C.3

CIC-14 REPORT COLLECTION REPRODUCTION COPY

LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA O LOS ALAMOS NEW MEXICO

A CODE FOR REDUCING MANY-GROUP CROSS SECTIONS TO FEW GROUPS

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price \$ 1.25. Available from the Office of Technical Services
U. S. Department of Commerce Washington 25, D. C.

LAMS-2801 UC-32, MATHEMATICS AND COMPUTERS TID-4500 (18th Ed.)

LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO

REPORT WRITTEN: December 1962

REPORT DISTRIBUTED: February 11, 1963

A CODE FOR REDUCING MANY-GROUP CROSS SECTIONS TO FEW GROUPS*

by

Ralph S. Cooper

*This report supersedes LAMS-2747.

Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission

All LAMS reports are informal documents, usually prepared for a special purpose and primarily prepared for use within the Laboratory rather than for general distribution. This report has not been edited, reviewed, or verified for accuracy. All LAMS reports express the views of the authors as of the time they were written and do not necessarily reflect the opinions of the Los Alamos Scientific Laboratory or the final opinion of the authors on the subject.

ABSTRACT

A code (ZOT) has been written which will produce few-group neutron cross sections from many-group sets based on a given flux spectrum or one computed for an infinite medium. The cross-section format is that of S_n transport theory including the possibility of upscattering in energy. The code is written in the Floco II system for use on the IBM 704 or IBM 7090.

CONTENTS

																															Pa,	ge
Abst	ract	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
Intro	oduc	tic	on	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
Cross	s Se	ct	Lor	ı I	nŗ	put	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
The l	Equa	tic	ons	s f	or	• (ir	ou	р	Co.	LL	ap	si	ng	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
Gener	ral	Des	3 C I	cip	ti	Lor	1	of	t	he	C	od	е	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
Code	Det	ai]	Ls	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
	Inp	ut	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
	Out	put	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
	Ope	rat	iic	on	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
	Ope	rat	iic	on	or	1]	EBI	M '	70	90	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
Resu	lts	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
Apper	ndic	es	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
	I	Eb	cen	mpl	.e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
	II	ZC	TC	Cc	od€	e I	Li:	st	in	gs	a	nd	F	lơ	w :	Di	ag	ra	ms	•	•				•		•		•	•	•	27

INTRODUCTION

While many-group cross sections are necessary for computing a large variety of problems with a single set of cross section parameters, it is often desirable to reduce the number of groups used for particular problems. Multidimensional S_n and diffusion codes are becoming available but are time-consuming with many energy groups. Where many S_n one-dimensional problems must be run for parameter studies, for temperature or perturbation effects, or when coupled to hydrodynamic codes, specially tailored few-group cross sections would be advantageous.

George Bell has suggested (internal memo, July 3, 1958) recipes for collapsing many-group parameters assuming a many-group flux spectrum. This can be obtained from a single many-group calculation for the system or approximated, for example by solving the infinite medium (space independent) equations.

A code (ZOT) has been written which will collapse groups according to a given flux spectrum or using a self-generated infinite medium flux. Code details and the results of several test cases are given.

CROSS SECTION INPUT

The code is designed for the standard Los Alamos S_n transport cross section format. For each energy group (denoted by subscript or superscript g and running from g = 1 for the highest energy to G for the lowest) the neutron cross sections are entered in the following order:

```
σac2
optional activity (ac) σ's, e·g·, σ<sub>n,p</sub>
             v(\text{neutrons/fission}) times the fission cross section
v\sigma_{\mathbf{f}}
             the transport cross section (occasionally labeled \boldsymbol{\sigma}_{\mathbf{g}})
\sigma_{	tr}
upscattering from groups of lower energy (higher g indices) to the group g
            scattering within the group
σg-l,g
σg-2,g
downscattering from groups of higher energy to
the group g
```

The activity σ 's are not used in the solution of the transport equation, but are available for calculation of activities from the results of criticality calculations. The most commonly appearing one is σ_a (absorption). In the solution of the transport equation the absorption is accounted for implicitly in the transport cross section $\sigma_{\rm tr}$, which includes σ_a . Note that through error or intent, the absorption used by the transport code may be different from that which may appear as one of the activity σ 's. We shall always deal with the σ_a derived from the transport and scattering σ 's:

$$\sigma_{a}^{g} = \sigma_{tr}^{g} - \sum_{all \ g'} \sigma_{g',g}$$
 (1)

where all g' includes g' = g. The number of activity σ' s and up- and downscattering for each group will be given implicitly by noting the position in the table of σ_{tr} , σ_{gg} , and the last $\sigma_{g',g}$. If these are called h_t , h_s , and h_l respectively, then:

number of activity $\sigma^*s = h_t - 2$ number of upscattering $\sigma^*s = h_s - h_t - 1$ number of downscattering $\sigma^*s = h_\ell = h_s$.

 $^{^*}$ This one is required by the Los Alamos DTK transport code.

The ZOT code will take the many-group cross sections for elements or mixtures and reduce the number of groups to $K(K \le G)$ by combining some of the groups according to equations given later. The new groups must have energy limits which are a subset of the many-group limits. We shall use k to denote the few-group energy index (and i for the σ position, analogous to h for the many-group set). Thus each group k will be composed of one or more of the groups g of the input σ 's. For example, the first of the few-group set (k = 1) might be composed of g = 1, 2, and 3 of the input many-group set. Our equations will use a simple summation sign to indicate a summation over all g in a particular k group.

THE EQUATIONS FOR GROUP COLLAPSING

Fission spectrum (fraction of fission neutrons out in each energy group)

$$x_k = \sum_{g \text{ in } k} x_g = \sum_{g} x_g$$
 (2)

Activity and fission cross sections are weighted linearly by the flux $\boldsymbol{\phi}$

$$\sigma_{\rm ac}^{\rm k} = \frac{\sum \varphi_{\rm g} \sigma_{\rm ac}^{\rm g}}{\sum \varphi_{\rm g}} \tag{3}$$

Transport cross section

$$\sigma_{\text{tr}}^{k} \equiv \sigma_{k} = \frac{\sum_{q} \varphi_{g}}{\sum_{q} \varphi_{g} / \sigma_{g}}$$
 (4)

or

$$\sigma_{k} = \sum \varphi_{g} \sigma_{g} / \sum \varphi_{g}$$
 (5)

Both options (inverse and linear averaging) are available.

Transfer cross sections from group k* to group k

$$\sigma_{\mathbf{k}^{\dagger},\mathbf{k}} = \sum_{\substack{\mathbf{g}^{\dagger} \text{ in } \mathbf{k}^{\dagger} \\ \text{and} \\ \mathbf{g} \text{ in } \mathbf{k}}} \varphi_{\mathbf{g}^{\dagger},\mathbf{g}} / \sum_{\mathbf{g}^{\dagger} \text{ in } \mathbf{k}^{\dagger}} \varphi_{\mathbf{g}^{\dagger}}$$
(6)

For the many-group set, absorption cross sections (σ_a 's) are found from Eq. (1) and are collapsed with linear averaging

$$\sigma_{a}^{k} = \sum \varphi_{g} \sigma_{a}^{g} / \sum \varphi_{g}$$
 (7)

These are sufficient to define the new set. The elastic scattering $\sigma_{\bf kk}$ is determined from the other few-group constants by

$$\sigma_{kk} = \sigma_k - \left(\sum_{k^* \neq k} \sigma_{k,k^*}\right) - \sigma_a^k \tag{8}$$

For conciseness in annotating the code, we define

$$\varphi_{\mathbf{k}} = \sum \varphi_{\mathbf{g}}$$
 (9)

Different cross sections may be computed for each region (i.e., core and reflector) separately, but a single velocity spectrum is used for a given problem, and this must be weighted by the total fluxes in each region. The region volumes are used as a measure of the total flux.

$$v_{k} = \frac{\left(\sum_{r} v_{r} \sum \varphi_{g,r}\right)}{\left(\sum_{r} v_{r} \sum \varphi_{gr}/v_{g}\right)}$$
(10)

The infinite medium fluxes (ϕ^{O}) can be generated by

$$(\sigma_{g} - \sigma_{gg})\phi_{g}^{\circ} = x_{g} + \sum_{g' \neq g} \sigma_{g' \rightarrow g} \phi_{g'}^{\circ}. \tag{11}$$

These are solved successively from the highest energy group until groups with nonzero upscattering are reached, upon which the remaining equations are solved simultaneously.

GENERAL DESCRIPTION OF THE CODE

The code is written for the Floco II assembly system (LAMS-2339) and is intended to be fully compatible with the Floco II assembled SNG routines. The code accepts multigroup cross sections and input data on atomic composition and computes collapsed group parameters for the mixtures described for each special region. An option allows collapsing the element microscopic cross sections separately. The code will accept flux spectra as input, will compute infinite medium fluxes, or can use the flux used in the previous spacial region (mixture) regardless of its source. The volumes can be given directly or can be computed from the coordinates for planes, infinite cylinders, or spheres. The code assumes there has been sufficient size allotted to the up- and downscattering in the output groups and will stop with an on-line comment if this is not true. The many-group set is divided into a few groups, each containing one or more of the original groups according to the wishes of the user. The input and output are printed off-line (on-line if sense switch #6 is down), and the output fission spectrum, velocities, and cross sections are punched on-line, suitable for direct inclusion in the new S_n codes. (They may be used in the Floco I version of SNG by placing nine punches in columns 3 and 21.) The code will normally average $(\sigma_{+r})^{-1}$ but will

This will run on the IBM 70¹4 or IBM 7090 with the appropriate Floco II assembly program. The standard deck is for the 70¹4; modifications for 7090 operation are discussed in a later section.

average $\sigma_{\mbox{tr}}$ if requested. In either case, a comment will be printed describing which was done.

CODE DETAILS

Input

The input is divided into two parts: the parameters which precede the code and the data which follow it.

The parameters determine the sizes of data storage blocks and are used in determining exits and loop lengths in the code. They consist of information on the size of the problem (e.g., number of mixtures), options such as the method of transport weighting, and the cross section table size. Parameters are put on Floco cards, following a "load parameters" pseudo-instruction (*0000500, see IAMS-2339 and example in Appendix I). There are three sets labeled POO, GOO, and KOO, each requiring a load parameters instruction. All are fixed point numbers. The code was designed originally to form mixture macroscopic cross sections in a manner similar to the SNG code. This requires two tables which we shall label NO and MO. The NO table contains a fixed point identification number (ID#) for each region, followed by the ID numbers of the elements in that particular region. The elements are numbered implicitly by the order in which they are input. The MO block contains the atomic densities corresponding to the elements in each region and zeros in the positions

occupied by the mixture numbers in the NO table. This is illustrated in the example (Appendix I). The lengths of the NO and MO blocks are required for input parameter PO5.

One could get σ 's for collapsed microscopic elements with this arrangement by placing each element in a separate region with an atom density of 1.0. However, since this is a common use of the code, an alternate way to obtain these σ 's with simpler input has been built into the code. This is signaled by letting the mixture specification parameter PO5 (or N) be zero. The number of regions R (PO2) is put equal to the number of elements E, and PO3 is input as 2E. There is no need for certain of the data blocks (NO, MO, FO), and only one set of weighting fluxes need be entered for all elements.

1. Parameters

Position	Symbol	Description
POL	PID	Problem identification number.
P02	R	Number of regions (or number of elements for element calculation).
P03	М	Number of mixtures + number of elements (or twice number of elements for element calculation).
PO [†]	W	Volume specification, described later.
P05	N	Number of mixture specifications, i.e., length of NO and MO tables (N = 0 for element calculations).
P06	T	Transport of averaging O for inverse, 1 for linear average.

Parameters, continued

Position	Symbol	<u>Description</u>
GOL	G	Number of input groups.
GO2	$^{ m h}{}_{ m t}$	Position of σ_{tr} in σ table.
GO3	$^{ ext{h}}_{ ext{s}}$	Position of oge
GO4	$^{ m h}$ L	Position of last σ in a group (number of σ s per group).
GO5	υ	Number of groups with nonzero upscattering, assumed to occur in the lowest energy groups.
KOl	к)	
K05	i _t	Output cross section parameters (similar to
К03	is	input group parameters, but may have smaller values except for it.). The equivalent of GO5.
КО4	i ₁	is not needed.

W, Volume Specification

\overline{M}	Meaning
0	Volumes are supplied in WO data block.
1	Planar distances of regions are supplied in WO data block; code will compute volumes $V = (r_{i+1} - r_i)$ and place them in WO data block.
2	Cylindrical radii supplied in WO; code computes $V = (r_{i+1}^2 - r_i^2)$, etc.
3	Spherical radii supplied; $V = (r_{i+1}^3 - r_i^3)$, etc.
14	Volumes are not supplied; velocities are computed separately for each region.

2. Data

The data follow the code and are on Floco cards preceded by Floco "load data" pseudo-instructions (*0000S0). The order of the data blocks is immaterial. Binary cards (e.g., flux dumps) may be loaded behind a Floco "load data" card if they contain the data in the correct number and order. Binary card addresses will be ignored.

Block	Description	Туре	Number of Entries
CO	Group separation, a table giving the largest value of g in each output group.	fixed	К
FO*	The flux source for each region 0 flux supplied 1 calculate • medium flux 2 use flux from previous region•	fixed .	R
F2†	The weighting fluxes for each region.	floating	GXR
NO*	The mixture specifications, similar to the SNG input. For each region there is an identifying number, followed by the labels of the elements in that region.		
MO*	The atomic densities (x10 ⁻²⁴) of the elements in the order given in NO. Zeros in the positions corresponding to region numbers in NO serve to delimit the regions.	floating	N
WO	Volume or radius input.	floating	R
SO	Input fission neutron spectrum.	floating	G
VO	Input group velocities.	floating	G

^{*}Can be omitted for microscopic element calculation.

[†]Only one set (G entries) needed for microscopic element calculation.

Block	Description	Type	Number of Entries
PO	The input (and mixture) cross section block. The elements are numbered implicitly by the order in which they are placed in the input deck. The regions are labeled by consecutive numbers beginning with E + 1, as in the DSN code. See example (Appendix	floating	Input = $h_{\ell} \times G \times E$ Total = $h_{\ell} \times G \times M$
	1.1.		

Output

The output includes off-line (on-line if sense switch #6 is down) listing of all of the input blocks, descriptively labeled and of the mixture cross sections (in the PO block) and the mixture absorption cross sections. This is followed by a print of the output fission spectrum, velocities, absorption cross sections, and mixture cross sections.

The fission spectrum, Velocities, and mixture cross sections for each region are punched in that order on separate cards (or blocks of cards), ready for direct insertion into the DSN code. Cards may also be used in the Floco I SNG code by putting nine punches in columns 3 and 19. Should trouble arise, one can obtain an input print by transferring manually to $(1016)_8$ and pressing start twice. One can obtain an on-line output print by setting sense switch #6 down and transferring manually to $(1017)_8$ and pushing start twice.

When the calculation is finished, an on-line statement to that effect will be printed. Pushing start will then result in an on-line print of the storage map giving locations of all code and data blocks.

Operation

The present deck (10-30-62) has all necessary loading and transfer cards in it. The three parameter cards follow ZOT card number 001, and the data cards follow card number 076.* The ZOT deck should be preceded by an on-line identification card to identify the user on the off-line listing. ZOT card OOD calls Floco II from the Los Alamos utility tape 1, and may be replaced by a Floco II card deck.

Running time -- ≤ 1 minute per case + readin time, unless there are more than 10 upscattering groups.

Problem size -- for the &K machine about $(4000)_{10}$ words are available for data. The largest block will be the input and mixture cross sections (PO) which will be $h_{\ell} \times G \times (E+R)$ numbers. Almost all problems can thus be done on an &K 704.

Stops -- the only programmed stops are for the cases in which insufficient down- or upscattering has been allowed in the output groups. The code will print an on-line comment and stop. One can then transfer to (1016)₈ to obtain an input print. There is an error stop (usually insufficient space) in the matrix solver subroutine, and three possible divide checks which are described in Appendix II.

Sense switches -- setting sense switch #6 down causes on-line printing of both input and output. An on-line print of the results can be obtained by transferring manually to (1017)₈ and pushing start twice (with sense switch #6 down).

^{*}This is a change from the earlier (9-09-59) deck.

Operation on IBM 7090

The ZOT deck (001 to 080) will work without modification on the 7090. However the appropriate Floco II assembly system must be used, and therefore the ZOT 000 card, which is an XX Floco 2 card for calling the 704 version from tape, must be replaced by the equivalent for the 7090. This is a set of two cards (2-FL2 01 and 2-FL2 02) for calling Floco from tape, or a master set of cards containing Floco for use if it is not already on the utility tape in the Los Alamos format. Note that header or identification cards follow the Floco II cards, making the deck arrangement

2-FL2 Ol }
Floco II, call in from Los Alamos 7090 utility tape.
Header Card * in column l, followed by name, phone, etc.

ZOT OOL Initialize

Input, etc., as in 704 version.

RESULTS

A series of DSN transport calculations were made to investigate the accuracy of the reduced cross section sets. Few-group results are typically within 2% of the many-group results, but each new situation should be checked, especially where the spectrum changes rapidly in

space. Some typical results obtained in 1959 with S_4 SNG transport calculations are listed in Table I. Further calculations are presently under way to study the extent of application and the effects of varying the group spacing, the method of averaging the transport cross section, etc. For example, a 3 group calculation of the C/U = 2400 base sphere with different group aggregations (6, 11, 1) gave only 0.4% error using fluxes generated in an 18 group DTK transport code, compared to 2.5% error with the spacing (6, 6, 6) as listed in Table I. However, the (6, 11, 1) spacing with infinite medium fluxes appears to give a larger error (7%) although this result is difficult to understand and may be in error.

Table I

Bare U²³⁵ Sphere

# Groups*	Flux Source	Radius	Sign, % Error	# Iterations
6	-	8.686	<u>-</u>	22
2	SNG 6 group	8.732	+0.53	15
2	∞ medium	8.742	+0.65	15 .
1.	SNG 6 group	8•776	+1.03	19
1	∞ medium	8.753	+0.75	16

Bare Graphite Sphere C/U = 300

# Groups*	Flux Source	^k eff	Sign, % Error	# Iterations
18	•	0.9700	-	119
6	18 group SNG	0.9634	-0.7	127
6	∞ medium	0.9778	+0.8	126
3	18 group SNG	0.9582	-1.15	136
3	∞ medium	0.9883	+1.9	122

Bare Graphite Sphere C/U = 2400

# Groups*	Flux Source	^k eff	. Sign, % Error	# Iterations
18	-	0.967	_	51.
6	18 group SNG	0.934	-3•4	77
6	∞ medium	0.950	-1.7	75
3	18 group SNG	0.943	-2.5	111
3	∞ medium	0.984	+1.7	112

Each of the collapsed groups contained equal numbers (3 or 6) of groups of the 18 group set.

Appendix I

Example

Consider an H₂O reflected, H₂O moderated sphere, for which it is desired to reduce the Hansen-Mills 18 group cross sections to 3 groups. There are thus two regions with the following composition:

Atom density \times 10 ⁻²⁴	Core	Reflector
Н	0.0663	0.0668
0	0.0332	0.0334
_Մ 2 3 5	1.288 × 10 ⁻⁴	

Assume one wishes to compute the infinite medium fluxes for the core and reflector compositions to use in weighting the 18 group cross sections and that the core and reflector radii will be supplied for weighting the velocities. The three output groups are chosen to contain 6, 9, and 3 input groups, respectively, starting from the high energy end. Parameters and data for the above problem follow on Floco coding forms and are included in the ZOT decks.

		FLOCO 704				77 7	8 7	80	PF	ROB	LEM	Ex	aı	[gj	.e										
											H	\top	PROGRAMME				MER				DATE PAGE				
													25,110,10		c		PERATION			ADD	DF		٦	REMARKS	
	C	OPE	.RA	IOI	N .	AL	ADDRESS			REMARKS							ADDRESS				ALIMANIO				
		P 2	R	4	5	X 6	R 7	Τ.	S		<u> </u>		P 2	R 3	\$ 4	\neg	-X	7 7	8						
	\dashv		-	-	٦	_	4—	H	╁	and destruction	-	9	*	Ē	\exists	+		N	\dashv	_					
0		*	-		H		12	0	+	load instruction	1	11		_	\vdash	\dashv			Ť	Ъ	1st region (core)				
ı	(9)				H		+	├	+	ID # # regions	1	9			H	+	-	\dashv	-	1					
2	9		-		H		╁┈	 	_	# elements and	1	9		-		\dashv		-	\exists		0				
3	28		\vdash	L	_		╁	├-	╁	mixtures	1	38			H	-+		-			_U 235				
4	3 7		-	_	-		╂-	-		volume spec.	1	37			Н	\dashv		-			2nd region (re- flec.)				
5	46		-	_	-	ļ	╁╴	├	7	mixture spec.	1	•		-	Н	-					H H				
	6 3		L		-		┼-	H	0	o(o _{tr})		9		-	Н	-			\dashv	2					
7	<u> </u>			_			╀	H	H	POO	T	 €	*	-	Н			М	_	_	IO INTO IO				
0	9	*	L	L	_	<u> </u>	G	1		load instruction	\top	Н	*	_	H	\dashv		IM1	_	_	mixture				
ı	©		L	L	├	<u> </u>	╁	1	-	G	7	0		H		0	6	6	-	-					
2	(9)		L	L	L		╀	L	+-	pos. of og	2	19			\vdash	0			2		NH				
3	28)						\downarrow	ļ		pos. of σgg	3	8		_	•	Н	1				N _O				
4	37		L				+	-	18	pos. of last g'g # upscattering	4	37	<u>.</u>	0	0	٥	т_	2	0	Г	N _U				
5	46	_	ļ.,	_	-	ļ	_	-	0	# upscattering	5	9		-	-		_	<u> </u>	_	$\overline{}$	mixture				
6	63		_		_		+	L	igspace		6	55			L	•	0		6						
7	64		L	L			_	Ļ	$oldsymbol{\perp}$	GOO	7	69		ŀ	<u> </u>	•	0		Т	4	O M O				
0	9	*	L	L	L		K	0	0		•	9	*	_		\sqcup		F	0	_					
ı	10	_	L		<u> </u>		1	L	+-	 	ı	10		L				L	L		fixed pt. flux-				
2	19	_		_	L		1	L		pos. of σ_k	2	19		L	ļ_	Ц		_	L	1	(source				
3	28	L		L			_	L	3	pos. of σ _{kk}	3	28		_	1	Ц		L	_	_					
4	37	_	L		L	_	1	_	5	last okik	4	37		_				L							
5	46		<u> </u>	_		<u> </u>	\perp				5	46		L	ļ			_	Ľ	_					
6	55										6	55		L											
7										коо	7	64								_	OFO				
6	9	*					C	C		"load data"	0	9	*					W	0	L					
	(0)								6	table of last] -	(9)					1	6	•		*radii				
2	(19	1						1	5	g in each k] 2	1_	1		3	1	•	2	7	L					
3	28			Γ	T			1	. 8		3	1_	ĺ							L					
4	37			T	1						4	1	Ī		(1	0	dec:	m	1.	p	oint allowed in				
5	46				T		Ť	Ī			5	_ا	1		Lε	st	co	LW	m	0	r a field)				
6	(55	. [T	Ť		1	T	T		6	6													
7	64		Ť	T	T		1	T	T	000	1	6													

	FLOCO 704							77	78 7	9 80																					
																	P	ROG	RAN	MER					DAT	Έ	P	AGE			
Γ	С	О₽	ER/	TIC	N	1	ADDRESS			REMARKS				С	OPERATION				ADI	SS		RE	MAR	(\$							
L		Р	R		s	×		R		ş_]					P	8		5	×	R		s								
L	ı	2	3	4	5	6		7	6	9	L							ı	2	3	4	5	6	7	T	$\overline{}$					
0	9	*	L	L	L		1	s	0		L						0														
ı	0		L	L	L	<u> </u>	\downarrow		_	L	L						۱	10			L	Ц									
2	•		13	11	8	car	a	f	1	0	ve	d ·	by	1	8 g	roup	2	9			L.			L							
3	28		I.	as	81	on	ga T	e	t:	u	1						3	23		L				L	_	_	_				
4	③		L	-	-	\vdash	\downarrow	4	_		L						4	9		L	L	Ц		L	L		_				
5	€		\perp	ļ.	-	ļ	1	-		ļ.,	L						5	•		_	L			L		_					
6	9		_	┞	\vdash	├-	\downarrow	4	_		L						6	3		L	ļ			L		L					-
7	0		H	ļ.	┞	├-	+	4	_	L	L	٥	s	0			7	<u> </u>		_	L			_	Ш			<u>.</u>	Щ		
	9	*		-	-	_	4	7	0	_	-						0	Н		ļ		\sqcup		L	Ц						
1	9		-	\vdash	┞	-	+	4		_	H			_			۱ ا	0		\vdash		\dashv		L		_					
2	(O)			_	ŀ	\vdash	+	+	_		L							9		┝				<u>_</u>							
3	@		Tr ve	10	e i	arc	1 1	₽¢	11	70.	rec	<u>1 </u>	У_	18	3 g1	oup		8		-	_	\dashv		H	_						
5	1		-	<u> </u>		Ť	+	+	_		_						7	9		H		\dashv		Н	\dashv						
6	3			_		-	+	\dagger	-	-	_			_			7	(49)		\vdash		\dashv		Н	\dashv	_					
7	0	-	-	-			\dagger	1				0	v	0			1	53 63			Н	\dashv		Н	\dashv	┪	Т				
[°	9	*			-		1	,	0	7	_	لتا	<u>, 1</u>							\vdash	H	+			7			1.			
1	9				Г		Ť	1	Ĭ		_						1	0		-	\exists	7			1						
2	(1)		Th	is	c	ard	ı f	,	7 1		PĊ		v	18	~~~	~~~~	1) (9			d	T						-			
3	3		er c	08	ΒÃ	sec	1	. 01	ns	1	n	th	e	or	der	oup , H,	1					1			-						
4	<u> </u>		σ,	-	ì) (5)				7		_							
5	3						I	I									1	66													
6	9				Ц		\downarrow	\downarrow				_,					6	9													
7	9			_	Ц		\perp	1	\downarrow	\downarrow				\perp	·		1	63													
٥	\sqcup		_	_	\Box		1	\downarrow	4	\downarrow							0			Ц				\prod							
ı	@	_		-			\downarrow	1	4	1							۱	©			\downarrow	\perp		\downarrow	\downarrow	_					
2	@	\dashv	_	-	_		\downarrow	\downarrow	4	_							2	9			1	_		_	\downarrow	\downarrow					
3	1		-	-	4		\downarrow	\downarrow	4	4							3	28 _			1	\downarrow			\downarrow	_					
4	9	_	\dashv	-	4		+	1	\downarrow	4							4	9	_		4	4		4	\downarrow	4					
5	⊕		4	\dashv			+	+	+	+								€.	_		_	4		\downarrow	\downarrow	4					
	9		\dashv	4	-		+	+	+	1	1	Т	_	_				3			4	4	_	\downarrow	\downarrow	4		<u>; r</u>			
7	<u> </u>						L					\perp	Ţ	Ţ			7	9									\perp	且			

Appendix II

ZOT Code Listings and Flow Diagrams

The coding is relatively simple and straightforward except perhaps where the transfer cross sections $\sigma_{g^{\dagger}g}$ are involved. Flow diagrams are given for those cases and for the master or flow code. Annotated listings are given for all code blocks, as well as summaries of the data and code blocks.

Summary of Data and Code Blocks

Data	
AO (AL)	Input absorption cross sections by region.
A2 (A3)	Output absorption cross sections by region.
CO	Separation of output groups.
FO	Flux source table.
F2 (F3)	Many-group flux by region.
F4 (F5)	Few-group flux by region.
GO	Table of the output group corresponding to each input group.
MO	Atomic density table.
MI (M2)	Matrix for flux with upscattering.
NO	Mixture composition table.

Data (contd.)	
PO (Pl, P2)	Many-group cross sections by element and mixture.
QO (Q1, Q2)	Output cross sections by mixture.
vo	Many-group velocities.
Vl	Few-group velocities average over volume.
V2 (V3)	Few-group velocities for each region.
WO	Volume or radius table.
Code	
801.	Flow code (master code).
803	Data assignment.
804	Form mixture o's.
805	Calculate many-group fluxes, ϕ_g .
806	Set region addresses.
807	Calculate many-group absorption σ_a^g .
810	Calculate transfer cross sections $\sigma_{\mathbf{k^\dagger k^\bullet}}$
811	Collapse cross sections σ_{ac} , $\nu\sigma_{f}$, σ_{tr} , σ_{a} .
812	Calculate few-group self-scattering $\sigma_{\mathrm{kk}}^{}$
813	Generate code constants.
814	Calculate fission spectrum x_k .
815	Calculate velocities.
816	Input print.
817	Output print and punch.

Code (contd.)

822 Place element σ's in region blocks.

823 Set flux for element calculation.

843 - 867 and 871 Print remarks and headings.

870 Matrix solver subroutine LA-S885.

Use of Temporary Storage Block TOO

TO1-TO7 Temporary use only.

TlO σ_t^g region base address and region index in decrement.

Tll ϕ_g region base address.

Tl2 σ_{t}^{k} region base address.

T13 ϕ_k region base address.

Tl4 v_k region base address.

Tl5 σ_a region base address.

Tl6 σ_a region base address.

T17 Not used.

T20 h₁ - h_s

T2l # elements

T22 $h_s - h_t - 1$

T23 h_s - h_t

T24 h_t + 1

T25 i_t + 1

Error Stops

Location

Octal	Region	Symbolic	Type	Cause
5314	805	X ¹ 47	divide check	$\sigma_g - \sigma_{gg} = 0$. Not allowed in calculating flux.
5427	805	¥62	halt	Matrix error. Stop, check size.
5461	805	Z14	divide check	$\varphi_k = \sum_{\text{input.}} \varphi_g = 0.$ Check flux
5617	810	x 46	halt	Too few upscattering cross sections allowed in output (on-line print).
5674	810	X53	halt	Too few downscattering cross sections allowed in output (on-line print).
6304	815	x 50	divide check	$\sum_{\text{and velocity inputs.}} v_r v_k^r = 0. \text{ Check volume}$

ZOT Deck

XX Floco 2 or	
zor ooo	Floco II tape calling card.
ZOT OOL	Initialize, allow space for parameters.
Input	Parameters POO, GOO, KOO cards.
ZOT 002	Assigns temporary storage TOO, 308 spaces.
003	Assigns formula space 100_8 for 801 , 1500_8 for 804 , 50_8 for 803 , and 420_8 for 870 .
004 to 025	Remarks for printing headings.

ZOT Deck, continued

026	Load data assign code (803).
027, 028	Data assign code (symbolic binary).
029	Execute data assign code.
030	Load matrix solver (870).
031 - 041	Matrix solver (binary).
042	Load formulas 804 to 823.
043 - 073	Formulas in symbolic binary.
074	Load flow code 801.
75 , 76	Flow code.
Input	Data.
77	Transfer to flow code.
78 , 79	Blank.

^{*}k is the cutput group corresponding to an input group g.

```
3 00X
            8u1
                       FLOW CODE
       TSX4816
 X01
       TSX4813
 X02
       TSX4814
 X03
 X94
        CLA PC6
        TZE XII
                       Linear \sigma_{tr}?
 X 0 5
       TSX4974
 X06
 X07 40C00845
                       NO
 X10
       TRA X13
        TSX4974 ←
 X11
 X12 40C00844
 X13
        CI.A PC5
                       Element calc.?
 X14
                       Transfer on "no".
        TNZ X17
 X15
        TSX4822
 X16
        TRA X20
        TSX48C4 ←
 X17
→ X20
        TSX4974
                       Print input and
 X21 00000861
                       mixture sigmas.
 X22 40000PC
       LXA24C1
                       l \rightarrow region index.
 X23
  X24
        SXD2T1C ←
                       Save.
  X25
        TSX48C6
        CLA PC5 (1)
  X26
                       Element calc.?
  X27
        TNZ X32
  x 30
        TSX4823
        TRA X35
 X31
                        Fluxes supplied?
 X32
        CLA2FC <
        TZE X35
                        Transfer on "yes".
  X33
                       Calc. flux.

og 
ok, vok, ok
 X34
> X 3 5
        TSX48C7 €
        FSX4811
  X36
        TSX4810
  X37
                        \sigma_{k} \rightarrow k
  X40
        fSX4812
        LXD2T10
  X41
                      \int r + 1 \rightarrow \text{region.}
All regions done?
  X42 10012X43
  X43 7P022X24 1)
  X44
        T5X4815
        TSX4817
  X45
       HPR
                        Normal program stop.
  X46
  X47
        TSX4976
                        Print storage map.
_ X50 *
            4801
                        Transfer to flow code.
```

```
X00 8
             AC4
                               FORM MIXTURE \sigma^{\dagger}s
   X01
          LXA14C1
                               l \rightarrow i
   XC2
          CLAINC
                              N<sub>i</sub>
Save N<sub>i</sub>. 2
M<sub>i</sub> atom density.
  X03
          STA TC1
   X04
          CLAIMC
   X05
          TNZ X14
          LXA2T01
   X06
                               {\tt N_i} \to {\tt j}
          CLA PC+
   ×07
                               Set address
_ X10
           SUB 2º2
                               for region sigmas.
           STA X26
   X11
           STA X27
   X12
           TRA X31
  - X 1 3
  X14
           STC TC2 €
          LXA4TC1
CLA PO+
SU84P2
  X15
                               N_i \rightarrow index.
   X16
  X17
                              Set address.
          STA X24 J
   X20
  X21
                               Put h_{i} \times G in index.
          CLA2P2
PAX2
  X 2 2
  X23
  X24
          LCC2CC0
   X25
          FMP TO2
          FAD2GCC
STO2OCC
                              Form M<sub>i</sub> × σ.
  X26
  X27
x30 20012x24 ①
x31 10011x32
  Advance i. X32 7P051X02 (2) Advance i. X33 LXD4457
```

```
805
                         CALCULATE FLUXES
8 00 X
       SUB 4C1
                         Use flux from previous region?
X01
X02
       TNZ Z21
X03
       SLA TII
                         NO, calc. flux.
        STA X42
X04
        STA X50
X05
       CLA GC1
X06
X07
        SUB GC5
X10
        ALS 022
                         # of groups with only downscattering = Gd.
X11
        STD X52
                         g = 1
       LXA1401
X 12
                         or base.
 X13
        CLA T10
        SUB1P1
 X14
                         σ<sub>r</sub>(g) base.
        STA X37
X 1 5
X16
        SUB GC2
X17
        STA X23
                         \sigma_{\mathbf{g}}
 X20
        ACD GC2
        SUB G03
 X21
 X22
        STA X24
                         \sigma_{\text{gg}}
 X23
        CLA OCC
 X24
        FSB OCC
 X 2 5
        STO TC3
                         σg - σgg
χg
        CLAISO
 X26
 X27
        STO TO2
 X30
        SXD1TC1
                          g \rightarrow index 2.
        LXD21C1
 X31
 X32 20012X34
                          g^{\dagger} = g - 1
 X33
        TRA X46
                          g^{\dagger} = 0
       LXA4GC3
                          \begin{array}{c} h_s \to h \\ h + 1 \to h \end{array}
 X34
 X35 10014X36
 X36 3G044X46
                          h > h2?
       CLA40CC
 X37
                          NO, \sigma_{g'} \rightarrow g
        TZE X46
LRS 043
                          \sigma_{g^{\dagger}} \rightarrow g = 0?
 X40
 X41
                          \sum_{g'=1}^{\varphi_{g'}} \sigma_{g'g}
g'=1 \rightarrow g', g'=0
 X42
        FMP2CC0
        FAD TO2
STO TC2
 X43
 X44
 X45 20012X35
        CLA TC2
FDH TC3
>×46
                          Σφ<sub>g'</sub> σ<sub>g'g</sub>/σ<sub>g</sub> -
 X47
 X50
       STQ1000
                          \varphi_g + 1 \rightarrow g
 X51 10011X52
                          \bar{g} < G_{\bar{d}}?
 X52 70C01X13
        CLA GO5
 X53
        TZE ZO1
CLA T11
 X54
                          Upscattering present?
 X55
                          YES
      STA Y35
 X 56
                          Set up matrix solution.
 X57
 X60
        STZ TO4
                           j = 0
                          Save j.
        LXD1T04
 X61
                                        1 from Yl4
                           j + 1 → j
 X62 1C011X63
                                                           @
 x63
        CLA MI*
                           Set addresses on j.
 X64
         SUB1M2
                                                       from Y32
 X65
         STA Y10
 X66
         STA Y23
        STA Y24
  X67
```

```
X 70
           SU8 GC5
    X71
           SU8 4C1
    X72
           STA Y12
    X73
           STA Y36
    X74
           STA Y37
    X75
           SXD1T04
                             j \rightarrow index 2.
    X76
           LXD2TC4
    X77 10002YC0
                             g = j + G_d
                             Save g. g > G? Exit of matrix set.
    Y00
          SXD2T05
    Y01 3G012Z32
    Y02
          CLA T1C
                             NO
    Y03
           SUBZP1
    Y04
           STA YO7
           STA Y15
    Y05
                             h = htr
    Y06
           LXA4GC2
           CLA4CC0
    Y07
    Y10
           ST01C00
                             \sigma_g \rightarrow M_{jj}
    Y11
           CLA2SC
                            \begin{array}{c} \chi_{g \to M_{n}+1, j} \\ h + 1 \to h \end{array}
    Y12
           STO CCO
  → Y13 1CC14Y14
                                         1 YES
                             h > hg?
    Y14 3G044X61
    Y15
           CLA40C0
                             NO
           STO TC1
    Y16
                             \sigma_{g}^{\dagger} \rightarrow g
    Y17
           SXD4Y21
                             Index i = j + h_s
    Y20 1GC31Y21
                             i = j + h_s - h
    Y21 6C001Y27
           TRA Z34
                             Patch.
    Y22
    Y23
           FAD10C0
                             -\sigma_{g'g} + M_{ij} \rightarrow M_{ij}
    Y24
           ST010CC
    Y 25
           LXD1T04
                             Restore j.
           TRA Y13
LXD2TC5
    -Y26
    Y27
                             g \rightarrow index 2.
    Y30
          SXD4Y32
                             g + hg
    Y31 1GC32Y32
                             g + h_S - h = g' < 0?
    Y32 6CC02X61
           LXD1TC4
                             NO, restore j.
    Y33
    Y34
           LEQ TO1
          FMP2CC0
    Y35
                             \phi_{g^{\dagger}} \sigma_{g^{\dagger}} \rightarrow g^{+} M_{n+1,j} \rightarrow M_{n+1,j}
           FAD 000
    Y36
    Y37
           STO CCO
    Y40
           TRA Y13
                             From Z33
    Y41
           ARS CO1
           STD Y57
    Y42
    Y43
           ARS C21
    Y44
           CHS
 ___Y45
           ADD M1*
    Y46
           STA Y64
    Y47
           LXA1401
           LXD2M2*
    Y50
    Y51
           CLA1M1
    Y52
Y53
         LFQ2M1
STO2M1
                             Store matrix to agree
    Y54
         STQ1M1
    Y55 20012Y56
                            with subroutine input
                            requirements.
Y56 10011Y57
```

```
Y57 70C01Y51
  Y60 LXD1457
  Y61 TSX4
        TSX4870
                       . Matrix solver.
                        Error stop.
  Y63 0G05 001
  Y64 4000 CCC
  Y65 9GC52Y63
  Y66 SXD1457
  Y67 CLA Y64 ...
.. Y70 CHS
  Y71 ADD G05
Y72 STA Y76
  Y73 LXA1G05
  Y74 LXD2X52
   Y75 10012Y76
  Y76 CLA1000
                        Store upscattering \phi
   Y77 STO2CCO
                        in regular \phi block.
  Z00 2C011Y75
Z01 CLA T11
                        Normalize φ.
   Z02
         STA ZC7
        STA Z13
   Z 0 3
   Z04
         STA Z15
   Z 0 5
        CLM
   Z06
       LXA1G01
   ZOZ FADIÇOC
   Z10 20011Z07 A
        STO TC1
   Z 1 1
        LXA1G01
   Z12
         CLA1CCO
   Z13
        FDH TOL
   <u> 214</u>
   Z15 STQ1CCO
   216 20011213
>> Z17 LXD4457
   Z20 TRA4CC1
                        Return to flow code
   221 _CLA_T11
                        from XO2.
   Z22
        STA Z27
                        Use flux from previous region.
   223 ADD G01
   Z 2 4
        STA 226
   Z 2 5
        LXA2G01
   Z26 CLA20COK
                        \varphi_{g,r-1} \rightarrow \varphi_{g,r}
   Z27 ST02000
   230 20012226
         TRA 217
  -Z31
        CLA M2*
                        From matrix set.
   Z32
   Z 3 3
       TRA Y41
  Z34 3G051Y25
                      __i ≥ # upscattering groups?
                        NO, -og tg
Return to code.
   Z35 CLS T01
Z36 TRA Y23
   Z37 80002X11
                        Patch.
   240 STD X77
__ Z41
         TRA_X12
                              ..___. .... .... . . . . . . .
   Z42 H0002X60
                        Patch.
   Z43 CLA M2*
   Z44 STA X64
Z45 TRA X61
```

```
X00 8
              806
                                SET REGION ADDRESSES
                                r → index 2.
•φ<sub>g</sub> base address.
X01
        LXD2T10
X02
        CLA F2*
X03
         SUB2F3
X04
         STA T11
                                φgr base address.
X05
        PXD2
        PCX4
X06
X07 1T214X10
                                r + E \rightarrow index 4.
                                \sigma_{\mathbf{g}} base address. \sigma_{\mathbf{rg}} base address.
X10
         CLA PO+____
X11
         SUB4P2
         STA T10
CLA F4*
X12
X13
                                 \phi_{\mathbf{k}}
X14
         SUB2F5
X15
         STA 113
CLA QO+
                                \phi_{\mathbf{k}_{\mathbf{C}^{\bullet}}}
X16
X17
                                \sigma_{\mathbf{k}}
         SU82Q2
         STA T12
CLA V2*
X20
                                \sigma_{\mathbf{kr}}
X21
                                 v_k
X 2 2
         SUB2V3
                                v_{\mathbf{k}}^{\mathbf{r}}
         STA T14
CLA AO#
X23
X24
                                σa(g)
X25
         SUB2A1
         STA T15
CLA A2*
                                \sigma_{ar}(g)
X 2 6
X27
                                \sigma_a(k)
<u>x</u>30
      SUB2A3
STA T16
                                σ<sub>ar</sub>(k)
X31
X32
        LXD4457
        TRA4001
X33
X34 80002X04 -
X35 CLA T21
X36 ALS 022
X37 STD X07
                                Patch to
                                 get E in
                                decrement.
X40
        TRA XC5
```

```
CALCULATE og ar address base.
   8 00x
              807
   XO1 CLA T15
         STA X16
   X02
  X03
         STA_X1.7 ...
   X04
         STA X33
         STA X34
  X05
                         1 → g
   X06
         LXA24C1
   X.07
         SXD2T01 ... Save g.
  X10 CLA T10 X11 SUB2P1
                          o(g,r) address.
   X11
         STA X31
   X12
   X13
         SUB GO2
         STA X15
   X14
                          og
±og → ogg
        CLA 000
   X15
  X16 FAD2000
X17 ST02000
         ST02000
   X17
   X20 LXA1T24
X21 SX01X23
                          h_t + 1 \rightarrow h

i \rightarrow dec.
                           g + h<sub>s</sub>
   X22 1GC32X23
                          - s
g + hs - h - g'
   X23 60002X37
   X24
        PXD2
X25 ARS 022
                           g¹ - G
   X26 SUB GO1
X27 TZE X31
                           g' = G?
                           NO, g' ≥ G?
NO σg'g
= 0?
 X30 TPL X35
         TZE X35
  - X 3 2
   X33
          FAD20C0
                           NO \sigma_a - \sigma_g \cdot_g \rightarrow \sigma_a
   X34
          ST020C0
×35 10011x36
                           h + 1 \rightarrow h
 X36 7G041X43
X37 LXD2T01
                          h \leq h_{\ell}
                           Restore g.
                           g + 1 \rightarrow g
g \leq G?
   X40 10012X41
   X41 7G012X07
        TRA40C1
   X42
                           Return to flow code.
                        Restore g.
   X43 LXD2T01
         TRA X21
   X44
```

```
CALCULATE \sigma_{k} \xrightarrow{\bullet} k
 X00 8
            810
      LXA2401
 X 0 1
                        l \rightarrow g
       TNO XO4
                        Test accum. overflow.
 X02
 X03
       TRA XC4
                        \phi_{\mathbf{g}}^{\mathbf{r}} address.
 X04
       CLA T11
 X05
       STA X63
       STZ TO1
STZ TC2
 X06
 X07
                        ok address.
       CLA T13
 X10
        STA X64
 X11
        SXD2TC1
 X12
                        Save g. 🤝
                        of address. 2
       CLA T10
 X13
        SUB2P1
 X14
 X15
        STA X62
 X16
        CLA2GC
       STO TC2
 X17
 X20
        LXA4T02
 X21
        CLA T12
 X22
        SUB4Q1
                         otr address.
  X23
        STA X71
        STA X73
 X24
  X 25
        STA T30
                        h_t + 1 \rightarrow h
        LXA1T24
  X26
  X27
        SXD1X31
                                     (I)
                        g + h_s

g' = g + h_s - h
 X30 1G032X31
  X31 60002X77
                         g' > G?
  X32 3GC12X74
       CLA2G0
  X33
                         k^{\dagger} - k
        STO TC3
  X34
  X35
        SUB TC2
        TZE X74
  X36
  X37
        CHS
  X40
        ADD KC3
                         i = k - k' + i_s
        STO TC4
  X41
       LXA4TC4
  X42
                         i \rightarrow index 4.
                         i > it?
  X43 3K024X47
        TSX4975
  X44
                         Print.
  X45 4C000847
                         Too few upscat.
  X46 HTR Y02
×47 3K044X51
                         i \leq i_{\ell}
  X50
        TRA X54
        TSX4975
  X51
                         Print.
  X52 40000846
                         Too few downscat. ...
        HTR YC2
  X53
         CLA TO4
×54 جا
  X55
         NCP
... X56
         NOP
               NOP
  X57
  X60
         STO TC4
         LXA4T03
  X61
                         k' \rightarrow index 4.
  X62
         LDQ1000]
                         \varphi_g, \sigma_g, \rightarrow g
        FMP2000
  X63
                              \varphi_{\mathbf{k}},
  X64
         FDH4000
         STQ TO7
  X65
  X66
         CLA TC7
        NOP ....
.. X67
```

```
\sum_{\phi g^{\text{!`}} \sigma g^{\text{!`}} \rightarrow g/\phi_{k}^{\text{!`}}}^{\text{Restore i.}}
X70 LXA4TC4
x71
          FAD40C0
           NOP
X72
           ST04000
                                             \sigma_{\mathbf{k}}^{\bullet} \to \mathbf{k}
X73
                                            Restore g.

h + 1 \rightarrow h

h \leq h_{\ell}

Restore g.
X74 LXD2TC1
X75 10011X76
X76 7GC41X27
X77 LXD2T01
                                            g + 1 \rightarrow g
g > G?
Y00 10012YC1
Y01 7GC12X12
Y02 LXD4457
Y03 TRA4C01
                                             Return to flow code.
```

```
CALCULATE og, vor, og, vr, og
8 00X
                811
        LXA2401
                                \begin{array}{c} 1 \rightarrow g \\ 1 \rightarrow k \end{array}
X01
        LXA1401
X02
X03
        CLAICO
        ALS 022
STD YC7
X04
X05
                               Set addresses.
X06
        CLA T13
X 07
         STA X42
        STA X43
STA Y24
STA Y31
X10
X11
X12
        STA Y33
STA Y40
X13
X14
                                \mathbf{v}_{\mathbf{r}}^{\mathbf{k}}
X15
        CLA T14
        STA X50
STA X51
X16
X17
                                \sigma_{\mathtt{ar}}^{\mathtt{g}}
X20
         CLA T15
X21
         STA X52
                                \sigma_{\mathbf{a}\mathbf{r}}^k
         CLA T16
X22
X23
         STA X54
X24
         STA X55
X25
         STA Y23
         STA Y25
CLA T11
X26
X27
                                \phi_{\mathbf{r}}^{\mathbf{g}}
         STA X40
CLA T12
x30
                                σk base.
X31
X32
         SUB101
         STA YOZ
STA YO3
X33
X34
         SUB KO2
STA X75
STA X76
X35
X36
X37
         CLA20CO
STO TC1
FAD1GCO
 X40
 X41
 X42
         ST01000
 X43
 X44
         CLA TO1
         FDP2VC
 X45
         STQ T07
CLA T07
 X46
X47
                              v_k = \sum_{g} \varphi_g / v_g 
 X50
X51
         FAD1000...
 X52
X53
         LCQ2000
FMP T01
         FAD10C0
 X54
                                 \sum_{\substack{\mathbf{\phi_g^r} \ \text{base.}}} \mathbf{\phi_g^r} \ \sigma_{ar}^g
 X 5 5
          ST01000
 X56
          CLA TIO
 X57
          SUB2P1
 X60
          STA YCO
         SUB GC2
STA X67
 X61
                                 \sigma_{\rm tr}^{\rm g} base.
 X62
         STA X72
CLA PC6
 X63
                                 Linear otr?
 X64
 X65
         TZE X71
X66 LDQ TO1 YES
X67 FMP OCC PE OF
```

```
X70
          TRA X75
           CLA TO1
  X71
                                 Inverse otr.
           FPP CCO
                                 φ<sub>g</sub>/σξ<sub>r</sub>
  X72
  X73
           STQ 107
  x74
           CLA TOT
                                 \sum \phi_{\rm g} \ \sigma_{
m tr}^{
m g} \ {
m or} \sum \phi_{
m g}/\sigma_{
m tr}^{
m g}
➤ X75
           FAD 000
           STO CCC
  X76
                                 1 \rightarrow index 4, i for \sigma_{ac}(i).
           LXA44C1
  Y00
           LDQ4000
           FMP TC1
  Y01
                                  Σσξιr(i) φg 1
           FAD40C0
  Y02
  Y03
           ST04000
                                 Y04 10014Y05
  Y05 7GC24YC0
   Y06 10012Y07
   Y07 70002X40
                                 k + 1 \rightarrow k
k > K
1 \rightarrow k
   Y10 10011Y11
  Y11 7K011X03
   <u>Y1</u>2
           LXA1401
           CLA T12
   Y13
           SUB1Q1
                                  σr base.
   Y14
   Y15
            STA Y37
            STA Y41
  Y16
                                  otr base.
           SU8 K02
   Y17
            STA Y30
   Y20
   Y21
            STA Y34
   Y22
            STA Y35
           CLAICCC
   Y23
   Y24
           FDP1C00
   Y25
            STQ1000
   Y26
            CLA PO6
                                  Linear \sigma_{tr}?
   Y27
            TZE Y33
                                  \text{YES}_{\sigma_{\text{tr}}^{k}} = \frac{\sum_{\phi_{g}} \sigma_{\text{tr}}^{g}}{\phi_{k}}
   Y30
            CLA 0C0
            FDP1000
   Y31
            TRA Y35
   Y 32
                                  Inverse \sigma_{tr} = \phi_k / \sum \phi_g / \sigma_{tr}^g
   Y33
            CLAICCC
            FCP OCO
   Y34
            STG OOC
→ Y35
                                  \begin{array}{l} \text{l} \rightarrow \text{index } \text{!} \text{ (i).} \\ \\ \sigma_{ac}^{k}(\text{i)} = \frac{\displaystyle \sum_{\phi_{g}} \sigma_{ac}^{g}(\text{i})}{\phi_{k}} \end{array} \begin{array}{l} \text{?} \\ \text{!} \end{array}
   Y36
            LXA44C1
            GLA4GC0
   Y37
   Y40
            FDP1000
           STQ40CC
   Y41
   Y42 10014Y43
                                                          1
                                  i + 1 \rightarrow i
i > h_t - 1?
k + 1 \rightarrow k
   Y43 7K024Y37
   Y44 10011Y45
Y45 7K011Y13
                                 k > K?
   Y46
          LXD4457
                                  Return to flow code.
           TRA4001
   Y47
                                  Dec. - 1 \rightarrow dec. of Y05. Dec. - 1 \rightarrow dec. of Y43.
   Y50 90016YC5
   Y51 90016Y43
```

```
\boldsymbol{\sigma}_{\mathbf{k}\mathbf{k}} CALC.
X00 8
             812
      STZ TC1
X01
                           \sigma_{\mathbf{a}}^{\mathbf{k}} address.
X02
      CLA T16
X03
       STA X20
                           i \rightarrow k
X04
       LXA24C1
                          Save k.
X05
       SXD2TC1
X06
       CLA T12
       SUB2Q1
X07
X10
       STA X42
                           σ<sub>k</sub> address.
X11
       SU8 K02
       STA X17
X12
X13
       ACD KO2
       SUB KC3
X14
                           \sigma_{\rm kk} address.
X15
       STA X21
       STA X22
X16
                           \sigma_{\mathbf{k}}
       CLA 000
X17
X20
       FS820C0
                           \sigma_k - \sigma_a
X21
       FAD OCO
                           + σ<sub>kk</sub>
X22
       STO 000
                           → σ<sub>kk</sub>
i<sub>t</sub> f<sup>k</sup>l
X23 LXA1T25
X24 LXD2T01
                           Restore k.
X25 SXD1X27
                           k + i_s

k + i_g - i = k^t
X26 1K032X27
X27 60002X51
                           Is k^* > K?
X30 3K012X47 ....
X 3 1
      CLM
                           NO
X 3 2
       PXD2
X33
       SUB TC1
                           Is k^{\dagger} = k?
X34
       TZE X47
       CLA T12
                           NO,
x 35
X 36
        SUB2Q1
X37
        SUB KO3
X40
       STA X44
X41
        STA X45
X42
       CLS1CC0
                           - σ<sub>k*k</sub>
       NOP
X43
                           +\sum_{\sigma_{klk}}
       FAD 000
X44
X45
       STO CCC
X46 NOP
X47 10011X50
                           i + l \rightarrow i
                           i > i? NO 1

YES, restore k.

k + 1 \rightarrow k

k > K? NO 2

YES, return to flow code.
X50 7K041X24
X51 LXD2TC1
X52 10012X53
X53 7K012X05
X54 LXD4457
X55 TRA4CC1
```

```
X00 8
         813 GENERATE CODE CONSTANTS
XO1 LXA24C1
     LXA1401
CLA 4G1
STO TO1
CLA1CC
X02
xQ3
X04
X05
     ALS 022
STD X13
X06
X,07
X14 ADD 4C1
X17 CLA G04
X20 SUB G03
X21
      STO T20
                    h<sub>f</sub> - h<sub>s</sub>
      CLA PO3
X 2 2
X23
      SUB PCZ
                     E = M - R
X24
      STO 121
X25
     CLA GO3
X26 SUB G02
X27 STO T23
                     hs - ht
X30 <u>SU8 401</u>
X31 STO 722
                    n<sub>s</sub> - n<sub>t</sub> - 1
      CLA GC2
X32
X33
      ADD 401
      STO T24
                    h<sub>t</sub> + 1
X34
X35 CLA K02
X36 ADD 4C1
X37 STO 125
                     i<sub>t</sub> + 1 812, X23
X40 TRA4001
```

```
6 00x
           815
                       CALC. \mathbf{v}_k
     CLA PC4
X01
                       Volume specification W.
X02
      SUB 404
      TZE X54
                       W = 4, calc. v for each region.
X03
      CLA PC4
X04
      TZE X24
አ05
                       W = 0 volumes supplied.
X06
      LXAZACT
                       Generate volumes, 1 → index 2.
      STZ 102
X 0.7
x10
      LXA1PO4
                       n \rightarrow index l = i (region index).
      LCG 421
                       1.0
X11
      FMP2WO
X12
X13
      LRS 043
X14 20011X12
      STO TO1
FSB TO2___
STO2WO
X15
X16
X17
      CLA T01
STO T02
X20
X21
X22 10012X23
X23 7P022X10
      LXAIKOI
                        K \to k \text{ (index 1)}.
X24
X25
       LXA2P02
                        R \rightarrow index 2.
       STZ TC1
STZ TO2
X 26
X27
                        \phi base address.
       CLA F4*....
X3Q.
       SUB2F5
X31
       STA X33
X32
       L0Q1000
X33
X34
       FMP2W0
       FAD TO1
X35
       STO TOI
CLA V2*
X36
                        v base.
X37
X40
       SUB2V3
       STA X42
X41
 X42
       LCQ1000
       FMP2WQ
 X43
 X44
       FAD TO2
                        \sum_{r} \ \underset{\mathtt{l}^r \rightarrow \ r}{\mathtt{v}_k^r}
 X45
       STO TC2
 X46 20012X30
       CLA TO1
                        Regions done.
 X47
 X50
       FOH TOZ
 X51
        STQ1V1
 X52 20011X25
                        k - 1 \rightarrow k
       TRA4001
                         Calc. done, return to flow code.
 X53
                         v<sub>k</sub> for each region.
       LDQ KC1
MPY PO2
 X54
 X55
 X56 STQ TO1
                         R \times K in index 1.
       LXA1T01
 X57
       CLAIF4
 X60
 X61
        FDP1V2
 X62
        STQ1V2
 X63 20011X60
       TRA4C01
 X64
                         Return to flow code.
 X65 80002X15
                         Patch, LRS not reliable.
 X66 STQ TO1
X67 CLA TO1
 X70 TRA X16
```

v n n	8 816	INPUT PRINT
	TSX4974	•
	00000850	
	00000851	
	00000852	
X05	00061PC0	Parameters.
X06	00000853	
X.0.7	00051G00	
X10	_00000854	
X11	00051K00	
X12	00000855	
X13	0000050	Fission spectrum.
X14	.00000VC	Velocities.
X15	0000000	Few-group spacing.
x16	00000N0	Elements for mixtures
	0000000	
X20	00000856	• • • •
X21	00C00F0	Flux source.
X22	00000W0	Volumes or radii.
	00000857	
	40000F2	
X25	LXD4457	
	TRA4001	Return.

x00	8 817	OUTPUT PRINT
X01	TSX4974.	
X02	00000862	
X03	C0C00863	
X04	0000051	Fission spectrum.
X05	C0000V1	Velocity spectrum.
X06	C0000871	(12002 · J - F - O - 12 - D - 1
X07	C0000F2	Fluxes used.
		Tables well.
X10	00000864	
X11	00000F4	Output fluxes. F4
X12	C0000860	-
X13	U0000A0	Input absorptions.
X14	00000865	
X15	00000A2	Output absorption.
X16	00000866	
	4000000	Output sigmas.
X 20	CLA PO4	Print velocities
X21	SUB 404	for each region?
X22	TNZ X26	3 J 3
X23	T\$X4974	YES
	C000C867	
X 2 5	40000V2	
L → x26		Punch on line.
X27		
X30	00000V1	
	40000C0	
X32	TSX4975	
X 3 3	00000843	•
	40002000	
	LXD4457	
_	TRA4001	
		·