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ABSTRACT

It has long proved convenient to describe the elastic scattering of
nuclear particles by nuclei in terms of an equivalent two-body potential --
the optical potential. Recent experiments have indicated an apparent
discrepancy between the experimentally observed values of the optical
potential and the theoretical values predicted by the simple first-order
theory. In this paper the leading multiple scattering corrections to the
first-order theoretical potential are calculated, and the resulting second-
order potential is evaluated for two nuclear models for incident pions
and nucleons. It is found that the inclusion of such corrections can bring

the theoretical and experimental potentials into agreement.
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I. INTRODUCTION

The optical model description of the scattering of a nuclear particle
by a nucleus is concerned primarily with the replacement of the many-body
interactions of the incident particle with the nucleons in the target
nucleus by the interaction of the incident particle with an equivalent
potential -- the optical potential. The term "optical model” is by analogy
to the corresponding problem of the propagation of light in a medium, where
the many-body interactions of the light with the particles of the medium
may, in a certein approximation, be replaced by attributing an index of
refraction to the medium as a whole.

For low energy incident particles the problem of determining the equiv-
alent potential has been treated primerily as phenom.enologica.l,l’2 although
there has recently been some progress in the relation of the low energy
optical potential to the underlying two-par%icle in.tera.ctions.5-5 For high
energy incident particles Watson and his collaborators6-9 have shown that,
to a good approximation, the optical potential mey be directly related to
quantities characterizing the scattering of the incident particles off free
nucleons. The approximate evaluation of such an optical potential has been
carried through by many authors,lo-lu and the comparison with experiment

has been reasonably satisfactorye.



15,16

An apparent discrepancy has recently been noted, however, between
these calculated values and the measured velues of the optical potential
for pions having an energy of a few Beve. This discrepancy seems to indi-
cate that, at 3 Bev, for instance, the imaginary part of the potential is
about 20% greater in magnitude than the calculated value. It is shown in
this paper that corrections of such megnitude may be obtained by an evalu-
ation of higher order terms in Watson's theory of the optical potential.

It has long been known that such corrections depend on the structure
of the scattering medium.17 Such corrections were estimated by Francis
and Wa,tsons’18 to illustrate the general theory of the optical model po-
tential. More recent studies have been made by Glauberl9 and, in particular,
by Béé.ao These studies do not seem, however, to have emphasized suf-
ficiently the sensitivity of the results to the nuclear model assumed.

In this paper we shall discuss this problem more generally and demonstrate
explicitly the relations between the various models.

The formal theory of Watson's optical potential will be reviewed in
Section II, and an evaluation of the second-order potential is carried
through in Section III. Sections IV and V are concerned with the second-
order potential for pion-nucleus and nucleon-nucleus scattering, respec-
tively, and Section VI treats corrections to the first-order theory due

to the nonlocality in coordinate space of the optical model potential.

We choose throughout units such that h=c=1.




IT. FORMAL THECRY OF THE OPTICAL POTENTIAL

We wish to describe the elastic scattering of a particle from a
nucleus of mass number A and charge Z. By "elastic," we mean that
scattering which does not change the energy state of the nucleus. To
accomplish this, we introduce the nuclear Hamiltonian HN with the complete
set of eigenstates gy(g) -- where ¢ is some complete set of nuclear co-
ordinates and 87(5) =< t|y > -- and the corresponding energy eigenvalues

W_e Then
y e

and we choose WO to be the nuclear state of lowest energy -- the ground
state. Similarly, the free state of the incident particle is described

by a Hamiltonian h possessing the eigenstates Qq(§3 and associated energies
eq. The interaction of the incident particle with the nucleus is assumed

to be of the form

A
Ve 2 Vao (202)
o=1



The Schrodinger equation which describes the scattering of an inci-

dent particle in the particle-nucleus barycentric system is then

(H, + V)Y, =EY,, (2.3)

where

HO=HN+h, E, =W + € . (2.4)

Here WO and €0 are, respectively, the energies of the nucleus and particle
in the particle-nucleus barycentric system. Equation (2.3) is to be
solved subject to the boundary condition that, at large distances of the

incident particle from the nucleus,

7, - gy(8) cpqo(i’). (2.5)

The Mygller wave matrix Q may then be introduced as usual,
¥, = Q g, (8) mqo(?c’), (2.6)

and the Schrodinger equation (2.3) for ¥, with the boundary conditions

(2+5) may be converted into an integral equation for Q in the usual way,al

n=1+§vn,

(2.7)
a = Ea + i'rl - Hoo




(Here N is a positive, infinitesimal parameter introduced for performing
the integrations across the pole of a t.)
Watson6 has shown that equation (2.7) for @ formally has "multiple-

scattering" solutions of the form

A
a=1+2% Etn,
a Qo

o=1

A
_ 1 2 Y
na =1 + oy ﬂ:BQB, (2.8)
Bfo=1

For the study of elastic scattering8 we are interested in the matrix
elements of the scattering operator T = VQ between nuclear states of
equal energy. Introducing the notation < «ee¢ > to designate such matrix

elements, we define quantities
T,=<T>, Qc=<9>, F =<na>, (2.9)

operators on the coordinates of the incident particle. Note that Fc is

independent of the index "@," as we are dealing with completely anti-

symmetrized nuclear wave functionse




If we can find a "potential" @ such that

1

—_— e T,
+ -
€ in < h “e

Tc=<VQ>=09c=0’+0‘ (2.10)

then equation (2+7) reduces immediately to & two-body equation for the
scattering of the incident particle by the potential O
Q =<n>=1+——l———-<vn>=1+———l———09c, (2.11)

c €. +tin - h e0+in-h

corresponding to a Sch.r’c;dinger equation

(h + 0)q>qo = eoq>qo. (2.12)
O is the so-called "optical potential,"” by analogy to the treatment of

the coherent scattering of light by a medium in terms of an index of
refraction. Clearly, & depends on the initial state of the nucleus,

here taken to be go(i) » and, in general, depends on the complete solution
of the many-body problem .22 For high energy incident particles, however,
¢ may be, to a good approximation, related to the scattering of the in-
cident particle off free nucleons and to quantities describing the initial
state of the nucleus.

To determine & we note

vQ Zv Q Zv (L + E &, )sza ftaﬂa (2.13)
o=l




by equations (2.2) and (2.8). Introducing the projection operator P

off of the initial nuclear state,
1l - =9 2.1)4'
(1 - B &, (8) =3 g (8), (2.14)

we may write

A A A
= = = + - .
T, =<VQ> E <% 0 > E < t, P, > E <u;a(1 PND)na>
o=1 =1 o=l
(2.15)
Defining qa by
PNDQa = (Ga -1)(1 - PND)Qa, (2.16)

SO

A
_ 1
Gy = 1+ = PNDﬁ;BGB, (2.17)
Bé—l

and substituting into equation (2.15), we find

A A
T, = E < ﬁ;aGa(l - PND)Qa > = E < ,G,>F, = U’Fc. (2.18)
o=1 o=1

Fc satisfies the equation




A
1
= = +__~* [ } L ]
F,=<Q,>=1 TR 2<&BQB> (2.19)
Bfa=1
Sunming over & and using equation (2.15),

- 1
AFC—A+-€O—rm(A-l)TC,

we obtain the equation for Tc’

_ 1 1
Tc = V'f‘ yeo T in oy (l - K)TC. (2020)

If A is sufficiently large that we may disregard terms of order A'l,

We see, upon comparison of equations (2.20) and (2.10),

A
O=U= E < #,G, >, (2.21)

o=l

vhere we use equation (2.18) for ¢ and G, 1s given by equation (2.17).
To keep terms of relative order A-l, define a pseudopotential v and

an associated scattering operator T,
1
v=al, T =ol, a=1-%. (2.22)
Then the equation for T is, from equation (2.20),

1
Eﬁ:_hT. (2.25)

/& 1
= = + = +
T=q TC (04 ay €0' in <1 (04 Tc v v



Thus, T is obtained by solving a Schrddinger equation for scattering from
the pseudopotential v, given by equations (2.21) and (2.22). The actual
scattering amplitude Tc and the differentlal cross section g—;) (in the
particle-nucleus barycentric system) to be compared with exper;:_ment are
then given by

-1
1
T, = (1 'K) T,

2
-2 €W
do ) _ 1 L 12/ 00
B)=a-p @t P (), (2.24)

where we have used equation (A-6) of Appendix Ae.
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ITI. EVALUATION OF THE SECOND-ORDER OPTICAL POTENTIAL

From equations (2.17) and (2.21) we see that

A
U = ZG_+-Z£ + .0 .= 2 <olt,G lo>
=1
A A
_ 1
= §<omab>+ ; <ng§%§$b>+...
=1 =1

(3.1)

and so is expressed as a series of scattering operators -- describing the

th

scattering of the incident particle by the & bound nucleon -- averaged

over the ground state of the nucleus.

approximation

For high energy incident particles, we may meske the so-called "impulse

"3 in which we replace the bound scattering operators in

equation (3.1) by the scattering operators for the scattering of the inci-

dent particle by a free nucleon. The relative error incurred from this

approximation is7’2u
2
B
~ av f

0




where Bav is the average binding potential of a nucleon in the nucleus,
f is the scattering amplitude, and X is the reduced de Broglie wavelength
of the incident particle. For high energy incident particles this error
is expected to be small.

Thus, if the initial momenta of the nucleon and particle are i:.oz 0 and

—
E)O s respectively, and the scattering leads to the final state Poz and a

we may write
% >, * T =By - a)s (3.3)

where ta is the free nucleon scattering amplitude, defined only on the
"momentum shell." It is frequently convenient to consider t o 8nd t, as
operating on the nuclear coordinates but as functions of Ef and E’O. When

we wish to do this we write
t® =t (q, qo), =t (q, qo (5""’)

By carrying out the Fourier expansion of the initial nuclear wave

function in the momentum of the ozth nucleon and using equation (3.3), one

obtainsau
-i(q - a’o) . z-)a i.l?-%
t lo>=ce tylo>=e t,l0 >, (3.5)

where z is the coordinate of nucleon “a," and toz still operates on |0 >
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through its dependence on E;O' This dependence on E;O is in terms of
relative momenta only, however, so for a; much greater than the average
nucleon momentum in the initial nuclear state we may ignore the dependence
of Ez on E;O' Then ta operates on IO > only through its spin and isospin
coordinates.
. . . - -
The calculation of the first-order optical potential < qIZ&IqO >,

defined between momentum states a?and ag of the incident particle, now

follows directly:

A A - =
igez
<13 > = "<olu, (@ Glo>=_3'<ole %13, o>
o=l o=l
(3.6)
Introducing the nucleon density distributions
P =<ols@-2lo>  [Pxr@ =1, (3.72)
4
p() = v, P(), fd5x 0@ =v, = Fr, (3+70)

and employing the notation (Oltalo) to designate matrix elements of Ez

between the nuclear ground state spin and isospin wave functions, we obtain
Y
ie
<313y > = le@ PloE [ &2 o@) F
1 VA

= (ol &(a, gy)lo) A c([RD), (5.8)




—
Z

(IR = [ &% p(@) 1K, (3.9)

Since pC”:) is sensibly different from zero only for I?l < RA’ c( ITC)I) will

be small unless

F (320

e
R = |q, - Q| =2q, sin = <
o o PR ERE, Wy

where © is the angle of scattering in the barycentric system. Thus, for

9% large, © may be small enough that
(3 Ty = (g, q) = to(qo). (3.11)

If we assume this, we may obtain the coordinate representative of

2/]'_ as follows:

<AY1Z,> = [ <> o <UYIT, >

0 A ei-q—.)'s? 3 'i( -C_l)-a)o) '; 3
(0]%(qy) 0) (ﬁ)fma afe o(Da’z

= o
iq, ex

(21)° (0]t% ) ]0) (&) p(X) v . (3.12)
. AL A (2n)”/2
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But
= =
iq.*x

<x|2/’|qo>=f<x|y|x:>dx:<;;:|;O>=f<x|2/’|x >dx (—)—57—
2

(3.13)
Compering equations (3.12) and (3.13), we find
<RYIR > = x)? (0le%gg)l0) (7 oG B - F)
E@@)M?-?L (3.414)
From equation (A-9) of Appendix A:
t2(qg) = (2#;; - 2(q,) (3.15)

0

where fg(qo) is the laboratory forward-scattering amplitude for the in-

cident particle on a free nucleon. Then
U@ = v, o),
- en Ay 0O
v, = -2 () £(ay), (316)
0O A
Vl depending parametrically on 45> the momentum of the incident particle.

To evaluate the second-order potential, we use equation (2.1%4) for

Py in equation (3.1) to obtain



<c1|Z/’I-‘?o é;%/e-ﬁw-ﬁln-eq,-wy

x <ol (§d ]y > < 7|w, (@4, |0 >.

(3.17)

We first simplify equation (3.17) by neglecting the energy difference

(WO - Wy) in the denominator. For sufficiently high energies this is

Justified, since the resulting error is of the orderau’25
Ka.

Vv

s

1
5, & = (3.18)
3 &

1

where Kav % 30 Mev is the average kinetic energy of a nucleon bound in

the nucleus. Employing closure to perform the sum over 7 in equation

(3.17) and using equation (3.5), we find

<q|y'|q0 % f€+in-e,

- (K'o +Ko )
x [< ofe «(@a") t5(d'q) o >

- -
-iK"E; (K oZ
-<o0le

=iKe2z
t(©a") o> < ole B ta(a",a’o) lo >]

(3.19)
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where

- Y - - - -
K'=q -q°', K=q'-q0- (3.20)

We now utilize a technique due to Lax and Feshba.chall"’26

for the
evaluation of matrix elements such as those occurring in equation (3.19).
The quantity toztB is a matrix in spin and isospin space, but is no longer
an operator on the nuclear coordinates -- by our assumptions following
equation (3.5). For each of the four possible states of the nucleon pair
(a,B) » We may expect a distinct pair-correlation function. The evaluation
of the desired matrix elements involves giving the appropriate weight to
each such state of a pair (a,8). For simplicity, we shall follow Lex and

24,26

Feshbach and assume only two correlation functions: one for space-

symmetric and one for space-antisymmetric states.

Let P 3 be the space-exchange operator which interchanges E’a and ?B )
and write
1
= = +
[s>=5(1+p B)|o>,
la>=%(1-p_)]o>. (3.21)
2 oB

Then, if 0013 is an operator symmetric in (@,B) we have

<0|0'aB|0> =< sIO‘aBIS> +<a|0&B|a >. (3.22)
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We introduce the corresponding pair distribution functions

P, (%, 1) = %< ol(1+E,) 8(% - 2) (" - Zy)lo >,
Paa(i?, X' = %< ol(1 - Pog) 5(x - E;) 5(xX" - E;)Io >, (3.23)

which may evidently be written in the general form

= 9y o - - - -
P, (z, zB) = P(z) [P(zB) + ez, - Zg5 ZB)] s
= Sy = - - - =
PaalT Bp) = B(E) [P(@) + 2, - 2, 3] (3.24)

where P(Z) is defined by equation (3.7), and the functions Qg and q, repre-
sent conditional probability distributions. For a sufficiently large

nucleus we would anticipate being able to set

% - Ty ) = M@ o (@, - T),
- E’B, z.) = P(z0) ¢ (Z. - E’B). (3.25)

We now identify the operator O’aB of equation (3.22) with the ex-

pression

“i(R1 o2 4% -E’B)
e tobs



18

in equation (3.19)« In evaluating equation (3.19) we must then consider

terms like
-i(-I—{)'o-z—)a'lﬁ)o-z—)B)
< sIe tatﬁls >
o S e I )
~i(K'ezZ Koz, )
= Gltgggle) [rp @de @ Padad. (5.26)
Now

=3t — 2o
3 ' =iKez =iKez
d’q 3 a = 3 B L/
f€0+ o fd 2.0 P(za)fd zge P(zB)(s]tatBIS)

0

8 §), (3.27)

~ 0
x B(sltat

where

301
b= [ i e oD (R (3.28)

Here ¢( I'I?I) is defined by equation (3.9), and we have made use of the

approximation of equation (3.11) to set ty = tg and tB = tg.

It is convenient to introduce

A 3
_ d”q" 3 .3 - - o5 -

Jg = 2 fe FIn e d’z 4 Zg P(za) Qs(za ZB’ZB)

ofp=1 © 4

-, = -
1 (Kt ez 4oz )
xe TP (ele (I t@NT1s) (3.29)

and a similar quantity Ja. for the space-antisymmetric states. Then, if
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we define a quantity 4,

A
as ) [(oltgthO) - (OItho)(OIthO)] , (3.30)
ofp=1

equation (3.19) may be rewritten as
- -
> + + . *
< qIVéIqO =BA +J_ +J (3431)

To simplify J‘3 and Ja.’ let

r=z -2z z =z
(o B’ o’

Then

3 -1(T-g,) 7 a2g" iq'er
Js=fdzPCz’)e f€0+i’1'€qte

A - .?
x| DGl @ant,@uile | dre 0 o @d, G
a#B=l

where we have replaced 'c_fby E)O in the scattering operators because of
the first factor in the equation and the arguments leading to equation
(3¢11) ¢ For incident particles of energy high enough that QORS >> 1 and

qR, >> 1, vhere R, and R, are defined by equation (3.34) velow, Jg and

Ja may be approximately evaluated to give




A R ) 3 ‘ A
o~ 3 -ilq=qy) 2’ (2n)%€, BZ‘ 0,0
JS = f d’z P(-Z) e _JTJ—O—V—A— Rs(a o (SltatB S),
5 (333)
-i(ga) *Z (2n)’e A
5% [ap@ e O "TOTAQ R () ; (lt2]),
=1

where we neglect terms of relative order (qus)-ae Here we have intro-

duced "correlation lengths" R, and R , defined by

Vl—ARs(E’) fo ar Q(r8,,2),

i Ry(@ fo ar o (x4,,D). (3.34)

Except for small nuclei, equation (3.25) should be a good approximation,

and we may write

R =f0°° G (r)dr,

R = fo G, (r)ar, (3.35)

independent of Eﬁ
Writing

A
2
(oltgtglo) = —A— s,



2
(0]t2%° »__|o) = —-E——A S , (3.36)
| oB aBI (2n) eg T

=1
we obtain
A 2
0,0{.y - __A 1
(sl’t;a‘l:B s) = '(2—-):—;5 5 (s + S’r)’
%ﬂ A
A 2
A 1
(al a) =5 5 (s - ST)- (3.37)
1 (2n) €

Finally, using equations (3¢37), (3.35), and (3.33) in equation (3.31)

the result is obtained

\j
<Y > =58+ AN (5.38)
(2x)
where
(2x)2 4.2
o = 5;%;5 (ﬁ) [(Rs-i- Ra)S + (Rs- Ra)ST:I . (3+39)

Thus, equation (3.1) becomes (valid to owr approximation)

<qVlgy > = cIT - g |) [—)—5] (v,*+ V,) +BA. (3.40)
2n

The term involving B is cumbersome to use. Since it is of order A-l

compared to V2, it may be discarded for large nuclei. It may also be
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transformed into a more convenient forme To see this, let us introduce

equation (3.40) into equation (2.20) and iterate once.

V

<l > = etlEg) | ] oy vy

1 VA ®
+B{A+ (l -K) [(_2;;)-5- Vl] }+ eee [} (5""’1)

Now we attempt to obtain the same result by defining a new potential and

scattering operator:

<Tlvlgy > = c(la-qy|) [ 3 ] v+ V), (3.42a)
2n
T=v+v—T—.];—HT, (3.42p)
€t in -
Tc = BT, (50""2(:)

where ¢ and B are to be determined. In order that equations (3.42c) and

(3.41) be consistent, we must have

To first-order in A-l and in the potential strengths we find that

a::]_--]_'-G- a

—_—V
(2:t)5 L
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an
experiment, we proceed in a fashion anslogous to the discussion following

To obtain the differential cross section d_c) to be compared with
c

equation (2.23). We use the potential v defined by equation (3.42a) in
the Schrodinger equation (2.12) to obtain a differentiasl cross section
do

o Then

) =ll® & (5.44)

gle

Proceeding as we did in obtaining equation (3.16) from (3.8), the

coordinate representative of v is

<R|v]x' > = v(X@) 5(X - XY), (3.45)

Wwhere
v(X) = v p(x) = a(v,+ v,) o(X) . (3.46)

v(;c)) is now our general result for the second-order optical poten-
tial, where we have neglected corrections of relative order A-2 and

further terms of order

3
B, L (Vi)(R tRa)2f5, (3.47)

2 s
eoqo A

and f is a typical particle-nucleon scattering amplitude.
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IV. THE PION-NUCLEUS OPTICAL POTENTIAL

Expressions for the pion-nucleus first-order optical potential in
terms of pion-nucleon scattering amplitudes have been given by several

10,11

authors . These are of particular interest since the relevant

scattering amplitudes may be obtained directly from measured pion-nucleon
scattering cross sections with the use of dispersion rela.tions.27’28
To evaluate the general expressions (3.16), (3.39), and (3.46), we
must consider in some detail the pion-nucleon scattering operators to.
It is convenient to project to onto the isospin substates corresponding

toI=3/2and I = 1/2. This mey be effected with the respective pro-

Jection operators A5/2 and Al/2’ s0

2 Ay/pe (k1)

The laboratory system scattering amplitudes for the I = 5/2 and

the I = 1/2 states are, respectively [from equation (A-9) of Appendix Al:

:f'g/2 = -(21t)2 €Oto(%):
f‘l’/2 = -(2n)? eoto(%). (4.2)
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In terms of these, we define
0
2= 5 (55, - f1/2) (k.3)
Then, from Appendix B,

27T
(0]flo) = s+ 2 ¢ (4ok)
L A "7

+ -
where (f) refers ton or x mesons, respectively, and T, is the third

3
component of the nuclear isotopic spin; that is
1
Ty =5 (2 - N). (%.5)

Here N is the number of neutrons in the nucleus.
In addition to being scattered, a meson may be absorbed by a nucleus.
It is understood that the effect of this is also included in the optical

potentiale. The effective cross section for asbsorption, per nucleon, is

29

conventionally ~ written as F(cd/2), Where cd is the cross section for

absorption on a deuteron and I' ® 4 (reference 30). The mean free path

for absorption of a meson in nuclear matter is then ha, wherell

1 A %
= == =, (ll'o6)
A, V2




[In adopting this expression we are assuming T5 = O« This is Jjustified
since the contribution from equation (4.6) to V, is both small and poorly
known for pions in the Bev range.] Following the analysis of Cronin
et a.l.l5 and of Beg,20 vwe shall take

gy %05 x 107 e (%e7)
for pions in the 1 to 5 Bev range.

The expression (3.16) for V, then becomes

t - _2t (A 2T %" %
it g = - B (e 2o v s 7R), (4.8)

t + -
where Vl(n s qo) refers to n or n mesons, respectively.
In Appendix B, the evaluation of the quantities S, ST, and A for
pion-nucleus scattering is presented. In terms of these results, our

expression (3.39) for V, becomes

2 2 4r
Va(ﬁt,qo) = ;éz";o (%) {- (Rs+ Ra) [fa(l - %) - % PeE_dg fT]

o7
+(Rs-Ra)[11;f2(1-§ +%f21‘-—5ff1_]} ,

and v of equation (3.46) is given as

2
v(nt,qo) = [l - %\ (L+2 f—;)] [vl(nt,qo) + Va(nt,qo)] . (4.10)
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The real parts of the amplitudes f and fT mey be evaluated using

8
the dispersion rela.tions.27’2 The imaginary parts are given by the

optical theorem in terms of pion-nucleon scattering cross sections. We

find, then,

i
f=%(D++D-) +-8%(0++c-):
i
£ = % (D+ -D7) + B (o+ -0 )e (4e11)

The amplitudes D' and D~ have been defined in references (27) and (28).
They are the real parts, respectively, of the forward scattering amplitude
of ut mesons on protons in the laboratory system. c+ and o~ are the
corresponding total cross sections for n+ or n_ proton scattering.jl

The quantities D+ and D~ have been evaluated only up to 2.6 Bev.28

Since they are small at these high energies, we have extrapolated them

as constant in the range 2.6 to 5 Bev.

Equation (4.10) may now be evaluated. We write it in the form (to

order A-l):
Vi) =L [(Ra LR £ 3R ) 4 yqledlyl & 3,1,
) 3 00 A ‘0L - A ‘o2 00 K ‘oL =& ‘o2
(R+R_) Ra LR +T5VR)+1(VI+-]—'VI +T—5VI)
*;‘6 oD Vgt 2 Vi1 = % V12 100211 -2 12
(R.-R.) T T
1 1 3 I lI+_51],
*E l:-l5a [(VR20+K Vo TR Vap) * iVt § Vo TR Va2




Here A is related to the nuclear radius RA [equation (3.7b)] by

Ry = 1-2A.Al/5 x 1075 ca. (4.13)
The quantities appearing in equation (4.12) have been evaluated for pion
kinetic energies in the range 1 to 5 Bev and are listed in Table I.

For a Fermi gas model of the nucleus, we determine the quantities
Rs and Ra' Evaluating equations (3.23) in terms of the single-particle
states
= o
iky 2y

9, (1) = \7117§e 1,(1) s5,(1), (4a14)
A

where iz and sz are the isospin and spin eigenfunctions, respectively,

we have
Pos(a) = 3 [< o (Ve (|1 tr, ) 8(X - 2)) 8(Z'- 7))o, (1)g (2) >
2#m
- <o,(1)p (2)|(1 £ P,.) 5(xX - E’l) 5(x"- E’a)l(p,(a)q;m(l) >] .
(4.15)
Defining
-1 -1(K, ) (XX
Gy = [%(f’: - 1)] e HTm T (416)
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TABLE I. The parameters of the nt nucleus optical model potential as
defined by equation (4.12). Ty is the pion kinetic energy in
the barycentric system (T,r = €y - M), and Rg and R, are measured

in centimeters.

T (Bev) Vi (Mev) VR (Mev) Vop(Mev) VI (Mev) VI (Mev)  Ve,(Mev)

1.0 11.9 =22,0 -25.5 k7.0 k.7 7.7
1.1 7.8 -12.0 23,7 =45.5 39.0 6.2
1.2 6.2 -5.0 -22.5 =50.0 L34 4.0
1.3 9.4 -7.8 =15.0 -50.5 k7.0 6.7
1.4 13.5 -12.8 6.4 -k9.0 L7.4 -5.6
1.5 16.2 -16.0 =3.5 k6.5 L4.8 =3.1
1.6 15.6 -16.1 6.0 -42.9 1.3 +2.4
1.7 12.6 -13.1 -6.1 .7 ko.1 3.1
1.8 10.6 -11.1 -5.6 =h1.o 39.5 3.2
1.9 9.5 -10.0 -5.6 =40.5 39,0 3.3
2.0 8.6 9.1 -5.9 -40.3 38.7 2.7
2.2 T4 =7.7 5.6 -40.5 38.8 1.6
2.4 6.7 -6.8 -5.6 -40.8 39.1 0.4
2.6 6.1 -6.1 5.4 41,0 39.2 0.0
3.0 5.3 5.3 b7 -41.0 39.4 0.0
3.5 k.6 4.5 4.1 -h1.0 39.5 0.0
k.o k0 4,0 =3.6 1.1 39.6 0.0
k.5 3.6 =-3.6 =3.2 -41.1 39.6 0.0
5.0 3.2 -3,2 -2.9 41,1 39,7 0.0




TABLE I (cont.)

T_(Bev) Vlzo(Mev)f'l Ve (Mev)e™t V?a(Mev)f-l V{O(Mev)f'l ‘I‘{l(Mev)f'l viz(Mev)f'l

1.0 -2.9 k.o 7.2 5.1 b7 2.7
1.1 -1.8 2.2 5.7 k.9 4.3 =0.5
1.2 -1.6 1.3 5.5 6.0 5.4 +1.7
1.3 2.4 2.1 3.5 6.0 -5.8 2.4
1.4 3.3 3.2 1.2 5.4 5.4 1.8
1.5 -3.8 3.7 0.6 4.6 4.6 1.0
1.6 =3.3 3.4 1.5 3.8 -3.8 =0.0
1.7 2.6 2.7 1.5 3.6 =3.7 0.3
1.8 -2.2 2.2 1.3 3.7 3.7 -0 4
1.9 -1.9 1.9 1.3 3.7 =3.7 -0.9
2.0 =1.7 1.8 1.3 3,7 =37 -0.3
2.2 -1.5 1.5 1.2 3.8 3.7 -0.1
2.4 -1.3 1.k 1.1 3.9 -3.8 4+0.1
2.6 -1.2 1.2 1.1 3.9 =3.9 40.2
3.0 -1.1 1.1 1.0 3.9 -3.9 0.1
3.5 -0.9 0.9 0.8 k.0 -3.9 0.1
k.0 -0.8 0.8 0.7 k.0 k.0 0.1
k.5 -0.7 0.7 0.7 k.o -4.0 0.1

5.0 0.7 0.7 0.6 k.0 4.0 0.1l
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TABLE I (conte.)

T (Bev) Vi (Mev)e™ v (Mev)eh VR (Mew)e Vi (Mev)eh v (Mev)s™h  Vi,(Mev)e

1.0 1.0 -11.k -3.6 -1.2 20.4 1.3
1.1 0.6 -T.2 -2.9 -1.1 19.7 0.2
1.2 0.3 -6.2 -2.8 -1.k 24,1 -0.9
1.3 0.5 -9.6 -1.8 -1.5 2h,1 -1.2
1.k 0.8 -13.3 -0.6 -1.k 21.6 -0.9
1.5 0.9 -15.0 -0.3 -1.1 18.3 -0.5
1.6 0.9 =134 -0.7 -0.9 15.2 40.0
1.7 0.7 -10.4 -0.7 -0.9 10.4 0.1
1.8 0.6 -8.6 -0.7 -0.9 1k.9 0.2
1.9 0.5 -T.6 -0.7 -0.9 14.8 0.5
2.0 0.k -6.8 -0.6 0.9 14,7 0.1
2.2 0.4 6.0 -0.6 -0.9 15.0 0.0
2.4 0.3 5.4 -0.6 -1.0 15.h4 0.0
2.6 0.3 -k.9 -0.6 -1.0 15.6 0.0
3.0 0.3 - -0.5 -1.0 15.7 0.0
3.5 0.2 3.7 ~0.4 -1.0 15.8 0.0
4.0 0.2 -3,2 ~0.4 -1.0 15.9 0.9
k.5 " 0.2 2.9 0.3 =1.0 15.9 0.0

5.0 0.2 -2.6 -0.3 -1.0 15.9 0.0
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we obtain
_ 1 1 - (4/A) | = =1 =
Pog = = [1 + 1’*-‘('541\')'] Gg» Pog z (1 -3G,), (4e17)
A A
_ ox  Wsplpr) 12
G (r) 22 3 s (4.18)

s 2

(15pr)?
where r = |X - ':_c)'l and k; is the Fermi momentum. Then52

o _(8/a)  3n
a 1+ (&/A) 5KF’

4
Rs R

2

. 5
Rg -R, * 1% (&/8) Sk, s (4e19)

so equation (4.9) becomes

+ K er
Vo(ntsqy) = 1 22 5 (%) (f2 + 217 % -A—5 ffT) [1 - (4/a)] 2"

(4.20)

agreeing with the result of Be’g .20

It is interesting to note the effect of the Pauli principle on the
optical potential. Since the Pauli principle prohibits certain final
states of the target nucleon in the nucleus which would be accessible
to a free target nucleon, Gold.berger5 3 has shown that, at lower energies,

the net effect of such exclusion is to reduce the effective pion-nucleon




cross section from its value for free pion-nucleon scattering, and
hence to reduce the magnitude of the imaginary part of the optical
potential.

At the higher energies being considered here, however, we see that
the effect of the Pauli principle may be in the opposite directione.
Thus, from equations (4.8) and (4.20) (ignoring the A" corrections

and assuming f_ = 0),

2

o (A kp 2 2
Im VF = - == (__) [f. - = (£° - £9)] (4.21)

€ \V, I 595 'R I’

where f = fR + ifI. From the optical theorem this may be written19
o - b B
=.2r (A _F 2. (3~

Im VF -eo (VA) e {o+20’t lo (qo ) ]} s (4e22)

where ¢ is the free pion-nucleon totel cross section. Thus, if fR< fI,
as is the case at high energies, the net effect of the Pauli principle
is to increase the effective pion-nucleon cross section from its value
for free pion-nucleon scattering and hence to increase the imaginary
part of the optical potential.

The result of Watson18 follows directly from the nuclear model in
which Rg = Ra' This assumes that the correlations are similar in
spatially symmetric and antisymmetric states.

Brueckner and Gammelju describe a wave function of the relative

coordinate of a pair of nucleons in nuclear matter. Using their results,
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we obtain

Ry ®R, = - 0.84 x 10'15 cn (4.23)

describing the correlations due to the "hard cores" of the nucleon-
nucleon interaction. Some indication of a similar result has recently
been deduced from experiment.au

The pion optical potentials for these two nuclear models (neglecting
the A-l corrections) are presented in Table II, where we have written

VF and VB for the Fermi gas model and the Brueckner model, respectively,

in the form

VF(ztt,qo) =Re V' +1 ImVF,

VB(nt,qo) =Re VB + 1 Im V5, (L4.24)

and we have assumed A = L.

Longo16 has recently deduced from experiments with 3 Bev/c n+
mesons on various nuclel the values for the imaginary parts of the
optical potential listed in Table III. The real parts are small, and
the nucleon density distributions used are those inferred from electron
scattering experiments. The corresponding values of Im VF and Im VB
of equation (4.24) (neglecting the At corrections and adjusted to
Longo's central density) have been listed in Table III for comparison.

Also included is the result for the first-order potential alone.
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TABLE II. The well-depths of the ni-nucleus optical model potential
for a Fermi gas model of the nucleus (VF = Re VF + 1 Im VF)
and a Brueckner model of the nucleus (VB = Re VB + 1 Im VB).
T, is the barycentric kinetic energy of the pion. We have
neglected the A=l corrections.

T (Bev) Re V'(Mev) ImV'(Mev) Re V°(Mev)  Im V(Mev)

1.0 14.9 -49,2 16.6 -54.3
1.1 9.4 =47.3 10.8 =52.4
1.2 7.2 -52.6 8.8 =58.7
1.3 11.0 =53.4 15.% =59.2
1.4 15.9 =51.7 19.1 =56.7
1.5 19.0 -48.5 22.5 -52.8
1.6 18.2 =4l 3 21.2 =47.9
1.7 4.6 43,1 17.0 464
1.8 12,3 42,4 14.3 -45.9
1.9 10.9 -41.9 12.6 -45.3
2.0 9.9 =41.6 11.5 =45.1
2.2 8.6 =41.9 9.9 =45.4
2.4 7.7 42,3 8.9 -46.0
2.6 7.0 42,5 8.1 =46.1
3.0 6.1 k2.6 T.l =46.2
3.5 5.2 -42.6 6.1 -46.3
4.0 4.6 b2, 7 5.4 46. 4
4.5 4.1 42,7 4.8 464

5.0 3.7 =h2,7 4.3 U6 4



TABLE III. Comparison of theoretical and experimental values of the
imaginary part of the pion-nucleus optical potential for
n* with momenta 3 Bev/g. Experimentel data are from
reference 16.

Element Im VEXPLe (Mev) Im VB(Mev) Im VF(Mev) Im Vl(Mev)
Be” -154 £ 9 171 -133 ~117
012 =59.4 * 4,0 635 5T ol =53
a1°T 5845 * 4o -60.4 -5hoT 5045
Ccu 69 {* 120 ~60 o 54T =50 45

- 8.0



37

V. THE NUCLEON-NUCLEUS OPTICAL POTENTIAL

The nucleon-nucleus first-order optical potential has been eval-
uated in terms of nucleon-nucleon phase-shifts by several authors.la-lu
The highest energy at which a complete set of such phase shifts
Presently exists is 310 Mev. This energy is probably near the lower
limit of validity of our approximate evaluation of the second-order
optical potential V2, so the most accurate numerical evaluation of
V2 that cen be carried through is for 310 Mev incident nucleons.
However, we shall attempt to estimate the order of magnitude of V2
for other energies.

The validity of the multiple scattering equations (2.8) in the
case of incident nucleons is not immediately evident, as the effect
of the Pauli principle on the incident and target nucleons has not been
properly considered. Takede and Watson9 have shown, however, that for
high energy incident nucleons the effect of the Pauli principle is pro-
perly accounted for -- to a good approximation -- if one uses scattering
operators ta antisymmetrized between the incident and ath nucleon onlye.
But such scattering operators are precisely those describing the

scattering from a free nucleon, so the analysis of Section IT is valid

to a good approximation in this case also.



Following the discussion in Section IV, we project the nucleon-
nucleon scattering operator Ez onto the isospin substates corresponding
toI=1end I=0. We use the respective projection operators Al and
Ab to write

0 0 0
ty = 1;05(1)Al + ta(O)AO. (5.1)
The scattering operators tg describe the scattering in the nucleon-nucleus
barycentric system, whereas the phase-shift analyses determine the scat-
tering amplitudes fga in the nucleon-nucleon center-of-momentum (CM)
systeme. The relation between these quantities is given by equation (A-9)

of Appendix A:

91 = —L_ (29 0 (1),

x (2“)2€0 ko cQ

tg(O) = E—j—a—e— (%) fga(O), . (5¢2)
0]

to first-order in the angle of scattering. Here 9 and ko are the momen-
tum in the barycentric and nucleon-nucleon CM systems, respectively.

In terms of fc(l) and fc(o), define
~ 1 (0] 0
£=5 3£ (1) + £.(0) ],

£_ =I [£2(1) - £50) 1. (543)
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Then, from Appendix C,

24N 24N
(020} = (%) [t 200 + @t 2en x@3] G

where AO, AT, Cs, and C; -- defined in Appendix D -- are to be evaluated
at zero angle of scattering, and X(a;ag) is defined in equation (C-9).

The presence of the spin-dependent term in equation (544) makes it

convenient to decompose Vl into two terms, one spin-independent and the

other spin-dependent. .Accordingly, we rewrite equation (3.16) as

—
Y@= URD+HRD T . T, (5.5)
where f?is the orbital angular momentum operator of the incident particle.

Evidently the spin-independent part, &ﬁﬂib, mey be written as in equation
(316):

&3 = Ul(Nt,qo) o(X),

27
0,0 0p) = - 2 () (E—Z) (8 t 224, (5.6)

where equation (5.4) has been used. Here NT refers to incident protons

or neutrons, respectively.

As the spin-dependent term in equation (5.4) depends on the final

momentum q to obtain )¢i(§b, the passage from the momentum representative



of )ﬁ to the coordinate representative -- as effected in equations (3.12)

through (3.1%) -- must be reconsidered. By comparison with equation (3.8)
we write

Ve s -1(q-qy) 7

<RAZ > = —B— () (¢ £ 22 ¢ x(@3) [ Fee(@De :

2
(2n) €V, ©

(547)

Using the definition of X('c_f,a)o) from equation (C=9) and the relation
.= o D
Telt™al 7 e, (5+8)

—)
the Vx may be taken outside the integral over 'c_f [see equation (3.12) 1,

which may then be evaluated to give

> =
o 9%
g 3 = . 2— A i __5 ' .];—) . P 51
< xljl|q0> e’; (VA) kg (c§t—=c)) 19 (qyxV) [p(?c') -‘:;;—)—575]
(549)
Ir o(X) = p(|X]),
13 o e 4
g x 9, [p(sz)eq"x]=}c (@ xDe? . (5.10)




L1

it follows that
<RA R > = @D s@-3) T L, (5.11)

where the angular momentum 'f.) has been identified: 'f.) = 3? X a’o. }l(;c’) may

now be written in the familigr form

2
ok 1,21 d
)/1(2) = Wl(N ,qo) (I-T) % ax’

2 2T
e = - Z @ @ ot 2o, (5012)

0
where the factor p is the pion rest mass (® 140 Mev) and has been in-
cluded in equations (5.12) so as to cause the dimensions of W, to be
those of an energy.

We write ?/é(;c’) as in equation (5.5):

Q
el

U@ = U@ + A& 7

_ 1
= Up(X) + W, 55

T

al
g

(5.13)

X
&1

The quantities S and ST of equation (3+39) are evaluated in Appendix C.

In terms of these results
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— = ur
U2(Nt"’o)’§éaﬂ) (VA) (qo) { (R"R)[(") F Pyt 2TF
0% ‘a
+ ( )[l(?+ ) “(f)2+2_5f—]}
Rg-R) | T 50) - t — ; ,
(5.14)

where the desired spin-averages of f and f_are given in equation (c-13).
The spin-dependent part w2 is obtained by a treatment anslogous to
that leading from equation (5.7) to equation (5.12), with the result

2
Wy(NE ) = g‘;"i (i) (&) [y mpdng + (g Fn | (5.15)

where h, and h_ are defined in equation (C-1h). R; and Ré are related

to the R  and R of equation (3.34) through the equations

1
' + o=
Rf =Ry * 1 GS(O),
1
! = 4+ o
R Ry * 1 Ga(O)

The additional terms come from a spin-dependent scattering in the inter-

mediate state. They are thus of order Gq. ~ (qus)':L and, in the spirit
of the high energy evaluation of equation (3.33), they may be discarded.

We thus set
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Using the expression for A from equation (C-15) (ignoring the
spin-dependent terms, as they vanish for forward scattering), v of

equation (3.46) is given as

Y@ =Ue@ *v 3y £ £TL
Yy
#4362 L P

it = ok 1o 25 I ity ooty

[ ?:72-#]} EXCESERXC AN

==

W(Nt:qo) = {l -
(5416)

In Appendix C, the expressions for the f's and h's of equations (5.14)
and (5.15) are given in terms of the parameters A, B, C, H of the nucleon-
nucleon scattering amplitudese Further, Appendix D gives expressions for
these parameters in terms of the nucleon-nucleon phase shifts (for small
angles of scattering).

Gammel and Thaler55 have found a set of potentials which match the
510 Mev phase shifts of Stapp et al.36 for p-p scattering and which also
reproduce the n-p experimental data at the same energy. Kerman, McManus,
and Thalerlu have used the phase shifts deduced from these potentials to
evaluate the quantities A, B, ees, H_ for 9c = 0% -160° ( 9c being the
CM scattering angle) and for energies 90, 156, and 310 Mev. Using their

results we obtain the values listed in Table IV for ec = Q.




TABLE IV. The nucleon-nucleon scattering parameters as defined in
Appendix D. The numerical values are from reference (14).

90 Mev 156 Mev 310 Mev
AO 06592 + O bl 0475 + 0.5011 0139 + 04791
AT -0.069 - 0.169i =0.006 = Q+11li 0.179 - 0.113i
05 0.0888 + 0.2641 04109 + 0.418i 0.117 + 0.480i
c; 0054l + 0,020i =0.092 - 0.011i =0.072 = 0.0Uli
B, -0.0158 - 0.00531 00279 - 0.0164i 0.052 - 0.0U43i
BT ~0.254 - 0.06761 <0.257 - 001821 0219 + 0.0221
H, 0.114 - 0.0737i Oelltd - 0.164i 0.160 - 0.145i
H 0.143 - 0.03%01 0.126 + 0.0071 0.128 + 0.005i



Equation (5.16) may now be evaluated. We write it in the form

(to order A-l):

T T
1 1 3 1 3
Uiep) = 5 [(Ugo +EU TR W) F AUt T‘%a)]
(R+R) T T
l_s =& 1 3 1
* N [(Uio * K'Uil * 7?'052) * i(U{o + K‘UI 5
(R.-R.) T T
l_s @ 1 3 L1 T3
hevet ol (LTRSS SEL L AR LS LA
2%’ = 3 |Woo T K Mor * & Yoz oo ¥ & Yo1 * & Yoo
(R+*R) T T
1 2 1 T 1.1
t 8 T o3 [(wlio HEV F W) H AWt E iy, &
(R.-R.) T o
l1_ s & 1 3 P S N S |
"8 T [(wRao Vet Vg ¥ Ll * RNy *

(5.17)

Here X is defined by equation (4el3). The quantities appearing in
equation (5.17) are listed in Table V for incident nucleons of 90,
156, and 310 Mev kinetic energye.

For a Fermi gas model of the nucleus, we use equations (4.19) in

equations (5.14) and (5.15) to obtain



TABLE Ve The parameters of the nucleon-nucleus opticel potential as
defined by equations (5.17). Tp is the nucleon kinetic energy
in the nucleon-nucleus barycentric system, and Rg and Rg are
measured in centimeters. (f = fermi = 10-13 cmj

T (Mev) U (Mev) U5 (Mev) B, (Mev) Ugo (Mev) ug, (ev) UgalMev)
% =39¢3 (-1545) 9431 -29.9 (-1130) 22,8
156 =306 98.8 077 =25.8 2243 17
310 8.1 - 3e7 =21, 28, =59 hE'H

Uio(uev 1) URu(Mev ¢~1) URlz(Mev 1) Uio(Mev f'l) UIu(Mev 1"1) Uiz(uev L)

90 0.66 -24.,9 =1%.8 067 2640 =3.86
156 T.75 -9.15 =459 =1.32 17.5 347
310 1.8 1.5 37 2.8 65 =he2

URQO(Mev 1) URal(Mev ) URa2(Mev ) Uio(Mev 1) Uél(Mev 1) U§2(Mev 1)

90 ~642 246 8.35 645 =247 5ek1
156 229 31.0 k.06 k37 =528 5.12
310 37 7.0 -1l.k 1.6 11. 2.5

wgo(Mev) Hgl(Mev) Hga(Mev) W(I)o (Mev) ng(Mev) Wga(Mev)

90 ko2 157. 0462 =1.40 -6k, 1.7
156 s} =347 -0.18 =0e91 8.143 1l.54

310 1.8 3.7 0432 -0.lt3 0ek0 0453




'I'p(Mev) Wl}_o(Mev £~

156
310

k7

TABLE V (conte)

1) HRu(Mev 1) lez(Mev 1) W]I_O(Mev 1) W}_.L(Mev ) Wiz(Mev £
-0k 0 0 195 -1.37 <146
=030 0012 =040l 0463 =0e72 =0e5l
-0.18 0.16 Oelk 0.10 =0s1lk 0405
WRQO(Mev ) WRal(Mev ) WR22(Mev 1) Wgo(Mev £ w‘,Iel(Mev 1) w£2(Mev )
o) -1.68 0.0k =034 T8 077
0.03 =1.2 0.03 =0.18 2.5 0.43

0.0k =071 -0.0k =00k Ookl 0.06




K %o 7, by |5
= 2n A 2 2 3 == by -
Ug-ieoqo ?(ﬁ)(% (f+5fTi:Aff)(l DA
wh = B T (&) (b { (A + B.)c! + 3(A + B_)c!
2 eoko > VA kO [ o "0°°0 T T T]
4T .
% -A—5 [(A0+ By)CL + (A + B )C] | } (1 - 1%) A2,

(5.18)

The numerical evaluation of equation (5.18) gives (neglecting the AL

corrections):

T, = 90 Mev: UF(x) = (=58 - 111) p(x) + (ko1 - 2441) :—a}l—c%? L

T, = 156 Mev: UF(x) = (=37 - 131) p(x) + (ko6 - 1e51) %}c%? . T;

T, = 310 Mev: UF(x) = (<7 - 231) p(x) + (1.9 - 0.531) :—2};%? - T,
(5.19)

where we have assumed A = 1, and Tp is the nucleon kinetic energy in
the barycentric system.
Using the values of Rs and Ra from equation (4.25), deduced from

3k

the work of Brueckner and Gammel,” we obtain (egain assuming A =1

and neglecting terms of order A-l),
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Tp = 90 Mev: & B(x) = (<40 - 29i) p(x) + (4e8 = 4o7i) ?}%%"E’ e T
T, = 156 Mev: UB(x) = (b - 241) p(x) + (5.0 = 1.01) fa%gx_p? . T;
T, = 310 Mev: UB(x) = (<11 - 331) p(x) + (2.1 = 0.61) u—la}cg? L.
(5+20)
Batty57 has analyzed the 310 Mev data of Chamberlain et al.58 on

Cla, treating carefully the coulomb effects. Using a Gaussian charge
distribution for simplicity, and a modified Gaussian nucleon distribution

of the form

2 e_(x2/a2)

\'
A Yy x _
p(x) = 5757-2—8'-5- (1 + 3 a—a) y &= 10655 fermi,

(5.21)

which gives the best fit to the electron scattering data on carbon,59

he obtains

U'(x) = (<10.5 - 29.91) p(x) + (2.68 - 0.321)

X
&1e

1
2
13
(5.22)
In the absence of phase shift analyses of nucleon-nucleon scattering

at higher energies, we may try to estimate the magnitude of the second-

order potential U2 as follows. If U2 is assumed to be small, the




phenomenologicel optical potential Z% deduced from experiment is

approximately equal to U,. From equation (5.6), if the corrections

1
of order A-l are disregarded, AO may then be obtained from &g, andg,
for a Brueckner nuclear model, from equation (5.14) we see that U,

depends only on AO. Thus, for this nuclear model, we can obtain an

estimate of U2. In our results below we normalize the experimental

bg to correspond to a central nucleon density such that A = 1.

Nedzell+0 has measured total cross sections for 410 Mev neutrons on

a range of elements. He assumes Re 36 = 0, and he finds that, to obtain

RA proportional to Al/5,

R, = 1.23 al/3 « 10713 cm,
Im Z/(') X .25 Mev,.

Then Im Aj ~ 1.1 fermi, end Im U Z 1.3 Meve.

2
Booth, Hutchinson, and Ledleyll’l have fit their data on 765 Mev
neutrons scattered from several nuclei to optical potentials with nucleon

density distributions taken from electron scattering experiments. They
assume the Re 56
Their results, together with our estimastes of Im Ué, are presented

vanishes and the spin-orbit potential is purely real.

in Table VI(a).
Booth, Ledley, Walker, and Whitell'2 have measured the total and

differential cross sections for 900 Mev protons on C, Al, and Cu.
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TABLE VI. The phenomenological optical potentials deduced by Booth

(a)

(v)

et al. and the resulting estimates of the second-order
potential. (a) 765 Mev neutrons [reference (41)];
(b) 900 Mev protons [reference (42)1.

Element Im yo' (Mev) AOI( x10"13em) Im U2(Mev)
ct? 43 2.2 4.9
Cu =45 2.2 4.9
Pb =45 2.2 4.9
cl? -36 2.0 542
nm?7 52 2.9 11.0
Cu 45 2.5 8.1

Sb =46 2.6 8.8
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Assuming a rectangular density distribution with R, = 1.26 Al/ 3 x 10713 cm,

A
they have determined the potential strength which best fits their

data. Assuming the real part of Zg is small, their results and our
estimates of U, are given in Table vI(b).

Coor, Hill, Hornyak, Smith, and Sncwll'5 have performed a similaxr
analysis of their data on the scattering of l.4 Bev neutrons from
several nuclei ranging from Be and C to Pb, Bi, and U. They measured
the total, absorption, and diffraction cross sections and found they
can be equally well fit to within the experimental accuracy by either
a rectangular or a Gaussian nucleon density distributione. With a
rectanguler well, they find a good fit to all their data with Ra =
1.28 AL/3 x 10713 cm, Re Y small, end Im J = -bk Mev. Normelizing
to A = 1, this corresponds to Im 56 = 54 Meve Then Im AO g 3,7
fermi and Im U, ® 9 Mev.

Longo16 has performed & careful optical model analysis of his
data on the elastic scattering of protons with momenta 3 Bev/c from
several nuclei. If Re Q; is taken to be small, he obtains a good fit

to his data with Im Zé ~ -63 Mev. Using the values Opp = LO nb,

cpp = 42 mb, quoted by Longo, we obtain & first-order potential
Im U; = -54 Mev. Attributing the difference between 0 and U; to

the second-order potential, we find Im U2 ~ =9 Mev.

In general, these experimental results seem to be consistent with

the assumption that the real part of the optical potential is quite

small. If we assume nucleon-nucleon interactions to be purely inelastic
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and spin-independent -- for nucleons of kinetic energy somewhat greater
than 700 Mev -~ of the six paremeters describing forward-scattering,
only Im A is nonvanishing. Since Im A may be related directly to
measured total cross sections, we may evaluate the corresponding
second-order imaginary potential.

In Figure 1 are presented the results of such an evaluation -- for
nucleon energies 700 Mev to 3 Bev -- for both a Fermi gas model and
& Brueckner model of the nucleus. Included are the values from equa-
tions (5.19) and (5.20) above and the first-order imaginary potential --
covering the energy range 100 Mev to 3 Beve The required total nucleon-
nucleon cross sections are teken from the review article by Hess .lm
The experimental values of the imaginary part of the optical potential
described above are included, as well as the values recently deduced
by Batty37 from the scattering of 420, 635, and 970 Mev protons from

c'2,

In summary, we see that the contribution of the second-order
optical potential to 0(’) constitutes a correction of 10 to 15% of the
first-order potential, even at the highest energies considered. This
correction mey be reasonably well accounted for by utilizing equation

(4e22) -- with :fR = 0 -- giving the dashed curve in Figure l.
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VI. NONLOCALITY OF THE OPTICAL POTENTIAL

The assumptions leading to equation (3.11) allowed us to obtain
the expressions (3.16) and (3.,39) for an optical potential local in
coordinete representation. In this section we propose 10 examine the
leading corrections to equation (3.16) due to the dependence of t(?f,?o)
on the scattering angle, We shall find that the inclusion of such cor-
rections leads to an optical potential nonlocal in coordinate spece,
but which may be written as a local potential with a nucleon density
distribution modified from that obtained by other means -- for example,
electron scattering,

This modification of the density distribution has frequently>~?2C
been described as the inclusion of the effects of the finite range of
interaction of the incident particle with nucleons of the target nu-
cleus. As long as the energies are high enough that the free nucleon
scattering operators are appliceble, the effect of the finite range of
interaction is properly included in these scattering operators. There-
fore, the modification of the nucleon density is more correctly described
as being a manifestation of the nonlocality of the optical potential,

In general, the scattering amplitudes in the two-body CM system

for small angles of scattering Oc may be written in the form
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>y 0 (1) 2 L
£ (Kk) = fc(ko) + £, (k )e + O(GC). (641)

An explicit expression of this form for nucleon-nucleon scattering is
given by equation (D=3) of Appendix D,
Employing the general relation between laboratory and CM scattering

angles == for incident nucleons =-

% %
2 tan = g tendp (642)

where kO is the CM momentum, we see

2
2 (9%).2 4
o2 =<k_o>eL + o(el. (6.3)
Thus we may write for the scattering amplitude in the laboratory system
£.(Da) = 2q) (1 - a Z62) + o(g)), (644)

where, comparing with equation (6.1),

_i c (0]

a=-t S, (6.5)
o fo(

For incident particles other than nucleons, equation (6.4) is still
valid, but the definition of @ in equation (6.5) is modified.

Writing

(olt(a’,a’o)]o) = (o[to(qo)Io)(l - x2), (6.6)




o7

where
=% - 3
oL c 2 b
K.2 = <2qo sin -—2—-> = qogeL + O(GL), (607)

equation {3.12) becomes, using equations (3.15) and (6.6),

- =
quOx - = - =
<X\, |gp>= (°If (qo)lo) 575 |a%6(1 = ax®)e ™ MaZzp(Z)e™ 2,
(21r) € A (2n)
(6.8)
Introducing the relation
Kae-in”-i’ _ _PemikeE
into equation (6.8), we obtain
,—) —)

-3 - _ 3
<HY[H>= —3 0(0|f (g)10) & ——7— (2x[o @ + &Fo@)]. (6.9)

But, in general,

- =
ig.*x?

< > y’ - >=f< l>d5 t (6.10)
x| 9 x| |x (2“)372 ’
80

<K Y|E>= U (X)s(X - x¥) (6.11)
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with

%) = '—56’1 (V—‘;) (o1 £ (gp)lo)[ o + (@] (6.12)

Comparing this expression with equation (3.16), we see that the ef=-
fect of including the angle-dependence of t for small angles leads to a

modified density distribution of the form

3(®) = p(X) + VH(X). (6.13)

Note that since the angle-dependence of the real and imaginary parts of
t may be different, o will be complex and thus the effective density
distributions of the real and imsginary parts of the optical potential
will be different,

An instructive example is provided by considering a Gaussian den=-

sity distribution

Vo xP/el

p(x) = e . (6.14)
32,3
Then
v 2
- haf3 x
p(x) = e 122X )],
ETER 2\2 2>

But consider
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Va e-x2/ a2(1+1)

'(x) = —
o 1r3/2a5(1+>».)5/2

For A small,

\' 2, 2 2
p'(X):m e l-}\.(a--:é))

so p!' = p if we identify N = ll»a/aa. Therefore, the effect of consider-
ing the angle dependence of the scattering operator is to increase the

1/2
rms radius of the density distribution from [( 3/2)a2] to
1/2
<rt>= [-2- (a2 + ua)] . (6.15)
For the nucleon-nucleus spin-dependent optical potential, a re-

sult similar to equation {6.12) is obtained., Using equation (6.6) in

equation (5.7), the integral term becomes

1 L= =
fd5q ———/—(: ;1;(2 (1 - Bna)? . (%xad5zp(aeln'z. (6.16)
b

Here B is the quantity for the spin-dependent scattering corresponding
to the o of equation (6.8). Using equation (5.8), equation (6,16) be=

comes

1l - - 3 eic—f.}? 2y,3 i»?o?
I g e (qoxax)fd qm (l - Bk )d zp(ae . (6.17)



Algebraic manipulations similar to those leading from equation (6.8)

to (6.12) and to those leading from equation (5.9) to (5.12) lead to

the results

Ay o[- 2 () (&) (s 2 T D)](2) 2 [pt0 + 0] (6.9

V)

Comparing with equation (5.12) one sees that again the angle-dependence
of the spin-dependent scattering amplitudes leads to a modification of
the spatial dependence of the spin-orbit optical potential == a modifi=
cation which is different for the real and imsginary parts, CrOmeru5
has recently obtained results similar to equations (6.12) and (6.18),
but specielized to the case of a Gaussian distribution,

In Table VII are listed the values of A and C for 310 Mev nucleons
for a range of small angles. Using these, the following velues of «

and B are obtained:

0.62 + 0,371;

Q
n

1.2 + 0,29i; a

1.2 + 0.23i. (6.19)

0.15i; B

vl
I

The analysis by Fregeau 39

of the scattering of electrons from carbon
shows that for k2 < 1.5 (6, < 17°) the Geussian density distribution,
equation (6.14), with a = 1.96 fermi provides a good fit to the data.
This corresponds to & rms radius < r > = 2,4 fermi, and we write it

p(x] < r>) = p(x|2.4). Using the results of equation (6.19) in (6.15),




Table VII, Angle-dependence of the nucleon-nucleon
scattering parameters for 310 Mev nucleons.
Data are from reference (14).

6, Re A (f) Im Ao(f) Re AT(f) Im AT(f)
2° 0.139 0.479 0.179 -0.1130
u° 0.136 0477 0.177 -0.1125
6° 0.132 0.7l 0.175 -0.111
8° 0.127 0.469 0.171 =0,110
e, Re CA(£) Im CY(f) Re c;(f) Im c;(f)
2° 0.117 0.480 -0.2865 - =0.175
4° 0.117 0.479 =0,2853 =0.171
6° 0.1167 0.480 -0,2841 -0.166
8° 0.1157 0.481 -0,2817 -0,160
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the optical potential for the scattering of 310 Mev nucleons from

carbon -- equations (5.6) and (5,12) -- may be written
Y (x) = Re Up(x]3.6) + 1 In U o(x|3.1)

+ féslzad [Re Wop(x|2.4) + 1 Im Wlp(xl5-6)]. (6.20)

Kisslingerll'6 has applied similar considerations to pion-nucleus scatter-
ing. He is concerned, however, with pions of lower energy such that

only S- and P-waves are expected to be important. Thus, he writes
t(?i).-?q:)) = a(q,) + b(gy)cose (6.21)

as valid for all @, not just small angles. Using equation (6.21) --
with cos6 = (l/qg)'c_f . E:) -- in equation (6.8) and carrying through

similar manipulations, we obtain his result

V(@ = (2n) () [ - v) - 7). (6.22)

b=

Baker, Byfield, and Ra.inwa.terll'7 have found that to obtain large-
angle agreement with their experiments at 80 Mev, a potential of the
form (6.22) is necessary.

From comparison of equations (3.16) and (3.39) we see

<:|<2
[l )]

1

D ——— ° 6.2
o (6.23)
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Moreover, the above modifications of the nucleon density distributions
are proportional to 02 ~ (quA)'a, by equation (3.10). So considere-
tion of terms of order 92 in V,, will lead to corrections of order

2
(quA)'j, which we have agreed to neglect [(see equation (3.47)].
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APPENDIX A
RELATIVISTIC KINEMATICS

The following basic relation between scattering operators and

differentiel cross sections has been given by Mg‘ller:ll'8

(2n)* 12] < BFI¢[R,B, > |2

R R <P -

an = |£(e)]? an
(A-1)

for scattering into an element of solid angle dQ sbout E?of a particle
with initial momentum EB, velocity'ﬁg, on a target of momentum ﬁz,
velocity'ﬁg. '3% and'aé are the corresponding velocities after scat-

tering. Mﬁller has also shown that the quantity
ADTIRS ?,?ltl?o,?o > VeE (A-2)

is Lorentz-invariant, € and E being the energies of the particle and
target, respectively.
We are concerned here with three coordinate systems: the lebora-

tory system, the particle-nucleus barycentric system, and the
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particle-nucleon CM system.

In the particle-nucleon CM system:

?0‘:'%: E)='§): IE)I=I?O|:
-

0.5 o F

W e 25E
c c

Then equation (A-1l) gives

2 ecEc
fc(e) = «(2n) tc (m—)- (A-3)
c "¢
Similarly, in the laboratory system (for forward scattering),
=0 _ =1 _
u2 = u2 = Q.
o _ 2 _
f; = -(2n) tr€pe (A-k4)
Using equation (A-2) we find, for forward scattering,
©e—2—-—1Gh o (15
(2n) € (2n) € ¢

In the particle-nucleus barycentric system:

K.

0

] 1=

-I—’)""
o0 = -

I
W o™




Then, for forward scattering,

= -(2x)2 £0 < > (A-6)

Expressing fB in terms of eL and using (A-2) s We obtain (discarding terms

of order A-2)

(A7)

where M is the nucleon mass.

Combining equations (A-6) and (A-T) gives

Ll [
0 = < > (1-8)
1+

B (&)2

Thus, if we may neglect terms of order (eL/AM)a,

O __ =1 O __ -1 (qo) £ o (A-9)
g (20)2 - Y- -

where qo and ko are, respectively, the momentum of the incident particle

in the laboratory and particle-nucleon CM system.
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APPENDIX B

EVALUATION OF THE PION-NUCLEUS SPIN-ISOSPIN AVERAGES

By the hypothesis of charge-independence, the scattering matrices
must be invariant under rotations in isospin space; that is, tg must
- -
have isospin dependence only of the form ?-I s Where I is the total

isospin of the pion-nucleon system. We introducel@

creation and
annihilation operators Ui s Uj (i,3 = 1,2,3) for the three types of
pions wl, w2, w

5.

b 4 A ~ ~
- + ° -
U= wlel w2e2 + (»5e5 (B-1)

It is easy to show that the quantity
T=10xT (B-2)
transforms like a vector in isospin space, so we choose

g -
I T

(04

+1UxU, (B-3)

=

where ?a is the isospin operator of the ozth nucleon.




The most general form of tg is then

0 2t = t 2 =
= [ ) + [ ) -
b0 =AU U+ Boff xT 7, (B-4)

where AO and B. are independent of the nucleon spin for forward scat-

0
tering. One can verify the projection operators

Ay = % (e T -0 xT -3,
Ao = %(ﬁ’*-t’h T xT -, (B-5)

allowing the identification of AO and BO with the two independent scat-

tering matrices

0 1
= (Ag= Bo)hs sy + (Bg+ 2BOIA) /1y =ty ('Z‘)A3/2 * tg (311 /p°
(8-6)

Since we assume only one pion to be present in the intermediate

state, we find

1940 = A2Uf-U+iAB UfXU'(T"‘T

aB 0 B)

2 [@ TR - BT T ] e
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Using the results of Table VIII -- keeping terms of order A only -- we
find (for unpolarized nuclei)
A

0,0 . » 2 o) L= I
; (o]t tglo) =T'+ ¥ (a(a-1)ag - 2aB] + kian B 0 'x O e5T5
=1

OO _—).r. - l -]__ 2 _)1- _). A
E (OltatBPaBIO) =U U [-EA(A-16) -2A%30 - 2iAA B U X U « &,T

33’
E (o[t lo) = ang 3.7+ 218 Tx T €5T5, (B-8)
where we have used
_ 1 - - e
Pp =" % (1 + Oy cB)(l + T, TB). (B-9)

To evaluate these expressions for incident charged pions, we intro-
L9

duce 7 the pion state vectors

+

W = F w :m) (B-10)

L
E

Then, using equation (B-6),




TABLE VIII. List of spin-isospin averages. 'a_.) and ) are arbitrary
vectors. Terms of order 1 have been discearded.

A
1) 2 (o[, « T5lo0) = -3a

o#f=l
A
2 30l - 3lo) =
oriB=1

A
> 3 o o
3) 2 (Olda' GB T TBIO) = uOA
o=l
A
L) 2 (OITa5TB5|0) = <A
o=l
A
> o
5) 2 (Olca' % Ta57B5|0) = -3A
o=l

A
1,2
6) E (olpaﬁlo) = - AT+l

=1
A

7) Z(ol?;o ?B PaBIO) = . ?IAQ
o#=
A

8) (ol?a- E’B PaBIO) = - %Aa

o=




TABLE VIII (cont.)

A
pc i ¢ = 2
9) 2 (OITa A TaB’TB5IO) A + A
a#B=1

A

2

10) E (OlTa5TB5 Paﬁlo) = - éh_
op=1

A
1 > o . 35,2
) mzl(ol"a % Ta3Tp3 Fopl®) = - T A

A
12) 2 (ol?a- n Popl0) =0
o#B=1

A
130 D (0[5, 23, B'rglo) = - Ea2@ . B)
o#3=1

A
14) E (OITa5 PaBIO) = -AT,
o#=1

A
- A
15) E (°'°a' i1y PaBIO) = 0
o#e=1

A
16) E (oIE’a- E’E’B- 5’705 PaBIO) = -AT5(E’ )
o#p=1




TABLE VIII (conte)

=

A
17) 2 (old,- & ?a- ?B PaBIO) =0
orp=

el
!
l

A
18) E (ol?a- oy B e ?B Popl0) = - ?;A
o#B=1

T2
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Y 2
A= 28 [————72——] , (B-11)
(2x) &

where the upper (lower) sign refers to incident positive (negative) pions,

and f and fT are defined by equation (k4.3).
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APPENDIX C
EVALUATION OF THE NUCLEON-NUCLEUS SPIN-ISOSPIN AVERAGES

By charge-independence, the nucleone-nucleon scattering asmplitude

fgc == in the two-particle CM system =- must have isospin dependence

of the form f . -I'), where

- 1 /- -
= - + -
IT=3(1,*T) (c-1)
is the total isospin of the nucleon-nucleon system, and 7'; and ?0 are

the isospin operators of the incident and o h nucleon, respectively.

The most general form of fgc is then

0 - -
= + M! . . -
f M, ML T T, (c-2)

Here, for smell scattering angles, Ma and Mo" have spin dependence of the

form (see Appendix D):




't =p + o+
MY = A CT(OO o,

and the coefficients AO,CO, ...,HT are functions of kO and Gc = 0, the
momentum end scattering angle, respectively, in the nucleon-nucleon
CM system. ﬁ and ? are unit vectors in the directions (E)Ox 'i:)) and
(1?0'*‘ B, respectively.

One can verify the projection operators

O AER LAY
Ay =g (L - T o) (c-b)

in terms of which equation (C-2) may be written

fgc = (M M)A, + (M - M)A = fgc(l)Al + fgc(o)Ao, (c=5)

where we have introduced the two independent scattering amplitudes f(1)

and £(0). Comparing with equation (5.3), we see that M, = f, and

Mo'z =f N Utilizing equation (A-9), we obtain for tgtg, evaluated

between the state vectors of the incident nucleon s
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£0,0,0[% 1 9,2
(N ItatBIN ) = m (Eg) {MQMB £ MQMB' 83

0

+
where N~ refers to an incident proton or neutron, respectively.

It is convenient to transform the terms with coefficient C0 3 CT
as follows:
IR ngi?
Co e n=Coc & ———m—— (C'7)
k. sin®
(0) c
But it is easily shown that
= o = =
kox k _ qox a 9, 5
k 0
0 %
Therefore, defining
1 1
f - L §
Co = sime. %0’ Cr = 5o Cp
c c
T %
- > -
x(Qyq,) =0 « —5 ‘Eg” (c-9)

we write




7

pe ' o p= S ' _
€0 *n=c} X(q,qo), coen=c! )((q,qo (c-10)
and C(; and C:_ are now of order 1 as 6, 0 (by Appendix D).
Substituting equations (C-10) and (C-3) into (C-6) and using Table
VIII to carry out the averages over the nuclear ground state, we find

(for unpolarized nuclei)

2
s = (%) lgy + By X(@a) ] + 0(6?),
- % 2 - — 2
s, = (1%) [ge + by X(q,qo)] + o(ec),
3 0 A 9 2T5 2Ty - - ]
= ————— — — L — L
D Jtoliglo) = - A D [t g2 ) + (g = 2 ox@3) ]
=1 0
(c-11)
where the spin-independent amplitudes are
—  — 47
=2 1,2 3 - =
g = (D -3 (P +38%) + 22FF,
—_ _ T,
g, = -5 (P +30) + £ (D25 2, . (c-12)

Here we have written a superscript bar on the scattering amplitudes
[equation (543)] to indicate averages over the spin-directions of both

particles. That is,
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- - 2 =2 2
T =Ay T =a, (£)€ = Ags (fT) = A,
) 2 2 2
+ - +
< = o 3B, 230}10 Hy
2 =224+352 _opgE + 13
T T T TT T
+ - - + o -
ffT = AOAT 513013T BOHT BTHO HOHT (c-13)

Finally, the spin-dependent terms are written

1 3
= | - + ' 4 -+ . 4+ ! 4 '
h3 AOCO A [(AO BO)CO 5(A B )C ] * = (AOC A Co),

1 4
h, = - [(A0+ BO)C(; + 3(AT+ BT)C;_] + KAOC(;
T3
] ] -
T £ [(A0+ 130)0T + (AT+ BT)CO] . (c-1k)

All the above expressions are correct through terms of order Gc
and of order A™Y. 1In equations (C-6), (c-11), (c-12), and (C-14) the
(x) sign refers to incident protons or neutrons, respectively.

Finally,

A= - ———éﬁ (k—) [f_a + 5% - (f)al . (C-15)
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APPENDIX D

EVALUATION OF THE NUCLEON-NUCLEON SCATTERING AMPLITUDES

IN TERMS OF PHASE SHIFTS

The nucleon-nucleon scattering amplitude in the CM system may be
written as a matrix in spin-space with coefficients which are functions

of the scattering angle and the momentum. We use the parametrization

of Stapp.5o
= -, - ~ =S A A 1 - A3 A - =
= + + . + . . + = . . + . .
M(k,ko) A C(cl 02) n + Boye no,e 1 2(}(01 mo,° m+ o)« Lo, 1)
1l /= A A o5 S
+ EH(cl mo,* m - 0y« Lo, L),

(D-1)

where 1, 7 , and m are unit vectors in the directions (EZJX ®) s (E’O*' K,
and (? - ?0) s respectively. Sta.pp5 0 has given the general expressions
for A, B, C, G, and H in terms of phase shifts for the I = 1 state.

For the present applications we are concerned only with small-angle
scattering: we need A and C to order 935 B, G, and H to order Gc.

By using the small-angle expansions for Legendre polynomials,




P () =1 - £(e+1)6% + o(e™,
p{1(g) = L 4(4+1) sine [1 L (4+2)(2 1)62] + 0(e”)
2 2 -8 - ’

p{2(e) = } 2(2+2)(£42)(1-1)62 + 0(8"), (v-2)

in Stapp's expressions, the following results are obtained:

Afe) = E—i—o 2 (22+1) [1 - };z(tu)eg] o,

L{even)

241
+ 2 [ 2 (2J+l)azj] [1 - Ilrz(z+1)e§]}+ o(elc‘),

2(o0dd) “j=t-1

5in®
_ Siné, 2443 2441
cley) = —g Z [z+1 %041 " I %
£(0ad)

- ?IT-l“z,z-l] - [l -5 (”2)“'1)93] * ofe)

= gi J
sing, C (ec),

(D-3)

B(o,) = py > [(“'1)“1,z+1 +aay , )+ W) () o™
2(odd)

+ V1(1-1) a"l] - 2 (2“‘1)“;} + 0(e?),

L(even)




8L

a(e,) = Irlfkf 2 [(”a)az,zﬂ + (2tfl)a,, + (l-l)al,l_l
£(o0dd)

- Vi) (1+2) 21 - Va(i) a"l] -2 2 (2e1)a, p + o(eﬁ),

L(even)

H(e,) = gz 2 [‘ %y gy - (284ay, + (e,
2(0dd)

+ 3V (2+2) oL+ 3Y2(2-D) a"l] + 0(93)'
(D-4)

are most conveniently expressed in terms of the "bar"

36,50 13

The alj

phase shifts of Stapp as follows: for the singlet state

215,  2i9,

and similarly for the triplet state with £ = j, while for the other

triplet states

218, . _ 2ip,

@ =e J cos 2€J -e (3 = 241),

i(8, +3 )
JetstnE, [e L3 3L |,

o 3

and ?, is the coulomb phase shift.
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Comparing the above eqguations (D-U4), we see
- 2
G+H=2B+o0(6e). (D-5)

Using this in equation (D-1), we obtain the expressions given in
equations (C-3).

The coulomb scattering effects have been neglected here, as the
optical potential proper deals only with the purely nuclear part of
the scattering. The effects of coulomb scattering are then to be
considered when the scattering from the optical potential is calcu- '
lated, as described by several authors.sl

The coefficients of the I = 0 scattering amplitude are also ob-

tained from equations (D-3) and (D-4) by interchanging "even" and
"odd."



l.
2
Se
4.
Se
6.
T
8.
9.
10.
11,
12.
13.
1k,
15.

16.

17.

Ke

Ne.

Ge
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