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ABSTRACT

A description of a time-dependent radiation transport code is

given. The transport equation is written in a form such that the

flow of radiation is along the characteristics in space-time. En-

ergy conservation, the equation of state, and the hydrodynamic

equations are written in a finite difference form.

Numerical results to several problems of varying degrees of

complexity are given.
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1. INTRODUCTION

There till be described in this report a time-dependent radia-

tion transport code which has been written for the IBM 7030 (Stretch)

computer. Numerical results for several representative problems

are presented.

It i.sknown that radiation transport phenomena in the pres-

ence of black body sources (and hydrodynamic motions) are described

by a system of coupled non-linear equations. The monochromatic

intensity of radiation at a space-time point traveling in a speci-

fied direction is the sum of three terms in the general case. The

first is the unabsorbed and unscattered radiation reaching that

point while the remaining two contributions arise from radiation

scattered into the beam and emitted from the matter into the beam.

The contribution to the intensity from the matter depends non-

linearly on the local temperature, while the temperature itself

depends on various angular moments of the intensity.

1



Artadditional peculiarity of the description of radiation

transport arises in the present work due to the fact that we

write the transport equation in an Eulerian framwhile writing

the equations of hydrodynamics in a Lagrangian coordinate system

fixed in the matter. To be consistent, it is preferable (and,

indeed, necessary) to transform the description of phenomena to a

single frame. If one refers the radiation to the Lagrangian

frame associated with the matter, the result is to introduce

terms of order v/c raised to various powers. A cursory discussion

of this point is given below together with references to more

complete expositions.

When discussing the coding of the various equations of

transport, the question of notation arises. We have not used any

particular notation consistently in the report, preferring to

write equations in a form which, hopefully, brings out most clear-

ly the physical significance.

In Section 2, the equations of radiation transport are

written down and put into a form suitable for transition to mesh

equations. The latter are discussed in Section 3, and simplified

flow diagrams are included. The presentation and discussion of

numerical results is the content of Section 4.



2. THE EQUATIONS OF TRANSPORT

As radiation passes through matter, some of it is absorbed

and some is scattered. That which is absorbed gives rise to a

temperature distribution in the matter; emission at the local

temperature then takes place. The pressure within the matter

changes according to an equation of state relating the pressure

and temperature. As the pressure builds up, hydrodynamic motions

ensue. Energy in the system of matter plus radiation is con-

served, the governing equation being the first law of thermo-

dynamics . T%us, when speaking of radiation transport, a system

of equations is needed.

Under the assumption of azimuthal symnetry, the space-time

behavior of the intensity of radiation is governed by an equation

of the form

In equation (2.1), Iv ~ Iv(x,W,t) is the monochromatic intensity

of radiation of frequency in the interval dv about v which is at a

point x at time t, traveling in direction ~ = cos e; c is the

v + as, where ~avelocity of light; u ~ aa v is the absorption cross

section of the matter for radiation offiequency v corrected for

stimulated emission, and as is the scattering cross section. The

quantity Bv is taken to be a black body source at a temperature T;

3



(2.2)

The quantity k(V,V’) is the single scattering law. If this be

assumed isotropic, then the fntegral on the right hand side of

(2.la)

while if the Rayleigh (Thomson) law is assumed to hold, one has

f ‘L+”H+’:+”=+”“f”’J’244‘2”1b)
-1

-f

We have considered only these tm scattering laws. Finally, the

operator~p appearing in (2.1) is geometry dependent. For plane

geometry, one has

Zv=pa- ; (2.3a)

while for spherical geometry, the form is

4?17‘ p$ ++&.$ ●

(2.3b)

(In this last relation, x is a spherical posftion coordinate.)

There are certain quantities which are of importance in a

discussion of radiation transport, and which will now be defined.
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The radiation energy

Et@, t)=

density is defined as
& /

~ ~1

The flux of radiation is defined as

w /

The mean intensity of radiation is

Finally, the radiation pressure is

dp .

defined as

given by the relation

(2.4)

(2.5)

(2.6)

*

//

I

Pr’
= ~ dv p’~%p. (2.7)

o -f

The pressure is connected with the temperature and density with-

in the matter by an equation of state; i.e.,

pm = }CJ)T). (2.8]

which we have considered thus far, we have used aFor the cases

perfect gas law such that

(2.8a)

with b defined as

mass per degree.

There is one

one considers multi-group problems, it is necessary to define

the gas constant in units of energy per unit

additional matter which deserves mention. When

5



some sort of average of the absorption coefficient over finite

frequency groups. Suppose @at we integrate equation (2.1) over

a range of frequencies from ~ to ~. Calling

equation (2.1) is

If it were possible to compute a mean-absorption coefficient

defined by

l-j

z up) =/#(wai~ (2.9)

~

then the transport equation, integrated between two frequencies,

wmld take the form
1

Mean absorption coefficients other than (2.9) have some validity.

Chief among these are the well lmown Rosseland mean, valid when

the approximations of diffusion theory hold, and the so-called

Planck msan given by

(2.11)



It is the mean defined by equation

paths are long, which we have used

of how best to define a mean which

(2.11),

for the

will be

valid when mean free

most part. The question

valid in both the short

and long mean free path limit is being considered by both

B. Wendroff and W. D. Barfield of LASL.

Since the frame to which the matter is attached (by means of

a Lagrangi.an coordinate description) will be moving with some

velocity ~, it is necessary to look into the question of the

effects which such motion will have on the transport equation when

it is referred to the matter frame.

This problem was discussed by L. H. Thomas (l), and more

recently by A. N. Fraser (2). In addition, Ledoux and Walraven

(3) have material bearing on such transformations in their

Handbuch article.

The use of the tum scattering laws which have been assumed

valid in this report introduces an important simplification when

discussing energy consenation; namely, the scattering cancels

out exactly. (For

Nishina formula is

therefore, discuss

temperatures high enough so that the Kl.ein-

the only valid one, this is not so.) We can,

energy conservation starting with a transport

equation in the form

: ~’+ Cvf”= ~~(wr).
(2.12)

7



~alling the definitions

the result of multiplying

●ll u and v is to form

J&
&V”F =

(2.4) and (2.5), it will be seen that

(2.12) by 2TTand then integrating over

J( C&/ti 4rB~.cErV. (2.13)

o

The right-hand-side of (2.13) is a measure of the heat added to

the material per unit volume per unit time. A difficulty arises.

Equation

material

general,

Eulerian

(2.12) is written in Eulerian form. We shall follow the

via the Lagrangian prescription. The material will, in

be flowing with some velocity v relative to the fixed

frame. The radiation flows with the speed of light.

Intuitively, one feels that corrections of the order of v/c will

appear If (2.13) is now transformed to a frame fixed h the

matter. T%is is, in fact, the case. However, the ratio of v/c

will be no greater than 1/300, and till be, in general, much

l%us, we shall ignore the correction terms. Then (2.13) can

written in the form

less.

be

aEr
—+V.F = - q

2+ Cit

which, by the first law of thermodynamics becomes



Using the continuity equation, and the equation of motion, one

can write this last in the form

where E ‘
m r CVT for a perfect gas and 4P+ is the specific

kinetic energy of the material. The quantity PT is the total
A

pressure, given by

Concerning the viscous pressure, more will

Using a Lagrangian coordinate system,

be said later.

the mass per zone is a

constant. Knowing the pressure from the equation of state,

forces on a unit area of a zone interface can be computed. lGlow-

ing the (constant) mass, we can then find the acceleration of the

material. By integrating, the velocity and position of inter-

faces at some later time can then be found. Knowing these last,

we can then compute new densities and temperatures through the

system and omeagain find new pressures from the equation of state.

The finite-difference equations for hydrodynamics will be dis-

cussed in Section 3.



It is the intent of this section as mentioned earlier to put

the system of equations into a form suitable for numerical manipu-

lation. We have used equation (2.13a), together with the hydro-

and that

dynamic equations in

radiation transport,

Whether the operator

the substitution

finite-difference fozm. The equation of

(2.1), will nowbe discussed further.

ZV’ has the form (2.3a)or (2.3b),we make

(2.14)

l’hisis equivalent to insisting that the independent variables

x, ~, t depend on the parameter S. The expressions for

x(s), v(s), t(s) are the equations of the characteristics along

which the radiation flows in space-time. In plane geometry,

(2.15)

10



The solution to the set (2.15) yields

implying that

(2.16)

(2.17)

The solution to the set (2.17) is

//2
y(s) = (xo=fs’k2x./u.>s) ,

t(z) = f. ~ -%,

1

(2.18)

f((s) = (/% X* i9/xfsl.

with the substitution (2.14), equation (2.1) can be written as

~i +rI’ (T@ +L@CL, (2.19)

d<

where K is a scattering operator. This can be integrated between

11



two points on a characteristic. One has

The radiation transport equation in the form

for use

We

on the Stretch.

now turn to a discussion of the mesh

(2.20) has been coded

equations themselves.

3. THE MESH EQUATIONS AND FLOW DIAGRAMs

For the ~rposes of numerical computation, we label the posi-

tion, angle, time and energy as xi, ~k, t , and Ug respectively, where
j

the

are

subscripts take on discrete values. The dependent variablas

then defined as

(3.1)

p(x){) ‘P~j7 J

so forth. When quantities are computed at the midpoint ofand

zones, i-d.+ %, with a similar statement holding for the time.

Because of the initial and boundary value character of the

problems, data along the lines xi E O, tj = O must be given. For

the sake of being definite, imagine that we are discussing a prob-

lem in plane geometry. Supposing further that no unbalanced

hydrodynamic forces are present, so that the relative positions of

12



the xi are time-independent, a mesh such as is shown in Fig. 1 can

be constructed.

t

—

—

—

m

—

—

—

n

(= ..

—- -—

7///1//1//1////(/If///////?

Fig. 1

Mesh in the x-t Plane

The fact that initial and boundary value data are given is indi-

cated by the cross-hatching in Fig. 1. In Fig. 2, an enlarged

section of Fig. 1, the characteristics have been drawn into the

mesh, together with two angles, VI , ~z.
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%(./,‘&j

x(-lt
J )-1 P

Fig. 2

A+/4 I

XL—- —
J

‘i, tj-,

An Enlarged Portion of the Mesh in the
x-t Plane

Suppose we wish to compute the intensity at the point xi, tj in

the direction VI . The characteristic, when drawn backwards,

intersects the vertical line xi-l at some instant of time

between t. and t .
J‘1 j

To compute this value of the time, observe

that the distance which the photon has travelled is (xi-xi-l)/WI

so that the time associated with the point ~ is

hod = ~ - ‘% -n,),
p, c

(3.2)
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Since a value of the intensity at Position xi-l at time t(a) is

unknown, we use linear interpolation to obtain the approximation

‘IK= Ij + ( ‘j - ‘(4))(1~_,-Ij).

ij - {j.,

(3.3)

on the other hand, angles such as V2 can exist, such that the

characteristic will intersect at the point ~. But

f
X()=x’- ~=c({j ‘(J-\),

so that, analogous with (3.3), we have

p = ‘i +(m)(I~.,-l( ).I
%( - x, -,

(3.4)

(3.5)

We now want to develop the mesh equation for the intensity.

In the case of the characteristic intersecting at the point ~, we

15



where 1~ is given by

one would have
“C ti

(3.3). If the point of intersection were ~,

To evaluate the term KI (which is proportional to the mean

intensity) on the right hand side of (3.6a)or (3.*), we have

used the double Gaussian quadrature formula; i.e.,

0

y = ~ 4,1:. (3.7)

.4’0

Similarly, the equations for the (monochromatic) energy, the flux,

and the radiation pressure are

1=0

(3.8)
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Table 1

k=2

%

%

k=3

xl

Xo

x-l

k=4

%

%

%

x-l

k=5

X2

xl

%

%

x-2

COntaiIM the ValUeS Of ak$ ~k fOr VariOUS values Of k,

Table 1
Table of the Zeros of the Legendre Polynomial and
the weight coefficient for Gauss intimation in
the interval O s x s 1

Zeros

.211 324 8654

.788 675 1346

.112 701 6654

.500 000 0000

.887 298 3346

.06943184420

.3300094782

.6699905218

.9305681558

.04691007703

.2307653449

.500 000 0000

.7692346550

.9530899230

al

ao

%

ao

a-l

a2

%

ao

a -1

ao

a-l

a-2

Weight

.500 000 0000

.500 000 0000

.277 777 7778

.444 444 4444

.277 777 7778

.1739274226

.3260725774

.3260725774

.1739274226

.1184634425

.2393143352

.2844444444

.2393143352

.1184634425

17



Zeros Weight

k=6

X3

X2

%

%

X.1

‘-2

k-7

X3

X2

%

%

x-l

X-2

‘-3

k=8

‘4

‘3

%2

%

%

.03376524290

.1693953068

.3806904070

.6193095930

.8306046932

.9662347571

.02544604383

.1292344072

.2970774243

.50000 00000

.7029225757

.8707655928

.9745539562

.01985507175

.1016667613

.2372337950

.4082826788

.5917173212

a3 .08566224619

a2 .1803807865

% .2339569673

ao .2339569673

a-l .1803807865

a-2 .08566224619

a3 .06474248308

a2 .1398526957

% .1909150253

ao .2089795918

a-l
.1909150253

a-2 .1398526957

a-3 .06474248308

a4 .05061426815

a3 .1111905172

% ,1568533229

%
.1813418917

ao .1813418917

18



Zeros
k=8 continued

-1

‘-2

‘-3

k=9

X4

‘3

%2

%

%

x-1

x-2

x-3

‘4

k=10

%

X4

‘3

5

xl

Xo

.7627662050

.8983332387

.9801449283

.01591988025

.08198444634

.1933142836

.3378732883

.50000 00000

.6621267117

.8066857164

.9180155537

.9840801198

.01304673574

.06746831666

.1602952158

.2833023030

.4255628305

.5744371695

Weight

a-1 .1568533229

a-2 .1111905172

a-3 .05061426815

a4

a3

%

%

ao

a -1

a -2

a-3

a-4

.04063719418

.09032408035

.1303053482

.1561735385

.1651196775

.1561735385

.1303053482

.09032408035

.04063719418

.03333567215

.07472567458

.1095431813

.1346333597

.1477621124

.1477621124
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Zeros

k=10 continued

x-1

X-2

‘-3

‘4

k-n

%

‘4

‘3

%

xl

%

x-l

X-2

x-3

x-4

‘-6

k=~z

%!

%

X4

‘3

.7166976970

.8397047842

.9325316834

.9869532643

.01088567093

.05646870012

.1349239972

.2404519354

.3652284220

.50000 00000

.6347715780

.7595480646

.8650760028

.9435312999

.9891143291

.00921968288

.04794137181

.1150486629

.2063410228

Weiizht

a -1 .1346333597

a-2 .1095431813

a-3 .07472567458

a-4 .03333567215

a.a

a4

a3

%?

al

%

a -1

a -2

a .3

a-4

a-5

.02783428356

.06279018473

.09314510546

.1165968823

.1314022723

.1364625434

.1314022723

.1165968823

.09314510546

.06279018473

.02783428356

a6 .02358766819

% .0534696630

a4 .08003916427

a3 .1015837134

20



Zeros

k=12 continued

X2 .3160842505

xl .4373832958

Xo .5626167043

x -1
.6839157495

x-2 .7936589772

X-3 .8849513371

‘-4 .9520586282

X-5 .9907803171

Weight

a2 .1167462683

% .1245735229

a. .1245735229

a-1 .1167462683

a-2
.1015837134

a-3
.08003916427

a-4
.0534696630

a-5
.02358766819

Equations (3.6a,b) can now be written in the form

where 5 = 6X’PK if @x/pK s CA~ and S=CAt

otherwise.

Specializing, for the sake of clarity, to the case for which s = Ax/~k

and to a one energy group problem with constant CJ’S (and, as

stated earlier, in plane geometry), we can now write (3.9) as

~AK+ti

I

Ax/p’K

l~j,~= I~_,)j,f-

te

-’%.’{ qJhQQ&} , t

J Xi+kx)tj-:.
o

(3.10)
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The integral is now evaluated by Simpson’s rule. One has

[
‘uh~(xi-pKh)tj-$)+ ...I~)j,k=~. ~OAx’p&+ $ ~~,j,~+ he

1-1 ,j,k

}

-CYAX/1%~i-,(j- Ax@c) .
+e

Ax
The quantity h = —, where n

%
= ~ B + a KI has been made.Xa s

each point between x
i

and x
i-l

sity between the two values is used to obtain an approximation.

(3.11)

is some even number; the substitution

Now, values of x are not known at

. Linear interpolation of the inten-

Moreover$ an iteration scheme must be used to obtain accurate

values of the intensity since the scattering contribution

is initially unknown. The iteration scheme which we have employed

is as follows. When temperature dependent sources are present,

we assume that 1 ‘0’=B as a zeroth guess. Then, from (3.11)

(3.lla)

When an equation of the form (3.lla) is

( ‘, the energy~, the mean intensity J 1

@ are evaluated according to (3.8).

evaluated for each angle

density E(, ), and the flux

Then, the finite

difference form of the energy conservation equation is used to find

a new temperature distribution. From this last, a new source is

(1) is known. From this, a new I(a) is computedcomputed so that x
ijk

and the cycle repeats until appropriate convergence criteria are

22



fulfilled. These are on the mean intensity where we require that

~fltl [m
-J (3.12)

:cv(Jm+““)<“
where n is the order of iteration, and on the temperature

Although the

are similar,

Referring to

~“”- T“
(3.13)

(““ ‘J”)<1“thaxI

methods used in problems involving spherical geometry

there are some peculiarities concerning the mesh.

equations (2.18), make the substitutions

The mesh in spherical coordinates is constructed as shown in Fig. 3.

A

IY

Fig. 3

Schematic Diagram of the Mesh in Spherical Coordinates

23



Fig. 4 is, again, an enlarged portion of the mesh, in which the

quantities ~, ~, are shown, together with other details pertinent

to the calculation of the intensity of radiation at the point ~(s)

Fig. 4

Enlarged Portion of the Mesh in Spherical Coordinates

traveling in direction VI(S). Write the transport equation in a

spherical coordinate system as

24



Again, a single energy group

been assumed.

It is a straightforward

calculation with constant ~ls has

matter to find expressions for ~~

~, and ~ in terms of quantities which are fixed. From Fig. 3, for

example,

which, by relations (3.14) can be

Further,

r
can now be

(3.16) are

(s)= )1,/j?

(3.16)

written as

(3.17)

computed since all quantities on the right hand side of

known. As for ~(s), it is given by

(3.18)
c

The intensity is not known at =(s), ~(s), ~(s~ but interpolation

in position, angle, and time can be made to find an approximation.

From this point on, the method of numerical analysis is identical

with that used in the plane geometry part of the code. It is worth-

while noting, however, that our experience has indicated that the

linear interpolation formulas we use make for rather slow convergence

of the iterative scheme.

25



The mesh equations for energy balance follow directly from

equation (2.13). In plane geometry, one has

(3.19)

(~UT+Er/~t~2/~),,~,j~‘c~T+cr’~’ v2’2\+i)j-$ 8,2,{ t~+,)jt<~j~iv

where $= F+vP ~, and the perfect gas equation E~ = y CVT has been

used. For spherical coordinates, the expression is

where A = 4+.

we solve are, in

positions as a function

holds the mass constant

Hydrodynamics

The equations for hydrodynamics which

essence, used only to compute new interface

of time. The Lagrangian coordinate system

in any zone and allows the density to vary. We start from Newton’s

second

where again i denotes position and j the time; X; iS the accelera-

j
tion at the point xi at time t , while the p’s are pressures, A, is

j

an appropriate area, and the m’s are

masses. To find the velocity of the

. s+lf= ‘_l/

)(LJ = ;/+/ 2
)

A

the preassigned, constant

material, we write

(3.22)
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and on integrating once more, we have the positions according to

(3.23)

The centering of these equations minimizes truncation errors.

In plane geometry, the A; are constant areas, while for

spherical geometry, they are, as mentioned earlier,

(3.24)

It is necessary to exercise sometcarein selecting the

time interval At; the need arises from the fact that if At is

too large, and if the velocities are high enough, the quantity

can become negative. Physically, of course, this is impossible,

but mathematically, it is clear from examination of (3.22) and

(3.23) that velocity and position are linearly dependent on At.

We use the Courant condition to fix a maximum on At; i.e.,

At
% — <1. (3.25)

AX

Here, cs is the sound speed in the medium.

In addition, we introduce an artificial viscosity after

the fashion of von Neumann to smooth out oscillations within a

zone. It is turned on when the velocities computed indicate

that the material is collapsing. The form of the viscosity term

27



(3.26a)

which is di.fferenced as

(3.26b)

in plane coordinates and in the same manner in spherical coordi-

nates with the proper expression for the divergence. The number

a is generally taken to be two. If the shock speed becomes

high, it is increased to four or more.

This completes the discussion of the mesh equations. Figs.

5 and 6 are simplified flow diagrams of parts of the code. They

do not handle in any detail the subroutines by means of which

quantities are computed, but simply indicate the order in which

things are done.
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Compute
pressure,
acceleration
velocity, *

position,
density

.
Compute
intensity,
mean intensity,
flux,
radiation
pressure

No

Fig. 5

Simplified Flow Diagram of Time-Dependent Radiation
Hydrodynamics Code

This flow diagram assumes that there exists a fully converged

temperature distribution for a time (t-At).
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1 1

J
Apply boundary
conditions to
compute
I (X=o ,flti>o,jl

Determine = as smaller o:
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boundary conditions for
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Compute integral
of J, P, F over

all J’s

Fig. 6

Simplified Flow Diagram of Intensity Calculation
in Plane Geometry at Time t = t

j
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4. NUMERICAL RESULTS

The problems discussed below are typical of many which may

be of interest to astrophysicists. The primary reason for their

inclusion is that each verifies the fact that a certain section

of the code is without error.

Milne Problem

The Milne problem has been thoroughly discussed by Mark

(4). The equation to be solved is

(4.1)

A solution is sought in the semi-infinite half-space X>O subject

to the boundary condition,

@p>G)=o.

A trial function,

(4.2)

1(X,)4)= :(x-p, (4.3)

which satisfies (4.1), but not (4.2), was inserted as a zeroth

guess and the iteration was carried forward until the flux F

satisfied the condition

F = 2TI
~
~dp = collst (4.4)

-1

That the condition (4.4) holds is readily verified by multi-

plying (4.1) by ~ and then integrating over all p. The constant



3/2

not

was chosen in (4.3) to normalize the flux to 2Tr.

Table 2 is the listing. It will be observed that the flux is

constant, varying about 15 parts in 600, with a particularly

sharp drop at the boundary x = O. The reason for this is that a

quantity Xo, known as the extrapolated length, has not been calcu-

lated with any great accuracy in the present cane, If normalized

properly, the radiation pressure at x = o is given by

p(ol=xo =,~lo+qbo?.. ,

To compare this number with our listing, we have

so that

in erroraboutone part in 70. Mark (4) has shown that the extrapo-

lated length must be known with extreme accuracy if the flux and

the mean intensity are to be accurately known. By juagling with

our trial function, we are able to arrive (slowly) at values of

the flux which are more constant than the one listed herein, How-

ever, the process is slow and an improvement in the method of ●nergy

check (used in the following problems) will yield more rapidly con-

vergent (and constant) values of the flux.

Gray Body Atmosphere

The equation under discussion is

P % +-~= %(r~s
(4.5)
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where B(T) is the temperature-dependent

namely,

Here, ~ is the Stefan constant;

-5
G-= s.6721.fKlo e?- .s

?

integrated Planck-function;

‘{x). (4.6)

/ctn+Xc-(”K )4.

It will be noted that x is dimensionless; it is, properly, optical

depth. The boundary conditions chosen were

-nlo, -fl)” ;F. b j (lo) +41);

\
(4.7)

L(o)pG) =0. J

The number q(lO) = .71044609 is known as the extrapolated length.

One can determine the degree of consistency between the derived

temperatures T(x) and the constant flux F by application of the

relation (5)

F7-~= &-.(x+ (x)j) (4.8)

Calculations made using (4.8) to find T(x) show that the listings

of Table 3 are self-consistent to within a maximum difference of

a few parts in a thousand.

Time Dependent Gray Body Atmosphere

The solution to

$;+ip:$t~ = B(mx)t)) (4.9)

with boundary conditions (4.7) and initial data

I@o)= Ttx)o>= G (X>a)

is required. As t * m , the solution to (4.9) must approach the
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solution to the problem just completed. The listings of Table 4

can be compared with those of Table 3; they are virtually identical,

Table 4 being taken from the listings at a time late enough so that

equilibrium had been reached. Fig. 7 is a plot of the temperature

distribution as a function of position for the times indicated and

shows the way in which the temperature approaches its equilibrium

value.

Time Dependent Gray Body with Hydrodynamics

The problem is similar

exception that hydrodynamic

want the solution to

to the last one solved, with the

motions are now allowed. Again, we

yx,t)h pm, (4.10)

where B is the integrated Planck function. The initial data are

J
(x, t = o) = 5 X 10-s cm-l; T(x,o) is given (it is unimportant

and will not be listed here); each of twenty zones had an initial width

of 107cms. In addition, a gravitational acceleration of magnitude

g = 1(F cm/secz was inserted , resulting in the addition of such a

term to the acceleration equation (3.21) (in the direction of

;f‘~+~
negative x) and in the addition of a term -/ ~at ( ~~,

a

ji %]IL
(’

to the right-hand-side of the

The listings are lengthy

sense that small oscillations

dependent variables persisted

energy balance equation (3.20).

and somewhat unsatisfactory in the

in position, velocity, and other

from a time t ~100 sec to t = 336 sec.

36



.
.

.
.

.
.

.
.

.
lnlnullnlnultn**

111!
11111

I

0000000000000000000-00
O

o
o

uo
o

o
o

o
o

o
O

o
o

o
o

o
c

io
------

------
------

------
-------

-------
-----

++++++++++++
++++

++++
++4+

++++++++++++
+++++

-u-i
--m

a
u7o

4m
30.2r4-m

m
m

m
m

h.
-aoro

r-o
m

a
o.w

sa
m

o
N

m
m

a
r-r-m

&
X“UJD.

C
-00

-NNRIS
jlnne.O

+-n
J3*3.

a
00-----

N
N

?4U
-?4

m
m

--l--m
3.000.

00000
0000Q

00000
U

O
o-.-

-----
-----

-----
---

~
L---0000000

0000000000000000000000
000000000

bk+wa.v.
nw

m
m

m
m
.
n
m
a
.

w
m

w
w

m
m

w
m
m
m
m
a
3
w
a
Y
a
I
m
.
9
m

m
w
m
m
m
m
m
m

‘m
m

a
.nm

m
m

w
m

a
m

a
l

a
3u3a

w
0Jw

m
w

9vm
n

xlmaw
O

Jm
’w

w
.n33w

=o
m

D
D

m
m

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
...**

..
**..**

.
S*******SSS

SS=sa
=s=rs=-

Ssss==?=r=r=s=
-7.Y==r=sr**

1111111111111
1111111111111

1111111111$11
11

0000

-::
-r-m
-*O

.
u
m

-
N

m
m

m.
.

m
a

------
---

000000000
+++++++++

a
-a

-e
-Q

w
r-

P-om
m

r-a
fim

+
a

c
2*o

-m
3

m
-a

-W
00

ON=*
=

lrem
O

m
rl+

O
.-

*c
.

+c-o-N
N

IU!
.

.
.

.
.

.
.

.
.

cuN
r.JN

m
m

r.-tm
m

-
000000=.0

00000-00
O

o
o

c
lo

m
of>

00000000
m

O
c

to
m

m
c

Yu
0

.V
o

o
o

o
o

o
o

o
o

o
o

000000000000000-000000
00000000

>\++++++++++
++++*+++++++

++++++++++++
+++++++

I--o
o

o
o

o
o

o
o

o
000000000000.30000000000

000000000
~+uoa

oooooo
00000000000-000000-000

000000,
>-00

.O
caaooooo

O
oooooaoo

000000000
000000000

000000
2.000000

00000000
00000000

00000000
00000000

000
W

o
o

o
o

o
uo

o
o

u
00000000000000000000000

000000000
:.zyo

::yo
o

o
-

O
o

o
vvo

o
o

a
o

c
l

O
o

o
o

c
lo

o
o

vo
o

U
O

o
o

uo
o

o
-o

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

●
0.0

------
------

------
------

------
------

-.-,--Q

oz
00.000000
00000000
++++++++

O
a

o
o

a
o

o
o

00000000
V

o
o

o
vo

o
o

U
O

o
o

vo
o

o
O

o
o

o
vo

o
o

00000000
.

.
.

.
.

.
.

.
00000000

0000
::

C
a

y

000-
0000
O

c
JO

O
U

o
o

o
0000
0000

.
.

.
.

0000

00000000000000
00000000000000
+++++++++++

+++
00000000000

=00
00000000000000
V

090000U
U

0
0000

“U
o

o
uo

o
o

u
O

ouuo
O

o
o

o
uo

o
o

uo
o

000
00000000-00

C
lo

t
.

.
.

.
.

.
.

.
.

.
.

.
.

.

O
vo

o
o

o
o

o
o

o
o

000

1
=

0---0000000
O

oaooocaaooo
a

+11{+++++++
g

-onouo
O

o
u

m
o

o
-O

Q
O

O
O

O
O

0000
d

-a
a

~a
a

c.ca
a

u
C

3a

~
xuoooooooo

00
O

oooolm
om

um
o

c
O

tn
O

ul
O

N
m

l-O
w

ul
n

.
.

.
.

.
.

.
.

.
.

.

0
O

C
+O

f-----N
N

N

00000
U

o
o

o
o

++++*
U

o
a

o
o

U
O

O
V

V
O

uo
o

v
00-00
u-.

”lnom
I-
U
O
J

U
-1+

.
.

.
.

.

cxm
m

m
m

O
uvo

a
uo

o
o

v
0=-0000-00
.*

+*+++++
+

000
V

L.
Q

O
O

O
O

000
C

JO
O

O
U

O
V

O
oa

oouoouo
UO

oouuooua
O

Irlolnvlnom
uui

O
w

n
-t

b
vN

lnr-u
N

.
.

.
.

.
.

.
.

.
.

Sa
za

lnm
w

-tlna
q

0000000000

00000
::yyy

000=0
00000
C

Yo
o

vo
O

o
o

uo
O

D
O

U
O

a
ooca

o
.

.
.

.
.

00000

U
o

o
o

o
o

o
o

uo
.

V
o

c
.

ouoa
ouoo

+++*++++*+
+

Uvoouuuoou
0

O
uovuva

oouo
aO

u
v

O
uO

O
O

c
JO

O
c

.a
o

o
o

o
uo

o
o

u
011-l

ca
m

olnolno,n
0

ulFc
a

o
4ul-O

c
.J

m
-
a

.
.

.
.

.
.

.
.

.
.

.
-I=m

w
m

m
w

o.w
e

-

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

●
☛

☛
✎

✎

O
-1-+

m
zlna

r-a
m

O
-1-+m

slna
-w

e
O

-o
Jm

=?m
e

r
-
m
e

O
-w

-ls$u
lar-w

o
’

0
--------

,--m
w

~~m
m

N
c.4(.Jm

m
-lm

m
-lr.l

W
)m

m
m

w
lr.

-l=

3
7



VALUES OF t
IN SECONDS

V 139.8 1
,00 I I I/4 I I I I I

01234s67 8910

OPTIGAL DEPT1-i X

Fig. 7

The Time Behavior of the Temperature “Wave” in a Gray Body
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The oscillations in the velocity were of the order of 10 meters/see,

while the peak velocity, as seen from Fig. 8, was of the order of

30 - 40 kms/sec for most of the outer zones. The temperature distri-

bution at 336 seconds was within a percent or two (for all x) of the

equilibrium distribution of the time independent gray body atmos- ,

phere. Fig. 9 shows the time development of the temperature toward

its equilibrium value. The density, originally a constant for the

initial distance of 2 x lCF ems, showed the time behavior given in

Fig. 10. The oscillations in values of the density within any zone

were of the order of a few percent about the values shown at t = 170

sec. The oscillations in the flux were rather more serious than

those in temperature, density, and velocity. This is to be expected

since the flux is proportional to the fourth power of temperature.

Nevertheless, at t = 357 see, the extreme values of the flux were

4.69894 x 10IOergs/c@ - sec and 4.855346 x 101° ergs/cnF - see, the

values tending to concentrate about 4.82 x 101° ergs/cnF - sec. The

last value quoted is about one percent lower than the 4.88 x 101°

;rgslc@ - sec found in the two problems immediately preceding the

present one, while the maximum spread from minimum to maximum values

of flux is of the order of 3.2%.

5. CONCLUDING REMARKS

Future work with the code described herein will be pointed

toward making many of thesubroutines more general than they are at
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Fig. 10

Density Profiles at Indicated Times,

Showing Approach to Equilibrium
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present. For example, we shall use more general equations of st

together with variable specific heats. Although an earlier 7090

version of this code was able to read a variety of input data fr

tape, the present one must have such a feature built into it.

We want to conduct numerical experiments designed to test t

relative amount of time required for convergence of a problem wi

given hydrodynamic input when linear versus

pressures are used. Another numerical test

which will be investigated is the one which

temperature a constant only for purposes of

That is, if one must evaluate the integral,
(-Ax/p

quadratic viscous

of some significance

involves assuming th

computing absorption

which occurs in the form e
-+

, we can, if Ax/p

Ax
— as an approximation for

‘se T at ‘he ‘oint 2~

This would make computation somewhat faster.

is not too large,

T throughout the z

Other ways of spe

ing the operation of the code are envisaged, but will not be dis

here.
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