.’hesubstance of these is contained

in the statements

U: (LTs) = 2T+’’2S+’L, ([x])

An intermediate coupling representation is employed here.

The totally antisymmetric wave functions i’or the A=3 and

A=9 systems are represented by C? . A variational principle

-13-



is used to determine the expansion coefficients a. Expli-

cit details of the representation can be found in the papers

of Jahn (11) and those of Levinson and Banergee ~12).

We represent the A=9 system as a (ls)4(lp)5 configuration.

The closed core of s-state particles does not contribute

to the spectrum of states. The representation for the A=3

3 22system is a mixture of (s ),(s2d)(d2s)(p S)(P d) configurations~

referred to a space-fixed axis.

To derive our matrix element, we observe that F sym-

bolizes the interaction of the constituents of He3 with

~e90 It is then a sum of terms. Only the (lp)5 particles

are imagined to participate in the direct interaction. The

exchange of any two of these nucleons produces a change

.n sign of the matrix element. By assumption then F =~(He3; j)

where j = 19**.9 5. The i-th matrix element in sun of matrix

elements can be converted to the k-th. Upon making the ex-

change (i +k) in

we follow this by

is just the final

the i-th term, in the column vector Fi,

the same exchange in the row vector, which

state mplitude. Iiow this amplitude is of

indefinite symmetry with respect to the stated exchange.

It then can be written as a sum of antisymmetric and sym-

metric terms in the pair (i,k). The latter has zero overlap

with the column vector. Exchange of i and k in the anti-

symmetric term restores the overall sign and produces the

matrix element of Fk from that Fi. We need only then to

compute the matrix element of F(He3;j) and multiply this

result by the factor of five.

-14-



The 3-body systems are treated somewhat differently.

The fractional parentage representation still couples one

particle to a core of A-1 particles. However, now, the

core states of isotopic spin are restricted to the value

T=O. AISO only the core angular momentum L=O is employed.

The partition A = [21] in orbit will generate even parity,

3-body states with L(31 =

produced by coupling the

to the core in the state

0,2. The same eigenvalues may be

extra particle in states J? = 032

L=O . In following this procedure,

we pass to a cluster representation from that of the fractional

parentage. The core will not be a deuteron. however, for it

has a probability for being found in both singlet and triplet

states. Me further approximation is introduced and tnat

is the core nucleons, much as those (1s)4 in the JI=9 system,

do not induce transitions. This telis us how to count con-

tributions to zhe overail transition amplitu.~e. ‘l’he3-body

wave functions will be given in an inte-rmediate coupling

representa Lion.

!Che matrix element for tne reac~ion can ue written as

((.(JJ
P

i;S:;lp5)H:/,~g;S~)$~~f ;g3)l~,l u:~i’; S~; lp5)~:,, ~j’;S:)$[~O; R:)).

+ (1)

!Che four expa,lsio~lcoefficients (aZ,@-) have arguments which

denote the various terms in the intermediate coupling ex-

pansions. For every nuclear state the appropriate coeffici-

ents are real and normalized to unity. we shall give the

-15-



explicit wave function decompositions involving these co-

efficients. ‘l!hevector coupled eigenfunctions are labelled

= (s1,s2,s3)+,according to the sets of coordinates, e.g. , S;
S = (~,~ ,~ ), ana the configurations, e.g., IP5, insofar as

is possible. The interaction operator F is interpreted as

II
implying that the odd nucleon, “O , in the 3-body system

has an interaction with tne odd or vector coupled, nucleon,

1111!
9 in the g-body system. Since we antisymmetrize in

initial states, the nucleons can be given numerical labels.

The antisymmetrization now occurs between nucleon “O” and

those of the lp5 configuration.

Now having written the matrix element out correctly,

we introduce a further approximation. The exchange contri-

butions implied by antisymmetrization are neglected. Despite

the usual arguments having to do with A-l corrections and

the relative lack of importance of exchange for small momentum

transfer, this is probably a bad approximation. It certainly

destroys the self-consistency of the description. Moreover,

in a proper many-particle formulation of the reaction, it

would never be considered. We utilize the approximation

here for expediency only. This is moreover a statement that

the wrong mathematical apparatus has been employed. It is

now possible to integrate out at this stage the core co-

ordinates associated with both the A=3 and A=9 system. ‘l!he

necessary coordinate transformations in such a step are

readily determined. We shall not discuss these here.

-16-

.



But for the appearance of the operator FOI, which we subse-

quently denote as tOU , the sense of the approximation is

just that of plane wave Born theory. The various trans-

formation coefficients, namely the c.f.p. and those for

V.c., simply give formulas the appearance of complexity

when written out explicitly. We shall indicate these in a

symbolic way. For example, the coupling of one particle

with quantum number ql coupled to a core, qc , reproducing

the quantum numbers q“ , exclusive of the total angular

momentum, of the Be 9 ground state is symbolized by the

transformation coefficient B~J ;(M~q-;qc\). Similar use is

made of the symbols (M+;Xo,~2) in describing the couplings

yielding the 3-body functions. With this new notation

being included, the transition matrix element is given as

The basic two-body transformation matrix is fairly compli-

cated. It carries, as did the original many-body matrix,

the instruction to integrate over the variables, in the

product space of position, spin, and i-spin, which are

not physical observable. We shall not mention this further

and it is a tacit assumption that our notation is consistent

with regard to this aspect.

Some of the manipulations are clarified by giving

the forms of the transformation matrix. Two equivalent

representations are given below.

-17-



(3)

(4)

The additional notation n= (~ ,~ ) has been intro-

duced for coordinates in the product space exclusive of

position. All position coordinates are defined with re-

spect to an origin at the cm. of the (lS)4(lp)4 core of

the 8-body system. The coordinate 1112describes the motion

of the cm. of the neutron-proton core of the 3-body system.

The remaining notation is altogether sel%cvident, being

given that 11011refers to a proton and “1” to a neutron.

Some additional comments are required here in order to ab-

stract the physics from the mathematics. It should first

be observed that the two-body matrix element is defined in

a laboratory system. An average of the amplitude is per-

formed either with respect to the coordinate or momentum

distributions of initial and final (n-p) core systems of

the s-body nuclei. The appearance of the joint-probability

distributions demonstrates that nuclear recoil is accounted

for in the A = 3 systems. A ‘Iquasi–free’lapproximation

would say that as a function of y = [-,1 , the momentum
w

states in the vicinity of some y. make the dominant contri-
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bution to the average in Eq. (4). If yO<< k~,ko is

satisfied, the two-body amplitude having a slow variation,

the dependence of the latter upon y may be completely

ignored. On the other hand, the joint-distribution in

momentum is to be evaluated “in the vicinity of yott. It

is very easy to make this notion quantitative. We do have

at our disposal intermediate coupling representations of

the 3-body wave functions. The corresponding single nucleon

functions CjJmt;:t) are therefore known. The Fourier

transforms of these functions may be computed for each

possible nucleon state of orbital angular momentum. To

each such distribution we may fit normalized Gaussians or

combinations of these. The parameter of tne functions

characterize the spread of momentum about some average value.

Products of momentum transforms may then be formed and the

convolution implied by Eq. (4) carried out.

While our remarks have nearly the substance of’ the

impulse approximation, they do carry some additional impli-

cations. T~eSe, as we shall see, have to do with the manner

in which the two-body t-matrix is discussed. In this con-

nection we note that the overall reaction amplitude cannot

be described correctly by the formulas thus far $jiven. One

has neglected to take into account the very large contri-

bution to the interaction between the initial A = 3 and

A= 9 system. This contribution we shall describe as the

Hartree-Fock (H-F) interaction, ~H~ . It is defined here..

as being diagonal in the states of the initial, A = 9 system.

-19-



The potential is constructed by placing the A = 3 nucleons

in a given single particle state characterized by the relative

momentum & of initial systems. This state is then dis-

placed to lower energy by an amount determined by the average

binding per particle in the A = 3 initial nucleus. The

potential ‘H.F. is then computed as the sum of single particle

H-F potentials between the A = 3 and A = 9 nucleons.

We clearly then want to characterize the diagonal elements

of O“.F, , computed for the state of the A = 3 system, as

giving the optical potential for He3 scattering from Beg.

The remaining interaction, namely 5xt0, , is a residual one

and is considered non-diagonal in A = 3 and A = 9 states.

The two-body t-matrix is taken then to satisfy an equation

of the Bethe-Goldstone type. Its matrix elements are then

computed between various H-F configurations. And, in accordance

with the notion of Brueckner, the energy denominators

appearing in the computation are always the excitation energies.

These are measured away from the chosen configuration loosely

described as giving the distorted-wave motion of He3 relative

to Beg in its ground state. Thus when we include the phase

shifts for scattering of initial systems in the two-body

t-matrix (this is done in one of the later sections), some

of the self-consistency is built back into our description.

By always then computing corrections to the H-F interaction,

the incorrect description of residual interactions becomes of

secondary importance.

-20-



II. Some Reaction Specifics

We continue our shell model formulation of the

action process with a discussion of the nuclear wave

That for the A = 9 system is the more familiar and

re-

functions.

is

examined first. French, Halbert and l?andya (13) have dis-

9
cussed the intermediate coupling shell model for Be . We

slightly readjust the admixture parameters given by these

authors. The ground and first excited state wave functions

are here taken to be

(3/2-)=0.962’2P,,2([411)-0.2832’2D,,2([4111

(1/2-)= 2’27,2([411)0

The arguments of the wave functions are the partition

symbols [x] . It is equally reliable to describe the same

two states in B9 by the same parameters. A comparison of

the work cited with that of Kurath (14) indicates that this

is not a completely empty approximation.

The A = 3 wave functions have been given by Young

and Stein (15). The intermediate coupling assignments

rather more tentative here due to a failure to exploit

variational principle. Only one bound state exists in

case and for it we have

(1/2+)=0.697 2S:/2+0.608 2S~2+ 0.384 40,,2.

are

a

this

The isotopic spin multiplicity of two is implied in the

above and as well the partition symbol [21]. Moth of the

A = 3 nuclei are considered to be described by the pre-

-21-



ceding representation. ‘TWO S-states appear and these arise

from the coupling of an S-state (n-p) system in singlet, S?,

and triplet, S“, configurations to the odd nucleon. The D-

state is generated from the triplet-odd-nucleon coupling

and is probably 15$ too large.

We shall not introduce any additional wave functions.

However, states of nuclei other than those specifically

mentioned are implied by our analysis. In fact we take as

a starting point an assumption about the channels through

which the reaction might proceed. Those which we have in

mind are symbolized as follows:

Beg +He3-d+ B’0~d+n+B9*aT+B9*
(5a)

Beg +He3-d+(n+p+Beo*) -T+6
9*

(5b)

This is not to imply that we take these reaction schemes

entirely literally. They will, however. serve as a guide for

the manner in which virtual state transitions are incorpo-

rated into the analysis. The point of view is that the

physical reaction occurs in a manner lying between two ex-

treral descriptions. One of these is that given by the com-

pound nucleus picture and the other that from direct inter-

action theory. There is no evidence that the reaction

under study proceeds thr~tlgh a compound nucleus. In this

and similar situations it is necessary to ascertain whether

or not the simple momentum-transfer form factor of the direct

interaction theory furnishes an adequate description. It is
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characteristic of such form factors to drop off rapidly

with increasingly large momentum transfers. Distorted

wave theories, to be contrasted with plane-wave Born approxi-

mations, improve this situation somewhat, but not altogether.

Antisymmetrization between the nucleons of target and pro-

jectile, as simulated, for example, in the theories of heavy

particle stripping, is often required to

factor decay.

More to the point for our purposes

control the form

is an alteration

of the direction interaction theory so as to bring it closer

to that of the compound nucleus. The inclusion of virtual

transitions to intermediate states will accomplish this.

The selection of a few important intermediate states is

determined by the specifics of the reaction. In our example

cited, we note that for excitations in excess of 8 MeV there

are states in B
10

which decay by neutron emission. The

widths of the states are some 90 to 500 keV. The spins

are not all identified but the isotopic spins seem to be

T=l , the parities probably positive. In view of these re-

marks,the channel of (5a) is a likely one. There is also

the possibility that the BIO spectrum is built in part on

the motion of a neutron and proton couple to an excited

Be8 core. The ground and first two excited states of Be8

are T=OIJ = 0+,2+,4+. The widths of the excited states are

●normous,being, respectively, 1.20 and 6.7 MeV. The structure

of the spectrum is reminiscent of that occurring in deformed
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nuclei. In particular the ratio (4+-0+):(2+-0+) of 4

just about the value of 3.3 predicted by the theories

nuclear rotations. Although the states have the short

is

of

lifetimes noted and decay by a-emissi.on,we can describe them

as collective. This is because in the p-shell there are

only two parameters required to give level spacings. One

sees this by looking at the partition [4] in orbit. In this

sense either the phonon theory or that obtaining from an

intermeciiate coupling expansion can be used to deduce the

parameters. In including the channel (5b) it will be implied

here that coupling occurs to 2.90 MeV state in Be8, treated

as a collective oscillation about the spherical shape.

In discussing the channel (5a) we seek to diagonalize

the two-body interaction to, . This can only be done in part

and produces a quantity (to,) . Transitions are then induced

by the operator Ie,= tef -(%,) “ The motivation for this is

straight forward. we define as diagonal those operators nOt

changing the state of the target nucleon. The operator l.,

is to change the states of both nucleons or that of “O”

alone. Diagonalization then removes the H-F energy for the

incident particle from the transition operator. If we work

to what is identified as the second order in perturbation

theory, then transitions of the nuclear particle must be

taken into account. These we assume involve states in the

p-shell, that partially occupied, ana those in the (s,d)-

shell. The inclusion of second order processes, analogous

to self-energy insertions, makes it possible to account for
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the effect of virtual single particle excitation upon the

reaction. These will not in general be important as they

involve large energy denominations. For example, the spin-

flip transition 3/2- tol/2- involves at least some 6 lleV of

excitation, viewed as a single particle transition. On the

other hand, the formalism is given in a general way to in-

clude situations when this conclusion cannot be reached.

It is convenient to use a harmonic oscillator basis

for the discussion of the nuclear wave functions. For the

A= 9 system, the oscillator spacing is%w = 19.7 MeV. The

binding energy of the last neutron in Beg is 1.7 MeV and

this defines the single particle well. There is a continuous

spectrum of proton energies provided by incident He
3 system.

For an incident energy of 25 MeV, the 18.75 MeV available in
(1)

cm. weights the proton spectrum heavily in this vicinity.

Approximately 5.6 MeV is required to separate the He3 system

into deuteron plus proton with zero energy of relative motion.

In addition the average separation energy for He3 is some

2.3 MeV. This value implies strong interaction between the

three constituent nucleons. A small admixture of the D-state

into the ground state wave function of He 3 is to be expected.

On the basis of the cluster model used here, there is a small

probability for obtaining protons of 1.9 MeV of binding.

The proton spectrum may be characterized as extending over

some 12 to 15 MeV, measured from the Be 9 ground state.

The equivalent excitation energies measured from the Fermi

Note: Footnotes begin on page 85.

-25-



energy in Be 9 are obtained by adding 1.7 MeV to the values

quoted. The imprecise qualitative statements are of course

replaced by exact information contained in the nuclear form

factors.

The two body wave (2) function,~, in nucleons 0,1

is now assumed to satisfy an equation of the form given by

Bethe and Goldstone. It is implicit that the potential u

appearing here is that which generates the transition

operator to, . A chosen configuration’ @ is determined

carrying in principle the quantum labels for initial ground

state systems. Our sole interest at this stage is to com-

pute changes of state for the two nucleons previously

singled out. All of the other fiueleons in the A +3 system

undergo no change of state. The fuhction @ may be thought

of as the Slater determinant of Wave functions q (~O~SO ) ,

for particle 11011in state LO J and @ (PO;SL ), for particle

IIIt~in state P~ ● A ohange of state for the two particles

illqllestiorltakes Us to a new many-particle configuration.

The latter’ has an excitation energy e with respect to the

Ohosen configuration. It should be observed that while

bt)th nucleons move in the same well, that nucleon designated

as “O!!is in continuum states. The other nuoleon, namely

IIltl,is in bound states, We shall keep the two nucleons

out of the occupied states in the chosen configuration. An

operator, usually called Q, has the funotibn of preserving

the exclusion principle. In the Beg, He3 problem, Q must

prbject of’f the Oocupied stateB of the p-shell. A form of

the operator doing this is
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Q(aC)=l-[4Cl-”$’ ~m,m.
mC=.ZC

(6)

The operator acts in the product space of two nucleons,

Q =QOQ,. If aC refers to the quantum labels (n~m)c of

states occupied in the chosen configuration, then nc =#C= I ,

[#cl = 3 for our problem. Eq. (6) inaicates that 1/3 of

the p-states are inaccessible to our interacting nucleons.

We will often fail to introduce Q explicitly in the develop-

ment to follow. It is understood that the factors of2/3 are

to be introduced where applicable.

The dynamical equation determining the two-nucleon

motion is

Introducing a complete set of states for a free-bound system,

namely,

Pp, (@, i%) = 7?(mm’p(@3
.

we obtain a two-particle Green:s function in configuration

space ,

The unit operator appearing here should also be augmented

by Isx 1= , that for the space of charge-spin. It is

simplest to think of the operators, e.g., that in spin,

as decomposed in terms of the singlet and triplet projections.

ThenOfor example,
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1,= P(’]+P(2] = 1/4 (3 +CJ’l “g2)+ l/4 (1-:,%2)

and the four states (in spin) resolving the identity give

rise to the operator representation. These familiar

results are also implied in the formalism. The sums over

spin and L-spin states are suppressed since they add

nothing new in the way of details. One word about notation:

the states q (&, ;:,) are those for scattering in the H-F

potential. As such, they carry the real phase shifts

arising from this potential. Moreover, the many-body aspect

is thereby emphasized. The states gP(~z) are those for

bound particles in the H-F well. The outgoing radiation

boundary condition, q = q(+) is implied for the scattering

states. The generic notation (1,2) should not be confusing.

We are still solving for the motion of an interacting system

comprised of a bound and a free nucleon.

We generate a set of coupled linear equations starting

from the statement

VP = UO+U%N, ●+
(7’)

and then operate from the left with ~a*,a = (v,~) being a

pair index. The equations have the form

(8)

The wave function WI should be a Slater determinant

for the given state. In this way the exclusion principle



is taken into account in all matrix elements. A two-

channel approximation to Eq. (8) is sought. Such a pro-

cedure was also employed in the Lamarsh and Fesbach (16)

discussion of inelastic neutron scattering. To do the

same thing here, we restrict the nucleon bound states in

a and @ to ~=POahd p=p, . If ~ is expanded in terms of the

ya functions, a matrix of u connecting the two channels

is encountered. One element of the matrix, v,, , describes

excited state elastic scattering. The explicit appearance

of this and the other elements is unavoidable. The explicit

expansion of ~ is circumvented through the llt-approximation!l,

u+ ‘t@ (9)

It is evident that W=WO is implied by @ . The substance

of the approximation (9) is that an affine transformation

has been carried out upon the u -matrix. For this reason

linear combinations of its elements determine a given element

of t.

In the sum over intermediate states of Eq. (8), all

processes leading to finite lifetimes are neglected. Two

examples of these energy-conserving processes are shown in

Fig. 1. The point here is that the inclusion of these

introduces certain details. These are relevant to the

physical problem. However, in a schematized version of

the theory such as now presented, they are intrusive. We

shall clarify any ambiguities of presentation in the following



section. For the present, we write down very symbolic

formal statements. The processes which we can include,

in addition to direct charge exchange, are shown in Fig. 2.

These involve a change of state for one of the interacting

particles. Bethe has argued that such processes are of

order A-’ in large nuclei. They are described as the pro-

cesses involving non-momentum conserving transfers. !J!he

processes are also small here owing to first, bad overlap and

second, the large energy denominators. With these provisional

remarks being made, we write the coupled equations as

b = coo +Col I
00 b

E-e, ‘o
/ *

b = C,. +Cll I
10 b

E
10- 6, i

(lo)

The two-particle energy CP describes the target nucleon in

(ld,2s) orbital with the incident

An excitation of amount kw = 19.7

spacing, is required. The matrix

nucleon still in ~~ .

MeV, the oscillator

element of the potential,

that v,, , describes, in this unrealistic scheme, scat-

tering of the incident nucleon from an initially excited target

system. We may solve the second of Eqs. (10) as

-1

(

b = !-C,, 110
)E-c, “o’

whereupon,

b = coo+ co, I
00 c

E -cl-cl, 10 “ (11)

Here$as in the preceding expression, the b!s are the matrix

elements of t and the c’s those of v .
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The expression (11) is suitable for a comparison

with the two-body matrix element of (4) , or nearly so.

We shall indicate later how the two are related. At any

rate if we were to completely ignore the role of Coulomb

forces, (11) would be suitable for the description of the

“elastic”, ground-to-ground charge exchange. We mignt

then argue that b,O x CIO can be used to describe the

ground-to-excited state exchange. This is untrue unless

the excited state arises from a single particle transition.

Thus the decomposition tO, = (tOl) +1 ,(tol) = boo

(c, l 1.,1 e, ) = O , (p, c,Ol 1.,1 POe,O) = 0,0 may not be

altogether helpful. In particular, the first excited state

in B9 occurs at some 2.3 MeV of excitation. This is much

too small to be accounted for by a single particle transition.

The state in question is either 5/2- ?r 3/2-. It can then

be reached from the ground state by 1+ magnetic (Ml) or

2+ electric (E2) transitions in both cases. The Ml’s are

expected on the basis of a single particle model. The odd

nucleon carrying all of the nuclear magnetic moment permits

matrix elements of the moment to exist between ground and

excited states. We further observe that in the fractional

coupling model employed, the information about the excited

A=9 states is carried by geometrical factors. This says

that M; = Mz in the form factor of Eq. (4). Alternately,

the extra nucleon with ~ = 1 couples to L = 0,2,4 from[4]

to form ground and excited states. We should then think

9 apd Beg* transitions.of using (11) to compute both the Be
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The data of Wegner and Hall show that beyond 90°, the cm.

cross section for ground and excited state exchange are

practically identical. In the forward direction, charge

exchange to the ground state shows a distinct peaking.

The 10°: 50° cross section ratio is about 10. A similar

comparison for the excited state yields a ratio of 3.

The latter form factor is very nearly a constant function

of momentum transfer. It is wholly unsafe to argue that one

process represents a direct interaction and the other some

sort of compound process.

We are stuck with the nuclear form factor. The geo-

metrical coefficients will reduce overall ratio of excited:ground

state yield. It is not likely that the 2.3 MeV change in Q

will influence the dominant contribution from the nuclear

form factor for small momenta transfer. And, certainly,

the t-matrix of (11) is a slowly varying function of momentum

transfer for small values of that quantity. A radical

change in the t-matrix can be achieved by taking the ex-

ohange through another channel. That of (5b) will be con-

sidered here. In the intermediate states formed by adding

the proton of He3 to the neutron of Beg, excited states of

~lo
are encountered. The possible two particle states may

be generated by operating on the B 10 ground state as vacuum

with two pairs of hole-particle creation and annihilation

operators. Speaking now in j=j coupling, we form, symbolical-

ly, wave functions of the type
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t
This basis with unperturbed energy ●V ‘~ [~$P) -@h)]

(~)

describes the motion of two hole-par~ic~e vibrations. Diagonali-

zation of the short ran~e inhrgar’ti.cle force> e.c.? One of zero

range , in tne basis produces a spectrum of states. Such

states have a two-hole, two-particle character in terms of

the associated shell model creation ana annihilation operators.

We may speak, however, of the excited states as arising from

the presence of two quasi-particles. Charge exchange can

now occur by the exchange of a vibration between zwo quasi-

particles present. The diagrammatic process is indicated

in Fig. 3. l’hat figure implies that the charge-excnange

force arises from the exchange of two-hole, two-particle

vibrations. It is easy to show that the excitation spectrum

of Be’” computed in this way is only approximately correct

for the higher states. It is not literally suggested that

pairing theory holds here. In fact, the older, seniority

scheme of liacah (171 may be thought of as furnishing the

basis of’ tne discussion. No exact analogy holds with either

formulation since we are interested in n-p interactions.

These occur here

the same shell.

!L’heenergy

in a region where both species are filling

denominators for two-particle states can

be lowered from the 19.5 Me~ previously quoted to a~out
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10 MeV by the procedures rirst described. We can obtain

something lower by treating the intermediate B
10

system

differently. This nucleus can be represented as a neutron and

proton movin$ in the presence of an excited Be* core. The

excitations for the latter are loosely thought of as phonons

llfor quadruple vibrations”. In particular we consider the

1 phonon, 2+ state of the core. Such a state is also built

from two-hole, two-particle excitations. (4) The vacuum

here is the state with no phonon present. The physical

state is then that with two “particles” and a single phonon

present. The proton is added to the system at fairly high

excitation. It does not have its motion altered to any

appreciable extent. The neutron being at low excitation is

influenced by the phonon. In another language, the neutron

suppresses vacuum fluctuations. It has appreciable proba-

bility for being in the final states to which these fluctu-

ations occur. As a result its self-energy is increased due

to its coupling with the phonon.

A computation of the single-particle coupling to a

phonon excitation has been done by Kissinger and Sorensen

w“ The interest there was in the influence of proton

core oscillations upon the single neutron spectrum in the

region of Ni. Their results are what one expects, with

the “single particle” states shifted of the order of the

phonon excitation energy. Our computation could be carried

out in much the same manner by substituting an equivalent
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repulsive interaction for the attractive one used previously.

This statement is meant to emphasize the role played by the

backward going graphs. The suppression of vacuum fluctu-

ations is almost entirely due to these graphs. One such,

occurring in second order, is shown in Fig. 4a.

It is necessary to deal with the two-particle spectrum

in the present problem. The situation here is not so simple

as that discussed in the previous paragraph. ’10 discuss the

intermediate state configuration of Fig. 4b, a device is em-

ployed. The mathematical artifice itself is attributed to

Gottfried (191 and we re-interpret it for use here. The

initial n-p system is uncorrelated, and apart from self-

energy insertions, is not coupled to the 2+ phonon. We

account for this coupling while the two-nucleon system is

in strong interaction. The intermediate states to which the

nucleons scatter couple with the phonon for sufficiently

small separation-in-energy, u , of phonon and particle states.

An estimate of w is provided by observing that the Ip– par-

ticle, some 4.6 MeV off the phonon energy, can effectively

suppress

only the

then its

say, the

interval

nucleon.

the vibration. For purposes of enumeration, first,

added proton is permitted a change of state. If

energy lies within the interval of O<E~ < 7.5 MeV,

phonon suppression is effective. Outside of this

no coupling to the phonon occurs for the added

The condition is then imposed that both nucleons

couple to the vibration. It is considered that the coupling

-3’5-



of just one nucleon does not affect the two-particle

spectrum of excitations. Quite important is the fact

that the transition of the target nucleon alone from

Ip3,2to lpl/2 is also effective’ in suppressing vacuum

fluctuations. This process has been represented graphically

in ~’ig. 4a. The effectiveness of this last process depends

critically upon the splitting P3,Z-PI,Zin the single par-

ticle well. This we have estimated as 7.5 MeV from the

9neutron scattering on Be . The estimate was made by means

of perturbation theory retaining terms up through second

order. (5)
10

The observed 10.7 Mev, T=l,?’t=+state in B ,

whose spin we would restrlot as 1 < J $ 3, is that dealt

with here.

Equation (7’) and (9) when taken together produce the

integral equation

t= V+v ;+t, (12)

For definiteness and purposes of reference, the energy

denominator is written explicitly as

+
e = E (A+l)-fi(0)-fi (l)+iq. (13)

The symbols h(j) refer to the H-F energy operator for the

nucleons, e.g., h(j) is that for nucleon j. The energy of

the chosen configuration

going to discuss now the

namely t(E). This takes

is E=EO(A+I). However we are

spectral representation of t,

Eq. (12) out of its original con-

text, at least for the moment. The iuentity is resolved
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$ I

over H-F states

in such states,

element of (12)

in two-particles, and e+ of (13), is diagonal

according to definition. An arbitrary

is, in pair-index notation,

(alt l@)= (alvl f?)+ $
(alLJly)(ylt l@) ,

Y E-eyi+

The approximation assuming constant matrix elements of

for certain states Cy, is introduced. ‘This is formally

the statement

(alul f?) = Corlst, ( E*S c= e < E*+(JJ )
B

matrix

(14)

(15)

= O, otherwise.

The Gor’kov factorization

the preceding statement.

we use

in superconductivity utilizes

For the constant in our equation,

v) = Au(p)u (v).
(16)

Here A is an undetermined parameter giving both sign and
~

magnitude of the interaction. It is also thereby implied

that v is unknown. In particular then the u of Eq. (12)

is certainly not that of Eq. (7’). To avoid confusion

we should have employed a notation of ~ . Similarly, t of

Eq. (12) is unknown and should be called %. It is possible

to establish that ~ is some part of u . The term residual
N

force applies to U. In addition it can be seen from the

Yamagouchi factorization of Eq. (16) that; is what iVlottel-

son (20~ would describe as a “specificity force”. Roughly

speaking, such a force is that undiagonalized by the H-1’
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procedure. It nevertheless has the property of describing

long range correlation in the nuclear medium. In a finite

nucleus these correlations arise from the existence of

collective degrees of freedom. It is possible to extract

these motions from the cluster corrections of Brueckner

theory. Such has already been done for the elastic scat-

tering of neutrons. (4)This procedure is described elsewhere. —

The present method, Eqs. (12) - (16), gives the same answer

as that of a more precise analysis. It also displays both

of the approximations, one being specificity, which are

required. The other, the adiabatic condition, has to do

with the slow variation of matrix elements implied by (16).

A word or so about the backward going graphs is necessary.

These have only been taken into account through our numeri-

cal estimate of w . This is certainly unfortunate and as

well incorrect. It is otherwise impossible to reproduce

the energy-weighted sum rules for distribution of multipole

strengths in the nuclear excitation spectrum. (21), (22)

The importance of ground state correlations, i.e., those

already present in the medium, is the greater the closer one

comes to zero frequency.

If now we write

(Pltl~) =U(v)f (p)

-3t3-

and substitute this, together with (16), into (14), we shall

obtain



A u (p)
f(p)=

u’ (y)
; I(E)=~ .

I- AI(E) E -CY+LT (17)

We define next a parameter ~’ equal to (u’(y))av X ,

the average-in-energy yielding a mean square matrix element

connecting initial state @ to those {y). Then the condition

for the existence of a state in the two particle spectrum

of excitations is

AI(E) x51–
1X1

1-
(

—~” 1- w
)

= o,
u E- E*

(18)

an attractive interaction, A’ = -1)(’Ihaving been assumed.

The first zero occurs at

E: EC= E*- w ;[&=~=h [(:2) av; u’=u’ (E*)). (19)1/[
E -1

This solution is mathematically acceptable for a large

range of values of t . Physically, we can make some inter-

esting deductions. It is not possible to express the exci-

tation energy EC -EO(A+ 1 ) as we did in Eq. (8), namely

as e~+e”-e~-e . The excited state of ~he A+l system is
P P

thus not separated from the chosen configuration by the

(approximate) difference of H-1’ energies. Relevant to the

two particle spectrum of excitations, our states Ec are not

then given by EO(A+l)+Aeh+ACP. In fact, we shall argue that

the lowest state of excitation in the two particle H-F

spectrum lies at an energy much higher than EC-EO(A+l).
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To arrange this we need only require that 0< EC-EO< 7.5 Mev

(the figure quoted for the spin-orbit splitting). On the

other hand it can already be seen from Fig. 5, in which

1+ 1X1 I(E) = O is plotted versus E, that this can be

guaranteed. !J!hethree parameters of Eq. (19), these being

replaced by ~ , nave certain numerical values. Thus the

splitting off 01 E from the H-F spectrum is controlled by

E andw. Instead of estimating ~ we make interpretations

of Eq. (19) based upon results obtained from more exact

treatments.

The nomenclature two particle bound state is intro-— —

duced to describe any state having the character of that

Ee-EO . This terminology has to do with the relative position

of such states in the two particle spectrum of excitations.

However, the underlying physics is not yet clarified. To

see what this is we look again at the reaction channel of

(5b). Both the neutron and proton are originally in shell

model particle states with respect to the Be8 ground state,

as vacuum. The interaction of these nucleons with those

of the core, (~@” (lP,/,$ , can lead to core excitations.

These are described in terms of shell model hole and shell

model particle creation operators acting upon the physical

vacuum. An alternative but equivalent representation is

obtained by utilizing a new set of creation operators, those

for quasi-yarticles. Such operators are formed by taking

linear combinations, of appropriate nature, of those for



shell model hole and shell model particle states. A

partial diagonalization of the residual internucleon

force is implied by the transformation. It is this which

determines the particular linear combination of operators.

Although this kind of technique originates in pairing

theories, the latter are not necessary for the quasi-particle

picture employed here. Summation of the cluster corrections

from Brueckner theory, according to a set of prescriptions

will produce the additional diagonalization (over and above

that giving H-F energies). To get the Be8 parity right,

we consider states with two-quasi particles present. The

lowest of these is that corresponding to the presence of a

single 2+ phonon, relative to Be8 as physical vacuum.

All of the previous remarks are summarized in Fig. 6.

Notice that we imply, by Fig. (6a), an excitation of the

collective state occurring as a self-energy insertion in a

single particle line. In addition a distinction has been

made between the shell model states of added particle (the

proton) and odd target nucleon (the neutron). The former

are characterized as having complex H-F energies or finite

lifetimes. As such the independent excitations corresponding

to these states are often! and we shall follow this usage,

also called quasi-particles. This is a characteristic

terminology of the Green’s function treatments. (2s)

The finite lifetime for the neutron is neglected here.

It thus has a real H-F energy. Charge exchange involving
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other than valence neutrons could not be realistically

(quantitatively) treated ignoring finite lifetime corrections.

We require that two states, E(k~) ~ c’.— and E(k~)~ 6“ ,
k k

exist in the - “quasi-~ article” spectrum with ener~.y

difference approximately equal to the excitation energy for

a collective motion. This criterion was first given by

J. Schrieffer. ~ It tells when ve can expect to see a large

shift in energy or lifetime, principally the latter, in

the single “quasi-particle” spectrum. Physically, then,

the two-particle bound state represents the renormalization

of the optical potential (principally its imaginary part)

due to couplings of the single quasi-particle spectrum to

collective motions. (24) A hypothetical example, e.g.,

low energy neutron scattering on 015, furnishes more graphic

illustration than does our charge exchange problem. The

incident neutron is already in a quasi-particle state with

16respect to O as physical vacuum. In another view, the

neutron would be described as in a particle state with re-

spect to the O
15

ground state. The first, A+l occupied,

H-F states of the (n,015 ) system form the chosen configuration

as before. Intermediate states of the A+l system are those

of two quasi-particles in one picture and those of two par-

ticles and one hole in the other, for example. At this point,

the superficial differences in nomenclature vanish. We are

led to look for particle summation procedure (i.e., a partial

diagonalization) reproducing the O16 excitation spectrum of



low-lying states. This implies the quasi-particle re-

presentation. The partial summation leads to the renormali-

zation already described. On the other nand, our inclination

in a straight forward application of Brueckner theory is

to convince ourselves that the third-order and higher

cluster corrections are small. Precisely this point of

view is responsible for our failure to treat nucleon inter-

actions with finite nuclei in a convincing way.

Referring again to Fig. (6a), we require that E(k~ )*

E(kti)-E:*
C*

where E=

the assumed vacuum.

mately by E(kO)~w*,

with which coupling

is the 2+ excitation energy relative to

Also, E(k~) ought to be given approxi-

where W* is the interval in energy

to the collective motion occurs. Com-

paring with Eq. (19), and using E(k;)-E(k; ) =EC* ~u’ =Ee,
z

we see that these qualitative arguments are consistent with

the formal results. Asterisks on quantities are meant to

imply renormalizations which cannot

present context. With Fig. (6c) we

titles of the Be 8
core can interact

be dealt with in the

show how two quasi-par-

over large distances by

exchanging a vibration. This long range interaction is not

generally available to our n-p system. The latter is not

imagined, here, to form a part of a collectively excited

group of nucleons. Only the core nucleons satisfy this re-

quirement. A long-range interaction involving the n-p system

is shown in Fig. (6d).



We are now in a position to add the t-matrix, %, of

(19) to that whose matrix elements are implied by (11).

The only difficulty arises in obtaining the relevant bound

state operator. Referring now to Fig. (6b) we write

(20)

The symbols have the following meaning: P(E@~ #E,. )

is the density-in-energy of two-particle bound states at

the energy of the incident proton; (A )~v is the strength

of the two nucleon, phonon vertex; { is the t-matrix for a

system of two nucleons with lab. energy Eol evaluated at the

momentum transfer associated with the energy u . Every

quantity in (20) can be estimated. In particular, apart

from statistical factors and others for dimensions, I %(EOI;W=O)12

is justi the two-nucleon laboratory, total elastic cross section,

EOi= E(ko)+E(k, )~at energy Eo~ . The strength of the vertex

function is determined when we construct the excitation

8spectrum of our core, Be . Fig. (6b) is relevant to this

computation. Estimates of p(E~o ) can be made using simple

thermodynamic arguments. (25) The importance of the density

of states is that it determines the energy variation of the

bound state t-matrix. The resulting sum of t-matrices

which we have constructed can give rise to an interference

3,’1) cross section.structure in the (He The matrix t is

non-berm ~tian. In appending t to the matrix element <~>.

in the chosen configuration, the rapidly varying part of
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the residual force has been accounted for. Presumably,

b ~0 is of slower variation. It, bOO , is not however a resi-

dual force. No discussion has been given as yet of the

proton H-F field. There are questions attendant with the

simple-minded addition of t-matrices. These have to do

with whether the sum of residues corresponding to poles

in the resulting two-particle operator comes out correctly.

Generally, the answer is a categorical, no! The difficulty

is ignored here so as to admit simple, relevant physical

details. Actually, we should preier to recasz the problem

in terms of an alternative many-body formulation. Here one

12would use the C ground state as tne physical vacuum. It

is then possible to project out 93che initial, tie +He , and

final, T+B9* , configurations, from Cle* states. The over-

lap between these would then be determined by the composition

*
of C’2 states. Again we should encounter after tedious

algebraic manipulations the physical features described

here. On the other hand, the presentation would have app eared

less heuristic.

III. Details for 2-body t-matrix

In the preceding section it was suggested that: (i)

the matrix element of the two-body transition operator in
L

the chosen configuration could be expressed as bOO+@~ ;

(ii) the t-matrix could be written as a sum of diagonal and
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and non-diagonal terms, t=~+I. We wish to examine the

relationships between these statements. In regard to (i),

it is necessary to put Eq. (11) on a quantitative basis.

Also, the internucleon potential, v , must be specified

for the physical (charge-exchange) problem at hand. This

problem through the two-body matrix element of Eq. (4)

places restrictions upon any formal results. The formal

statements, relating mostly to (ii), will appear as a set

of rules. ‘These rules will pertain to how we interpret and

compute t(etol ). The physical restrictions tell us what

procedures are likely to yield reliable numbers. They also

present certain concrete aspects to be dealt with. Among

these is the nearly axiomatic statement: The two-body t-

matrix appearing as the result of interactions between com-

plex systems is always off the energy shell. (This is, for

example, one of the difficulties encountered in impulse

approximation descriptions of elastic n-d scattering).

There is further the related problem that one is thereby

instructed to

inducing part

to the use of

keep the H-F potential out of the transition-

of the interaction matrix element. This relates

nuclear distortions and their proper incorporation.

We have alluded to this

Finally, some attention

pects having to do with

aspect in a qualitative way thus far.

ought to be given those formal as-

the addition of t-matrices. It is

actually unambiguous, following the inclusion of the formal

details. The foregoing list then comprises the topics of

this section.



To get at the decomposition of t-matrices implied

by (i) and (ii), let us restate the rules governing such.

This is done within the framework of many-particle theory

and the H-F method. The analyses previously carried out

by Bethe <26) and Shaw (27) form the basis of our discussion.

In adding a particle to a ground state nuclear system, it is

necessary that the H-F energy operator for the particle be

diagonal. In Brueckner theory, “ (j=l, ....A)‘he ‘nteract=on ‘o~

between particle and target is eliminated in favor of t!.
‘t

We have used a version of the integral equation, (7’),

which relates the operators t and u to each otner. In com-

puting the energy of the cnosen configuration in A+l par-

ticles and then subtracting the ground state energy EO(A),

that for the target, one encounters the matrix elements

x( n~n”lt.l n~n~)e
f “j

If we define t TO be a sum of diagonal
i

and non-diagonai operators? then clearly

We require, following Watson, that ~o?be diagonal in nuclear

states. Thus, in forming the energy operator To +~~oy

for the added particle, neither the k.e. operator nor the

average interaction operator is separately diagonal in nu-

cleon states. It is however possible to diagonalize the

operator sum h(o). Because 10 is a one-body operator, :

can only change the state of the added particle. However,

again these non-diagonal matrix elements are restricted

according to
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(n~l Tolno)+ ~,(n~njltotlnonj) :0.
i’

Bethe points out that we are to impose tne equality

(n~injli In ~ni)=(n~n!lt In no)
‘Y 1 ‘i ‘k

o
even if n.z n. . ~~ereadily find from this statement,

7$

‘Y-n; ‘
that

(O; lIojln on;) =0.

Also note that because of the diagonality of ~oi, we have

(n~n~lIoiln~n~) =(n~ntltoyln~n~),

It is altogether ciear that

The rules

taneously

either or

which follow are: I excites j alone or simul-
+

“O” and j; to, excites “O” alone; t . can excite
t O?’

both nucleons. We have tacitly assumed Throughout

that our matrix elements are antisymmetrizeu.

These simple results enable us to put Eqs. (7) - (11)

on a quantitative basis. ‘l’hetwo-state approximation of

the earlier discussion is given in a valid manner here.

To tnis end the relevant single particle (j-j) states anti

tne occupied state for added nucleon are showti in Fig. 7.

Ihe oound states are generated by employing an oscillator

approximation to tne self-consistent well. Yet we are re-

stricted by the c.f.p. representation which led to dq. (4).

~he ~n,(lp)5 , configuration used for the bound states, p,
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implies that tl~e individual values of Total angular

momentum and its 3ra component, (J,n;), are not good

a.uantum num?3ers. This is expressed as

lp(l/2s;nJm)) = Z[

1/2 A ~

1~~lmlp(njmj))~?; L1
It is possible to tal~ about transi~ions between Lfievarious

(j-j) states. Generally speaking Inls feature makes avail-

able smaller energy denominators. We shall use as our two

states PO = lp3,2~nd LIl = lpl,i Ihe projection operators on

to these states have numerical values given by the V.C. co-

efficients. Thus in any two-body matrix element, a pair of

such coefficients is implied.
(6)

In computations this

(+)
means that for each value of L , a pair of operators, AL

(-)
and Ad are i.n+jro~~~ed. The operators are connected by

the relation 1 . &~: . Our two-body matrix elements are

always in the same (n~)-shell

(P.J+IPJ+

or

(PLk’14PJ) i

By operating to the right and

observing that the identity

(7)anli of the general form.

(lJ&k”IvIP&k) ●

(f)

left with the operators Az

(k’p~bipak) = (k’(~;/Ly++~y/-L-)bJl($P--++~>/A2)k )

(f)
holds, and that the operators Ag are idempotent, A; = Al

any combination of states can be obtained.

amplej

_q.9_

Thus, for ex-



Identifying p+ as V, , p- as V. and the A; as V.C. coefficients,

we see that the statement is true. The matrix elements for

a change of state in j appear in the formal analysis.

These are explicitly defined in terms of the matrix elements

for no change of ~ .

In so far as possible it is desirable to follow the

formulation of the Brueckner theory. To emphasize that

the single particle energies are computed self-cons lsi~$l}tiy,

we write E~ as the energy corresponding to a state Ik) .

No change of notation is required for the CP’S as they al-

ready carry this implication. The integral equation for t,

operating on the chosen configuration, is

.2
Q

tlo)=vto)-hr pPk.(Et - E=phlpk’hk’l I 10}

Q ulp.k’)(pk’[110) ,
+ P Epk,

‘: “Po-<P-
E~/

(21)
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This equation replaces that of (7’) and it is to be under-

stood that the matrix elements are antisymmetrized. Energy

conserving transitions involving a change of state for both

nucleons are explicitly represented by the rirst term.

Here the density of states, in energy, is p~,(E~, ) =

k’2[~/(2n)3] ● (dk’\dE,,)
J

dfl~, . The quantization volume

is Cl and E =Xp ‘P - ‘o
is t;e nuclear excitation energy.

Conservation of energy requires that E~/ = E: - E=& ;

(hk” ‘2Jl*)=E,~ ,M* being the effective mass. The index Q

on a summation means tnat the chosen configuration is not

to appear as an intermediate state. It is thus clear why

the transition operator I appears. The form chosen for

Eq. (21) has its justification in a choice to employ regular

potentials, v. Therefore, t will be ~iven in terms of an

iteration on v.

For the moment, the antisymmetrization between added

nucleon.and target constituents is given up. This can be

taken to mean that the principal value (P.V. or P) term

of (21) can be rewritten.

(22)

The one-body distorting potential which acts upon the

added or external nucleon is~o . Although particle states

have finite lifetimes in Brueckner theory, it is sometimes

convenient to ignore this. ‘i’hecomputation of excitation



energies is very often characteristically done in such a

manner. The scattering boundary conditions and related

lifetime aspects associated with t, distinguish it from

the herm~tian K-matrix of Brueckner. We assume that E~/

is real, hence ~. is herm~tian. The added particle is

distorted by its motion in the self-consistent potential

u o“ The functions q carry the real phase shifts associated

with this potential. In practice we often have the complex

phase shifts, 8C , available. Use of 8C(k?) together with

real E~, constitutes a small-width-of-the-line approxi-

mation (Im t<< Re t’;Re t x K).

Next, the one-particle functions are constructed as

(p’hlo) ‘ @vIO)-&p (E:-E )(p’lul/.dd)(p.k’IIlO)
/lk’ Xp

+ ~ y“ (P’I” IP)(PII p) .
(23)

‘+ ‘: ‘%.-% --h(o)

It is to be noted that the non-conserving transitions are

ostensibly brought about by single changes of state for

the bound nucleon alone. Of course this is not true as

we shall see shortly in our evaluations. Such processes

comprise a very small part of the number of non-conserving

transitions. According to the two-state model both (P,v’)

take on the values p. and pi . However, because of the

appearance of I, p is throughout restricted to p,. The

two equations arising from (23) are
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or
j. = 90 + uo,

I

E: - E=,-%(0)
f, )
1
.

f,=9, +u,,
I

E“-E -“h (o) II
k xl

(24)

The potential $ has been formed by taking the energy-

conserving terms together with v. One-body amplitudes now

appear for the external nucleon in interaction with the

target, leaving the latter in definite state. These are

the functions f. and f, . A Tamm-Dancoff description of

the system would be given by the expansion Zfpl ~) ●

A
The amplitudes go and g, arise from v and are quasi-Born

amplitudes. We identify Uol and U,l , involving v, as the

pseudo-potentials acting upon the external particle. This

nomenclature just means that two-particle potential is

weighted by the density in one of the particles. The inte-

gral of the potential over the density produces a potential

(pseudo-potential) for the remaining particle. The set of

equations (24) should be compared with those (10) which

arose in our qualitative discussion. We find as our solution

to (24)

Evidently we shall operate upon this expression from the

left with some state (kl . Moreover, as an approximation,

the non-diagonal elements of U,, , in the k-basis, are taken

equal to zero. The result of the foregoing is to give
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(’%ltlo)’(k%ho)+x(k%lul’%)# ~ ~ ~k;lv,‘/P)+,e(%h), ’25)
k’ k - xl- k’- I I

We now require that all the matrix elements be antisymme-

trized again. This is a way of saying that we have con-

structed an approximation to the solution appearing in an

antisymmetrized theory. We shall not say how good the

approximation is, but simply note that the structure of

the t-matrix is physically satisfactory.

In so far as it is possible to approximate the matrix

elements of ? by those of Vj (25) gives an explicit solution

for t. That operator has diagonal and non-diagonal elements.

Both of these are found. It is our hope that I is small.

We can be more explicit. Now at least for k=kowhere we go

back to the chosen configuration, there obtains

The Brueckner (28) version of our t-equation,

t
Q

=U+v t ; (V=vo, ,t=tol),
++iq

would define the excitation energy as

e ‘t,, +too+ TO+T
x. I

Additional notation has

-av - a v

- co-too-t,,”

been introduced here.

Itlo).

(26)

(27)

The labels

O and 1 refer to the interacting pair; $0 is the energy

of the chosen configuration defined such that &?o+ &~ +t-,~=

EO(A) = ‘J: + ●PO , E; = (fi’k~/’2M)+ {;: , ($’0= (ePO -;;:)

+ fi2K~/2M, the sum of k.e. eigenvalues for the two nucleons;
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~0 =~, (n”n”ltln”n” )~ still implies no change of state, thus ~“v
“i’

‘0” =~L({n~lY[fli{), (i = 1,..., (A-l) ),fi~he”<e.and t
II

being antisymmetrized; tit is the full interaction opera-

tor for particle i with no charge of state for this consti-

tuent. Two points are relevant here. First, the energy

of the added particle, in the chosen configuration,can be

expressed as (fi2k~/ZM) + t~~ . Second, the perturbation

development of (26) discloses that no second-order terms

occur in to,, leading back to the chosen configurations.

Then, using (26), and writing

it immediately follows that

(0[:]0) = (dub)+ imp E:-E (OIV ~,tlk’P,)(@,ltlO).~1 ‘P CDx

For the present theory, the terms now correcting Voo are

analogous to the cluster corrections. Their specific form

is different from that ordinarily encountered. This is

explained as arising from the c.f.p. representation. TO

a very good approximation $ x v00 00 when the diagonal ele-

ments of Z are computed from (25). It is still necessary

to compute (k’~’l $\O~ which contains still another matrix

element of t, namely that of I. We know something about

the non-diagonal elements of t from tne restriction
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Again thinking in terms of a c.f.p. representation, where

4“ determines the effective A to be A = n, it is evident that

~ii=( n~n~l~lO)avX -~(n~lToln~);(~= (IP]5)c (28)
I

This means that in most practical applications, the non-

diagonal elements of ~ are going to be quite small. We

still however need an estimate of I in order to solve Eq. (25)

explicitly. To get this, we make the usual small-wiath-of-

the-line approximation. In an algebraic operator notation,

we write

: =V -Lmpvt; Ret=a ,lmt=B~and

(23’)
A Pt

t’ u+u—
DQ “

Ret = V+llpvp+u E Ret
DQ

Imt = - mpua+ u ~ Imt
Q

z- P (-~pua)=rpva + v ~ - rrpxa

Q

t s X(l-impx);x =V+v:v.

Q

All of the matrix elements of I are computed from this

equation. Consequently O is given in terms of v and

finally the diagonal elements of 7 are given from (25).

We may also note that the I matrix elements of (29) are
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improved by writing t = X(l+inpX)-’ The crude procedure intro-

duced here does lead to a full determination of the two-

body t-matrix. It is suitable to regular potentials

vhich can lead to finite values of the iterated form of X.

The evaluation of (25) can be completed now. There

was in our beginning equations a P.V. o
‘Uch ‘hat ‘k-EX,

-E~,# O

held. This restriction is automatically satisfied now and

the P.V. notation dropped. A small imaginary part, +ic

(used interchangeably with the notation, +iq), has been

added into the energy denominator. This reflects the

boundary conditions on t. The matrix element ~k’~,1 v~p,k’)

can be approximated by the real part of the optical poten-

tial for elastic scattering at the energy

A rough estimate of the energy dependence

v,,, (k’) =fl + 0.5 fi,,,f! =-@MeVO (29)

fk, =&2&2Mo
is given by

The effective

mass approximation yields E~, = (M/M*)~~/ where the ratio is

roughly (0.7)=”. It is then apparent that the energy de-

nominator vanishes for fairly large E~, ,Ett= (1.35)-”0

(E: -~ -Ii). In the example given, (see Fig. 7), this con-

dition obtains for E~, = 35.2 MeV or fib.= 24.8 MeV. The

corresponding value of E: is 23 MeV for 14.5 MeV labora-

tory protons (1.7 MeV of excitation energy is added to the

lab. energy). Even a fairly soft potential v will have

appreciable momentum components for the energies quoted.

However, the point is the matrix elements of v and $ are
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appreciably cut down. In particular, this is true for the

states required in the physical problem. For example in

the me. (k’~,1 $10), with the numerical values cited

above, we ask for the correlation of momentum components

in $ separated by some 19 Mev. (8) The components are taken

from those lying in the intervals about 23 and 42 Mev. Our

statement is only semi-quantitative as one has yet to con-

sider the cm. and relative energies of motion in the two-

particle system. At any rate we shall be a-ole to see

for conventional potentials v that the matrix elementsof t

are mostly given by tne first term of (25). Again, only

the diagonal elements of t are computed from this equation.

The non-diagonal elements are, we indicated, gotten from

(29). It is also true that (28) gave a restriction which

must be observed to get an H-F representation. The P.V.

terms of (25) are likewise expected to be small. In a rough

way, contributions from states Eh,c35 MeV tend to cancel

against those witn E~,>35 Mev. The potential v and also

that $ will not in general have appreciable momentum com-

ponents beyond an energy corresponding to E~, = 90 Mev.

These remarks and others made here serve to emphasize the

ofi’-energy snell character of Eq. (25). ‘i’heproblem is

more extensive than this. And, this remark has to do with

the restrictions imposed upon t by the me. of (4).
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It should be our point of view, regarding Eq. (4),

that the two-body matrix element is computed according to

prescriptions from many-body theory. These have been dis-

cussed in connection with 125). The procedure by which

the spatial 2-body me. of (4) is reduced

from many-body theory is straightforward.

sary to require the Lorentz invariance of

~feuse tnis invariance nere. l~lOller\30)

invariance relation as

to one calculable

It is only neces-

t01 matrix elements.

has given the

(30)

The quantities p~ are fOUr-VeCtOrs, pt = (~L,EL ) where the

energies Ei. are the corresponding kinetic energies for the

particles i. The factors f are explicitly f = ~- ,

the positive root being taken; W,z = V:,fl
2 is the product

of total energies for the interacting particles. Each p,
b

is carried into FL through the Lorentz transformation

Lp. =;L. Similarly, the t-matrix transforms according to
L

: = LtL-’ . We choose the translation

1P, = j = p -~U(. -i

as our transformation. The vector ()~s chosen so as to
&

give particle “1’?of Eq. (4) zero momentum in the initial

state; thus O = lo. We have gone into a frame in which.

the bound nucleon is at rest. This is by definition its

laboratory system. It is straight forward to show that

the me. of (4), apart from factors of f’s, is replaced by
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One has written To, for the operator occurring in the

matrix element. This is quite correct. It is understood

that this is the operator giving rise to transitions within

the specified laboratory system. In particular it is this

operator whose matrix elements are computed in the ~roduct

representation of the two-state model. We have yet to obtain

the operator which our many-body analysis applies. The

Lorentz transformation factor, t , accompanying (31) is

Y(x)=1+0.5x2,Ac = fi/Mc~ k: ‘ ko/~7.

This factor has been given in the non-relativistic limit

and will not differ appreciably from unity at a bombarding

energy of EIOb(ko) = 25 MeV. This is true for all scattering

angles t(~flgo). So, we expect < to be insensitive to the

momentum transfer ~. Although ~ is integrated over all
.u #

values 1$1 , the form factor entering (4) selects a range
N

of values about some y . Within this range: a) the n.r.
o

approximation to & holds, and; b) < is essentially equal

to unity. The matrix element replacing that of (4) is now
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The last factor, namely g, has been written in a manner

which suggests the neglect of off-energy-shell effects.

Strictly speaking, (3), (4) and (31) show that we

are always off of the energy shell. ‘lhis continues to be

true for ground-to-ground transitions of elastic scattering

where ~~~1= ]~,1 . For charge exchange, the ground-to-

ground transition does not imply the equality. (We cite,

for example, a Q-value of -1.09 Mev for the Beg(He 3,T)B9

ground state transition). We intend to exploit this fact.

Relevant to the me. of (31), the salient feature is that

the same bound state orbital appears in both initial and

final states. Nucleons in this orbital are bound with some

effective energy B: Transitions are however induced between

scattering states of energy E(~~)-B’ and E(~~)-B’. We shall

return to this aspect subsequent to a discussion of (4’).

It is our intention to ignore the ~-dependence in g. This
N

is done by writing ? = (l~lk~)yo where y. measures, for
& m

given (x; ,M2 ), the predominant momentum component for a

nucleon in the form factor. The determination of y. has

been discussed previously. In effect, we reduce EO(kO) by

an amount k~(vo )-2~dbE0 , which for 2 Mev of binding of a

single nucleon in the 3-body system amounts to 12 Mev. The

2 Mev is an effective value of Eb determined by the form

factor of (4’). It can be argued for the problem at hand

that E~ s 2 Mev is about correct. Our previous qualitative

arguments that ‘O (ko)-B should be about 15 Mev thus hold.
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The approximation to (4’) is then

(33)

This form is familiar from the usual impulse approximations,

with local t-matrix, to elastic nucleon scattering. (31)

In evaluations of the g-element of (33) we shall not use the

diagonal part of to, , namely (~ol )d. This emphasizes the

off-energy-shell aspect. Instead, (~ol )n~ , the operator..

changing scattering states, is to be employed in (33).

Some discussion of (~ol )n,~.has appeared in connection with

(28). But, this must be augmented for quantitative purposes.

The H-F energy giving nuclear distortions, i.e. distorted-

wave matrix elements, is computed from The sum (~ol )+~~

(seeEq. (20)). We require no explicit knowledge of J

the non-diagonal operator, when the combined c.f.p. and

cluster model representations are employed, together with

regular potentials v.

We still must snow how the various operators ~ol ,;

are used in computations. And, in particular the relation

between ~ol ,~ and TO, must be examined. There is an ~ndis-

tinguishability between the transition implied by (31)

and that which “wewrite, in i-spin and position coordinates,

as

(34)
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Again, recall that q. = (n,~)t gives the principal and
L

orbital quantum numbers of the bound nucleon. In the

c.f.p. representation, we shall have q. = q, . Of course

there is a difference in binding energy of the last nucleon

as we go from one member of a mirror pair, e.g. (Beg,Bg)

to the other. However,this difference is reflected in the

initial and final kinetic energies of the observed particles.

Thus, we can consider the bound constituent to remain in

some given energy state, B’. The scattering constituent

has its energy measured from this value. Its relative

kinetic energies are E(~~ )-B’ and E(~~ )-B’ in initial and

final states. ThatlcOl # 1~~1 is a reflection of the physi-
d

cal difference of nucleon binding energies in the mirror

pairs. These qualifications permit us to use g’l of (34)

in place of g of (31). Fig. 8 shows that gL differs from

g only in the manner in which the nucleons are labelled.

We snail understand in what follows that our single par-

ticle functions are

However, it is less cumbersome to carry the indices

(w,?/’). These will only be implied in the subsequent

work. Our aim now is to replace (31) by a matrix element

which we shall describe as being self-consistent. 10

this end we rewrite (31) as

9’ (90AI(’l(Tol)d+ (rol)nd. I go)ik )
@ N
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The diagonal operator (To, )d is defined as giving the

H-N energy. The operator (rO, )n.d. changes only the state

of the particle in the continuum. Eq. (31’) must not be

solved as g = {
go k~’l (rol)n.d.l go~~) which solution

would emphasize the model replacements of (35) and (34)=

Instead, a two-particle correlated function ~~ , the station-

ary state of interaction, is introduced as

rolgo(l)xk(o) = (Uol +7rol)wk(o J). (36)

The potentials Uol and ~o, are respectively diagonal and

non-diagonal

The function

(+)
*k = goxk+

according to definitions previously given.
~+~

Y
k

satisfies an equation of the form

‘ (u +Tol)vp; a:)
-J+l o!

= E- To-fi(l)+ic (37)

It is imagined that \ (1) is H-F energy operator for the

bound particle. Introducing the approximation that we are

on the energy shell, according to which a set of time-

reversed distorted wave functions q~;)goexist> we write

7:)

The g-matrix

of Gell-Mann

90 ‘ goxk,+ L uolTy90. (38)~~-)

element is then determined using the procedure

and Goldberger. (32)
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9= (g. AJuol+n-o, 1%(+))

(
(-)

= Tk, 90--JZ-)%,;;) 9.1 Uo, + ?JJ’k(+) )
o

= (q:;)901 Uol+ ~olI w;+’)- ($)9.1 Uol I w:+~ 90 Ak )

(‘ 7;-/’ go17roll Y;+) )+(q;)901uo,19 A )“
o k

(39)

It is now correct to take second term of (39) as equal to

zero. On the other hand, we define the non-diagonal t-

matrix, (Zol )n.d. through the relation

In view of these statements, we write our matrix element

as

(41)

Here , again, we are off the energy shell. Nevertheless,

(31’)

our procedure has defined

go off the energy shell.

final states are produced

the manner in which one is to

Distortions in the initial and

by the potential 7JOIwhose matrix

elements equal those of (Toi )d = (~ol )d + ~. We recall

that ! contains the collective excitations.
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Apart from

self-consistent

account for the

the antisymnetrization, (31’) represents a

statement of the exchange problem. We can now

scattering interactions of initial and

final nuclear systems. kiith‘~ turned off, the phase shifts

in q~+)are those for protons incident upon the target

(A=9 for Beg) at the energy E(~~). A similar statement

holds for the neutron channel q(-]. In constructing the

cluster representations for 3-body systems, a totally anti-

symmetric 3-body i’unction is employed, or should be.

iherefore, the initial A=3 system scatters, in principle,

in the H-F potential generated by, here, zhe A=9 target.

‘l’herole of ‘~ is to describe, by (20), the collective ex-

citations produced by Ghe bombarding or scattering systems.

i~e have discussed the specific nature of the collective

states for Beg(He3,T)Bg*. Every other problem will require

a similar analysis. It is relevant to observe that ~ will

influence q‘-]for B9*(Q =-3.42 Mev) quite importantly while

9
(-) for Beg will not be so seriously effected. In the

entrance channel, q(+) ,
u

we expect to be able to ignore t

altogether. The advantage provided by (31’,), which offsets

some of the formal complexity, is seen by referring to (28).

In view of the latter we can express the interaction as

(42)

The constant M* appears as an effective mass, but this is

not to be taken literally, Oex gives the exchange mixture

of the force.
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We specify now the exchange mixture of the force.

It is fairly well established that the 2-body force is

charge independent. And, for the energies of interest

here, this is certainly a valid picture. On such a basis,

we can write

v
[ 1m = (v) Lumho,)-’.x(p mhol)l) 1/2(1+ P”) .

01 om

(43)

The spin-orbit and tensor forces have been omitted here_

The latter is certainly important for the computation

of binding energies. Also , the former enters the H-F

interactions for both positive and negative energy states

in a significant way. As PM is the space exchange operator,

(43) implies a Serber interaction. The potential parameters

are: v, = Pt with I.Lt= (1.19)-’ fal (inverse fermi units);

(V. )~ = 0.6 (V. )% ; ( VO )% = -4.0 Mev. These are para-
.

meters suggested by the complex of low energy analyses of

the two-body problem. (33) For charge exchange, we use

only the part of Pr, the isotopic-spin exchange operator,

given by (114)[T+(0)r’(1) +T-(0) T+(I)] . The notation in-

volving raising and lowering operators in isotopic spin is

standard. This completes the specification of VOI , which

enters Eq. (29). For O of (42), we use a more indirect
ex

procedure, giving the same answer as (43), but having its

value in an illustrative context. In the space of totally

antisymmetric, two-particle wave functions, the following

representation for the force, ~ , is useful.
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(44)

[1 [1Sums are carried out over the (2S+1) = S and (2T+1) = T

labels, singlet and triplet, of spin and isotopic spin.

The t-matrix tST in each state is multiplied by the pro-

jection operators in spin and i-spin. Introducing the

labels (e)o) giving the parity of the space states, we have

Thet~j , II =~1, are numerical functions of position,

parametrized according to (i,j), e.g., range p(ij) and

depth co(ij). Again, for a Serber interaction, using

7 .*(? ‘+?’ ), we find

as the even state force.

A; -Arl = P7can be used

The identities ii: + $ = 1 and

to rewrite this expression as

wev=J-
16

[@:;,+A:

In the spirit of charge independence, the isotopic sPin

states do not affect the force parameters, thus tl~= t, ?

t t3081 = Clearly, for the physical problem only the PT-

term contributes. Charge exchange then measures the dif-

ference between singlet and triplet interactions. Again,

this conclusion holds in the space of totally antisymmetric

functions. Operating upon a product function of indefinite

symmetry, C’ has the following properties for a charge ex-

change process
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Ve *Y (space) +~(spin) *L (L-spin)

!Che normalization has been changed in ?“ to take into

account the fact that only 8 spin and i-spin states

exist for charge exchange processes. The complex conju-

gate function which must be used here is

Then, the expection which obtains is

= + (VeI t,-3t31*e) a

Now, we compare

bolic language,

are

this with (31’) and (43) where, in a sym-

the Dirac representatives, bra and ket,

This is to say that all of the coordinates have been ex-

changed within the n-p system. The expectation of tiof,

which generates to good approximation a local t-matrix

t 0,, i.e. to,% u01 , is

$(~;lsu;,-v;,
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This is the sane scn?t of result as ti~at first obtained. ‘.ie

measure the difference ?>et’.mensinglet and triplet interaction-i.s

in the charge exchange reaction. The apparent sign and

normalization differences relative to The previous result

are trivially recovered anu are unimportant nere. Having

made the point that (45) contains the same information as

(43), we express Oex in the form

(46)

The restriction to a Serber force is not necessary here

as Oex multiplies a force of zero range.

Up to this point, we have discussed the manner in

which a charge exchange reaction is to be regarded as a

shell-model computation. The point of departure has been

such that one seeks to keep as close to the Brueckner,

Bethe and Shaw formalisms as possible. This leads to a

H-F self-consistent pictu_re within which it is clearly pos-

sible to define residual interactions in an unambiguous way.

For the reaction treated, the residual force induced tran-

sitions and gave the coupling of the single particle spec-

trum to collective nuclear motions. Actually such a result

is quite general and independent of the specific model in-

troduced here. It emerged that the H-F interaction gave

rise to nuclear distortions but no transitions. This too

is a general result, in view of which one is cautioned

against misunderstanding the basis of procedures which may

be obscured by terminology such as “the distorted-wave method”.
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Distortions arise as a systematic consequence of the

application of the H-F method. This cannot be emphasized

too strongly. We have not gotten to the point yet where

we attempt to analyze the reactions between complex nu-

clear systems in terms of “real” (with hard cores) t-

matrices. Indeed, the work of ];oszkowski and Scott ok)

gives an indication tnat such may never be necessary. At

the same time that we introduced the t-matrices, in what

might seem an arbitrary way, namely, one unrelated to

Brueckner theory, integral equations were given for each

such operator.

a quantitative

There is

strate in this

These equations can always be examined in

way to explore questions of ambiguity.

one last aspect which we would like to illu-

section. This has to do with the change in

the optical potential, or (~ol )d, experienced by the added

nucleon when the n-p system couples to a collective state

through ;. It is our aim to show that tne 2-particle H-F

energy is changed in a way which reflects itself in the

transition operator. This is to say that the transition

operator of (42) implies that some of the two-nucleon force

has been exhausted in achieving the collective coupling.

When, then, % is added to (;., )~, and it is stated that the

residues of the two-particle operators are conserved, we

simultaneously imply a renormalization of the transition

operator. We have of course accounted for this possibility

by means of the M* factor of (42), M* # 0.6M of Brueckner

theory. It is worthwhile to see why the inequality must
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be imposed. We use techniques originating in the reference

of Gell-Mann and Goldberger previously cited. Symbolism

of algebraic nature will be ta~en from the many-particle

Green!s function theory of

An exact analogy with that

we shall point out. It is

Martin and Schwinger. (35)

theory does not hold here, as

nevertheless possible to con-

struct the required analogy. ‘l’he“equation for the 2-particle

stationary state of (37) implied that there existed states

~a diagonalizing the energy operator HO = hb+To+Uo;(hb=
P

h(l), Uo=Uo, ). We rewrite the

H = :0 +~ol ~ Ho+Tol

total energy operator as
(9)

=.@o+Ac)+Ivo,-Ac ). (47)

Transitions now occur through an operator ;O, . If we call

the stationary state 01 the 2-nucleon system ~. , then

tne average value of ; in Y’.is

(48)

We imply that *0’is the lowest physical state of the y;

diagonalizing G; , defined below. Introducing the propa-

gators, or Green’s functions Go and G , at some energy ~ ~

G;’ = E-HO = G~-l+Ac; G-i= E-Ho-~’ G:-’-~’1 (49)

where G-’Y. = O, thus E is the ground state energy Eo, we

imply that

4-I

Go G =~G+l# (50)
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‘< :*...

In the above, ~ is the proper self-energy for the two-

nucleon system. Eq. (50) is to be compared with the G

equation of Kadanoff and Martin, w

G;’(I) GZ(12,1’2’): 8(1-1’) G,(2-2’)-3(1-2’)G,(2-1’)
●

+tVG~ (123J’2’3+)
3=1’

(51)

where G2 is a 2-particle function, analogous to our G,

G, is a one-particle propagator and G3 that for 3-particles.

We do not in any sense work within the hierarchy of many-

particle functions here. Eq. (50) can be rewritten as

(52)

which is an obvious result, having,the expected physical

significance. It is of interest to compute the change of

normalization as we go from the function W. to that $’ .
0

However, we first note that (52) and (48) together imply

that

Then from

#(l+G?r)= t’, #G(G-’ +%)G; =t’6:,

we infer by approximation to (52) that

~’G ~=t’G’. (53)

This provides a prescription from which ~’may be computed.

A similar result is obtained by Baym and Kadanoff (37) and
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the necessary details are to be found there. The t-

approximation giving ~’ is often quite useful in practice.

And we have used this approximation throughout our analysis.

The reason for computing ( YOl ~~) is that ou~ approxi-

mation to (48), namely (31’), involves writing

(54)

We have then

The error made in the normalization in computing ( ~ )0

by (54) involves the operator combination of (53). This

is to say that there has been a loss of probability from

our H-F spectrum ~ . This has gone to make up the states
6

$’ reflecting the coupling to collective states through

AC “ The change in the transition operator from t(no, )

to t’(~ol ) reflects itself as a change of the two-particle

self energy with total energy, at E=EO.
(10)

Alternatively,

there is a loss of normalization with respect to the origi-

nal H-F basis set. The results of this paragraph imply

an energy-shell approximation.
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IV. Summary and Conclusions

We have chosen to discuss a reaction for which it

is not possible to directly take over the measured 2-

body scattering amplitude to evaluate that relating to

complex systems. By working in the impulse approximation,

we confront the usual energy shell problem. Apart from this,

we have found it necessary to incorporate the random phase

approximation into our reaction description. Such, intro-

duces renormalization and hence further ambiguities in

the relationship between measured 2-body amplitude and

that, weighted by a form factor, which pertains to the

interactions between complex systems.

The point of view expressed here has been that the

elementary, 2-body, t-matrix is a dynamical operator.

Associated with such an operator is an equation of motion.

The specification of the latter must come from many-body

theory. That theory, basically H-F theory restated in the

formulation of Brueckner, is relatively unambiguous.

Particularly, within its framework, it is possible to de-

fine what we mean by residual reactions in a satisfactory

way. Such interactions are not always small. This is a

fortunate and physically significant aspect for the finite

nucleus. For, when we compute t in such a system, having

its own degrees of freedom, the appearance of large resi-

dual interactions usually reflects the coupling of the

single particle spectrum (in which t operates) to the col-
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lective nuclear motions. While there are singularly few

collective nuclear motions, lying at low frequency, which

we can treat in a satisfactory quantitative way, the situ-

ation is far from being discouraging. Most often we couple

the single particle spectrum to 2+, 4+ and 3- electric vi-

brations. Tnese couplings are quite easily extracted from

the Brueckner cluster expansion. A partial summation pro-

cedure is used to do this.

In such a view as that just expressed, we give up any

aim of describing the spatial distribution p(r) of the nuclear
~

density; and thus also that of having t[~j reflect the corre-

sponding spatial behavior. For us, the finite nucleus is

just a spectrum built on a particular class of states.

We consider the present treatment of the charge ex-

change problem to be closely related to that of (p,p’)

given by Levinson and Banerjee (L-B). Not so much emphasis

was placed upon the H-l?self-consistency by these authors.

However, their work clearly implies and contains the optical

potential aspect of self-consistency. This is chiefly ex-

pressed througn the antisymmetrization in (A+l) nucleons and

2-nucleon dynamical equation. Note that, in this connection,

we only have to antisymmetrize in the z-space of initial

states, e.g., 2‘“2 [+, (n, ) +O(nO) - ~ (zO) VO (n, )] , to make

(31 ‘) self-consistent in this sense. But, actually, this is

automatic owing to the way in which the charge exch?nge ma-

trix element has been written down.
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Both

and (LVB),

resonating

of the treatments, that of the present paper

have much in common with that known as the

group procedure. (38) The latter contains

the elements necessary for H-F self-consistency. Its

chief difficulties lie in the unphysical approximations

to the Internucleon force and to certain wave functions

made in order to: a) produce a two-particle dynamical

equation, and;,b) to resolve the kernel or integral opera-

tor which appears, over a suitable orthonormal basis.

‘.l!heseaspects can in fact be avoided by the introduction

suitable t-approximations. Moreover, one has to exploit

the fact that the effects owing to certain distorting

of

interactions, e.g. , optical potentials are in fact known. .

Strict attention to this fact was paid by (L-B) in their

derivation of a two-particle dynamical equation. We have

explained that the dynamical equation of this paper came

from a parallel drawn from the Bethe-Goldstone equation.

In many ways the method of resonating group is superi-

or in its presentation to that of the c.f.p. and cluster model

as used here. This will continue to be true whenever com-

plex nuclei, d,a,T, etc., are used as projectiles. At the

other extreme, nucleon projectiles, an adaptation of the nu-

clear matter computations of Brueckner, Bethe and Shaw is pre-

ferred. Such an adaptation has as its basis the charac-

terization of the finite nucleus according to techniques

arising from field theory. Given an appropriate definition
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of the physical vacuum, one goes ahead to construct the

Green’s functions G, , G2, and G~. There are dynamical

equations connecting the members of this hierarchy. Some

approximations must be made in this scheme. However, these

are non-perturbative and as such not generally damaging

to the physics. In speaking of the Green’s function hier-

archy, we do imply the use of ensemble Green’s functions..

Such are implied in the pairing theories, e.g., the work

of Kisslinger and Sorensen. An example of the technique

to which we allude here would appear in a computation of

the hole-particle spectrum of C13.

The field theory characterization emphasizes the

role of correlations in the finite nucleus. Such can be

induced or excited by nucleon (or complex nuclear) projec-

tiles. The point is however that the correlations are not

always reproduced by either the ladder or random-phase ap-

proximations. Also, contrary to the depiction of Brueckner

and some of the work of this paper, particles do not always

scatter from. particles, nor holes from holes. Particles and

holes should appear on the same footing. The Green~s functions

Gp G2> etc., are of the Feynman t~e and thus preserve this

symmetry. Ferrell and his collaborators (39) have emphasized

the role of correlations carried by the backward going graphs.
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A collective excitation has been introduced in the

present analysis. We computed in a simple-minded way how

this excitation coupled into the H-F spectrum through an

operator t. The description we gave was schematic. Its

motivation lay in trying to reproduce a situation which

was known to exist from an analysis of the reaction graphs.

Of course, the physical nuclei involved always guide such

an analysis. It is possible to sum the Brueckner cluster

expansion using a Feynman projection operator off the

chosen configuration to obtain the appropriate collective

couplings. Some error is made in doing such a partial

summation, since one does not choose to re-examine the

Brueckner ladders, in order to correct them for redundant

countingso

The introduction of the collective coupling leads us

to expect certain renormalizations of the inter-nucleon

force. This renormalization, and as well the “collective”

vertex operator ~, is quite strongly energy dependent, and

A-dependent. It is then straight forward to envisage

physical situations of more interest than that described

here. Charge exchange, (p,n), for EP ~ 15 Mew in the region

of the Ni-isotopes will depend upon the processes described

here. Low energy (He3,T),E = 25 Mev, in this same region,

will also be similarly governed by a similar description.

High energy (He5 ,T),E > 40 Meti introduces two additional

considerations, namely strong absorption and the adiabatic
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approximation. The microscopic, 2-body description given

is not then particularly attractive. One instead resorts to

discussions based upon considerations given by the Blair

model.

A serious question may be raised having to do with

our use of a two-state model. That was introduced to be

able to include some aspect of H-F self-consistency. More-

over, such a model is formally tractable. To the point

however is the observation that some account must be given

of the virtual channels or states into which the actual re-

action channels couple. This is a very old idea which was

stressed by Thomas. (40)

We have been lead to distorted-wave expressions for

our two-particle matrix elements. Again, such are only a

reflection, here, of H-F self-consistency. This is one of

the chief contentions of our analysis. It is possible to

check the role of such an effect. The methods of this

paper comprise a point of view. This stands alone as an

exposition picture which derives from our qualitative under-

standing of reaction processes.

Machine computations are in progress for the example

939cited throughout, Be (He ,T)B * at 25 Mev. The computations

are designed to compute -: 1) a plane wave approximation

to the 2-body transition me., (31’); 2) the H-F statement
d

of that me. with ~, the collective coupling~ set equal to

zero; 3) finally, the me. of (31’). The results will be

reported in Part II of this work.
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Footnotes

(l);(p.25) The cm. system of the initial and final nuclei has

been deliberately chosen for these energy arguments.

This provides us with what is essentially a one-body

equation of relative motion for the colliding nuclei.

Obviously we satisfy the requirement

invariance. At the same time, it is

elementaryj two-body, matrix elements

of translational

consistent that

and wave functions

be computed in some laboratory frame. That frame of

reference is in motion with respect to our original one

in which the system cm. is at rest. The new frame is

selected according to convenience, i.e., reaction model

and associated wave functions. It is related to the

original frame through a linear vector transformation

carried out upon each particle coordinate.

(2);(P,26) This is a representative of a many-particle

functional in wnich only the initially occupied states

referring to “O” and ‘11!!can be found empty. Initially

occupied states are specified by the non-zero occupation

numbers in a chosen configuration, taken here to have a

two-particle representative @ . ‘i’heintroduction of @

and ~ , as defined, allows us to solve an equivalent

two-body Schr6dinger equation. But , in a later section,

111, we shall want to employ some results from many-

particle (secona-quantized) theories. At such a point,

then, the functional themselves are implied.
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(3);(P*33) Tne wave function basis WJ for two-hole,v

two-particle vibrations is discusseu in Appenuix B.

Note ~he appearance of the time-reversed ~’unction ~ .

If }, =}, the representation employea is that lamiliar

from pairing theories. The choice of quantization axis

MJ = O corresponds to viewing the nuclear excitation

as resulting from nucleon interactions with an incident

phonon, furnishing the quantization axis, of positive

parity, multipolarity J. The arguments of e. , namely
b

p and h,refer to particle and hole, respectively* The

nomenclature quasi-particle (state) will in general

refer to an excitation generated by taking linear combi-

nations of shell model hole and shell model particle

states.

(4);(P.34) The 2+ state! here) OCCUrS at verY low ‘requencye

Consequently, deformed shell model orbitals are implied.

These are generated by introducing a one-body quadruple

operator into the H-F energy operator.

(5);(P.35) The details of this estimate are tO be found in

Appendix C. .Underlying the present discussion is the

notion that the 10.7 MeV BIO state may be represented

as a composite of 2+, one-phonon excitation plus single-

particle excitations. The excitations envisaged, of the

latter type, are that either the extra proton or extra

neutron gets excited from lp3,2 to Ip,,z. The binding
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energy of the last nucleon in B 10 is about 8.5 MeV.

Clearly, these statements take on a somewhat different

character when viewed from the p+Be9 system; thus, the

two-particle, one-phonon coupling scheme is introduced.

(6);(P.49) The discussion to follow can be equally well

given in terms of (L-S) to (j-j) transformation coefficients.

The projection operator method used, was thought to be

more compact and convenient in the present connection.

(’i’);(P.49)States of the added nucleon are denoted as

k,kl, etc. Those for the target nucleon appear here as

p but, however, generally involve a change of } owing

to the interaction. The notation is then sufficiently

general for the representation of the two-particle matrix

elements.

(8);(P058) The number quoted here, 19 MeV, is obtained as

follows: E~O= 23 Itev,EkJ = 35.2 Mev, eP-eP is the
I

lpl,2-lp splitting taken as 7.5 MeV; Ek, + ~
3/2

-Ek
P, o - ‘PO

= 19 Mev.

(9);(P.72)

arising

The operator for the energy shift, namely A
c~

from interactions between independent excitations,

e.g., quasi-particles, is introduced. As previously

shown, the interactions come about through the exchange

of the virtual phonons for collective excitations. We
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shall then be led to an expression for the self-energy!

or its change, owing to the coupling between quasi-

particles and phonons.

(10); (P.74) Tne Brueckner ladder giving M* = 0.6 M

corresponds to our t(nol ). On tne other hand t’(%o, )

operating within the basis ~’ has been obtained by
o

additional diagonalizations~ or partial su~ations~

yielding the couplings to collective motions. It is

clear that ik* so obtained will not in general equal

that found for infinite matter. The latter supports

compressional modes of wide variety, which are collective

extensional and dilational disturbances. These are not

under discussion here.
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Appendix A.

The results of Section III depend upon certain

aspects of the Brueckner theory. This is in particular

true for Eqs. (26) and (27) and that following for

the matrix element (Gltlu) where two successive t-inter-

actions, leading back to the chosen configuration, are

dropped. What we can employ of the Brueckner theory is the

method. No single K-matrix element, e.g., that appearing——
-av

in t,, 9 computed by that theory can be used nere.

The summation of graphs implies certain diagonalizations

of the two-nucleon force. This in turn says that we know

not only certain diagonal matrix elements but also the

basis within which the diagonalization is carried out.

Every diagonalization introduces new eigenvectors. To say

that we want the t2-terms out of the perturbation expansion

for the ground state energy of the free-bound system is

stringent. This means tnat the single-particle energies

Ek and 6P have to be- computed in such a manner that this is

true. The oscillator well in which all of the particles

are assumed to move gives a basis set. This well may even

be assumed to be the H-F consistent potential. However,

nothing has been done in the direction of the Brueckner

method.

What is involved here is to determine {l~v for tne

t=rget or A-particle system and theri Lja~ f’or scattering

from the same system. The former is handled by writing
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K =V+rJAK
e (ael)

with
e= Ep(L)+Ep( j)- E#$; pJ-E~(ii;p O)

o 0

=Eo(nj) +Eo(n~) -El(ni;nfn~ )-E (n+;n~n~ ). (a.2)

lhe symbols PO and p stand for the ground staze target, or

chosen, configuration and an excited configuration, respec-

tively. In order to write the second of (a.2) an approxi-

mation owing to Brueckner nas been used. It says that we

may compute the energies of particles i and j which occupy

states ni and n+ in the excited configuration p as a sum

of effective single particle energies. In these energies,

the influence of one member

other is taken into account

particle energies appearing

oi the excites pair upon the

in some average way. ‘l’hesingle

above are written as

‘i (a.3)

The effective one-body operators tk~ are hermitian.

notation is introduced to correspond with that used

This

earlier.

There are problems of detail concerning how the operator

K
ij

differs from that K“.. These are widely known and
lJ

shall not be discusses here.
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A wave-matrix statement is introduced, which defines

wnat we mean by K?. ; this is
lJ

(ao4)

The configura~ion p. is the chosen one;
% is tne station-

ary state of interaction generated from interactions within

ko “ ie have from (a.4) and (al ) the integral equation

(a.5)
.

And, if we can define the inverse of the Green’s function

as

~;: = EPO (ij)-%(t)-h(y)

~hen,the following differential equation is implied:

The one-body operators appearing here are those 01 (a.3).

l’hese we shall descri~e as the H-F operators. The station-

ary state will contain all configurations in two-particles

which can be generated from V. . It is sufficient that we

retain this information in the operator Q% . ~he two

particle equation is rewritten as

(a.6)

This type of equation was iirst written down by Bethe and

Golustone. In solving the equation, we take into account

H-F self-consis~ency anu ignore that OT Brueckner. To do

this , we write
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- av
t = -1/2 kA.: + ci~ @i ; andi.i

TL=- (ii2/2M *) ~’. (aoo

The first of the statements permits us to use oscillator

wave functions. The second tells us that the oscillator

spacing is ~]w = %*/M*b. We nave introduces M* as an

effective mass but this cannot be taken literally; b2 is

the oscillator parameter.

The approximation procedure consists of introducing

a well and the wave functions @p(ij) parametrically depen-

dent upon the well. The stationary state is expanded as

This , when substitutea into (a.6) ,Ieods to o secular equation.

The unperturbed energies E(i), E(j) are.generated from

(a.7). It is assumed that v. .lJ is a regular potential.

Solution of the secular equation yields a spectrum in energy

E(ij). Taking the lowest value which appears here and the

{}
corresponding C

PO
we then find!P (ij).

PO
The K-matrix

elements are computed with this function according to

(a.4), i.e.,

According to this we have, in the ground state,——

(a.8)

(a.9)
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as the interaction energy felt by the nucleon in state n .

This will in general be different from the matrix element

of ;;;, as ~ivcn by (a.7). Iteration of (2.7) is carried out

until tb.e two results agree. The result of this procedure is

to determine the H-F consistent potential t-~~. The K-

matrix elements which emerge are not those computed from

Brueckner tneory.

It is easy to see:nevertheless$ that we have kept some

of tne aspects of that theory. In particular from (a.3)

and (a.5) it is evident that we nave built into the H-F

energy: all of the forward scattering off of unexcited

particles, and the sequence of self-energy insertions to

infinite order in v. .. It follows from these remarks that
lJ

t2-terms leading back to UO, the chosen configuration,

do not exist.

Having completed the self-consistency computation

for what we called ~~~ earlier, the interaction relating

to the bound constituent, it is indicated that the nuclear

binding energy be checked and also the r.m.s. nuclear

radius. If both of these quantities come out correctly,

we have been fortunate. It will not be surprising if the

energy/particle comes out correctly but at too nigh a

nuclear density. This has to do with our omission of

collective excitations in the bound state problem. These

permit a strong correlation structure in the presence of

reduced nuclear densities.
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To go to the Bethe-Goldstone equation for the free-
—av

bound system, namely to compute too a modification of the

procedure described is introduced. Given that we know

-av
t,, , the corresponding H-F operator fi(l) is specified.

If the two-particle equation is written as

[E -fi(o)-fi ([)] W(O,I)= Q UolY(O,I)
01

~o

(a.10)

we must fix t~~tiat this stOp. We have talked about par-

ticles “O’!and IIIIImoving in allcommonwell”. The added

nucleon was described

A + 1 particle chosen

move in a common well

avera~e H-F potential

‘+)(~o;~o) in theby a wave function qO

configuration. Clearly, the two nucleons

if they help determina the A + 1

for each other. We cannot solv~ this

problem rigorously. However, a suitable approximation is

available. An extra nucleon, j, is added to the A-particle

target system. It has initially the (~~)p~ interaction with

the target, and is added in the A-particle H-F state lying

closest to that of “O”. The latter occupies the state of

energy ~k = Ek - ‘F = T(ko)+B; <F is the Fermi energy for the
o 0

target, T(ko) is the kinetic energy af particle “O”, B > 0 is

the binding of the last nucleon in the ground state target. The

dummy nucleon ‘Ij”and the ground state system form a chosen con-

figuration A. in .4+1 particles. The self-consistent H-F

interaction (;”.v.)JJ A.
can be computed by procedures already

described, since j moves in the well of (a*7)~ Then for
-Ov

any well, too , e.g.,



-Ov
t -v (1 i-aj -$”:. ) %<Ro

00 =

= O AO>RO (all)

the self-consistency will

-Ov
t

-Ov
tii = 00 , in the sense

be considered to hold, if,

that,

(a.12)

The expression for the matrix elements of(~ov.) is construc-
JJ ~

ted from equations similar to (a.8) and (a.9). It is a

restriction of this method that the states n~(~o) and

n~(~o) must not be separated in energy by more than the

half-width of the optical potential state. This width is

given in terms of W, the imaginary part of the optical po-

tential. It cannot be obtained from tne hermitian approxi-

mation employed here.
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Appendix B.

The material of this Appendix was referred to at an

earlier stage in the text than that given in Appendix A.

However, the latter is helpful for the understanding of

certain ideas and notations here.

The two-particle, two-hole unperturbed basis set

~~ (Ilz) is fairly complicated. Indeed, we should write

for these objects

the states lt(i = EO,E~ & cr ) are occupied, and those

m~(j =E~,EP >c~ ) are unoccupied. The determinantal

function is implied as normalized to unity. It can be

demonstrated that the factor 2-’’21eads to <vJ Iv J> = t.

In order that this be established easily we have introduced

symbols ~ ,m.. It is then the understanding that ~t~8m0

is implied in (b.1). The symbol v stands, as before, for

the excitation energy E~+EP -EO-Eb or a sum of two hole-

particle energies.

It is assumed that the ~~ diagonalize the energy

operator H~a = ~ (1)+%(2), a sum of H-F operators. These

are defined again in the sense of Brueomer. At this point

such a definition is of considerable utility. This is to

say that the perturbed, two-hole,

‘?Jcan be taken as diagonalizing

+ Uhh , or

two-particle eigenfunction

the operator H~a+ UP,P+V~h
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(E - H;, )~’ = (up,+LJph+tJhh)VJ (b.2)

The interactions (particle-particle, particle-hole, and

hole-particle) appearing on the right correspond to the

various factor-pairings of the two-body interaction in

a second quantized, or many-particle, description. It is

our understanding that the interaction are residual, i.e.,

not accounted for in H~z . As long as we restrict VPP

to arise fron the cluster tcrrls, it is n9n-vanishing.

We have not said how the two-hole, two-particle states

were established initially. It is within the context of

our charge-exchange problem to argue that the B 10* states

are generated by adding a proton to the Be9 ground state.

Here , then, certain 3-body clusters appear. The BIO*

states which we consider are to be enumerated in a manner

consistent with these

be argued that IJPP is

arise in the counting

These involve details

cluster contributions. It can then

small but non-zero.

of states above the

but no new phyqical

Technical problems

fermi energy c~ .

considerations.

‘l’hehole-hole interaction u~~ is certainly not zero

within a Brueckner formalism. It is sufficient to recall

that hole states have zero widths within the formalism.

One must also recall that finite nuclei of intermediate and

low mass number may not resemble infinite nuclear matter

with its characteristically large excitation energies.

The particle-hole interaction VPh is clearly non-zero
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within the formalism of Brueckner theory. It represents

the largest undiagonalized contribution to the inter-

action. In view of this it is easily understood why the

vibration ‘YJ is often represented as a pair of hole-

particle vibrations, VPP ana ‘hh
being taken equal to

zero in this approximation.

Eq. (k.2) is to be solved by making the substitution

vJ=~cv n; providihg US with the usual seoular equation.

It might be remarked tnat UPP is the easiest of the resi-

dual interactions to estimate within the formalism we have

chosen. That,uhh , can be gotten at through certain experi-

mental evidence such as (p,zp). It probably does even in

finite nuclei involve considerable excitations. The force

VPh is the subject of much current investigation. The

preliminary conclusions seem to ifldicate that it is nearly

pure exehange force and, capable of giving saturation.

In view of our restrictions to residual forces, the latter

presents a Clear difficulty.



Appendix C.

This section contains an estimate of the spin-orbit

splitting

system is

We expect

9pl~a-p~,zin the A=1O system, n+Be . The nuclear

formed in elastic neutron scattering from Beg.

to reach states of excitation 6.82 Mev or greater

9in the scattering of thermal and slow neutrons from Be .

The Beg system is so light that for the bombarding energies

(O*3<En< 1 MeV) of interest we shall be in a Breit-Wigner

region. battering resonances instead of those for capture

are expected here. In order to pass to a single particle

picture, that of the optical potential, the A=1O level den-

sities should be large. ~his

fied at about En = 1 Mev. We

plicity assume that there are

condition begins to be satis-

shall for the purpose of sim-

enough levels to average

over - that the optical potential applies. The error made

will not be too large, if the splitting corresponds to a

value of Em > 0.5 Mev. Also, at such energies,states

Jn , equal to 1+ ,2+ are among those formed in the reaction.

The method of analysis used is only satisfactory for the

location of the 1+ state. In the body of this paper it

+is considered that a collective 2 state is excited in

Blo 9owing to the addition of a proton to Be . The position

of this state is determined by that of the l+,T=l state,

under discussion, together with the Be8* phonon excitation

Of 2.9 Mev. The arguments to follow are restricted to the

inference of the single particle splitting E(l@)-~(lP3,2).
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The method of computation here ia based upon a

perturbation expansion of the two-particle int~ractim

energy, u , In the first two orders of perturbation theory,

the single particle energy of a neutron added in the 1PI,2=

state to the A=9 ground state, will be E(lL2-)+vx(l/2-)

with VI ( i/2-)being given by the diagrams of t’%s~ It(a) -

It(c). Tne parameters oi’ the interacticm u are #’*xed

by computing the bin~ing energy per partiole and separation

energy of the last nucleon in the A=9 (Beg ground ~~ate)

system. ibis involves determination Qf the H-F potential

and the strength, a! of the spin-orbit interaoti.on f~r the

A=9 nucleons. No attempt is made to achieve H-F 8elf-

consistency. ‘l’hecomputation is first of all illustrative

and, next, should contain a proper two-body foroe, a rea-

listic two-body reaction matrix, to make H-F self-consistency

worth-while. A Serber force of zero range is used for the

two-particle interaoti~n v . It is convenient to work

within the basis of oscillator func~ions. l’he size para-

meter for these is fixed from the mean square) A=9j mdiue=

‘liefind that it is consistent to explain the low binding

energy of the last A=9 nucleon as arising from a renormali-

zation, x, of the two-nucleon force. oucn comes about i~

this nucieon moves in the presence of collective, A=8,

core or vacuum fluctuations. ~ozh the volume strength,

h, of the two-nucleon ~orce and the renormalization con-

stant x are determined.

-1oo-



A finite well is implied tnrougnouz, both l“or

nucleon-nucleon and nucleon-nucleus interactions. The

configurations relevant to the lat-ter are depicted in

Fig. 2C. The position of the state E(l/2-) is fixed by

requiring that the real part of the optical potential,

Re tiOP(I/2-),equal ReVI(li2-)0 From Fig. lC, we see that

the diagrams involve E(112-) and thus the equality gives an

algebraic equation for A( 112-).

The appropriate relations for the binding energy per

particle and the mean square nuclear radius using oscilla-

tor functions are

(Cl)

Here , N is the total number of nucleons; Wng is the occu-

pation of the oscillator shell, equal to 2* (A.n4+l)(L~l+2)

for a filled shell; Anl= (2n+~-2) where n is the principal

quantum number and ~ is the orbital angular momentum; AC

2
is the nucleon Compton wave length; MC = 938.2 Mev; ~UJ

is the oscillator spacing equal to %2 /Mb2, with the size

parameter b being given in terms of the force parameter K

4

as b = MK/~’. On the assumption of a uniform charge dis-

tribution, the second moment of the distribution is rz =o

(0.6) (1.25A’n)2f2. For the A=9 system, the value fiu equal

to 20.8 Mev agrees well with %ti = 19.7 from 41/A”3 applying
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to saturated (normal density) systems. These details are

repeated for completeness and reflect one way in which one

may treat the electron scattering data. We have now de-

fined a set of independent particle wave functions.

The two-nucleon potential is taken to be

(1) (2) ( 1) I+PM
VIZ(A)=V +CTI’:2U 9 u = p xi 8(9,-42); (C.2)

a Serber force of zero range. We take the ratio of singlet

to triplet volume strengths as equal to 0.6,whereupon

)W=o.ll xl,. The nature of the assumed force has rele-

vance for the form in which the wave functions are presented.

In computing the H-F potential, we encounter matrix elements

of the form

I

*(I) +,(2)
(~(l) +(2)lu I

2
‘2 +2(1)+2(2) I).

The Slater determinant is not to be normalized and the

single particle functions @ are here taken as products

of j-~ basis functions @ ~. and those in isotopic
n tP

t
spin <,,2 . A Serber force allows us to write the deter-

minantal function as

l/2(a.;ma;m+a;ma;m)
1122 II 22

2
a’ a
Sltl Sltl

.
1 2

a c1
s2t2 Sztz

The determinant is now in the space of charge-spin. All

of the information as to # - # coupling basis is contained

in the missing, but implied, vector coupling (v.c.) co-
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efficient. ‘Throughout the analysis, a charge-independent

force is employed. Moreover, the dependence of the matrix

elements of Vlz, Eq. (c.2), upon isotopic spin states is

completely trivial. We perform an average over the i-spin

states to obtain

This result says that the charge symmetric force is written

as [(1/4)(vn.+vpp)+(1/2)VnP] = {1/2)(V’+VnP). Then the

charge independent force is V = V’ = Vnp . The factor E(12)

in Eq. (c.3) represents the space part of the U,,2-matrix

element.

We shall give two forms for the matrix element of

v
12 “ The first of these is in the representation a=(n~$ P)”

The second form is that for the representation P=(n~# ),

namely the average filled shell yotential. In computing—.

the H-F potential from the ~-matrix elements, one multiplies

the diagonal, two-particle matrix element by the occupation

factor wnl+ . The a-matrix elements depend upon pro-

jection, V. “1ouse these for incomplete shells, more pOS-

sible states than particles can mean, in the simplest

applications, that coupling rules, e.g., Mayer-Jensen~

~ -~ C:OUP1lW, are required. However, the square, potential

matrix in occupied states, from which the H-F potential is

obtained, may be constructed in terms of operators projec-

ting off the empty states. To such a construction, carried
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out by enumeration, we attach the isotopic spin labels

through Vnn , Vnp , Vpp ● Then, independent of coupling

rules, it is possible to obtain the H-F potential for a

partially filled shell. In the a-representation, we have

the matrix elements

,I)ox.
= -(1 /2) (+ ;’+42v bllbzl;p( @2t4;~2f)r[:fi 1: pjf

(c.4b)

~z)CbLO
,.

u =2(-1) *’+’2[?J[iJ[q XL r(fd: n,t)

(2) “

u
‘x =-[ill[i21[ll (-l)~-4(-lt+J'+i'+i` z)-l)L;:(nl~:n2J:)
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The corresponding matrix elements in the 5-representation

are

The notation for the V.C. coefficient, Racah coefficient,

and (9-$) symbol is standard; [1k means (2k+l); g‘i)(n,~~f121~)
L

is defined as, (i=112),

2,= ~. I(nl#~n.l~)(YlllyLll~l)(~Zlly~lly~);9~)(nll~n#2
L

011: d:) ‘
J

d~k’ R:&.) R:&),
II 22



in terms of the Slater integral of oscillator functions,

the reduced matrix elements of the irreducible tensor

operator for the potential multipole, and the potential

strength. Although the answer is well known, the matrix

element of the one-body spin-orbit force is appenaed to

the preceding list of formulas.

1/2 ~+~-y,-l

Vsfin,llj, p,)= - a (11 p,] (q+ 1))=2 (-1) w OJ..J,4;Ijl) (c.6)

!J!heparameter a is the multiplicative factor in the force

We can at this point compute the H-F potential.

This is done in the @-representation. Two equations are

used to fix the values of Al, ana a. These arise from

the requirements that the average binding per nucleon,

B = E \N, and the separation energy, Sn , for the last

beg ground stateneutron be given correctly. In the A=9,

the values of these quantities are B = -6.46 Mev, and Sn =

-1.7 Mev. The Slater integrals which appear are:

I(lp4) = (5/6) (b-3/~n) ; 1(1s4) J=2(b-3\fi); 1(1s2 ,lp*)

= I(lp2,1s2) = (l/~) (b-’{~n) . Using the definition

el = (~l>\4nb3 ), with A! being measured in Mevef’ , we

obtain diagonal two-particle matrix elements with the

following values: (1P;,,I 2 ) =0.593 el;o 1 ‘%/2

(lpSfilS,filVllS,/.lP,c)‘0024 e~; (ls~,lulls~,) = 0.508 e,.

The H-F potentials which we obtain from these values are,

(A=9) ,

v (Is,,Z)=1.72e, ,vH~(lpvz)=3-13e, #
H. F. ,.
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-1o7-

In the oscillator representation, %w = 19.7 Mev, the single

particle kinetic energies are T(Is ,,,)= 14.8 Mev, T(lp,,,)

= 24.6 Me?, Introducing the required factors of (1/2)VHF
..

to compute the energy sum, we find that B is given by

-6.46 z 20,24- l,25e, -(),278ao (C.7)

To obtain the second equation, that for Sn , we consider

the last neutron to move in the field of a fluctuating

A=8 core. This core undergoes collective oscillations,

the maintenance of which is achieved only by depleting a

part of the single particle probability distribution.

With the latter there is also associated a loss of matrix

element. This can be thought of as a reduction in the

strength of the average nuclear field. The effect is state

dependent. It is largest for the states at the top of tne

Fermi distribution. conversely it is negligible for the

states at the bottom of that distribution. To calculate

the force renormalization requires the use of more compli-

cated reaction matrix operators than have to date appeared

in the literature. The expedient adopted here is to replace

e, by xel ,(xKI), in the equation for Sn which then reaas

- 1.7 =24.6 -l.565xel -0.5a. (c.8)



The two requirements: 1) that we cancel out the assumed

binding field, the oscillator well, as tne first and

trivial step in achieving H-F self-consistency; 2) that

the spin-orbit force lie in the neighborhood of values

given by intermediate coupling calculations, then fix

the parameters of Eqns. ~c.7) and (c.8) as

x= 0.77, a= 2.4 Mev, e, ‘ 20.8 Mev.

The mean square radius determination for A=9 gives a

value of 1.48 f for b. Then, At equals 855 Mev.f~

To estimate the contributions arising from the graphs

of Figs. lC..b) ana ICC), we adopt the following physical

picture. ‘l’heincoming neutron incident upon the ground

state A=9 system is at sufficiently ~igh. energy (k~”~<~>

= jn “’fI;In =1) tnat ooth s- and p-state phase shifts are

important. In its interaction with the target, the neutron

de–excites to the s-state, kn : k = 0. The target excitation

in this intermediate state is restricted to be no greater

than %W . Subsequent interaction between target and neutron

returns us to the initial state. ‘i’hispicture ailows us

to use etfective range theory; an enoruous simplification.

Furthermore , the two possible vacuum suppression contri-

butions (~l<c~ ,m>e~ : 1< = (IP3,2;Sn )9 lo= (1P3,2;B)Y m=o.;

~,= (l~3,2jSn) =J?o, m=O; m=O being E(k=O))vanish rigorously”

We are left wizh, then, the sell–energy term which is written

as
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1(g+92+ltd !@~)A
z

v= 13.26 -5 E(V2-)
s.e

[ 1.7 -E(V2”)] [6.46 -E(%-)] “
(C.9)

Here , as in all of “the preceding work, we compute anti-

synwetrized matrix elements. Ihe state ‘u’ is that with

zero kinetic energy, Ji(k=O), and spin-parity, l/2+. Again,

effective range theory gives the scattering wave function.

It is important to point out tne sum-over-intermediate

states , which is impiied, will be simulateu by varying

E(i/2-)in the equation Re UP (1/2-)= ReV1,’1/2-). ihe matrix

element appearing in Eq. (c.9) is compu~ed as

which is ~he form appropriate to tue p-representa~ion.

It is unfortunately too tedious to reprocuce ali of the

iormulas pertaining to &q. (c.10). ‘1’Ilemost useful, and

also those leading io The non–vanishing contributions in

our final result, are given below for reteience and a’id

to future computations. Note first that, in Eq. (c.1O)

the following definitions apply a, = Ip,,zp,,az = 1P3,ZPZ,

a = sl,2v , a’ = sl,2vt in the a–representation. T’Rus, we

have I,s ~, and J!’=~ = O in the following formulas.

-’ (11 2
J’)dt (’/2)([#l][#J’j’[l] 9 (O;n,q)x

[’

~1, y

11 M plM v

-1o9-

[ II*2 ~, i’
()

M
-1 (c.lla)

/.L2-M v’

v““X ,-(ti4)([7,][g2]y[41j2~11(F,nllt)<~~’l~l~[$~iI~(-l)A
(c.llb)

I



(C.llc)

(218X
= (,/2)[ 1 ] ([j, ][$2])’’2(-1)

-fi-~z(-l~l p,]-’ $(02; nl~: )
v

I

(c.lld)

In the formulas to follow, we use D to mean direct and

X to mean exchange. The formulas as given describe the

second order transition of two nucleons in the orbital

nfJ?l to the state of zero kinetic energy. This is true

although we compute a self-energy for a particle and not

a hole state. r

l(k2’/21tJl &i2)Al:v= ‘

I

[tlT’ ((D~12+(X~)2XZP[P] ((D~’)2+(x(:))2)
[m] I

+2 c$x;)~k(-l)k[k][w (ili2V’’/z;k~,)]21)zzzz’
I I

(c.12a)

-(-1)
Y,++’-t ‘#’+yl -k’ ,,

[1], D;) D;2~b) 6J ~,(-i)sx~’w(~?,~je;!,s)
II I

_(@(-lf2+*~[p]( -lj’[s]D(~ ’X(~) W(k#,~2~2;Ps)
‘S 1
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1$” = (1/2)( [#1] [iJ)”2 [-1,]-’ ;~~(02; n,~~)
I

‘“ =-\l/4) ([*, ][#2])’’2[l,j2 J(02; n,~~)
%,

I

(c.12b)

(C012C)

(c.12d)

x
%+ie+zh

“)= (t/2)[l] ([i,] [j2])’’2(-l f’[41,]-’{~02;nl~jZ1 )l) [~][qJw(~241~2i~2cJ
s

I ‘-w

(c.12e)
W(2,4Q4; Y41V (i, qp; ls)bv (49%9’ /2)

The factors q:’)(0’ ;n, .!,, ) are defined in an exactly
1,

analogous manner to that previously employed. Only this

time, a different Slater integral will appear, namely

(C.13)

Our procedure for handling the scattering state has been

to employ the interior wave function from effective range

theory, i.e.

~=fi)= ‘“2 ( 1- -Jas ) . (C014)
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The scattering length, as , is taken to be equal to the

range of the nuclear potential, r. of Eq. (c.1)= Also,

the quantization volume ~ is taken equal to the A=9

nuclear volume. The approximation for as leads to an

underesti:cate of I(02;n,~,2). A further diminishment

occurs if the integral is cut o$f at r=ro . To obtain a

roughly compensating situation? the integral was extended

to infinity. The value so obtained, namely 1(02;11’) =

7.9 x 10-37 was however
-3

checked against that, 5.1 x 10 ~

obtaining from numerical integration of the integral with

a cut-off.

We still require the one-body potential for the

neutron in the Ip,,zstate. In this potential, there is a

contribution from the repulsive spin-orbit force. Of course,

all of the interaction strengths have been fixed by the

considerations applying to the A=9 system. We find now

that

V(I/2-)= \,$lpl,2)-a=2.813e - a =-56.1 Mev.

The final equation determining E(l/fZ)is, then, using

Re tiOP(l/2-)=-45 Mev +0.5E(l/2-),

(C.15)

13.26 -5 E(IA2-) -?. (c.16)
11.1 + 0,5 E(l/2-)= 6,95x 10 .

[i .7 -E(l/Zj [6.46- E(l/rj



The solution of this is ~(1/2) = 6.4 MeV, or a spin-orbit

splitting lpl,z-lp~,zof E(I/2-)+1.7= 8.1 MeV. we believe

that we overestimate the splitting by perhaps 0.5 MeV

due to improper treatment of the principal value. Other-

wise, the technique is certainly useful. With the advent

of better reaction matrices, a more careiul computation

would be warranted.

-113-

1



k

I

k (2s,ld)

k

(d

~~k
()

--
I
k

Ip
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(2sJld)
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(b)

Fig. 1. Potential interactions, $, leading to vanishing energy
denominators in second order. The open circle, o, on an
external line refers to neutron; thatz @ refers to a
proton. Coulomb forces are neglected. H-F potentials
appear in first order.
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Fig. 2 Potential interactions leading to charge exchange in
the two-state model. One of the interacting nucleons,
!1011and IllIt, in particular the bound constituent, has
undergone a change of state. Such can occur through
the interaction as in (a) or indirectly as in (b).
Direct charge exchange occurs in first order.
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Fig. 3 Diagrammatic representations leading to charge ex-
change through the intermediary of two quasi-particle-
single phonon vertices. The s-particle, 2-hole inter-
action (a), and the 2-particle, l-hole interaction (b)
are described in terms of the A-particle ground state
as physical vacuum. The interactions occur through t-
or K-matrices, whichever is appropriate. The same
interactions can be viewed in a representation where
the ground state A+l system defines the vacuum. Here,
2-hole, 2-particle excitations occur, symbolically
represented as in (c). All of the interactions are not
drawn in. The effect of these upon a given unperturbed
configuration is shown in (d). Diagonalization of these
residual interactions leads to the Fe.ynman diagrams (e),
for the A-particle vacuum, and (f) for the A+l vacuum.
In both of these the time-orderings are specified for
the complete or single-particle propagators; ~ denotes
the phonon connecting ground and excited states of the
A+l system.
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1
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12.9MeV (Z+phofdMeV—
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Eq ~(Bd). .
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!
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(d (b)

Fig. k Suppression of vacuum fluctuations associated with

Be8 core by 1P3,2 neutron in Be9, (a). The corre-

sponding process, Be9 suppression by the added proton,

has been accounted for in Fig. (Sa). The location

in energy of the two particle states and the phonon

state is shown in (b).
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Fig ● 5 Canonical plot depicting one state Ec splitting off

from the spectrum Et of independent particle ex-
L

citations. The CYi refer, here, to independent

pairs of particles. !lhe lowest such excitation is

E. The state Ec has split off because of the de-
70

generacy or near degeneracy of the Cfi, within some

enetigyinterval u ,,about an energy @.
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Fig. 6 Diagrammatic representations, not of the Feynman type,
displaying some of the interactions involving the
virtual 2+ phonon (~). In (a) the emission con-
dition for the phonon is reflected by the labelling
on the line for added nucleon. Apart from this self-
energy insertion, there appear vertex corrections
similar to (b). Two nucleons in states below the
Fermi sea, core states, can exchange a vibrational
phonon as in (c). This long range force is available
to particles in states above the Fermi sea only
through more complicated pro~esses, such as (d). The
interaction notation is t = t+I.
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— L bY2

I

ldy2 14.7 MeVEk=13,2-15B MeV
—lp$2

___1107_a___ ————

c’, 1’5Mev

/ 117.2MeV

Fig. 7 Finite well representation, not to scale, of levels
appearing in two-state model, (L-S) md (j-j). AII
oscillator representation has been for the target
system. Useliti = 19.7 Mev to locate lP% the center-
of-gravity of the p-states. The added nucleon has
the spectrum of states %C.
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Fig. 8 Collision schematics for two t-matrix representations
of charge exchange: (a) refers to Eq. (31) and im-
plies an exchange of all of the coordinates for the
two nucleons involved, hence an exchange of the quantum
states; (b) refers to Eq. (34) and implies a trans-
fer of charge between the two nucleons, no change
of state occurring. The two processes are physically
indistinguishable. The collision asymptotes are
labelled by t’ and ~p , the initial and final relative
momenta.
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Fig. lC Contributions to the interaction energy for the
neutron incident upon the A=9 ground state: (a)
H-F potential; (b) self-energy term; (c) vacu~
suppression term. These terms are those through
second order in perturbation theory.
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[Bl=1.7MeV
~(1p3,2)=~F

— e(lpy2 )

c(lsy J

Fig ● 2C Finite well applying n-Be9 scattering; E(l/2-) is

taken as the k.e. of incident neutron. The last

9 is in the state &(lp3t2). The re-neutron in Be

maining p-shell nucleons are in the state &’(lP3/2)*

A square well has been used for simplicity of

presentation.
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