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ABSTRACT

It has long proved convenient to describe the elastic scattering of

nuclear particles by nuclei in terms of an equivalent two-body potential --

the optical potential. Recent experiments have indicated an apparent

discrepancy between the experimentally observed values of the optical

potential and the theoretical values predicted by the simple first-order

theory. In this paper the leading multiple scattering corrections to the

first-order theoretical potential are calculated, and the resulting second-

order potential is evaluated for two nuclear models for incident pions

and nucleons. It is found that the inclusion of such corrections can bring

the theoretical and experimental potentials into agreement.
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1. INTRODUCTION

The optical model description of the scattering of a nuclear psrticle

by a nucleus is concerned primarily with the replacement of the many-body

interactions of the incident particle with the nucleons in the target

nucleus by the interaction of the incident particle with an equivalent

potential -- the optical potential. The term “optical model” is by analogy

to the corresponding problem of the propagation of light in a medium, where

the many-body interactions of the light with the particles of the medium

may, in a certain approximation, be replaced by attributing an index of

refraction to the medium as a whole.

For low energy incident particles the problem of determining the equiv-

alent potential has been treated primarily as phenomenological,1,2 although

there has recently been some progress in the relation of the low energy

optical potential to the underlying two-psx%icle interactions.3-5 For high

6-9
energy incident particles Watson and his collaborators have shown that,

to a good approximation, the optical potential may be directly related to

quantities characterizing the scattering of the incident particles off free

nucleons. The approximate evaluation of such an optical potential has been

carried through by many authors,10-14
and the comparison with experiment

has been reasonably satisfactory.
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An a~arent discrepancy has recently been noted, however,15)16 between

these calculated values and the measured values of the optical potential

for pions having an energy of a few Bev. This discrepancy seems to indi-

cate that, at 3 Bev, for instance, the imsginary part of the potential is

about 2@ greater in magnitude

this paper that corrections of

ation of higher order terms in

than the calculated value. It is shown in

such magnitude may be obtained by an evalu-

Watson’s theory of the optical potential.

It has long been known that such corrections depend on the structure

of the scattering medium.
17

Such corrections were estimated by l?rancis

and Watso$”8 to illustrate the general theory of the optical model po-

tential.

by Be’g.
20

ficiently

More recent studies have been made by Glauber
19 and, in PEU’tiC@>

These studies do not seem, however, to have emphasized suf-

the sensitivity of the results to the nuclear model assumed.

In this paper we shall discuss this problem more generally and demonstrate

explicitly the relations between the various models.

The formal theory of Watson’s optical potential will be reviewed in

Section 11, and an evaluation of the second-order potential is carried

through in Section III. Sections IV and V are concerned with the second-

order potential for pion-nucleus and nucleon-nucleus scattering, respec-

tively, and Section VI treats corrections

to the nonlocality in coordinate space of

We choose throughout units such that

to the first-order theory due

the optical model potential.

h=c=l.
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II. FORMAL THEORY OF THE OPTICAL POTENTIAL

We wish to describe the

nucleus of mass nuniberA and

elastic scattering of a particle from a

charge Z. By “elastic,”we

scattering which does not change the energy state of the

accomplish this, we introduce the nuclear Hamiltonian ~

set of eigenstates gy(~) -- where ~ is some complete set

ordinates and gy(~) =< ~ly> -- and the

WY. Then

%3-7(G) = ‘7gY(@’

and we choose W. to be the nuclear state

state. Similarly, the free state of the

corresponding

mean that

nucleus. To

with the complete

of nuclear co-

energy eigenvalues

(201)

of lowest energy -- the ground

incident particle is described

by a Hamiltonian h possessing the eigenstates qq(~ and associated energies

Cq. The interaction of the incident particle with the nucleus is assumed

to be of the form

A

v=
z

Va ●

cx=l

(2.2)
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The Schr&inger

dent particle in the

(HO + V)Y
s.

where

equation which describes the scattering of an inci-

particle-nucleus barycentric system is then

= EaYa,

HO=~+h, Ea=WO+EO.

Here WO and 60 are, respectively, the energies

(2.3)

(2.4)

of the nucleus and particle

in the particle-nucleus barycentric system. Equation (2.3) is to be

solved subject to the boundary condition that, at large distances of the

incident particle from the nucleus,

The M&ller wave matrix 0 may then be introduced as usual,

Ya = Q f++) Q%(2)>

(2.5)

(2.6)

and the Schr6dinger equation (2.3) for Ya with the boundary conditions

(2.5) may be converted into an integral equation for Q in the usual w~21

(2.7)
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(Here q is a positive, infinitesimal parameter introduced for performing

-1the integrations across the pole of a .)

Watson6 has shown that equation (2.7) for Q formally has “multiple-

scattering” solutions of the form

A

w-l

A

sla=1+:
z % %3’
@c%=l

(2.8)

Ita =Va+v +ta.

For the study of elastic scattering we are interested in the matrix

elements of the scattering operator T = V(2 between m.mle~ states of

equal energy. Introducing the notation < ... > to designate such matrix

elements, we define quantities

Tc =<T>, flc=<$2>, Fc =<oa>, (2o9)

operators on the coordinates of the incident particle. Note that Fc is

independent of the index “a,” as we are dealing with completely anti-

symmetrized nuclear wave functions.
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If we can find a “potential”& such that

.
T- =< VS2>=OS2==OWY 1

‘o +iq-h Tc’ (2.10)

then equation

scattering of

(2●7) reduces immediately to a two-body equation for the

the incident particle by the potential&:

sl =<s2
c

>
1 1

‘l+~o+q-h <Va>=l+ m
+i~-h C’

(2.11)
‘o

corresponding to a Schr3dinger equation

(h + ~)q
% = ‘Op%”

(2.12)

&is the so-called “optical potential,” by analogy to the treatment of

the coherent scattering of light by a medium in terms of an index of

refraction. Clearly, &depends on the initial state of the nucleus,

here taken to be go(~), and, in general, depends on the complete solution

of the many-body problem.
22

For high energy incident particles, however,

&may be, to a good approximation, related to the scattering of the in-

cident particle off free nucleons and to quantities describing the initial

state of the nucleus..

To determine &, we note

A A A

‘a ‘Zvao‘2%1 ‘ %J’cz‘z%%
&-l w-l C?F1

(2.13)
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By equations (2.2) and (2.8). Introducing the projection operator Pm

off of the initial nuclear state,

(1- Pm)g7(5) =bmgy(E), (2.14)

we may write

A A A

Tc = <Vsl>=
z

<ttaQa> =
z

< tia Pmfza > +
z

<tta(l - Pm)Qa>e

(X=1 Cz=l CY=l

(2.15)

Defining Gaby

so

and

‘m% = (Ga - 1)(1 - Pm)Qa,

fya=l

substituting into equation (2.15), we find

A A-.

Tc =
z

<~aGa(l - p#a> =
z

<tkaGa> Fc =~Fc.

(2!=1 Cz=l

(2.16)

(2.17)

(2.18)

Fc satisfies the equation
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A

F =<$la>=l+ 1
c ~n+iq.h z < %% ‘0u @*l

Summingover a aad using equation (2.15),

AFc

we obtain the

=A+ 1

‘o +i~-h

equation for Tcj

Tc

If A iS

we see~ upon

=V+v 1
Eo+iq-h

.

[A - l)TC,

(1 - #Tc.

(2019)

(2.20)

sufficiently large that we may disregard terms of order A-l,

comparison of equations (2.20) and (2.10),

(2.21)

where we use equation (2.18) for ~ and Ga is given by equation (2.lT).

To keep terms of relative order A-l, define a

an associated scattering operator T,

v= a v, T = arc, U=l-L
A

Then the equation for T is, from equzkion (2.20),

pseudopotential.v and

(2.22)

T=CXT =~?f+#&~T 1
c c ‘v+v~T” (2.23)

o
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Thus, T is obtained by solving a Ekh#Mnger equation for scattering from

the pseudopotential v, given by equations (2.21) and (2.22). The actual

scattering amplitude T= and the differential cross section
)

~ (in the
c

particle-nucleusbarycentric system) to be compared with experiment are

then given by

where we

Tc = (1 - *)-1 T,

da

)xc
= (I - ;)-2 (~)k IT12 (-)2,

00

have used equation (A-6) of Appendix A.

(202k)
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111. EVALUATION OF THE SECOND-ORDER OPTICAL POTENTIAL

From equations (2.17) and (2.21) we see that

a=l

A A

(%=1 a#p=l

(3.1)

and so is e~ressed as a series of scattering operators -- describing the

thscattering of the incident particle by the a bound nucleon -- averaged

over the ground state of the nucleus.

For high energy incident particles, we may make the so-called “impulse

approximateion:{23in which we replace the bound scattering operators in

equation (3.1) by the scattering operators for the scattering of the inci-

dent particle

approximateion

by a free nucleon. The relative error incurred from this

is7,24

(3.2)



u.

where B~v is the average binding potential of a nucleon in the nucleus,

f is the scattering amplitude,

of the incident particle. For

is expected to be small.

and k is the reduced

high energy incident

de Broglie wavelength

particles this error

Thus, if the initial momenta of the nucleon and particle are ?-. and
Uu

~, respectively, and the scattering leads to the final state ;a and ~s

we may write

where t~ is the free nucleon scattering smplitude, defined only on the

“momentum shell..” It is frequently convenient to consider tta and ta as

operating on the nuclear coordinates but as functions of ~and ~. When

we wish to do this we write

By carrying out the Fourier expansion

(3.4)%)“

of the initial nuclear wave

th
function in the momentum of the a nucleon and using equation (3.3), one

obtains24

where ~a is the coordinate of nucleon “a,”

i?* Z’
= e a tale>, (3*5)

and ta still operates on 10 >
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through its dependence on ?aO.

relative momenta Onlyj huwever,

nucleon momentum in the initial.

of ta on ? . Then ta operates
ao

coordinates.

This dependence on ~. is in terms of

+
so for ~ much greater than the average

nuclear state we may ignore the dependence

on 10 > only through its spin and isospin

The calculation of the first-order optical

defined between momentum states ~and ~ of the

follows directly:

potential <zl~l 1{>s

incident particle, now

(2=1 a=l

Introducing the nucleon density distributions

P(a = < Ojb(g- Q1O>,

pG) = VA P(a, J
3dx

and employing the notation (OltalO) to designate matrix

= ‘“lt(~-?))

(3.6)

(3.7d

(3.m)

elements of t-

between the nuclesr ground state spin and isospin wave functions, we obtain

i2*Z’
<altill~>= (oIt(;, ~)10)~ ~ d3z p(~ e

O) AC(l~l), (3.8)



Since p~) is sensibly different from zero only for

be small unless

121 =

13

(3.10)

(OW+J1O) (~)p2E !
.i(~.@ ●z-

=
(~)3/2d3q e

p(~d3z

e%”;
t%@lo) (~ P(a -&--@ ● (3.I.2)

where 0 is the angle of scattering in

~ l~ge, e may be small enough that

the barycentric system. Thus, for

t(;, Q W%, ?J A&). (3.11)

If we assume

~1 as follows:

this, we may obtain the coordinate representative

= (2X)3 (o

of

4
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(3913)

comparing equations (3J-2) md (3.13)swe find

czlql?’ > = (2fl)3 (oitwjJlo) ($) P(a 5(2 - 2’)
A

= VI(3?)5(2 - 2’) ●

(3.14)

From equation (A-9) of Appendix A:

tO(qJ = -; +@,
(2fi) E.

(3.15)

where f~(~) is the laboratory forward-scattering amplitude for the in-

cident particle on a free nucleon. Then

v+) = VI p(;),

‘1 = -2$ (+) f:(@,
A

(3.16)

Vl dependi% parametrically on ~, the momentum of the incident particle.

To evaluate the second-order potential, we use equation (2.14) for

‘ND
in equation (3.1) to obtain
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(3*17)

We first simplify equation (3.17) by neglecting

(W. - W7) in the denominator. For sufficiently

the energy difference

high energies this is

justified, since the resulting error is of the order24,25

(3018)

where Kav * 30 Mev is the average kinetic energy of a nucleon bound in

the nucleus. Rnploying closure to perform the sum over y in equation

(3.1’7)and using equation (3.5), we find

(3*19)



where

2’=2.$’, i?=:t -

We now utilize a technique due

?)”

to Lax and
~e~hbati24,26

(3.20)

for the

evaluation of matrix elements such as those occurring in equation (3.19).

The quantity tatP is a matrix in spin and isospin space, but is no longer

an operator on the nuclear coordinates -- by our assumptions following

equation (3,5). For each of the four possible states of the nucleon pair

(c%,P),we may expect a distinct pair-correlation function. The evaluation

of the desired matrix elements involves giving the appropriate weight to

each such state of a pair (a,@). For simplicity, we shall follow Lax and

Feshbach24,26
and assume only two correlation functions: one for space-

symmetric and one for space-antisymmetric states.

Let P
C@

be the space-exchange operator which interchanges ~a and ;P,

and write

ls>=*(l+P@)lo>,

la>= * (1 - P@)lo >0

Then, if O
Q$

is an operator symmetric in (a,~) we have

<o{u&_Jo> = < sl&@ls> +-<al@@la>.

(3.20

(3=22)

16
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We introduce the correspondingpair distribution functions

P2$’, 21) = *col(l+ P@) b(?-;a) @ - 29)10>,

P2a(5?,?~) = * < 01(1 - P@) @ - 2a) @ - ?P)10>,

which may evidently be written in the general form

where P~) is defined by equation (3.7), and

sent conditional.probability distributions.

+ 12,2),
PP

1
2,2) ,@s

(3.23)

(3.24)

the functions Q9 and Qa repre-

For a sufficiently large

nucleus we would anticipate being able to set

We now identify the operator 0’
C@

of equation (3.22) with the ex-

pression



in equation (3.19). In evaluating equation (3.19) we must then consider

18

terms like

-i(i?%+a+iw )
= (sltatpls)fp2s(2a,2p)e @ ~3z d3z .

UP
Now

where

J
d3 ,

B ~
eO+ iq - eq, C(IE’1) C(121).

(3026)

(3.27)

(3.28)

Here C(l?l) is defined by equation (3.9), and we have made use of the

approximation of equation (3.11) to set ta = t: and t
9
= t;.

It is convenient to introduce

A

Ss =
ZJ

d3q‘
CO+ iq - Eq, d3zad3zP P(;”) Qs(~a- ;P,;P)

&.~

-I(az’ai-w
xe p (Slta(cl,q---”) tp(m) 1s) (3.29)

and a similar quantity Ja for the space-antisymrnetricstates. Then, if



we define a quantity A,

A= y [(olt~lo) - (Olt:lo)(olt;loj ,
a#p=l

equation (3.19) may be rewritten as

19

(3.30)

(3*31)

To simplify Js and Ja, let

Then

A

x [2 1
(s!ta(~,~’)tp(~’,~)ls) d3r e

-i% “;
Q&,~ , (3.32)

O#@=l

where we have replaced ~by ~ in the scattering operators because of

the first factor in the equation and the arguments leading to equation

(3.ll). For incident particles of energy high enough that q&~ >>1 and

q&a >>1, where R and
s

Ja may be approximately

,

Ra are defined by equation (3.34) below, J~ and

evaluated to give



where we neglect terms of relative order (~R~)-2.

duced “correlationlengths” R~ and Ra, defined by

Except for small nuclei, equation (3.25) shouldbe

and we may write

J
m

R5 = G~(r)dr,
o

J
w

Ra = Ga(r)dr,
o

independent of ~.

Writing

A

#?

(O@$O) = A2

=1 (2YC)46: “

20

(slt~l s),

(3933)

(alt~la)j

Here we have intro-

a good

(3*34)

approximation,

(3935)



A

4?

(Olt:$ p@l@ = “+- ST>

=1 (2fl) Eo

we obtain

A

6?

(Slt:t:k) = A2
--@--@ +s)’ T

=1 o

A

$?

A2
(alt~ld = ~ * (s - ST).

=1 o

a

(3.36)

(3*37)

Finally, using equations (3.37), (3.35), and (3.33) in equation (3.31)

the result is obtained

where

v = (-)2 A 2
2 [

— (# (RJ Ra)S + (Rs- Ra)S
2iEO% A 1T*

Thus, equation (3.1) becomes (valid to

[1‘A<Ilv& > = cm- g) ‘-@

The term involving B is cumbersome to use.

(3.38)

(3*39)

our approximation)

(Vl+ V2) + BA.

Since it is of order A-1

(3.40)

compared to V , it may be discarded for large nuclei.
2 It may also be
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transformed into a more convenient form. To see this, let us introduce

equation (3.40) into equation (2.20)and iterate once.

[1‘A<~lTc& > = C(l~-~1) — (Vl+ V2)
(2YC)3

{ A) [&v~2}+ ... .
+BA+(l-&

(3.41)

Nuw we attempt to obtain the same result by defining a new potential and

scattering operator:

<~Jvl~> = ‘A

1
c(lz-~J) [m C%(VI+V2),

T=
1

‘+veO+i~-h T,

(3e42a)

(3.k2b)

Tc =~T, (3.k2c)

where a and 13are to be determined. In order that equations (3.k2c) and

(3.41) be consistent, we must have

To first-order in A
-1

and in the potential strengths we find that

a.ld+ A
A

[1

‘A
2“

(2TC)3 ‘1

(3.43)
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To obtain

experiment, we

da
the differential cross section ~

)
to be compared with

c
proceed in a fashion analogous to the discussion following

equation (2.23). We use the potential v defined by equation (3.k2a) in

the Schrodinger equation (2.12) to obtain a differential cross section

da
~C Then

da
) H -2 du

mc= a m “
(3.44)

Proceeding as we did in obtaining equation (3.16) from (3.8), the

coordinate representative of v is

<qvp > v(l) 5(2-3), (3.45)

where

da = v P(2)= C%(VL+V2) p(2) ● (3.46)

v(3 is now our general result for the second-order optical poten-

tisl, where we have neglected corrections of relative order A-2 -d

further terms of order

and f iS

~ (#(Rs t R )2f3,822 1
a

‘o% A

a typical particle-nucleon scattering amplitude.

(3.47)



IV ● THE PION-NUCLEUS OPTICAL POTENTIAL

Expressions for the pion-nucleus first-order optical potential in

terms of pion-nucleon scattering amplitudes have been given by several.

authors~O’l’ These are of particular interest since the relevant

scattering amplitudes msy be obtained directly from measured pion-nucleon

scattering cross

To evaluate

must consider in

It is convenient

to I = 3/2 and I

sections with the use of dispersion relations.
27,28

the general expressions (3.16), (3.39), and (3.46), we

some detail the pion-nucleon scattering operators to.

to project to onto the isospin substates corresponding

= 1/2. This may be effected with the respective pro-

jection operator’ ‘3/2 ‘d A1/2’ ‘0

to =
t“(~) A3/2 + t“($ A

1/2“

The laboratory system scattering amplitudes for the I = 3/2 and

the I = 1/2 states are, respectively [from equation (A-9) of Appendti A]:

fo
3/2 =

-(2X)2 Eoto(;),

fo
l/2 =

-(2Y02 CotO(*)●

(4.1)

(4.2)



In terms of these, we define

fT=*(f;,2 .f:,2).

Then, frrnnAppendix B,

(Oif:lo)=ft>f
T’

i-
where (~) refers to x or fi-mesons, respectively,

component of the nucl.esrisotopic spin; that is

T3=WN)”

(4.3)

(4.4)

and T3 is the third

(4.5)

Here N is the number of neutrons in the nucleus.

In addition to being scattered, a meson may be absorbed by a nucleus.

It is understood that the effect of this is also included in the optical

potential. The effective cross section for abso~tion, per nucleon, is

29
conventionally written as I’(ad/2),where Ud is the cross section for

absorption on a deuteron and

for absorption of a meson in

r X 4 (reference ~). The mean free path

I.1
nuclear matter is then ha, where

(4.6)
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[In adopting this expression we are assuming T5 = O. This is justified

since the contribution

known for pions in the

4 ads and of Beg,20

from equation (4.6) to Vl is both small and poorly

Bev range.] FoJMwing the analysis of Cronin

we shall take

isd%o.5 x 10-27 ~2

pions in the 1 to 5 Bev range.

The expression (3.16) for Vl then becomes

vJll*, Q = -
~r ad

2~(~)~f~~f7+i
‘A )r’

(4.7)

(4.8)

where Vl(fi-,+ ~) refers to YT+or YC-mesons, respectively.

In Appendix B, the evaluation of the

pion-nucleus scattering is presented. In

expression (3.39) for V2 becomes

quantities S, ST, and A for

terms of these results, our

[
s-Ra) ~f2(l -~ ‘316)+*f:t~ff+ (R

T1}
J

(4.9)

and v of eqwtion (3.46) is given as

[

f2

v(l&) = 1 -*(1+2+)
1[ 1

V1(IF,(JJ +v2(sLqJ ● (4.10)



The real parts of the amplitudes

27

f and f~ may be evaluated using

27,28 me ~imn parts
the dispersion relations.

optical theorem in terms of pion-nucleon scattering

find, then,

f =*( D++ D-)+~ ((7++ a-),

f
% +

=~(D+-D-)+=(O -U-).
T

The amplitudes D+ and D-

They are the real parts,
*

have been defined in

respectively, of the

are given by the

cross sections. We

(4.11)

references (27) and (~)o

forward scattering amplitude

of n- mesons on protons in the laboratory system. a+ and CJ-are the

+-
corresponding total cross sections for x or YC-proton scattering.31

The quantities D+ and D- have been evaluated only up to 2.6 Bev.28

Since they are small at these high energies, we have extrapolated them

as constant in the range 2.6 to 5 Bev.

Equation (4.10) may now be evaluated. We write it in the form (to

order A-l):

(4.12)



28

Here h is related to the nuclear radius RA [equation (3.7b)] by

RA = lo2AA1/3 x 10-13 cm. (4013)

The quantities appearing in equation (4.12) have been evaluated for pion

kinetic energies in the range 1 to 5 Bev and are listed in Table I.

For a Fermi gas model of the nucleus, we determine the quantities

Rs and Ra. Evaluating equations (3.23) in terms of the single-particle

states

+-+

gl(l) =--&e % “Zl
it(l) Sl(l),

‘A

(4.14)

where i~ and SI are the isospin and spin eigenfunctions, respectively,

we have

1
‘2s(a) ‘Z? 2[ <9Jl)q)m(2) l(l*P1m) 5(2- z!’.)5(2’- 22)jQ1(l)q)m(2)>

lb

1
.< q)Jl)q)m(2) l(lt Plm) 5(?-21) tj(a-;2) lqj(2)9m(l) > .

(4.15)

Defining

(4.16)
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TABLE I. The parameters of the YCtnucleus optical.model potential as
defined by equation (4.12). Tfiis-the pion kin~tic energy in
the barycentric system (Tx = e. - P)> ~dR~ tiRa ~e measured

in centimeters.

Tfi(Bev)@m(Mev)

1.0
1.1
1.2

1.3

1.4

1.5
1.6

1.7

1.8

1.9

2.0
2.2
2.4

2.6

3.0
3.5

4.0

4.5

5.0

XLog

7.8

6.2

9.4

13.5

16.2

15.6

12.6

10.6

9*5
8.6

7.4

6.7

6.~

5.3
k.6

4.0

3.6

3.2

v&(Mev)

-22.()

-12.0

-5.0

-7.8

-12.8

-16.0

-16.1

-13.1

-11.1

-10.0

-9.1

-7.7
-6.8

-6.1

-5.3
-4.5

-4.0

-3.6

-3.2

~2(Mev)

-25.5

-23.7

-22.5

-15.0

-6.4

-3.5
-6.0

-6.1

-5.6

-5.6

-5.9
-5.6

-5.6

-5.4

-4.7

-4.1

-3.6

-3.2

-2.9

V&@.)

-47.0

-45.5

-50.0

-50.5
-49.0

-46.5

-42.9

-41.7

-41.0

-40.5

-40.3

-40.5

-40.8

-41.0

-41.0

-41.0

-41.1

-41.1

-41.1

V&(mv)

44.7

39.0

43.4

47.0

47.4

44.8

41.3

40.1

39.5
39.0

38.7

38.8

39.1

39.2

39.4

39.5
39.6

39.6

39.7

~2(Mev)

17.7

6.2

-4.0

-6.7

-5.6

-3.1

+2.4

3.1

3.2

3.3
2.7

)..6

0.4

0.0

0.0

0.0

0.0

0.0

0.0



TABLE I (cont.)

Tfi(Bev)fO(Mev)f-l

1.0
1.1
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
2.0

2.2

2.4

2.6

3.0
3.5
4.0

4.5

5.0

-2.9

-1.8

-1.6

-2.4

-3.3
-3.8

-3.3
-2.6

-2.2

-1.9

-1.7

-1.5

-1.3

-1.2

-1.1

-0.9

-0.8

-0.7

-0.7

4.0

2.2

1.3

2.1

3.2

3.7
3.4

2.7

2.2

1.9

1.8

1.5

1.4

1.2

1.1

0.9

0.8

0.7

0.7

7.2

5*7

5.5

3.5
1.2

0.6
1.5

1.5

1.3

1.3

1.3

1.2

1.1
1.1
1.0
0.8

0.7

0.7

0.6

5.1

4.9

6.0
6.0
5.4
4.6
3.8
3.6
3.7
3.7
3.7
3.8
3.9
3.9
3.9
4.0
4.0
4.0
4.0

-4.7
-4.3
-5.4
-5.8
-5.4
-4.6
-3.8
-3.7
-3.7
-3.7
-3.7
-3.7
-3.8

-3.9
-3.9
-3.9
-4.0
-4.0
-4.0

-2.7
-0.5
+1.7
2.4

1.8

1.0

-0.0

-0.3
-0.4
-0.9
-0.3
-0.1
+0.1
+0.2
0.1
0.1
0.1
0.1
0.1
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Tx(Bev)@a(Mev)f-l @a(Mev)f-l

1.0
1.1
1.2
1.3
1.4
1.5
1..6

1.7

1.8

1.9
2.0

2.2

2.4

2.6

3.0

3.5
4.0

4.5

5.0

1.0
0.6
0.3
0.5
0.8
0.9
0.9
0.7

0.6
0.5
0.4
0.4
0.3
0.3
0.3
0.2
0.2
0.2
0.2

-11.4
-7.2
-6.2

-9.6

-13.3

-15.0

-13.4

-lo●4

-8.6

-7.6

-6.8

-6.0

-5.4

-4.9

-4.2

-3.7
-3.2

-2.9

-2.6

TABLE I (cont.)

VIQ1.iev)fs#a(Mev)f-l

-3.6
.2.9
-2.8

-1.8

-0.6

-0.3
-0.7
-0.7
-0.7
-0.7
-0.6
-0.6
-0.6
-0.6
-0.5
-0.4
-0.4
-0.3
-0.3

-1.2
-1.1

-1.4
-1.5
-1.4
-1.1
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0

V&(Mev)f-l

20.4
19.7
24.1

24.1

21.6

18.3

15.2

10.4

14.9

1.4.8

14.7

15.0

15.4

15.6

15.7

15.8

15.9

15.9

15.9

@=(mv)f-l

1.3
0.2
-0.9

-1.2

-0.9

-0.5

+0.0

001

0.2

0.5

0.1

0.0

0.0

0.0

0.0

0.0

0.9

0.0

0.0



we obtain

where r = 1~ -?’ I and ~ is the Fermi momentum. Then32

-(8/A)
%+ Ra=~&

Rs-Ra=
&g’

32

(4.17)

(4.I.8)

(4.19)

so equation (4.9) becomes

83!
$(fl~,~)=i~ $ (&) (f2+2f~t-#ff7) [1 - (4/A)] A-5

A

(4.20)

020agreeing with the result of Beg.

It is interesting to note the effect of the Pauli principle on the

optical.potential. Since the Pauli principle prohibits certain final

states of the target nucleon in the nucleus which would be accessible

to a free target nucleon, Goldberger33 has shown that, at lower energies,

the net effect of such exclusion is to reduce the effective pion-nucleon
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cross section fra its value for free pion-nucleon scattering, and

hence to reduce the magnitude of the imaginary part of the optical

potential..

At the higher energies being considered here, however, we see that

the effect of the Pauli principle maybe in the

T%US, from equations (4.8) and (4.20) (ignoring

and assuming f~ = O),

opposite direction.

the A-1 corrections

IiT@=-= ()+ ‘f ~ (f2 - f2)],
‘o 1-% R I

(4.21)

where f = f 19
R + ifl. From the optical theorem this may be written

where a is the free pion-nucleon

as is the case at high energies,

total crosssection. Thus, if fR< fl,

the net effect of the Pauli principle

is to increase the effective pion-nucleon cross section from its value

for free pion-nucleon scattering and hence to increase the imsginary

part of the optical potential.

The restit of Watson18
follows directly from the nuclear model in

which Rs = Rae This assumes that the corre~tions s,res~i~ in

spatially symmetric and antisymmetric states.

Brueckner and Gsmme134 describe a wave function

coordinate of a pair of nucleons in nuclear matter.

of the relative

Using their results,



we obtain
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describing the correlations due to the %ard cores” of the nucleon-

nucleon interaction. Some indication of a similar result has recently

been deduced from experiment.
24

The pion optical potentials for these two nuclear models (neglecting

the A
-1

corrections) are presented in Table II, where we have written

#and# for the Fermi gasmodel andthe Brueckner model, respectively,

in the form

(4.24)

and we have assumed k = 1.

LOXIJ6 has recently deduced from experiments with 3 Bev/c YC+

mesons on various nuclei the values for the imaginary parts of the

optical.potential listed in Table III. The real parts are small, and

the nucleon density distributions used are those inferred from electron

scattering experiments. The corresponding values of Im# and M@

-1
of equation (4.24) (neglecting the A corrections and adjusted to

Lange’s central density) have been listed in Table III for comparison.

Also included Is the result for the first-order potential akme.
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TABLE II. The well-depths of the x*-nucleus optical model potential
for a Fermi gas model of the nucleus (vF =Re VF + i Im VF)
and a Brueckner model of the nucleus (VB = Re VB + i JinVB).
Tfiis the barycegtric kinetic energy of the pion. We have
n-eglectedthe A-l corrections.

Tfi(Bev)

1.0

1.1

1.2

1.3

1.4

l.y

1.6

1.7

1.8

1.9
2.0

2.2

2.4

2.6

3.0

3*5
4.0

4.5

5.0

Re l?’(Mev)

14.9

9.4

7.2

I.1.o

15.9

19.0

18.2

14.6

12.3

10.9

9*9

8.6

7.7

7.0

6.1

5.2

4.6

4.1

3.7

Im F(Mev)

-lg.2

-47.3

-52.6

-53.4

-51.7

-48.5

-44.3

-43.1

-42.4

-41.9

-41.6

-41.9

-42.3

-42.5

-42.6

-42.6

-42.7

-42.7

-42.7

Re #(Mev)

16.6

10.8

8.8

13.4

19.1

22.5

21..2

17.0

14.3

12.6

IJ..5

9*9

8.9

8.I.

7.1

6.1

5.4

4.8

4.3

IxIlvqMev)

-54.3
-22.1

-58.7

-59.2

-56*7

-52.8

-47.9

-46.4

-45.9

-45.3

-45.1

-45.4

-46.0

-46.1

-46.2

-46.3

-46.4

-46.4

-46.4
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TABLEIII. Comparisonof theoreticaland mqerimentalvalues of the
imaginary part of the ion-nucleus optical potential for

?x+ with momenta 3 Bev c. Experimental data are from
reference 16.

Element

Be9

#2

~27

Cu

~v~t” (Me~) ljn#(Mev) Im @’(Mev) ImV1(Mev)

-154t 9 -171 -133 -XL7

-59.4 t 4.0 -63.3 -57.4 -53

-58.5 t 4.1 -60.4 -54.7 -50●5

-69 ~ 13:: -60.4 -54.7 -50.5
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V ● THE NUCLEON-NUCLEUS OPTICALPOTENTIAL

The

uated in

nucleon-nucleus first-order optical potential has been eval-

terms of nucleon-nucleon phase-shifts by several authors.12-lk

The highest energy at which a complete set of such phase shifts

presently exists is 310 Mev. This energy is probably near the lower

limit of validity of our approximate eva.luatioDof the second-order

optical potential V2, so the most accurate numerical evaluation of

V2 that can be carried through is for 310 Mev incident nucleons.

However, we shall.attempt to estimate the order of magnitude

for other energies.

The validity of the multiple scattering

case of incident nucleons is not ixmnediately

equations (2.8)

evident, as the

of V2

in the

effect

of the Pauli principle on the incident and target nucleons has not been

Properly considered. Takeda and Watson9 have shown, however, that for

high energy incident nucleons the effect of the Pauli principle is pro-

perly accounted for -- to a good appr~tion -- if one uses scattering

thoperators ta antisymmetrized between the incident and a nucleon only.

But such scattering operators are precisely those describing the

scattering from a free nucleon,

to a good approximation in this

so the analysis of Section II is valid

case also.



Following the discussion in Section IV, we

nucleonscatteringoperatorta ontothe isospin

project the nucleon-

substates corresponding

to I = 1 and X = O. We use the respective projection operators Al and

AO to write

(5.1)

The scattering operators t: describe the scattering in the nucleon-nucleus

barycentric system, whereas the phase-shift analyses determine the scat-

tering amplitudes foa in the nucleon-nucleon center-of-momentwn (CM)

system. The relation between these quantities is givenby equation (A-9)

of Appendix A:

t:(l) = a (%f:a(l),
(2Y()%0 ‘o

(5.2)

to first-order in the angle of scattering. Here ~ and k. are the momen-

tum in the barycentric and nucleon-nucleon CM systems, respectively.

In terms of f=(l) and fc(0), define

1 [Zfo(l) + f:(o)],f=
Fc

f7=* [f:(l)- f:(o)]. (5.3)
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Then,fromAppendixC,

(Olf:lO) = (3)[(AO ~ 7A,) + (C: t ~ C:) X(?,~)
1

(5.4)
‘o

whereAOS AT,

at zero angle

C;, and C: -- defined in Appenti D -- are to be evaluated

of scatterhg, and%(~,~) is defined in eqwtion (c-9).

The presence of the spin-dependentterm in equation (5.4) makes it

convenient to decompose V1 into two terms, one spin-independent and the

other spin-dependent. Accordingly, we rewrite equation (3.16) as

(5.5)

where ~is the orbital angular

Evidently the spin-independent

(3.16):

momentum operator of the incident particle.

Part, ~1(~~ may be written as in equation

where equation (5.4) has been used.

or neutrons, respectively.

Here Nt refers

As the spin-dependentterm in equation (5.4)

momentum q to obtain ~1(~, the passage from the

(5.6)

to incident protons

dependson the final

momentum representative
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of A ~ to the coordinate representative

through (3.14) -- must be reconsidered.

we write

-- as effected

By comparison

in equations(3.I.2)

with equation(5.8)

(5.7)

Using the definitionof X(~,~) from equation(C-9) and the relation

the 8X may be takenoutside

whichmay thenbe evaluated

(5 ●8)

the integral over ~ [see equation (3L?) ],

to give

++

(5.9)

If P(?) = p(l~),

Then, using

(5.10)

●
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it folluws that

.L

where the angular

now be writtenin

>1(2)=

+

.

momentum; has been identified:

the fsmilisxform

12 ld$l
Wl(N*,@ (~) ~ ~ ,

(501.1)

t=?xi&J#hnay

W1(N’,C+) = - 2; ($) (:)2(i c; ~ 2+i c;),
AO

(5.I.2)

where the factor v is the pion rest

eluded in equations (5.12) so as to

those of an energy.

We write ~2(~ as in equation

=ss (~ lb Mev) and has been in-

cause the dimensions of Wl to be

(5.5):

(5.13)

The quantities S and ST of equation (3.39) are evaluated in Appendix C.

In termsof theseresults
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2 %2 4T3
i(23t)

2 (~) (# {- (RJ RaU2(N*4 = Ze )[(F)2-*(A37)t~FF7
0%

1

(5.14)

where the desiredspin-averagesof f and f~ are given in equation(C-13).

The spin-dependentpartW2 iS obtained by a treatment ~ogo~

that leading from equation(5.7)to equation(5.X2),with the result

.(2Yd2A 2 ~ 2
W2(N&) = — (—) (~) [(R;+R;)hd+ (R;-R;)he] s260k0 VA

to

(5.15)

where hd and he are defined in equation (C-14). R: and R: are related

to the Rs and Ra of equation (3~2) through the equations

R:
1=Ra+% Ga(0).

The additionalterms comefroma

mediatestate. They are thus of

of the high energyevaluationof

We thus set

spin-dependent scattering in the inter-

-1
order eql % (q&s) and, in the spirit

equation (3.33)$ they may be discarded.
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Ushg the

spin-dependent

expressionfor A from equation(C-15)(ignoringthe

terms,as they vanishfor forwardscattering),v of

equation(3.46)is givenas

{[

7+37-$
U(Nz,@ = 1 -~ 1+ -T2 1} [ 1

Ul(Nt,@ +U2(Nt,@ ,
(f)

{[

7+3F-F
W(N$@ = 1 -~ 1+ 1} [ 1W1(N*,@ +W2(Nt,@ .

(;2

(5.16)

In AppendixC, the

and (5.15)are givenin

expressions for the f’s and h’s of equations (5.14)

terms of the parameters A, B, C, H of the nucleon-

nucleon scattering sa@itudes. Further, Appendix D gives expressions for

these parameters in terms of the nucleon-nucleon phase shifts (for small

angles of scattering).

Gannneland Thaler35 have found a set of potentials which match the

310 Mev phase shifts of Stapp et al.36 for p-p scattering and which also

reproduce the n-p experimental data at the same energy. Kerman, McManus,

and Thaler14 have used the phase shifts deduced from these potentials to

evaluate the quantities A, B, ●... H~ for 0= = 0° + 160° ( f3cbeing the

CM scattering angle) and for energies x, 156, and 310 Mev. Using their

results we obtain the values listed in Table IV for ec = O.



TABLE IV. The nucleon-nucleon scattering parameters as defined
Appendix D. The numerical values are from reference

‘o

AT

c;

c’
T

‘o

BT

‘o

HT

90 Mev

0.592 + o.444j.

-0.069 - o.169i

0.0888 +- o.264i

-0.0544 + 0.020i

-0.0158 - oooo53i

-0.234 - o.0676i

o.1.14 - o.0737i

0.143 - 00030i

156 Mev

0.475 +0.401i

-0.006 - 00u4i

o.1o9 + o.418i

-0.092 - O.olli

-0.0279 - oeo164i

-0.257 - o.o182i

0.144 - o.164i

o.I26 + o.oo7i

44

in
(14).

310 Mev

00139 + o.479i

0.179 - o.JJ.3i

0.117 +0.480i

-0.072 - 0.044i

0.052 - 0 .043i

-0.219 + 00022i

00160 - 0 .145i

0.128 + o.oo5i



Eqyation (5.16) may now be evaluated~We mite it in the form

(to orderA-l):

(5.17)

Here k is defined by equation (4.13). The quantities a~earing in

equation (5.1’7) are listed in Table V for incident nucleons of ~ ~

156, and 310 Mev

For a Fermi

equations (5.14)

kinetic energy.

gas model of the nucleusz we use eq~tions (4*19) in

and (5.15) to obtain
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TABLEV. The parametersof the nucleon-nucleusoptical.potentialas

Tp(lhv)

93

156

310

9

156

310

90

156

310

w

156

310

definedby equations(5.17). Tp is the nucleonkineticenergy
in the nucleon-nucleusbarycentricsystem,and R andRa are
measuredin centimeters.(f = fermi= 10-13 cm.7

l$m(Mev) U&,(Mev) tJ&(Mev) L#m(Mev) U&(Mev) U&(Mev)

-3993 (-1545) 9*Z +g.9 (-IEO) 22.8

-30.6 g8.8 O*77 -25.8 -2293 14*7

-8.I.. 3*7 -21.. -28. -59. 140

$o(Mev f-l) #u(Mev f-l) $’u(Mev f-L) @m(Mev f-l) #u(Mev f-l) U$$(Mev f-l)

0.66 -24.9 -14.8 4.67 26.0 -3.86

7*75 -9.15 .4.59 -I.32 17.5 -3.47

1.8 1.5 3*7 2.8 6.5 -4.2

#a(Mev f-l) #a(Mev f-l) #=(Mev f-l) U’&(Mevf-l) I&(Mev f-l) $z(Mev f-l)

-6.2 2.6 8.35 6.5 -2.7 5.41

-2.29 31.0 4.06 4.37 -5.28 5.I.2

.37 7.0 -1.4 1.6 llo 2.5

@m(Mev) W&(Mev) ~2(Mev) W&(Mev) W&(Mev) W~2(Mev)

4*I.2 157● 0.62 -1.40 -64. 1.7

4.kg -3.47 -0.18 -0.gl. 8.43 1.54

1.8 397 -0.32 -0.43 0.40 0.53
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Tp(Mev) flo(Mev f-l) @u(Mev f-l) #u(Mev f-l) W~o(Mev f-l) W~(Mev f-l) W~(Mev f-l)

90 -0.42 0 0 1.95 -1.37 -1.46

156 -0.30 0.I.2 -0.04 0.63 -0.72 -0.54

310 4.18 0.16 0.14 0.10 -0.14 0.05

l&(Mev f-l) @a(Mev f‘1) #=(Mev f-l) W&(Mev f‘1) W&(Mev f-l) W&(Mev f-l)

% o -1.68 0.04 4.34 7.8 0.77

156 0003 -1.2 0.03 -o.~8 2.5 0.43

310 0.04 -0.71 -0.04 -0.04 0.41 0.06
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F i= ;(#) (:)2 (F+3~*~=J W: M-?=
2 co% AO

f (A) (lL)*I&%– ~ ~.
{[

(Ao+BO)C;+ 3(AT+BT)Ct
A

T1

[ 1} 4) ~-5e43 (Ao+BO)C;+ (AT+B7)C; (1 - ~
*A

(5018)

The numerical.etiuation of equation(501-8)gives (neglect- the A
-1

corrections):

T
P=

T =
P

90 Mev: VF(X) = (-58 - hi) p(x)+ (4.1 - 2.4i)~ ~ ~ ~ ● ~ ;~2xdx

11 (3$3-+ ~,
T = 310Mev: ~F(x) = (-7 - 25i) P(X) + (169 - 0.53i)~;~fs “
P IJ

wherewe have assumedX

the

the

and

(5.19)

= 1, and Tp is the nucleonkineticenergyin

barycentricsystem.

Usingthe valuesof Rs and Ra from equation(4.25),deducedfrom

work of Bruecknerand Gammels
34

we obtain(sgainassumingX = 1

-1
neglectingternsof orderA ),



T =
P

Tp =

T =
P

#2
s
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l~6Mev: VB(X) = (-44 - 24i) p(x) + (~.O - lldp+ ~;looi)—-— cr.2xdx
v

310Mev: ~B(x) = (-IJ.-33i) p(x)+(2.1-().6i)~~~~.~.
v

(5.20)

Batty37has analyzedthe 310Mev data of Chamberlainet al.38 on

treatingcarefullythe coulombeffects. Usinga Gaussiancharge

distributionfor simplicity,and a modifiedGaussiannucleondistribution

of the form

P(x) = ‘A
,= (l+; <) e-(x2/a2), a=l.635 fermi,

a a

(5.21)

whichgivesthe best fit to the electronscatteringdata on carbon,39

he obtains

v(x) = (-10.5- 29.9i)p(x) + (2.68- 0032i)JLL$3
● z.

u
(5.22)

In the absenceof phase shiftanalysesof nucleon-nucleonscattering

at higherenergies,we may try to estimatethe magnitudeof the second-

orderpotentialU2 as follows. If U2 is assumedto be small,the



phenomenologicalopticalpotentialV. deducedfrom experimentis

approximatelyequalto UIO From equation(5.6),if the corrections

of orderA‘1 are disregarded,A. may thenbe obtainedfrom VOS ti~

for a Brueckner

dependsonly on

estimateof U2.

nuclearmodel,

Ao~ Thus,for

from

this

equation(5.14)we see that U2

nuclearmodel,we can obtainan

In our resultsbelowwe normalizethe experimental

~. to correspondto a centralnucleondensitysuchthat A = 1.

Nedzel40 has measuredtotalcrosssectionsfor 410Mev neutronson

a rangeof elements. He assumesRe ~ = 0, and he findsthat,to obtain

l/3RA proportionalto A ,

‘A
= 1.23A1/3 X 10-13 cm,

En V. ~ -25Mev.

Then ImAo - 1.1 fermi,

Booth,Hutchinson,

neutronsscatteredfrom

and Im U2 ~ 1.3 Mev.

41
and Ledley have fit theirdata on 765 Mev

severalnucleito opticalpotentialswith nucleon

densitydistributionstakenfrom electronscattering~riments. They

assumethe Re ~. vanishesand the spin-orbitpotentialis purelyreal.

Theirresults,togetherwith our estimatesof En U2, are presented

in TableVI(a).

Booth,Ledley,Walker,and White42 have measuredthe totaland

differentialcrosssectionsfor 900Mev protonson C, Al, and Cu.



TABLEVI. The phenomenologicalopticalpotentialsdeducedby Booth
et al. and the resultingestimatesof the second-order
potential. (a)765 Mev neutrons[reference(41)];
(b) 900Mev protons[reference(42)].

Element Im ~(Mev) Aol(XIO-13cm) ImU2(Mev)

(d

(b)

~12 -43 2.2 409

Cu -45 2.2 4.9

Pb -45 2.2 4.9

&2

A127

Cu

Sb

-36

-52

.45

-46

2●0

299

2●5

2.6

502

1.1.●0

8.I.

8.8

51
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d3 ~ 1O-U cm,Assuminga rectangulardensitydistributionwith RA = 1.26A

they have determinedthe potentialstrengthwhichbest fitstheir

data. Assumingthe realpart of ~ is small,theirresultsand our

estimatesof U2 are givenin TableVI(b).

Coor,Hill,HornYak,Smith,and Snow
43

have performeda

-sis of theirdata on the scatteringof 1.4Bev neutrons

severalnucleirangingfromBe and C to Pb, Bi, and U. They

similar

from

measured

the total,absorption,and diffractioncrosssectionsand foundthey

canbe equallywell fit to withinthe experimentalaccuracyby either

a rectangularor a Gaussiannucleondensitydistribution.With a

rectangularweKl, they find a good fit to all theirdatawith Ra =

1.28A1/3 x 10-13cm,Re ~ small,and Im ~ = -44Mev. Normalizing

tox= 1, this correspondsto Im~ = -54Mev. Then ImAo g 3.7

fermiand lMU2 ~ 9Mev.

Long~6 has performeda carefulopticalmodelanalysisof his

data on the elastic

severalnuclei~ If

to his tit awithIin

= 42 mb, quoted
‘PP

scatteringof protonswith manenta3 Bev/c from

Re ~ is takento be small,he obtainsa good fit

~ N -63Mev. Usingthe valuesa = @ mb,
np

by Longo,we obtaina first-orderpotential

Imul= -54Mev.

the second-order

In general,

Attributingthe differencebetween ~ and U. to
u -L

potential,we find Im U2 ~ -9 Mev.

theseexperimentalresultsseemto be consistentwith

the assumptionthat the realpart of

small. If we assumenucleon-nucleon

the opticalpotentialis quite

interactionsto be purelyinelastic
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and spin-independent-- for nucleonsof kineticenergysomewhatgreater

than 700Mev -. of the six parametersdescribingforward-scattering,

only Im A is nonvanishing.SinceImA maybe relateddirectlyto

measuredtotal crosssections,we may evaluatethe corresponding

second-orderhaginary potential.

In Figure1 are presentedthe resultsof suchan evaluation-- for

nucleonenergies700Mev to 3 Bev -- for both a Fermigas model and

a Bruecknermodelof the nucleus. Includedare the valuesfrom equa-

tions (5.19)and (5.20)aboveand the first-orderimaginarypotential--

coveringthe energyrange100 Mev to 3 Bev. The

nucleoncrosssectionsare takenfromthe review

The exper~entalvaluesof the imaginarypart of

requiredtotalnucleon-

articleby Hess.
44

the opticalpotential

describedaboveare included,as well as the valuesrecentlydeduced

by Batt<7 fromthe scatteringof 420, 635, and 970 Mev protonsfrom

~12●

In

optical

Summaryjwe see that the contributionof the second-order

potentialto ~. constitutesa correctionof 10 to 15* of the

first-orderpotential,even at the highestenergiesconsidered.This

correctionmay be reasonablywell accountedfor by utilizingequation

(4.22)--withf =0
R -- givingthe dashedcurvein Figure1.
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VI● NONIJXIALITYOF THE OPTICALKM!ENTZAL

The assumptionsleadingto equation(3.11)&lLowedus to obtain

the eq?ressions(3.16)and (3.39)for an opticalpotential10cALin

coordinaterepresentation.In this sectionwe proposeto wmi.ne the

leadingcorrectionsto equation(3.16)due to the dependenceof t(?’~)

on the scatteringangle. We shallfind that the inclusionof such cor-

rectionsleadsto an opticalpotentialnonlocslin coordinatespaces

but whichmaybe writtenas a localpotentialwith a nucleondensity

distributionmdified from that obtainedby otiermeans .- for example,

electronscattering.

15,20Thismxiificationof the densitydistributionhas frequently

been describedas the inclusionof the effectsof the finiterangeof

interactionof the ticidentparticlewith nucleonsof the targetnu-

cleus. As long as the energiesare high enoughthat the free nucleon

scatteringoperatorsare applicable,the effectof the finiterangeof

interactionis properlyincludedin these scatteringoperators. ‘There-

fore,the modificationof the nucleondensityis more correctlydescribed

as being a manifestationof the nonlocalityof tie opticalWtential.

In general,

for smallangles

the scatteringamplitudesin the two-bodyCM system

of scatteringec may be writtenin the form
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fc(iqo) = f~(kO)+ f$)(ko)e:+ o(ej. (601)

An explicitexpressionof this form for nucleon-nucleonscatteringis

givenby equation(D-3)of Append5xD.

Employingthe general.relationbetweenlabora’toryand CM scattering

angles -- for incidentnucleons

where k. is tie CM momentum,we

-.

(6.2)

see

(6.3)

Thuswe may write for the scatteringamplitudein the laboratorysystem

fL(zQ = f:(@l - ~ f<) + 0(+), (6.4)

where$comparingwith equation(6.1)$

f(l)(kO)
a=-~

c
~2
o f~(ko)

For incidentparticlesother

valid,but the definitionof

Writing

(
o Gi)lo) = (Oltw++lo)(l - C2X5,

(6.5)

than nucleons$equation(6.4)is st~

a in equation(6.5)is modified.

(6.6)
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where

(6.7)

equation(5.12)becomes}usingequations(3.15)and (6.6)}

(6.8)

Introducingthe relation

into equation(6.8),we obtain

so

(6.10)

(6.IL)
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with

Comparingthis expressionwith equation(3.16),we see

(6.12)

that the ef.

feet of includingthe angle-dependenceof t for smallanglesleadsto a

mo~fied densitydistributionof the form

6(2) = P(2) + Q5?P(2). (6.13)

Note that sincetie angle-dependenceof the real and im.aginarypartsof

t maybe different$awil.1be

distributionsof the re&L and

Sity

Then

complexsnd tius the effectivedensity

im@naryp arts of the opticalpotential

be different.

An instructiveexsmpleis providedby consideringa Gaussianden-

distribution

‘A -x2/a2
p(’)=~e .

a
(6.14)

But consider
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p?(x) = ‘A ~-x2/a2(l+A)
●

Z3/2~3(l+A)3/2

For A small,

VA =.2/a2~.Af-$)
P’(x):.~

so p: = F if we identifyA = ~a2, Therefore,the effectof consider.

ing the angledependenceof tie scatteringoperatoris to increasethe
1/2

.rmsradiusof the densitydistributionfzmm [[3/2)a2] to

For the nucleon-nucleusspin-dependentoptical

suit similarto equation(6.12)is obtained. Using

eqyation(5.7),the integraltermbecomes

J

(6.15)

potenti&lta re.

equation(6.6)in

(6.16)

Here ~ is the qysntityfor the spin-dependentscatteringcorrespon~

to the a of equation(6.8). Usingequation(S.8)$equation(6.16)be-

comes

J
j.-’.~

~ ~ “ (@?x) d3q
eq

p
(1 - f%2)d3zp(aei:”2. (6.17)



60

Algebraicmanipulationssimilarto thoseleadingfrom equation(6.8)

to (6.u) and to thoseleadingfrom eqwtion (5.9)

the results

to (5.12)lead to

Co@aring with equation(5.I.2) one seesthat againtie angle-dependence

of the spin-dependentscatteringamplitudesleadsto a modificationof

the spatialdependenceof the spin-orbitopticalpotentisl-- a modifi.

~mmer45cationwhich is differentfor the real and imghzry parts●

has

but

for

and

The

recentlyobtainedresultssimilarto equtions (6.12)and (6.18),

specializedto the caseof a Gaussiandistribution.

In TableVII are listedthe valuesof A snd C for 310 Mev nucleons

a

P

rangeof smsll

are obtained:

angles. Using these,the followingvaluesof a

a= 1.2 + 0.29i; a = 0.62+ o.37i;
T

P = O.l~i; PT = 1.2 + 0.23i. (6.19)

39 of the scatteringof electronsfrom carbonsnalysisby Fregeau

showsthatfor K2 C l.’j((3LC 17°) the Gaussiandensitydistribution,

equation(6.14),with a = 1.96 fermipzmvidesa good fit to the data.

~is correspondsto a rms radius< r > = 2.4 fend, and we write it

P(XI c r >) = P(x12.4). usingtie restitsof equation(6.19)in (6.15),
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TableVII. Angle-dependenceof the nucleon-nucleon
scatteringparametersfor 310 Mev nucleons.
Data are from reference(14).

ec Re Ao(f) Im AJf) Re A7(f) Im AT(f)

2° 0.139 0.479 0.179 -0.11.30

4° 0.136 0.477 0.177 -0.1125

e 0.132 0.474 0.175 -0.111

8° 0.X27 0.469 0.171 -0.110

ec Re C&(f) Im C&(f) Re Cj(f) Im c;(f)

2° 0.IJ.7 o.4&l .0.2865 -0.175

4° 0.1.17 0.479 -0.2853 -0.171

e o.u67 0.480 -0.284.1 -0.166

8° 0●IJ.57 0.481 -0.2817 -0.160
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the opticalpotentialfor the scatteringof 310 Mev nucleonsfrom

carbon.- equations(~.6)and (5.I.2)-- may be written

<(x) = Re U1P(X13.6)+ i Im Ulp(x13.1)

[ 1+ ~$~ Re W1p(x12.4) + i b W1P(X13.6) . (6.20)
v

~is~1@er46 ____-——-J—–.—..,. ... . ..

ing. He is

only s- and

nas app~leasmuar consmera-clonsto plon-nucleussca_mer-

concerned,however,with pionsof lowerenergysuch that

P-wavesare expectedto be important. !Rms,he writes

q+ = d~) + b(~)cose (6.21)

as valid for all 0, not just smsll.angles. Usingequation(6.21.)-.

titi COses (1/;); . ~ -- h. equation(6.8)and carryingthrough

similarmanipulations,we obtatihis result

V(3 = (2X)3 A
(~) [~(~ - b(%) ● e] .

(6.22)

47Baker,Byfield,and Rainwater have foundthat to obtainlarge-

angleagreementwith theirexperimentsat @ Mev, a potentislof the

form (6.22)is necessary.

From conp.risenof equations(3.16)and (3.s9)we see

‘2- 1 ●

~ - ~RA (6.23)
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Moreover,the above

are proportional

tion of termsof

tx)

modifications

63

of the nucleondensitydistributions

Cl*~ (~RA)-2, by equation(3.10). So considera-

order0’<in V will lead to correctionsof order2

(~RA)-3, whichwe have agreedto neglect [(seeequation(3.47)].
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RELATIVISTICKINEMATICS
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The followingbasicrelationbetweenscatteringoperatorsand

differentialcrosssectionshas been givenby M#h.ler:48

(A-1)

for scatteringintoan elementof solidangleMl about~of a particle

with initialmomentum~o, velocity~~o,on a targetof momentum~o,

-+0 +1velocityu .‘ ~ and~~ are the correspondingvelocitiesafter scat-

tering. M&Ler has also shuwnthat the quantity

(A-2)

is Lorentz-invariant,e and E beingthe energiesof the particleand

target,respectively.

We are concernedherewith three coordinatesystems: the labora-

tory system,the particle-nucleusbarycentricsystem,and the
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psrticle-nucleonCM system.

In the particle-nucleon

F. = -Fo, K’= 3,

Then equation(A-1)gives

CM system:

Im = l~ol,

●

fc(e)= -(2YK)2t= (*) ●

cc

Similarly,in the laboratorysystem(forforwardscattering),

-)o=~l
‘2 2=0”

L1 bl-1

Usingequation(A-2)we find,for forwardscattering,

o -1 ~o = -1 /fL1fo
‘L =

(21d2CL L (21d2CL s c“

In the particle-nucleusbarycentricsystem:

(A-3)

(A-4)

(A-5)

ii’+()=() +0
P.

‘1 ~~ ‘2=—’
53

F. = “-*to.
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Then,for forwardscattering,

(A-6)

ExpressingfB

of orderA-2)

in termsof EL and using (A-2),we obtain(discardingterms

f:,

whereM is the nucleonmass.

combiningequations(A-6)and (A-7)gives

Thus,ifwe may neglect

()fo ~

L
‘Ll+R

termsof order (eL/N)2j

fo = -1
L ($) f:,

T
%0

.

(A-7)

(A-8)

(A-9)

where ~ and k. are, respectively,the momentumof the incidentparticle

in the laboratoryand particle-nucleonCM system.



APPENDIxB

EVALUATIONOF THE PION-NUCLEUSSPIN-ISOSPINAVERAGES

By the hypothesisof charge-independence,the scatteringmatrices

mustbe invariantunderrotationsin isospinspace;

have isospindependenceonly of the formF*?,where

isospinof the pion.nucleonsystem. We introduce49

annihilationoperatorsUi, Uj (i,j= 1,2,3)for the

pionsal, u)2,03.

It is easyto showthat the quantity

t=i

transformslike

7=;

where?a is the

67

that is, t: must

?is the total.

creationand

threetypesof

(B-1)

(B-2)

a vectorin isospinspace,so we choose

?a+iFx3t,

isospinoperator

(B-3)

of the Jh nucleonO
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The most general.form of t: is then

whereAO

tering.

allming

to = A08+*8+iBOO+ X F “ ?a~ (B-4)
a

and BO are independentof the nucleonspinfor forwardscat-

One can verifythe projectionoperators

A~/2=~(2fi+* ti-ifl X70%),

L(@07+iwxti *3, (B-5)
‘1/2 = 3

the identificationof AO and B. with the two independentscat-

teringmatrices

o-Bo)~/2t:= (A + (AO+=o)A1/2 =
t: (~)A3,2+ tj ($A1,2.

(B-6)

Sincewe assumeonly one pion to be presentin the intermediate

state,we find

(B-7)
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Using the resultsof TableVIII -- keepingtermsof orderA only -- we

find (forunpolarizednuclei)

(2=1

wherewe have used

(B-8)

(B-9)

To evaluatetheseexpressionsfor incidentchargedpions,we intro-

duc~g the pion statevectors

*
(1) “%-

Then,usingequation

((Dl * W)*) c

(B-6),

(B-1O)



TABLEVIII. List of spin-isospinaverages.
vectors. Terms of order1 have

A

1) ~1 (o 7’ ● :Plo)= -3A

0%q3=l

A

2) ~1 (o ?a . 7JO) = -~

*=1

A

~ and ~ are arbitrary
been discarded.

9a.~

A

4) ~(ol Ta5Tp310)= -A

Qq3=l

A

A

A

c%q3=l

A

’70
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TABLEVIII (cent●)

9)

10)

u)

12)

13)

14)

15)

16)

A

a#f3=l

A

xl (0 Ta3Tp3

a#f3=l

A2P@lo) = -~

Ta3Tp3 P@ IO)= - ; A2

A

A

C%iq3=l

A

~1 (0 Ta3 PmIO) = -AT>
*.1

A

A

= -AT (; ● %)
3



TABLEVIII (cent.)
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4T
s

A)
= f2(l - ~ .: f:+ ffT,

fT 2

[1A=-2A—(2X)%0‘
wherethe upper (lower)signrefersto incidentpositive(negative)pions,

and f and f~ are definedby equation(k.3).
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APPENDIXc

EVALUATIONOF THE NUCLEON-NUCLEUSSPIN-ISOSPINAVD3AGES

By charge-independence,the nucleon-nucleonscatteringamplitude

~o
ac

-- in the two-particleCM system-- must have isospindependence

of the form?. ?, where

is the totalisospinof the

(c-1)

nucleon-nucleonsystem,and ?a and ?0 are

th
the isospinoperatorsof the incidentandcx nucleon,respectively.

The most generalform of f~c is then

fo =Ma i-M; ~’a Toe (c-2)ac

Here,for

form (see

smsllscatteringanglesjMa and M: have spindependenceof the

AppendixD):
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Ma =AO+ CO(;’+~a) ● fi+BO& ~a . HO~Oe~;ao ~+ ()(#),

M; = AT+ C7(;O+;a) ● ~ + BT~O*;a - H7;O*? & ? + 0(e2),
c

(c-3)

and the coefficientsAOSCO,...$HTare functionsof k and e
o c = 0, the

momentumand scattering

CM system. ~ and ; are

(ro+i?),

One

in terms

*O
ac

wherewe

respectively.

can verifythe

angle,respectively,in the nucleon-nucleon

unitvectorsin the directions(~~) and

projectionoperators

(c-4)

Al = ~ (3 + ?a* ~o)s

AO=~(l -Tao TO),

of which equation(C-2)may be written

= (Ma+M$A1 + (Ma-~#AO = f~c(~)~ + f~c(0)Ao, (c-5)

have introducedthe two independentscatteringamplitudesf(1)

and f(0)o Comparingwith equation(5.3), we see thatMa = fa and

M; = fm. Utilizingequation(A-9),we obtainfor t“to
a p’ evaluated

betweenthe statevectorsof the incidentnucleon,



(c-6)

whereN* refersto an incidentprotonor neutron,respectively.

It is convenientto transformthe termswith coefficientCo, CT

as follows:

But it iS easilyshownthat

ROX2 Z&G(%)
k2=— —”
o G ‘0

Therefore,defining

c;=J-
C co’

CI =
sinG T Air- CT’

c

we write

76

(c-7)

(c-8)

(c-9)
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C07 ● a

and C; and C; are

Substituting

VIII to CEUT’Y out

= c: x(z,~) , CT: “ ii = c; x(?,+ C@

now of order1 as Oc + O (byAppendixD)

(c-lo)

●

equations(C-10) and (C-3)into (C-6)and usingTable

the averagesoverthe nucleargroundstate,we find

(forunpolarizednuclei)

%2
s = (—) [gd + hd x(?’%) 1 + O(@S

‘o

ST = ‘%2(~) [Se + he X(;,%) 1 + o(e~),
o

(c-u)

where the spin-independentamplitudesare

(C-32)

Here we havewrittena superscriptbar on the scatteringamplitudes

[equation(‘j.3)] to indicateaveragesover the spin-directionsof both

particles. That is,



~ = Ao, ~T = AT, (F)2 :=A9 (~7)2= A:,

Tf .j$’+3B:. mo’pf

~ = A: + 3B:
T

- 2BTH7+ H;,

~ = AOA7 + 3BOBT - BOHT - B7H0 + HOHT.

Finally,the spin-dependenttermsare written

and

(*)
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(C-13)

2T
hd = AOC; -~ [(AO+BO)C~+ 3(AT+BT)C;] * -# (AOC~+ATC#,

hea=- * [(Ao+Bo)c& + 3(AT+BT)C;J + ; AOC&

% ‘~ [(Ao+ BO)c; + (AT+B7)C;] .
A (C-14)

All the above

-1of orderA .

signrefersto

Finally,

expressionsare correctthroughtermsof orderec

In equations(c-6),(C-n), (C-I.2),and (c-14)the

incidentprotonsor neutrons,respectively.

(C-15)



EVALUATIONOF THE

IN

79

APPENDIX D

NUCLEON-NUCLEONSCATTERINGAMPLITUDES

TERMSOF PHASESHIFTS

The nucleon-nucleonscatteringamplitudein the CM systemmay be

writtenas a matrixin spin-spacewith coefficientswhich are functions

of

of

the scatteringangleand the momentum. We use the

Stapp.50

parsmetrization

and(i?- Po), respectively.Stapp50has giventhe general.expressions

forA, B, C,

For the

scattering:

By usingthe

G, and H in termsof phase shiftsfor the I = 1 state.

presentapplicationswe are concernedonlywith small-angle

2we needA and C to orderOc; B, G, and H to orderOc.

small-angleexpansionsfor Legendrepolynomials,
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Pi(e)=1 - ~2(l+l)e2+o(e4),

(l)(e)
‘1 [

= ~ ~(~+1)sine 1 - $(@(l-l)e2j +0(<),

p\2)(e)=~ 4(1+2)(4+1)(1-1)02+0(04), (D-2)

in Stapp’sexpressions,the followingresultsare obtained:

o {l<~2~+l)[l~f(~+.)e~]al
A(ec) =4+

Ii-1

‘4Z[Z(2J+1)alj] [’-*’(’+1)e~ ‘o(e!)>
l(odd) j=l-1 1}

= sinecc:(ec)y

(D-3)
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G(Oc)= & {a (L+2)czl ~+1
+ (Z!ti-l)alt + (L-l)cql-l

9

t(odd)

H(ec)= &

‘he alj

phase shifts

al

+ 3~(&l)(f+2) C/+l + 3fm J-l 1+o(e~)
(D-4)

are most convenientlyexpressedin termsof the %arti

of Stapp36’50as follows:13 for the singletstate

and similarlyfor the tripletstatewith 1 = j, while for the other

tripletstates

2i81j 2iq)l

%j ‘e cos 2Z - e
J

(j = 1*1),

tJL

and ql is the coulombphase

as [ i(bj+l,j + 6j-l,j )
= i sin 2=, e 19

shift.
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Comparingthe aboveequations(D-4),we see

Usingthis in equation(D-l),we obtainthe expressions

equations(C-3).

The coulonibscatteringeffectshavebeen neglected

(D-5)

given in

here,as the

opticalpotentialproperdealsonlywith the purelynuclearpart of

the scattering.The effectsof coulombscatteringare then to be

consideredwhen the scatteringfromthe optical.potentialis calcu-

lated,as describedby severalauthors.51

The coefficientsof the I = O scatteringamplitudeare also ob-

tainedfrom equations(D-3)and (D-4)by interchanging“even”and

“odd.“

I



I

1. HO

2. H.

3. H.

4. K.

59 G.

6. K.

7. K.

8. N.

9. G.

10. R.

11. R.

12. v.

13. H.

140 A.

15. J.

16. M.
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