

#### LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

LAMS-2538 SPECIAL DISTRIBUTION

# LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO

REPORT COMPILED: March 31, 1961 REPORT DISTRIBUTED: June 5, 1961

> A PRELIMINARY REPORT ON NUCLEAR ROCKET DYNAMICS AND CONTROL

> > by

R. R. Mohler and E. A. Wheatley



Contract W-7405-ENG. 36 with the U.S. Atomic Energy Commission

All LAMS reports are informal documents, usually prepared for a special purpose and primarily prepared for use within the Laboratory rather than for general distribution. This report has not been edited, reviewed, or verified for accuracy. All LAMS reports express the views of the authors as of the time they were written and do not necessarily reflect the opinions of the Los Alamos Scientific Laboratory or the final opinion of the authors on the subject. ; .

### ABSTRACT

Collection of Memoranda in this report

- (1) N-4-676U Preliminary Report on Nuclear Rocket Engine Control Systems
- (2) N-4-703U A Mathematical Model to Represent the Basic Dynamics of a Nuclear Rocket System

The reader should also be referred to "Nuclear Rocket Engine Control" by R. R. Mohler & J. E. Perry, Jr., Nucleonics (McGraw-Hill publication), Vol. 19, No. 4 (April, 1961)

I. PRELIMINARY REPORT ON NUCLEAR ROCKET ENGINE CONTROL SYSTEMS

Date written: June 8, 1960

#### INTRO DU CTI ON

The basic thrust equations are presented here to show the functional dependence of pressure, temperature, and flow rate at the core exit on the engine thrust. Possibleloop configurations of control systems are presented. The transducers involved and need for further study and possible development should be emphasized.

#### DISCUSSION

Most of the equations and transfer functions have been treated before in the analysis of Kiwi-A and Kiwi-B<sup>(1)</sup>. In addition the following equations are of interest<sup>(2)</sup>.

Thrust can be considered as a summation of momentum thrust and pressure thrust

$$F = P_e V_{ex} A_e + (P_e - P_a) A_e$$

but 
$$\dot{w} = P_{eg}V_{ex}A_{e}$$
  $\therefore$   $F = \frac{\dot{w}}{g}V_{ex} + (P_{e} - P_{a})A_{e}$   
 $A_{e}$   $A_{e}$   $V_{e_{x}} \approx \frac{1}{2}(1+\cos \alpha)V_{e}$ 

The ideal exit velocity

$$V_{e}' = \left\{ 2(g)\left(\frac{\gamma}{\gamma-1}\right) RT_{c}\left[1-\left(\frac{p_{e}}{P_{c}}\right)^{\frac{\gamma-1}{2}}\right]\right\}^{\frac{1}{2}}$$

and the actual exit velocity

$$V_e = \Phi V_e' \qquad \Phi \approx 0.9 \pm 0.0$$

Therefore the thrust can be defined

$$F \approx \Psi U T_{z} \dot{W} \approx I_{sp} \dot{W}$$
 (1)

where,

$$\begin{aligned} y &= \phi \lambda \left\{ \overline{g}\left(\frac{y}{k_{-1}}\right) R \left[ 1 - \left(\frac{p_{e}}{P_{e}}\right)^{\frac{y}{k_{-1}}} \right] \right\} \overset{k}{\approx} \text{ constant} \\ \lambda &= \frac{1}{2} \left( 1 + \cos \alpha \right) \end{aligned}$$

Perhaps a simpler and more useful relation for our purposes is

$$F = C_f P_c A_t \tag{2}$$

where

$$c_{f} = \lambda c_{d} \oplus \Omega \left( \frac{2\gamma}{\gamma_{-1}} \right)^{\gamma_{2}} \sqrt{Z_{t}} + \left( \frac{he^{-ha}}{P_{c}} \right) \frac{Ae}{A_{t}}$$

$$\Omega = \sqrt{\gamma} \left( \frac{2}{\gamma_{+1}} \right)^{\frac{\gamma_{+1}}{2(\gamma_{-1})}}$$

$$Z_{t} = 1 - \left( \frac{he}{P_{c}} \right)^{\frac{\gamma_{-1}}{\gamma}}$$

$$c_{f} \approx \text{constant}$$

Thus it is seen that the stagnation pressure at the core exit is the one variable that most strongly effects engine thrust. The temperature effect is seen as a variation in the ratio of specific heats as well as its effect on pressure. Thrust coefficients for particular nozzle designs ( $C_f$  vs.  $P_c/p_e$  and  $Ae/A_t$ ) are available (2).

Since durable, fast, and accurate pressure transducers are available, one could expect to control engine thrust by controlling this pressure. This method has been used on rockets that are operational with good resolution and reliability.

It is of interest to note from equation (1) that specific impulse increases as the square root of temperature, thus showing the desirability of a high core outlet temperature; also that specific impulse is high for a low molecular weight (R = 1545), which shows the desirability of hydrogen

propellant and nuclear rocket engines.

By considering the evolution of the Kiwi-A reactors and the above equations, a logical choice of a flyable control system is shown in figure 1(3,4). The programmer on the left puts out a thrust demand (or core outlet pressure demand). This demand is compared with the measured thrust (or pressure). The thrust error signal is used to properly adjust the thrust in a desired manner. The flow loop could be closed to speed the loop response and help smooth out the unknowns and changes in the flow characteristics with operating conditions. But if the flow is not measured or calculated accurately it may be advisable not to close this loop. In this case the power demand is scheduled from the flow demand according to the temperature desired for start up. At rated conditions this scheduler appears as a constant. The power loop is closed. It is advisable to close either the power loop or temperature loop for safety reasons as well as unknowns and changes in the open loop dynamics.

If a good temperature measurement or calculation can be made it is desirable to feed back temperature. This could be fed back to vary the scheduler gain. However if a good temperature measurement is available, the temperature loop could replace the power loop. This seems especially feasible if the power measurements cannot be improved and the flyable systems have as fast a core thermal time constant as is anticipated.

A system which is conceivable in the distant future is shown in figure 2(3). This system assumes that a poison rod is adjusted previous to the operation. This rod (or rods) is used to take care of the unknowns in reactivity contributions. The loop could be closed through this rode to control slow transients. The major loop and fast transients are control while d by the propellant reactivity. A simulation of a simplified model of this type has been made on the analog computer. The system was stable and was made to respond favorably with a simple compensation.



Fig 1 Functional Block Diagram of a Possible Conventional Control System for Nuclear Rocket Propulsion.

α



Fig. 2. Functional Block Diagram of a Simple Nuclear Rocket Propulsion Control System with no Moving Rods.

#### CONCLUSIONS

In a flyable nuclear rocket engine control system the thrust loop is most conveniently closed by closing the loop from pressure measured at the nozzle input. Either the power loop or the temperature loop should be closed. The selection would be strongly dependent on the transducers available as well as accident considerations. It may be desirable but not necessary to close the flow loop. This decision would also depend on the transducers available. Further investigations, studies and possible development of tranducers should certainly be encouraged. The main loop which involves a pressure transducer seems to have the fewest problems. But an investigation as to the state of the art should be made to bring us up to date. Temperature, power and flow transducers need a great deal of work. Even though only one of the first two may be used for automatic control purposes, the others are desirable for making decisions and manual operations during a test.

### Notation added 10/7/60:

It is doubtful that pressure transducers will be accurate enough to control rocket velocity to the precision desired. Therefore it may be necessary to use accelerometers to control velocity. The pressure or thrust could still be controlled as an inner loop of the main velocity loop: A more detailed study of a flyable system is presently being made.

RRM

#### REFERENCES

- (1) LAMS-2539, Vol. I, R. Mohler, to be issued
- (2) Zucrow Aircraft and Missile Propulsion
- (3) LAMD 1636, R. Mohler
- (4) N-4-596U, H. Demuth and R. Mohler (Not available)

## GLOSS ARY

| SYMBOL          | DESCRIPTION                                | UNITS               |
|-----------------|--------------------------------------------|---------------------|
| Ae              | Nozzle Exhaust Area                        | ft <sup>2</sup>     |
| At              | Nozzle Throat Area                         | ft <sup>2</sup>     |
| A.v             | Value Flow Area                            | ft <sup>2</sup>     |
| C <sub>d</sub>  | Nozzle Coefficient of Discharge            |                     |
| $C_{f}$         | Thrust Coefficient                         |                     |
| F               | Thrust                                     | Ħ                   |
| g               | Acceleration from Gravity                  | ft/sec <sup>2</sup> |
| <sup>I</sup> sp | Specific Impulse                           | sec                 |
| Sk              | Total Reactivity                           |                     |
| Skp             | Propellant Reactivity                      |                     |
| Sk <sub>T</sub> | Tenperature Reactivity                     |                     |
| <b>m</b>        | Molecular Weight                           | # mass/# mole       |
| P <sub>c</sub>  | Stagnation Pressure at Core Exit           | #/ft <sup>2</sup>   |
| P <sub>c</sub>  | Pressure at Core Exit                      | #/in <sup>2</sup>   |
| Pe              | Pressure at Nozzle Exit                    | #/in <sup>2</sup>   |
| Pa              | Atmospheric Pressure                       | #/in <sup>2</sup>   |
| Q               | Reactor Power                              | BTU/sec             |
| R               | Gas Constant                               | ft/ <sup>o</sup> r  |
| T <sub>c</sub>  | Temperature at Core Exit                   | • <sub>R</sub>      |
| <sup>T</sup> f  | Average Temperature of Fuel &<br>Moderator | ° <sub>R</sub>      |
| t               | Time                                       | sec                 |
| ₹e              | Ideal Exhaust Velocity                     | ft/se <b>c</b>      |
| Ve'             | Actual Exhaust Velocity                    | ft/sec              |

| SYNBOL          | DESCRIPTION                            | UNITS                |
|-----------------|----------------------------------------|----------------------|
| V <sub>ex</sub> | Axial Component of Exhaust<br>Velocity | ft/sec               |
| *               | Propellant Weight Flow Rate            | #/sec                |
| Z <sub>t</sub>  | A pressure constant                    |                      |
|                 | GREEK SYMBOLS                          |                      |
| α               | Nozzle Divergence Angle                |                      |
| $\gamma$        | Ratio of Specific Heats                |                      |
| λ               | Nossle Divergence Coefficient          |                      |
| P               | Mass Density                           | slug/ft <sup>3</sup> |
| $\phi$          | Velocity Coefficient                   |                      |
| $\psi$          | Flow Factor                            |                      |
| $\mathcal{N}$   | Constant of Specific Heat Ratios       | sec/oR <sup>1</sup>  |

## 11. A MATHEMATICAL MODEL TO REPRESENT THE

# BASIC DYNAMICS OF A NUCLEAR ROCKET SYSTEM Date written: August 12, 1960

The rocket reactor considered is a direct heat exchange cycle, two pass system. Here the hydrogen propellant enters and cools the nozzle and reactor reflector, then passes on through the reactor core where it is heated to exhaust temperature. The propellant exhausts from the reactor through a nozzle which is choked under normal operating conditions.

A turbo pump supplies liquid hydrogen to the heat exchanger from a constant pressure tank. A pair of valves supply gas from a constant pressure source to the turbine of the turbo-pump. Thus variation of the valve stems produces a variation in liquid hydrogen flow to the heat exchanger. The dynamic characteristics of the turbo pump and associated feed lines are considered in this model.<sup>(1)</sup>

The dynamic characteristics of the reactor core are treated by non linear space independent differential equations. The dynamic heat transfer characteristics of the core are treated by means of a lumped parameter model such that the resulting differential equations are space independent. The accuracy under dynamic conditions of the lumped parameter model is a function of the number of lumps into which the core is broken. Thus a very large number of lumps would yield very high accuracy. Nowever the representation rapidly approaches reasonable accuracy with few lumps. The propellant pressure drop within the core is generated as a function of reactor power level and propellant flow rate. This pressure drop is lumped in the same manner as

the heat exchanger such that the space variable is eliminated.

The six delayed neutron group, space independent, differential equations are used to represent the neutron kinetics. The total reactivity variation is represented as the sum of the following items: (1) The negative reactivity contribution of the control rods. (2) Variation in reactivity due to the thermal expansion of the reactor which varies the neutron nonleakage probability. Also included in this category is the change in thermal energy of the neutrons which through the associated fission cross-section affects the power level, (3) The reactivity contribution of the hydrogen propellant due to density (which changes at various positions in the core). This reactivity contribution is of course due to the moderating properties of the propellant.

The propellant exhaust nozzle is assumed choked in this model. Isontropic pressure relations, modified by an efficiency factor, are used in the nozzle representation.

The basic application of this mathematical model is to the development of nuclear rocket engine controls. The previous equations are linearized about steady state conditions to obtain transfer functions. The dynamic stability of the system is determined from these transfer functions. It is seen that the stability of the power loop is actually improved by the addition of the propellant reactivity and is dynamically stable even with a zero temperature coefficient of reactivity. However in this latter case the control rod poison initially present must be at least equal to the amount of poison required at some

operating condition. If enough poison is not initially present the temperature will approach a steady state value which may be above design value.

The thermal time constant is seen to be dependent on the core mass heat capacity and the flow rate. The thermal time constant of a typical second stage nuclear rocket could be about one second or less. For very fast cores this time constant could be several milliseconds. The neutronics band width is  $\beta/\ell^*$ , where  $\xi = .0065$  for  $U^{235}$  and  $\ell^*$  could be several microseconds. The turbopumps inertial time constant is in the order of a second.

Several control loop schemes are shown. The thrust and temperatue (or specific impulse) are of prime interest. But due to present limitations on transducers it may be necessary to control temperature by scheduling power from flow rate or another variable in the main thrust loop. The temperature transient during startup must be such as to consider limitations due to thermal stresses and yet meet the need for maximum specific impulse.

## (1) Footnote - The turbopump characteristics are based on information supplied by the Rocketdyne Division of North American Aviation.

\*

Presented at the Winter Meeting of the American Nuclear Society, San Francisco, California, December, 1960.



Schematic Diagram of a Nuclear Rocket Engine System

## DEFINITION OF TERMS USED IN MODEL OF REACTOR AND NOZZLE

| Symbol         | Description                                                                                | Units                      |
|----------------|--------------------------------------------------------------------------------------------|----------------------------|
| A              | Heat transfer area                                                                         | in <sup>2</sup>            |
| At             | Nozzle throat area                                                                         | $\texttt{in}^2$            |
| Ap             | Effective core exit area<br>(Fluid flow)                                                   | $n^2$                      |
| С              | Specific heat of fuel-moderator                                                            | Btu/lb <sub>m</sub> °R     |
| c <sub>d</sub> | Nozzle coefficient of discharge                                                            | dimensionless              |
| c <sub>f</sub> | Thrust coefficient                                                                         | dimensionless              |
| Ci             | Heat due to the density of ith delayed-neutron-group precursor                             | Btu                        |
| c <sub>p</sub> | Spe <b>c</b> ific heat at constant<br>pressure of propellant                               | Btu/lb <sub>m</sub> °R     |
| C <sub>r</sub> | Propellant density coefficient or reactivity                                               | $lb_m^{-1}$                |
| C <sub>t</sub> | Temperature coefficient of reactivity                                                      | • <sub>R</sub> -1          |
| d <sub>1</sub> | Diameter of flow passage                                                                   | in                         |
| <sup>d</sup> 2 | Effective outer diameter fuel-<br>moderator element                                        | in                         |
| F              | Thrust                                                                                     | lb <sub>f</sub>            |
| f              | Friction factor                                                                            | dimensionless              |
| g              | Factor for conversion from<br>English Absolute to English<br>Gravitational System of units | $lb_{m}in/lb_{f}sec^{2}$   |
| h              | Total heat transfer coefficient                                                            | Btu/in <sup>2</sup> sec °R |
| <sup>h</sup> c | Convective heat transfer coef-<br>-ficient                                                 | Btu/in <sup>2</sup> sec °R |
| h <sub>m</sub> | Effective conduction heat transfer coefficient                                             | Btu/in <sup>2</sup> sec °R |

| К                | Propellant thermal conductivity             | Btu/in sec °R                         |
|------------------|---------------------------------------------|---------------------------------------|
| к <sub>m</sub>   | Conductivity of fuel moderator              | Btu/in sec°R                          |
| ĸt               | Core weighting factor                       | dimensionless                         |
| δΚ               | Total reactivity                            | dimensionless                         |
| δKp              | Propellant reactivity                       | dimensionless                         |
| δK <sub>r</sub>  | Control rod reactivity                      | dimensionless                         |
| δK <sub>t</sub>  | Temperature reactivity                      | dimensionless                         |
| L                | Length of core                              | in                                    |
| l*               | Mean effective neutron lifetime             | sec                                   |
| M                | Mach number of propellant                   | dimensionless                         |
| Mc               | Mach number of propellant at core exit      | dimensionless                         |
| g                | Propellant pressure                         | $lb_{f}/in^{2}$                       |
| <sup>p</sup> c   | Propellant stagnation pressure at core exit | $lb_f/in^2$                           |
| <sup>p</sup> cs  | Propellant static pressure at core exit     | $lb_{f}/in^{2}$                       |
| $\mathbf{Pr}$    | Prandtl number                              | dimensionless                         |
| ¢                | Reactor power                               | Btu/sec                               |
| R                | Specific gas constant                       | lb <sub>f</sub> in/lb <sub>m</sub> °R |
| Pe               | Reynolds number                             | dimensionless                         |
| S                | Laplace transform variable                  | sec <sup>-1</sup>                     |
| T <sub>amb</sub> | Ambient temperature                         | °R                                    |
| т <sub>с</sub>   | <b>Fropellant</b> temperature at core exit  | °R                                    |
| <sup>T</sup> ca  | Average core temperature                    | °R                                    |
| Τ <sub>f</sub>   | Propellant film temperature                 | °R                                    |
| Tg               | Average propellant temperature              | °R                                    |

-

| То             | Outlet propellant temperature                              | °R                               |
|----------------|------------------------------------------------------------|----------------------------------|
| Tw             | Average core wall temperature                              | °R                               |
| t              | Time                                                       | sec                              |
| v              | Velocity                                                   | in/sec                           |
| v <sub>p</sub> | Volume of propellant                                       | $in^3$                           |
| ¥              | Mass of fuel-moderator                                     | lb <sub>m</sub>                  |
| Ŵ              | Propellant mass flow rate                                  | lb <sub>m</sub> /sec             |
| w <sub>c</sub> | Propellant mass flow rate at core exit                     | lb <sub>m</sub> /sec             |
| Y              | Fuel-moderator effective<br>thickness                      | in                               |
| Z              | Compressibility                                            | dimensionless                    |
| ß              | Total delayed neutron fraction                             | dimensionless                    |
| ßi             | ith group fraction of total<br>neutrons from fission       | dimensionless                    |
| ۵              | Refers to a perturbation about<br>a steady state condition | dimensionless                    |
| λ              | Decay constant of ith delayed-<br>neutron-group precursor  | sec <sup>-1</sup>                |
| η              | Fraction of power generated                                | dimensionless                    |
| μ.             | Viscosity of propellant                                    | $lb_f^{}$ sec/in $^2$            |
| V              | Number of flow passages                                    | dimensionless                    |
| τ              | Time constant                                              | sec                              |
| π              | 3.141593                                                   |                                  |
| ρ              | Propellant Density                                         | lb <sub>m</sub> /in <sup>3</sup> |
| Subscript      |                                                            |                                  |
| n              | Stage Number                                               |                                  |

# SYSTEM DYNAMICS EQUATIONS

Heat Exchanger:

I

$$\eta_{n} \dot{Q} = W_{n} C_{n} \frac{dT_{wn}}{dT} + A_{n} h_{n} (T_{wn} - T_{gn})$$
 (1)

$$\hat{W}(H_{on} - H_{on-1}) = A_n h_n (T_{wn} - T_{gn}) = \hat{W}C_{pn} (T_{on} - T_{on-1})$$
 (2)

$$T_{gn} = \frac{T_{on-1} + T_{on}}{2}$$
 (3)

$$h_{cn} = \frac{.036 \, K_n Re_n^{0.8} \, Pr_n^{0.4}}{d_1 (\frac{X}{d_1} + 1)^{0.1}} \left(\frac{T_{gn}}{T_{fn}}\right)^{0.8}$$
(4)  
$$R_{en} = \frac{\rho_n V_{nd}}{\mu_n} = \frac{4 \tilde{W}}{\mu_n = d_1}$$

All quantities evaluated at film conditions except  $\mathbf{\tilde{W}}$ .

$$h_{mn} = \frac{2K_{mn}}{d_1 \log_{e} \frac{d_2}{d_1}}$$
(5)

$$h_{n} = \frac{h_{cn}h_{mn}}{h_{cn} + h_{mn}}$$
(6)

Neutronics :

Propellant Reactivity

$$\rho_{n} = \frac{P_{n}}{Z_{n}R T_{gn}}$$
(7)

$$\delta K_{pn} = C_{rn} V_{pn} P_n \tag{8}$$

$$\delta K_{p} = \sum_{n=1}^{n} \delta K_{pn}$$
(9)

# Temperature Reactivity

$$T_{ca} \sum_{n=1}^{n} K_{tn} T_{wn}$$
 (10)

$$\delta K_{t} = C_{t} (T_{ca} - T_{amb})$$
 (| |)

$$\delta K = \delta K_r + \delta K_p + \delta K_f$$
 (|2)

$$\frac{d\hat{Q}}{dt} = \frac{\partial K}{I^{*}}\hat{Q} - \frac{\partial \hat{Q}}{I^{*}} + \sum_{i=1}^{6} \lambda_{i}C_{i}^{\prime}$$
(13)

$$\frac{dC'_{i}}{dt} = \frac{\beta}{\mu} \dot{Q} - \lambda_i C'_i \qquad (14)$$

$$F = C_f A_f P_c \tag{15}$$

$$P_{c} = \frac{\dot{W}_{c} \sqrt{RT_{c}}}{C_{d} \Psi A_{f} \sqrt{2g}}$$
(16)

Where

Nozzle:

$$\Psi^{2} \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}} \left(\frac{\gamma}{\gamma+1}\right)$$

$$P_{c}^{2} \left[1 + \frac{\gamma-1}{2} M_{c}^{2}\right]^{\frac{\gamma}{\gamma-1}} P_{cs}$$

$$M_{c}^{2} \frac{A_{t}}{A_{p}} \left[\frac{\gamma+1}{2(1+\frac{\gamma-1}{2}M_{c}^{2})}\right]^{-\frac{\gamma+1}{2(\gamma-1)}}$$

Reactor Pressure Drop:

$$P_{\text{drop }n} = \frac{\dot{W}_{co}}{\frac{d_i}{2} \left(\frac{\pi d^2}{4}\right) g^{\nu}} (\psi_n + f_n V_n) I_n \qquad (17)$$

Where

$$M_{n} = \frac{V_{n}}{(\gamma_{n} g Z_{n} R T_{gn})^{\frac{1}{2}}}$$

$$V_{n} = \frac{\tilde{W}_{c}}{\rho_{n} \nu \left(\frac{\pi d}{4}\right)}$$

$$f_{n} = \frac{L6 h_{cn}}{C_{pn} V_{n} \rho_{n}}$$

$$f_{n} = \frac{L6 h_{cn}}{C_{pn} V_{n} \rho_{n}}$$

$$f_{n} = \frac{V_{n}}{Z_{n} R T_{gn}}$$

$$\psi_{n} = \frac{V_{n}}{(1 - M_{n}^{2})} \left[\frac{\eta_{n} \dot{Q} \frac{d_{1}}{2}}{W_{c} i_{n} C_{pn} T_{gn}} + f_{n} \gamma_{n} M_{n}^{2}\right]$$

Transfer Functions:

$$\frac{\Delta \delta K_{p}}{\Delta P_{n}} = \frac{C_{rn}V_{pn}}{Z_{n}RT_{gno}}$$
(18)

$$\frac{\Delta \delta K_{p}}{\Delta T_{gn}} = \frac{-P_{no}C_{rn}V_{pn}}{Z_{n}RT_{gno}^{2}}$$
(19)

$$\frac{\Delta \dot{\mathbf{Q}}}{8K} = \frac{\dot{\mathbf{Q}}_{0}}{\mathbf{I}^{*} \mathbf{S} \left[\mathbf{I} + \sum_{i=1}^{N} \frac{B_{i}}{\mathbf{I}^{*} (\mathbf{S} + \lambda_{i})}\right]}$$
(20)

One lump heat exchanger

 $\frac{\Delta T_{o}}{\Delta Q} = \frac{\kappa_{I}}{(T_{h}S+I)}$ (21)

$$\frac{\Delta T_0}{\Delta W} = \frac{K_2(T_2S+1)}{T_hS+1}$$
(22)

$$T_{h} = \frac{WC}{2C_{p}W_{o}} + \frac{WC}{h_{o}A} + \left(\frac{WCY}{KA}\right)$$
(23)

$$T_2 = \frac{0.2 \text{ WC}}{h_0 \text{ A}}$$

$$K_{1} = \frac{1}{\tilde{W}_{0}C_{p}}$$
$$K_{2} = \frac{\tilde{Q}_{0}}{\tilde{W}_{0}^{2}C_{p}}$$



# DEFINITION OF TERMS

## USED IN MODEL OF HOT GAS GENERATOR

## PROPELLANT FEEDSYSTEM TO REACTOR

| Symbol                  | Description                                                                         | Units           |
|-------------------------|-------------------------------------------------------------------------------------|-----------------|
| A <sub>BN</sub>         | Throat area of nozzle in turbine<br>bypass line                                     | $in^2$          |
| <sup>A</sup> B <b>V</b> | Valve throat area in turbine bypass<br>line                                         | in <sup>2</sup> |
| ABV MAX                 | Maximum valve throat area in turbine<br>bypass line                                 | $in^2$          |
| A <sub>e</sub>          | Valve throat area in pump discharge<br>line                                         | in <sup>2</sup> |
| A <sub>F</sub>          | Valve throat area in liquid oxygen<br>supply line to gas generator                  | $in^2$          |
| A <sub>H</sub>          | Valve throat area in liquid hydrogen<br>supply line to gas generator                | $in^2$          |
| ^ <sub>S</sub>          | Valve throat area in reactor bypass<br>line                                         | $in^2$          |
| A <sub>TN</sub>         | Turbine nozzle area                                                                 | $in^2$          |
| ATV                     | <b>Valve thro</b> at area in turbine supply<br>line                                 | $in^2$          |
| ATV MAX                 | Maximum valve throat area in turbine<br>supply line                                 | $in^2$          |
| dIAI                    | Diameter of liquid propellant reactor<br>supply line (between stations IV and<br>I) | in              |
| <sup>d</sup> TTP        | Diameter of liquid propellant pump<br>supply line (between stations T and<br>TP)    | in              |
| fIVI                    | Friction coefficient in liquid<br>propellant reactor supply line                    | dimensionless   |
| <sup>f</sup> TTP        | Friction co <b>effici</b> ent in liquid<br>propellant pump supply line              | dimensionless   |

| Symbol           | Description                                                                                | Units                            |
|------------------|--------------------------------------------------------------------------------------------|----------------------------------|
| g                | Factor for conversion from English<br>Absolute to English Gravitational<br>System of Units | $\frac{lb_{m}in}{lb_{f}sec^{2}}$ |
| I                | Turbopump polar mom <b>en</b> t of inertia                                                 | in $lb_f sec^2$                  |
| К                | An empirical constant                                                                      |                                  |
| L <sub>p</sub>   | Pump torque                                                                                | in lb <sub>f</sub>               |
| L <sub>T</sub>   | Turbine torque                                                                             | in lb <sub>f</sub>               |
| N                | Rotational speed of turbo-pump                                                             | rev<br>min                       |
| <sup>p</sup> 1   | Pressure at inlet to cooling passage<br>in nozzle                                          | $\frac{lb_{f}}{in^{2}}$          |
| PIV              | Pressure on reactor side of the valve<br>in the pump discharge line                        | $\frac{lb_f}{ln^2}$              |
| P <sub>BI</sub>  | Pressure upstream of nozzle in turbine<br>bypass line                                      | $\frac{lb_f}{in^2}$              |
| P <sub>D</sub>   | Pressure at pump discharge                                                                 | $\frac{1b_{f}}{in^{2}}$          |
| P <sub>DT</sub>  | Exhaust pressure of liquid propellant<br>in reactor bypass line                            | $\frac{1b_{f}}{in^{2}}$          |
| P <sub>G</sub>   | Pressure in gas generator                                                                  | $\frac{lb_f}{in^2}$              |
| P <sub>rio</sub> | Pressure of propellant at inlet to core reflector                                          | $\frac{1b_{f}}{in^{2}}$          |
| P <sub>T</sub>   | Propellant dewar pressure                                                                  | $\frac{1b_f}{in^2}$              |
| <sup>Р</sup> то  | <b>Pres</b> su <b>re in liqui</b> d hy <b>dr</b> ogen supply<br>tank for gas generator     | $\frac{1b_{f}}{in^{2}}$          |
| P <sub>TI</sub>  | Pressure upstream of nozzle in turbine supply line                                         | $\frac{1b_f}{in^2}$              |

| Symbol           | Description                                                                                                 | Units                                                  |
|------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| P <sub>TF</sub>  | <b>Pr</b> essure in liquid oxygen supply tank<br>for gas generator                                          | $\frac{1b_f}{in^2}$                                    |
| <sup>р</sup> тр  | Pressure of propellant at inlet to pump                                                                     | $\frac{lb_f}{in^2}$                                    |
| R <sub>G</sub>   | Gas constant for gases in gas<br>generator                                                                  | $\frac{\texttt{in lb}_{f}}{\texttt{lb}_{m} \circ_{R}}$ |
| T <sub>OG</sub>  | Total temperature in the gas generator                                                                      | °R                                                     |
| v <sub>G</sub>   | Volume of the gas generator and pipe<br>line from the gas generator to turbine<br>and turbine bypass valves | in <sup>3</sup>                                        |
| <sup>W</sup> I   | Propellant flow at inlet to cooling passage in nozzle                                                       | $\frac{1b_{m}}{sec}$                                   |
| <sup>w</sup> Iv  | Propellant flow on the reactor side of the valve in the pump discharge line                                 | $\frac{lb_m}{sec}$                                     |
| w <sub>WBN</sub> | Hot gas flow at nozzle throat in turbine<br>bypass line                                                     | $\frac{1b_m}{sec}$                                     |
| wco              | <b>Pr</b> opellant flow at inlet to core reflector                                                          | $\frac{1b_m}{sec}$                                     |
| w <sub>D</sub>   | Propellant flow at pump discharge                                                                           | $\frac{1b_m}{sec}$                                     |
| w <sub>F</sub>   | Flow of liquid oxygen at station F in supply line to gas generator                                          | $\frac{1b_m}{sec}$                                     |
| w<br>GX          | Flow of hot gas at exit of gas generator                                                                    | $\frac{1b_m}{sec}$                                     |
| w <sub>H</sub>   | Flow of liquid hydrogen at station H<br>in supply line to gas generator                                     | $\frac{1b_m}{sec}$                                     |
| ws               | Propellant flow bypassing the reactor                                                                       | $\frac{1b_m}{sec}$                                     |
| W<br>TN          | Ho <b>t</b> gas flow through throat of <b>t</b> he turbine nozzle                                           | $\frac{1b_{m}}{sec}$                                   |

| Symbol              | Description                                                                | Units                  |
|---------------------|----------------------------------------------------------------------------|------------------------|
| X                   | Position of stem of turbine bypass<br>control valve                        | in                     |
| X <sub>MAX</sub>    | Maximum travel position of stem of<br>turbine bypass control valve         | in                     |
| YIVI                | Equivalent length of liquid propellant supply line to reactor              | in                     |
| Y <sub>TTP</sub>    | Equivalent length of liquid propellant supply line to pump                 | in                     |
| 8                   | Ratio of specific heats of hot gas<br>from gas generator                   | dimensionless          |
| $\rho_{\text{IVI}}$ | Density of liquid propellant in supply<br>line to reactor                  | $\frac{1b_m}{1n^3}$    |
| (° <sub>D</sub>     | Density of liquid propellant at pump<br>discharge                          | $\frac{1b_m}{in^3}$    |
| (° <sub>F</sub>     | Density of liquid oxygen at station<br>F in supply line to gas generator   | 1b <sub>m</sub><br>In3 |
| Рн                  | Density of liquid hydrogen at station<br>H in supply line to gas generator | $\frac{1b_m}{1n^3}$    |
| (° <sub>TTP</sub>   | Density of liquid propellant in supply<br>line to pump                     | $\frac{1b_m}{1n^3}$    |

$$\frac{\text{Propellant}}{\text{Feed}} \quad \underbrace{\text{System}}_{k=1} \quad \underbrace{\text{Equations}}_{k=1}$$

$$\frac{\text{Prio}^{2}}{\text{Prio}^{2}} \frac{1}{\text{Prio}^{2}} \frac{1}{\text{Prio}^{2}}$$

$$\mathbf{W}_{H} = \mathbf{A}_{H} \sqrt{2g\rho_{H}} \left[ \mathbf{P}_{TO} - \mathbf{P}_{G} \right]^{\frac{1}{2}}$$

$$(7) \qquad \mathring{W}_{F} = A_{F} - \sqrt{2g\rho_{H}} \left[ P_{TF} - P_{G} \right]^{\frac{1}{2}}$$

$$18) \qquad \mathring{W}_{BN} = \frac{A_{BN}P_{BI}}{T_{0G^{\frac{1}{2}}}} \left[ \frac{\gamma g}{R_{G}} \begin{pmatrix} 2\\ \gamma+1 \end{pmatrix}^{\frac{\gamma+1}{\gamma-1}} \right]^{\frac{1}{2}}$$

$$P_{BI} = \frac{P_{G}}{\left[\frac{1}{2} + \frac{1}{2}\sqrt{1 + 2(\gamma - 1)\left(\frac{2}{\gamma + 1}\right)^{\gamma - 1}\left(\frac{A_{BN}}{A_{BV}}\right)^{2}}\right]^{\gamma - 1}}$$

20) 
$$K_{30} = \left( \frac{A_{TV}}{A_{TV max}} + K_{31} \right) \left( \frac{A_{BV}}{A_{BV max}} + K_{31} \right)$$

21) 
$$P_{TI} = \frac{P_{G}}{\left[\frac{1}{2} + \frac{1}{2}\sqrt{1 + 2(\gamma - 1)\left(\frac{2}{\gamma + 1}\right)^{\gamma - 1}\left(\frac{A_{TN}}{A_{TN}}\right)^{2}}\right]^{\gamma - 1}}$$

22) 
$$A_{BV} = A_{BV max} \left( I - \frac{X}{X_{max}} \right)$$

23) 
$$P_{IV} = P_{I}$$
  
24)  $\dot{W}_{IV} = \dot{W}_{I}$   
24)



μ

ENGINE CONTROL SYSTEM FUNCTIONAL BLOCK DIAGRAM



SYSTEM NO. 2