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ABSTRACT

We consider the Fredholm integral equation

\

x

(j(z) = g(z) + K(z,z”) $(2°) dz’

Y

where g(z) represents a fairly large class of functions and

/

w

-a(s )12-2.”1 d~. .

K(z,z”) = Y(Z’) k(s”) e

‘o

This dissertation first develops a metliodfor solving

equation when y(z-) is a constant and then extends it

the integral

to the case where

y(z”) is a step function. The solution of the integral equation is

achieved by solving the integro differential invariant imbedding equa-

tions derived from the integral equation by varying the.limits of inte-

gration. The imbedding equations are solved using a moment method which

reduces the calculation to an initial value problem. Proofs of the

existence and convergence of the method are given. In the case where

Y(z’) is a constant, the solution of the integral equation is obtained

by a simple quadrature of the product of the solution with a transform

of the function g(z). In the case where y(z”) is

integro differential equations for the reflection

are reduced to initial value problems and solved.

a step function, the

and transmission kernels

These kernels are used

to obtain fluxes from which

again be obtained by simple

Numerical examples are

the solution to the integral equation can

quadrature.

presented.

v



I. INTRODUCTION

We are concerned in this dissertation with the solution of Fredholm

integral equations of the general form

!

x

$(z) = g(z) + K(z,z’) $(2°) dz”

Y

where the kernel K has the integral representation

(1.la)

I
m

-a(s”) [Z-Z”] ds. .

K(z,z”) = Y(Z”) k(s-) e (1.lb)

o

It can be shown [1],[11] that this problem is equivalent to the “pseudo-

transport” problem

m

‘N(z,s) + a(s) N(z,s) = k(s) y(z)sgn(s) ~z
[

N(z,s”) ds” ,

G. M.

(1.2)

N(Y,s) = h(s) ,

N(x,s) = f(s) ,

Wing [11] applied the

to arrive at a set of

./ -m

ys.zsx, (1.2a)

()<s<@ , (1.2b)

-m<s<o. (1.2C)

method of invariant imbedding to equations

coupled non-linear partial differential

integro equations. These equations form an initial value problem. Wing

pointed out that the pair of solution functions for the imbedding equa-

tions together form a Green~s function for equations (1.1). The solution

of the imbedding equations is complicated by the fact that the equations

themselves contain the solution evaluated at the end-points of the in-

terval of interest, i.e. at y and x. If these end-point values are

1



known, Wing’s equations can be integrated.

set

for

Y“

of

By appropriately specializing Wing’s equations one can derive

of equations similar to the X and Y equations of Chandrasekhar

the solutions at the end points. Under the assumptions that

a

[4]

-x a;d Y(z) is an even function, these equations reduce to a set

ordinary differential integro equations. R. C. Allen [2] applied a

method of moments to solve these reduced equations. The moment method

results in a doubly infinite coupled set of ordinary differential equa-

tions. Existence and uniqueness of solutions

by Allen and Kyner [3].

In this paper we carry out the invariant

arrive at the general imbedding equations and

to this set are provided

imbedding procedure to

the specialized tibedding

equations for the solutions at the end points. Defining moments for

these two sets of equations, we arrive at two new sets of equations,

the imbedding moment equations and the specialized imbedding moment

equations. Relationships between the moments are found and used to

simplify the specialized imbedding moment equations. Other relation-

ships connect the moments to the Taylor coefficients for the resolvent

kernel of equation (1.1). Specializing to the case y(z”) = constant,

allows the reduction of the specialized imbedding moment and imbedding

moment equations to equations which require integration in only a single

variable. The reduced specialized imbedding moment equations are shown

to satisfy the hypotheses of Allen and Kyner’s existence and uniqueness

theorem and so existence and uniqueness of their solutions is established.

An existence and uniqueness proof is provided for the reduced tibedding

moment equations.



Returning to the general case, integral reflection and transmission

operators are defined and it is shown that the kernels of these opera-

tors satisfy integro differential equations. Using integral identi-

ties, these equations are reduced to ordinary differential equations

which can be integrated simultaneously with the specialized imbedding

equations when y(z”) is a constant. The reflection and transmission

kernels are used to obtain the solution for the case when y(z-) is a

step function.

Computational examples are presented to illustrate the method.

3



II.

tion

DERIVATION OF THE IMEEDDING EQUATIONS

We start by considering the equivalence between the integral equa-

(1.1) and the “pseudo-transport”problem (1.2). Specificallywe

consider

\

m

Sgn(s) &N(z,s) + a(s) N(z,s) = k(s) Y(Z) N(z,S”) ds’ ,

./ -m

Ysyszsxsx , Isl <=’ , (2.la)

N(y,s) = h(s) s , ()<S<CO , (2.lb)

N(x,s) = f(s) , -w<s<cl , (2.lC)

where

Rl

R2

R3

R4

R5

R6

R7

R8

R9

k(s) is an even piecewise continuous function belonging to L1;

a(s) is an even piecewise continuous function;

either a(s) or k(s) is zero outside a finite interval or

Re a(s) ~ O for sufficiently large s;

y and x lie in some fixed interval i.e. Y < y ~ z < x ~ X;

y(z) is positive and piecewise continuous for y,z,x in the fixed

interval [Y,X];

f(s) and h(s) are continuous functions with compact support on

-m < s < 0 and O < s < w respectively;

f(s) and h(s) are not both identically zero;

The eigenvalues of the operator ~ defined by

/

x

i“ = K(z,z”) . dz” ,

Y

(2.2)

4



where K(z,z-) is

unity on Y s y s

Assume that

given by equation (lb), have absolute value greater than

Xsx.

(2.1) has a unique solution, N(z,s), which is piecewise

continuously differentiablewith respect to z in y s z s x, and uni-

formly integrable with respect to s for -m < s < m . With

/

m

T-1(z) = N(z,<) ds” ,

-co

(2.3)

equation (2.1) can be written in the form

[& N(z,s) e 1
a(s)z for s > 0 ,a(s)z

= k(s) y(z) n(z) e (2.4)

and

a
[-N(z,s) e 1-a(s)z

= k(s) y(z) q(z) e-a(s)zG fors<O . (2.5)

Using conditions (2,1b) and (2.lc) we carry out the integration and find

,2

N(z,s) = k(s)

I
Y(z”) n(z’) e

a(s)(z--z)
dz”+h(s) e

a(s)(y-z)

Y

fors>O (2.6)

and

[

x

N(z,s) = k(s) y(z-) n(z”) e
a(s)(z-z-)

dz” + f(s) e
a(s)(z-x)

Jz

forS<O . (2.7)

Substituting equations (2.6) and (2.7) into equation (2.3) we arrive at

5



/

o

I
m

a(s”)(z-x) ~~. + a(.’)(y-z) d~~ . (2.8)+ f(s’) e h(s’) e

-m o

At this point we would like to change the order of integration in

the first two integrals in the right member of (2.8). To justify this

we

we

By

need to show that the integrand is absolutely integrable since then

can invoke Tonelli’s theorem. TO this end we note the fOllOWing.

the piecewise continuity of N(z,s) with respect to z and its uniform

integrabilitywith respect to s, n(z) is a bounded function on the finite

interval [Y,X]. Since y(z) is piecewise continuous on [Y,X], it is

bounded there. The exponential is bounded, for in the first integral

I Ithe fact that ea(s)(z-z-) =e-Re a(s) 12-201 and that a(s) is Pfece-

wise continuous implies it is bounded for bounded s and restriction R4

implies its boundedness for sufficient

holds for the exponential in the second

Ik(s) y(z’) e-a(.) ].-2”1

large s. A similar argument

integral.

<M Ik(s)

From this we see that

and absolute integrability follows from restriction R2.

Changing the order of integration and recalling that a(s) and k(s)

are even we arrive at



/

x m

1 -a(s”) [z-z-lds” , (2.9)
n(z) = g(z) + y(~”) l_t(Z”) dz” k(s”) e

Y o

where

\

o

[

02

a(s”)(z-x) ds. + a(s”)(y-z) ds~ . (2.10)
g(z) = f(s”) e h(s’) e

.03 0

Equation (2.9) is identical to (1.1) when the kernel is defined by

equation (1.lb). This is the basis of the equivalence between the

problems (1.1) and (2.1). We state this as a theorem.

Theorem 2.1 Let N(z,s) be piecewise continuously differentiable in

I 1<Z, y ~ z ~ x, uniformly integrable in s, s ‘, and let N(z,s) satisfy

the “pseudo-transport”problem, (2.1). Then n(z) given by (2.9) and

(2.10) is a solution to (1.1). Conversely, if q(z) is a solution to

(1.1), then

‘1
z

k(s) y(z’) n(z”) e
a(s)(z”-z)

dz” + h(s) ea(s)(y-z) ,

Y

N(z,s) = S>()

I/

x

k(s) y(z’) ~(z-) ea(s)(z-z”) dz. + f(s) ea(s)(z-x) ,

z

S<o (2.11)

is a solution to (2.1). This correspondence is unique.

Proof: The proof requires only minor modifications to that given in

reference [11].I

We now derive the invariant imbedding equations. This converts

7



the solution of the integral equation (1.1) into the solution of an

initial value problem and a simple quadrature. In the invariant imbed-

ding approach the limits on the integral appearing in equation (1.1) are

varied. This amounts to varying the boundary surfaces of the imaginary

slab in the “pseudo-transport”problem (2.1). In order to make this de-

pendence on the ltiits of integration more obvious, we will hereafter

show the dependence explicitly. In our new notation the integral equa-

tion (1.1) becomes

/

x

$(z,x,y) = g(z) + K(z,z”) $(Z”,X,Y) dz” . (2.12)

Y

The general theory of Fredholm integral equations, along with the

condition R9S assert the existence of a resolvent kernel, Q(z,z-,x,y)s

such that the solution of equation (2.12) is given by:

1
x

$(ZSXSY) = g(z) + Q(Z,Z”,X,Y) g(z”) dz’ . (2.13)

Y

In the sequel we will need the following lemma

Lemma 2.2 Under the assumptions R of the problem (2.1), Q(z,z”,x,y) is

piecewise continuously differentiable with respect to x, y and z except

perhaps for z = z“. At z = z“, Q(z,z”,x,y) is continuous except perhaps

for a finite number of points. Also ‘sOand~x ~aoo
ay

q> (jis given
Proof: The proof of all but the statement ax in references

[1] and [11]. That~~ O is true follows in a manner exactly analogous

to the proof given in [1] for Mso.1
ay

8

.
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Substituting equation (2.12) into equation (2.13), and using equa-

tion (2.10), we have

/

x

$(Z$X>Y) =g(z) + Q(z,z’,x,y)

Y

r I
a

x
~(~.) ea(s”)(z”-x)

ds”+ h(s.) ea(s’)(y-z”) ds.

I

dz” .
-m o

Since R7 implies f(s) and h(s) belong to L1 on their respective inter-

vals, arguments similar to those used earlier allow us to change the

order of integration and, after some further rearrangement, equation

(2.13) becomes

m

+1 h(s-)ds lea(s-)(y-z)+[Q(z,z, x,y)ea(s-)(y-zO)

(2.14)

Let

\

x

~(z,x,y,S) = es(s)(z-x) + Q(z,z”,x,y) e
a(s)(z”-x)

dz” (2.15)

Y

and
“x

~(z,X,y,S) = ea(s)(Y-z) +1 Q(z,z”,x,y) e
a(s)(y-z”) dz, (2 16)

. .

v

The subscripts R and L indicate to which side of the interval, [Y,x],



the R function is referred, x appearing in the exponential in the

definition of ~ and y appearing in the exponential in the definition

.f ~. They may also be thought of as referring to the right and left

sides of the imaginary slab in the “pseudo-transport”problem (2.1).

Using (2.15) and (2.16)we can express the solution of the integral

equation (2.12) as the sum of two integrals

/

o

1
co

$(z,x,y) = f(s”) ~(Z,X,y,S”) ds’ + h(s”) ~(Z,X,y,S*) ds- . (2.17)

-m o

that %(z,x,Y,s) and ~(z,x,y,s) together form a

for the problem. Because f(s) is the boundary value

right side and h(s) is the value of N(z,s) on the left,

From this we see

Green’s function

of N(z,s) on the

we can conclude that ~(zsx,Y,s) gives the result at z due to a 6-function

input from the right and ~(z,x,Y,s) the result of a d-function input.

from the left side of the slab. If ~(z,x,y,s) and E(z,x,Y,s) are known,

the expression (2.17) implies that we can obtain the solution to the

integral equations (2.12) by quadrature. Furthermore, if either f(s)

or h(s) is identically zero, only one of the two R functions is needed.

The result toward which we are moving is an initial value problem for

these R functions.

Proceeding with the derivation we differentiate equations (2.1)

with respect to x to obtain
.

.

10



\

co

Sin(s)& N2(Z~X~YyS) i- a(s) N2(z,x,y, s] = k(s) y(z) N2(z, x,y, S) ds” ,
J .m

(2.18a)

NJY>&Y@) = o ,

N2(x,x,y,s) = ‘N1(X,X,y,S) ,

That this differentiation is allowed is easily

for N(z,s), (2.11), given in Theorem 2.1. The

tion (2.18) is of the same type as (2.1) with

an equivalent integral equation, the solution

as in equation (2.17); that is

~o

1

t

S>o 9 (2.18b)

S<(). (2.18c)

seen from the expression

problem defined by equa-

1(s) = o. Hence, it has

:0which can be written

lJJ(z,x,y)=1 ‘N@Yx,Y,s”) ~(Z,X,y,.S”) ds- . (2.19)

-m

But, as in equation (2.3), the solution to the integral equation can be

written in terms of an integral of the solution of the “pseudo-transport”

problem. So

P-

Since

V(z,x,y) = I N2(Z,X,J?,S-) ds”

+(z,x,y) =
/

N(z,X,Y,S’) ds”

$2(Z,X,Y) = ! N2(z,X,Y,S”) ds”

-m

.

9

●

(2.20)

(2.21)

11



Comparison of equations C2.20) and (2.21) shows that

$(ZSX$Y) = $2(z,x,y). (2.22)

Equation (2,18c) gives N2(x,x,y,s) in terms of Nl(x,x,y,s) and the

latter can be obtained directly from equation (2.la). Thus from (2.19),

(2.22) and (2.la)we have

/

o

$2(z,x,y) = R#,&Y,sO) [ 1-a(s-) N(x,x,y,s-) + k(s”) y(x) $(x,x,z) ds-

-m

(2.23)

Differentiation of equation (2.17) with respect to x supplies a second

expression for $2(z,x,y), namely,

$2(Z,X,Y) =
~[

f(s-) %(Z,X,Y,S-)1 ds“

-m “2

w

+
[[

h(s”) ~(z,x,Y,s ‘)] ds- . (2.24)

o 2

That this differentiation is allowed follows from Lemma 2.2 and the

definitions of

we arrive at

f“

the R functions. Equating the two expressions for 42(Z,X,Y),

1- 1

p-l?(Z,x,y,s”)1 1-a(s”) N(x,x,y,s”) + k(s”) Y (x) $(x~x~Y) ds”
./ -m

o

-/ [ 12 -(h@-wz’x’y’<)12d<=o”(2”2’)f(s) ~(z,x,y,s’) ds-

-m

12



We can eliminate

and N(x,x,y,s) =

~o

+(x,x,y) from this expression by using equation (2.17)

f(s), so we finally have a relation free of @ and N

( .0

! k1 (Z,x,y,s”) 1-a(s’) f(s”) + k(s”) Y(x)

1
~(x,x,y,s”) f(s”) ds”

-m -m

/

m

+ k(s’) y(X)

I

~(x,x,y,s”) h(s”) ds” ds”

o

-/

o

[

m

f(s-) Qax ~(zsxsY,s”) ds” - h(s’)& ~(z,x,Y,s O)ds”=O.
-m o

(2.26)

Since the R functions are bounded and f(s) and h(s) belong to Ll, we can

change the order of integration in this equation to get

o

/[

f(s-) a-a(s”) ~(z,X,y,S”) - #lJz,x,y,s”)

.m

/

o

+-y(x) yx,lc,Y,s”) Ik(s”) ~(Z,X,y,S”) ds” ds’

-m

m

// J
o

+ h(s”) Y(x) ~(x,xsY,s”) k(s”) ~(Z,X,y,S”) ds”

o -m

a
t- ~R&’,%y,S”) ds” = O .

J

(2.27)

13



Now f(s) and h(s) are arbitrary functions in the class of functions

satisfying the restrictions R7 and R8; henc~ their coefficients must

be zero, except perhaps at a finite number of points. This gives the

first two imbedding equations,

a
~R@GY,s) = -a(s) ~(z,xsY3s)

I
o

+ y(x) RJX,X,YA W)%(z,x,y,s-) ds’ (2.28)

-w

and

a
~ R#,&Y,s) = Y(x) RJX,X,Y,S)

/
k(s-) ~(Z,S,y,S-) ds” . (2.29)

To

is

J -m

get the initial conditions for theseequationslet y

arbitrary in [Y,X]. Since y s z s X, this implies

For this case the defining equations (2.15) and (2.16)

R+ws) = 1 s s > 0, &e [Y,x]

=x = & where E

y = z =x.

give

s (2.30)

. (2.31)

To get the other pair of imbedding equations we differentiate equation

(2.1) with respect to y. Then, proceeding as above, we ultimately

arrive at the relations

&.JzJcsY,s) = a(s) ~(z~x5Y~s)

1
a)

- Y(Y) R.JYJGYA k(s’) ~(Z,X,y,#) ds” ,

0

(2.32)

14



and

/

co

-2
ay %(ZJXYYSS) = -y(Y) R. JYY%Y, S) k(s”) ~(Z,X, y,S’) ds- , (2.33)

o

with the initial conditions (2.30) and (2.31).

Equations (2.28), (2,29), (2.32) and (2.33), along with the initial

conditions (2.30) and (2.31), are the tibedding equations derived by

Wing, [11]. The above derivations make clear that there is only one re-

solvent kernel associated with these equations. This fact will be use-

ful later.

The solution of the imbedding equations is complicated by the fact

that the dependent variables appear not only in the usual way as functions

of z,x,y and s, but also with the variable z evaluated at the end points

of the interval [y,x]. If the values of the R functions at the special

points (x,x,Y,s) and (Y,x,Y,s) are known, then the imbedding equations

can be integrated. We can get equations for the R functions at these

spec:Lalpoints by setting z = x in equations (2.32) and (2.33) and z = y

in equations (2.28) and (2.29). This results in the set

_a_
ax \t(Y,XSYYS) = -a(s) ~(Y,xsY,s)

/

o

+ Y(x) R.JX,X,YA k(s”) ~(y,X,y,s”) ds- , (2.34a)

_m
.

I

m

+~(x,x,y,s) = -Y(Y) ~(Y,%Y,s) k(s”) ~(X,X,y,s-) ds’ s (2.34b)

o

15



/

o
a
~ ~(Y+>Y7d = y(x) R.#c,x,y, s) k(s”) ~(y,x, y,s”) ds” ~ (2.34c)

-m

and

a
7j-j~(x,x, y,s) = a(s), ~(x,x, y,s)

I
m

-Y(Y) RJYAY, S) k(s”) R+X,Y,S”) ds- . (2.34d)

o

The initial conditions (2.30) and (2.31) still apply. This set of equa-

tions is analogous to Chandrasekhar’s X and Y equations [4] which are

great importance in transport theory. In the sequel we refer to this

as the specialized imbedding equations. If the specialized imbedding

of

set

equations can be solved, then their solutions can be inserted in the im-

bedding equations and these integrated. The R functions so obtained can

then be used in equation (2.17) to affect

equation (1.1).

Both the imbedding equations and the

the solution of the integral

specialized imbedding equations

are integro partial differential equations.and the solution of equations

of this type can be difficult and cumbersome. In the next section we

extend a method suggested by Allen [2] which will result in partial differ-

ential equations for the integrals appearing in the specialized imbedding

equations.

,

.

“

.

.
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III. THE METHOD OF MOMENTS

F..C. Allen [2] proposed a numerical method for the solution of a

particular case of the specialized imbedding equations. The case pre-

sented was

w

+X(t,s) = 2y(t) Y(t,s)
/

k(s”) Y(t,s”) ds” ,

0

J
co

*Y,(t,s) = -2a(s) Y(t,s) + 2y(t) X(t,s) k(s”) Y(t,s”) ds’ ,

0

X(o,s) = Y(o,s) = 1 , OstsT , C)ss <a’.

These equations result when the specialized imbedding equations are

restricted to the case

y(z) = y(-z) ,

Y=-x ●

Allen defined moments, Pi(t) and Qi(t), by

/

w

Pi(t) = -a=(s’) k(s”) X(t,s’) ds- , i = 0,1,2...

0
and

/

m

Qi(t) = “a=(s”) k(s”) Y(t,s”) ds” , i = 0,1,2...

0

and obtained a doubly infinite set of ordinary differential equations

satisfied by them. Thus, his problem now had the form

17



~x=
at

2YYQ0 ,

&Y=- 2a Y+2y XQ0 ,

X(o,s) = Y(o,s) = 1 ,

~P
dt i

‘2 QiQo ,

$ Qi ‘_2Qi+1+2 piQo ,
m

Pi(o) = Qi(0) =
~

ai(s”) k(s-) ds-;i = 0>1>... “

o

This set was then truncated by setting

and solved. Allen

tional effort than

Pi(t) =Qi(t)=O , i=n,n+ l,...

showed that this method required much less computa-

the usual method of approximating the integrals by

quadrature formulas and integrating the resulting set of differential

equations. The prospect of substantial computational savings in itself

gives sufficient motivation for attempting to apply Allen’s method to

the general specialized imbedding and imbedding equations.

In the remainder of this section we apply an analogous method of

moments to the specialized imbedding equations. We obtain a quadruply

infinite set of partial differential equations in x and y involving

four moment sets. We then

Here, there also results a

tial equations in x and y,

Before proceeding, we

apply the method to the imbedding equations.

quadruply infinite set of partial differen-

but now involving only two sets of moments.

make some observations which allow us to

t

.

.

r

18
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simplify our notation. Both a(s) and k(s) are assumed to be even func-

tions of s. Since the resolvent kernel is not a function of s, we

easily see from the definition of the R functions that they are also

even functions of s. This means that we can write

/

o

\

m
.

az(s”) k(s’) ~(z,x,y,s’) ds =

-m o

That is, we can exchange the limits of

over s whose integrand involves only a

.
a=(s”) k(s’) ~(z,x,y,s”) ds

integration on any integral

product of a(s), k(s) and one

(or both) of the R functions without affecting the result. In the fol-

lowing we will treat all such integrals as being over the interval [O,W).

We now define the following moments:

I
a

.

Ai(x,y) =
/

al(s’) k(s’) ~(y,x,y,s’) ds Y

o

!
m

.

Bi(x,y) = al(s”) k(s’) ~(X~X~Y~S-) ds’ J

o

/

m
.

Ci(x,y) = al(s”) k(s’) ~(x,xSYSS”) ds’ ~

o

(3.1)

(3.2)

(3.3)

/“
m

Di(x,y) = al(s-) k(s’) ~(y~x,y,s”) ds” ~ i = 0Jl~2>ss. (3.4)

o

At present we do not know if these integrals exist. We demonstrate

their existence in Section V. To obtain partial differential equations

19



satisfied by these moments, we multiply the speci~ized ~bedding equa-

tions, (2.34),by ai(s) k(s) and integrate on s. When we interchange

the order of the integration and differentiation and use the moment

definitions given above we find the following set of equations for the

moments:

&Ai(x,y) = -Ai+l(x,Y) +Y(x) Ci(X,Y) AO(X,Y) ,

+Ci(x,y) = -Y(Y) Ai(X,Y) %(x,Y) ,

+ Di(x,y) = y(x)Bi(x,y) AO(X,y) ,

(3.5a)

(3.5b)

(3.5C)

‘B (x,Y) = Bi+l(X,Y) - Y(Y) Di(X,Y) Bo(x,y) , i = 0,1,2,... . (3.5d)ay i

Using the initial conditions for the specialized imbedding equations

~(~,~,~,s)=~(c,c,c,s)=l ,

we obtain the initial conditions

where C is an arbitrary point in [Y,X]. For convenience of reference we

call the set of equations, (3.5), the specialized imbedding moment equa-

tions.

To get a set of moment equations from the imbedding equations we

define the moments

20



m

Gi(z,x, y) = 1 ai(s’) k(s’) ~(z, x,y,s’) ds” , i = 0,1,2,...

0

and

w

1

.
Hi(z,x,y) = a=(s”) k(s”) ~(z,x, y,s-) ds’ , i= 0,1,2,... .

0

(3.6)

(3.7)

The existence of these integrals is also proved in Section V. When we

apply the same procedure to the imbedding equations as we did to the

special imbedding equations, we obtain the set:

&Gi(z,x,y) = -Gi+l(z,x,Y) +Y(.x) Ci(X,Y) GO(Z,X,Y)

+Gi(z,x,y) = ‘y(y) Ai(x,y) Ho(z,x,y) ,

&Hi(z,x,y) = y(x) Bi(x,y) Go(z,x,y) ,

9 (3.8a)

(3.8b)

(3.8c)

A H.(z,x,y)ay ~ ‘H i+l(z,x,y) - Y(Y) Di(X~Y) Ho(z,x,y) $ i= 0,1,2,... (3.8d)

For this set of equations we can find three sets of initial condi-

tions. We get the first set as before by using

R#,c,hs) = R#,c,e,s) = 1

to obtain

/

m

Gi(C,C,O ‘Hi(t,&O = ai(s’) k(s’) ds’ , &c[Y,X] . (3.8e)

o

This is not particularly useful since as we integrate away from say

21



(YOSYO,YO),we will get only Gi&O,x,yO) and so on. The second and

third sets are obtained when we note that the moments Gi(z,x,y) and

Hi(z,x,y) can be related to the moments Ai(x,y), Bi(x,y), Ci(x,y) and

Di(x,y). Specifically,

Gi(E,~,y) = Ci(~>Y) , ysys~sx ,

Gi(~,x>~) = Ai(x,~) > Ysgsx<x ,

Hi(E,E,Y) = Bi(C>y) > ysys~sx ,

Hi(C,x>&) = Di(x,~) , Ys~sxsx ,

The above quadruply infinite set of equations,

sistent set of the initial conditions, we call

equations.

(3.8f)

(3.8g)

(3.8h)

i = 0,1,2,... . (3.8i)

(3.8a-d),with any con-

the imbedding moment

For ease of reference we collect all these equation sets, using

the moment notation, in the order in which their solution should be

carried out.

1. Specialized imbedding moment equations.

&AJx,y) = -Ai+l(x,Y) +Y(x) Ci(X,Y) AO(X,Y) ,

Qc. (x,y) =
ay I -y(Y) Ai(X,Y) Bo(x,Y) ,

:Di(x,y) = y(X) Bi(x,y) Ao(x,y) ,

‘B (X,y) = Bi+l(x,y) -
ay i y(Y) Di(x>y) Bo(x,y) >

1

m

Ai(C$C) ‘Bi(C>C) = Ci(C>g) = Di(&>C) = ai(s”) k(s”)-ds” ,

0

i = 0,1,2,... . (3.9e)

(3.9a)

(3.9b)

(3.9C)

(3.9d)

.

.

.

●
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2. Specialized imbedding equations.

$%JY’’’S)S) = -a(s) ~(y, x,y,s) + y(x) ~(x, x,Y,s) AO(X,Y) , (3.10a)

a
~ J&s%Y$’) = -Y(Y) RJY, x,Y,s) BO(X,Y) 9 (3.10b)

a
~~(Y,x,y,s) = Y(X) RJX,X,Y,S) AO(X,Y) 9 (3.1OC)

a
~~(x,x,Y,s) = a(s) ~(x,x,Y,s) - Y(Y) ~(Y,x,Y,s) BO(X,Y) , (3.10d)

~(c,~,~,s)=~(c,c,~,s) = 1 , Y=c =x . (3.10e)

The moments obtained from the solution of the specialized imbedding

moment equations are used to solve the

3. Imbedding moment equations.

&Gi(z,x,y) = -Gi+l(z,x,Y) +Y(x) Ci(x,y) Go(z,x,y)

‘Gi(z,x,y) = ‘y(y) Ai(x,y) Ho(z,X,y)ay 9

&Hi(z,x,y) = y(x) Bi(x,y) Go(z,X,y) ,

~ Hi(z,x,y) =H i+l(z,x,y) - Y(Y) Di(X>Y) HO(Z,X,Y)

with

Jo

(3.lla)

(3.llb)

(3.llC)

(3.lld)

Gi(LC,C) = Hi(E,>hC) =
\

ai(s-) k(s”) ds” , cc [y,x] ,
0

i = 0,1,2,... ; (3.lle)
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or

Gi(E,E,Y) = ci(C$Y)

or

Gi(C,X,E) = Ai(x,&)

Hi(E,x,&) = Di(x,G)

Go(z,x,y) and Ho(z,x,y) from the solution of the imbedding moment

equations, along with ~(x,x,Y,s), ~(Y,x,Y,s), ~(x,x,Y,s) and ~(Y,x,Y,s)

from the solution of the specialized imbedding equations, are then used

solve the

Imbedding equations

R+X,Y,S) = -a(s) ~(z,x$y$s) + y(x) R.Jx,x,Y,s) GO(Z,X,Y) > (3.12a)

R+C>Y,S) = -Y(Y) ~(Y,x,Y,s) HO(Z,X,Y) ,

RJ%X,Y,S) = Y(x) R.Jx,x,Y,s) GO(Z,X,Y) ,

RJZ,X,Y, S) = a(s) ~(zyxyy,s) - Y(Y) ~(Y,x,Y,s) HO(Z,X,Y)

with.

I

R#,c,c,s) = 1 , s <0 , GEIY,XI ,

RJc,c,c$s) = 1 , s >0 , EE[Y,X] ,

(3.12b)

(3.12c)

, (3.12d)

(3.12e)

(3.12f)

or
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or

(3.12g)

(3.12h)

~(Gx, Gs) = ~(y,x,y, s) , at C= Y , (3.12i)

~(Gx9 EsS) = ~(y,x,y,s) , at C = y . (3.12j)

In equations (3.12g) through (3.12j) the notation is intended to indi-

cate that the solutions of the imbedding equations can be started from

the solutions of the specialized imbedding equations.

It is not always necessary to solve all the equations appearing

above. For instance, if h(s) ~ O, we need only find %(z,x,Y,s). This

means that only one of the equations (3.12) must be integrated. Choos-

ing equation (3.12a) we then require ~(x,x,y,s) and Go(z,x,y). GO(Z,X,Y)

can be obtained from the integration of the single set (3.lla) while

~(x,x,Y,s) is secured by solving the pair of equations (3.10a),(3.10b).

To integrate the latter pair requires a knowledge of Ci(x,y), AO(X,Y)

and Bo(x,y). We will show later that it is always the case that Ao(x,y) =

Bo(x,y); hence, we can get all three functions by solving only the sets

(3.9a) and (3.9b). Even if both f(s) and h(s) are non zero, some reduc-

tion in the imbedding and imbedding moment equations is possible.

At this time we do not discuss the existence and uniqueness of solu-

tions to these sets of equations, nor do we consider the convergence of

the solutions of the truncated sets of imbedding moment and specialized

imbedding moment equations to the solutions of the infinite sets. In
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Section VI we show that for the case y(z) = constant, there is always

some region in which there exists a unique solution to which the solutions

of the truncated equations converge. The existence, uniqueness and con-

vergence has not been proven for the case of non constant y(z).

In the next section we take a closer look at the moments.

.

m
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I
I

IV. A PROPERTY OF THE MOMENTS

We will discover that the moments defined in the preceding section

are intimately connected to the resolvent kernel of the integral equa-

tion (l.l).- In the following certain properties of this resolvent kernel

are required. The first of these is the exchange relation

y(z) Q(z,z”,x,y) = Y(z-) Q(z-,z,x,y) . (4.1)

To establish this relation it is sufficient to show that the product

series of y(z)

for the kernel

or y(z”) and the appropriate Neumann series expansion

are equal term by term. That is

Y(z) Kn(z,zO) = y(z”) Kn(zO,z) (4.2)

where Kn(r,t) is the nth iterated kernel of the kernel defined in equa-

tion (l.lb);it is given by

[

x

{

x

Kn(r,t) = ...(n-l)... Y(tl)...y(tn_l) y(t) dtl...dtn_l

“’Y

I
m m

-a(sl)lr-tll

/

-a(sn)ltn_l-tIds
x k(sl) e dsl... k(sn) e

o
n“

o

(4.3)

Thus the relation (4.2) is merely the identity

27



/

x

/

x

y(z) ...(n-l)o.. y(tl)...y(tn.l) Y(z’) dtl”””dtn_l

Y Y

/

m co
-a(sl)lz-tll

!

-a(sn)ltn_l-zOl ds
x k(sl) e dsl... k(sn) e n

o 0

#.x fix

= y(z’)
/

...(n~l)...

1

Y(tl). o. Y(tn_l) Y(z) dtl”””dtn_l

-v YJ

/

co
-a(sl)Iz“-tl

x k(sl) e

o
\

m
-a(sn)ltn-zl

dsl... k(sn) e ds
n“

o
(4.4)

The other relations we need are the Fredholm identities. It is well

known that the resolvent kernel of a Fredholm integral equation satisfies

integral equations involving the kernel of the original equation [8],[10].

These integral equations are the Fredholm identities:

/

x

Q(z,z’,x,y) = K(z,z-) + K(z,t) Q(t,z-,x,y) dt , (4.5)

Y

rA

Q(z,z’,x,y) = K(z,z”) +

I

K(t,z”) Q(z,t,x,y) dt . (4.6)

Y

.

●

✎

“

For our kernel these become
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[

m

Q(z,z”,x,y) ‘y(Z’) k(s’) e
-a(s’)lZ-Z’l ~~.

o

~

x
[

m

+ y(t) Q(t,z’,x,y) dt
1

k(s”) e
-a(s”)lt-zl ds.

9

Y o

(4.7)

I

m

Q(z,z’,x,y) = Y(Z’) k(s-) e
-a(s”)lz-Z”l ds.

o

1

x m

\

-a(sO)lt-ZOlds~
+ y(z”) Q(z,t,x,y) dt k(s”) e

Y o

(4.8)

Using these relations we now show that, in general,

Ao(x,y) = BO(X,y)

We first establish the Lemma:

Lemma 4.1. The R functions and the resolvent

I

w

k(s-) ~(Z,X,y,s”) ds” = Q(z,x,x,Y)/Y(x)

o

\

m

k(s’) ~(Z,X,y,s’) ds” = Q(z,Y,x,Y)/Y(Y)

o

.

kernel satisfy

(4.9)

. (4.10)

Proof: We multiply the defining equation of ~(z,x,Y,s ), equation

(2.15), by k(s) and integrate on s. This yields
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[

cm

/

co

k(s’) ~(Z,X, y, S’) ds” =
k(s.) ~a(s’)(z-x) ds,

o 0

m

= Jk(~’)ea(s’)(=x) ds.

o

x co

+

/

Q(z, z-,X, Y) dz’
/

k(s.) ~a(s’)(z”-x) ds.

Y o

1/
co

‘*Y(X) k(s”) e
a(s-)(z-x) ds.

o

[

x

[

m

+ y(x) Q(z, z”,X, Y) dz” k(s”) e
a(s-)(z’-x) ds.

I

9

‘Y o

which, by equation (4.8), is equal to Q(z,x,x,Y)/Y(x). Relation (4-10)

is proved in an analogous manner.I

Theorem 4.2 Under the restrictions required to establish Theorem 2.1,

Ao(x,y) = Bo(x,y) . (4.11)

Proof: From the definition of Ai(x,y), equation (3.1), we have

*

.

.

.

1
co

Ao(x,y) = k(s”) ~(y,X,y,S’) ds’ .

0
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Using Lemma 4,1 and the exchange

AO(x,y) =

relation (4.1), we see that

Q(x,Y,x,Y)/Y(y) .

Now from the definition of Bi(x,y), equation (3.2), we see that

\

co

BO(x,y) = k(s”) ~(X,X,y,X-) ds” ,

0

and by Lemma 4.1,

BO(x,y) = Q(x,Y,x,Y)/Y(Y) .

Equating, we have the result. #

Theorem 4.2

In Appendix A we

interest because

solvent kernel.

is of essential importance in the later development.

present a continuation of this section.which is of

it displays the relationship of the moments to the re-
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v. POWER SERIES REPRESENTATION OF THE KERNEL, K(z,z”)

In this section we prove some results about a power series repre-

sentation of the kernel, K(z,z”), given by equation (1.lb). These re-

sults are used later in the proof of the existence and uniqueness of

solutions to the imbedding and imbedding moment equations. They will

also show that the Taylor’s series expansions for the resolvent kernel

derived in Appendix A have a non-zero radius of convergence.

Theorem 5.1. For all admissible functions,k(s), a(s) and y(z), (that

is, functions satisfying restrictions ILL,R2, R3, R4 and R6), the kernel

of the integral equation (1.1) can be expressed in the form

\

m

z)
.

K(z,z’) = y(Z’) m +Iz-z”[j k(s’) aJ(s”) ds’
~= ●

o

(5.1)

where the series is convergent for all values of z and z- belonging to

the interval of definition of K(z,z”), [Y,X]. Moreover, the series is

absolutely and uniformly convergent for all Z,Z” e [Y,x].

Proof: The proof proceeds in two steps. We first show that the change

in order of integration and summation can be carried

of k(s) is finite. Assume that this

a(s) is piecewise continuous on the

bounded. Let

domain is [O,SO]

bounded interval

la(s)\~A <W, OSSSSmax o

Now consider the infinite series

out when the domain

<m. Then, since

[O,s.l> a(s) is

.

.

.

.
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This series converges for all z and z“ in [Y,X] because

\

h=xl’ ‘0\k(s<)l Iaj(’-)l ds”j =() j!

o

s mkd’A&llk(~)/[3J.= j!
‘1

.

Se
‘~ax]z-z ll/k(s?l]L

1

and k(s)c L1[O,~) from R2. Then

L‘o :
>

(- 1)’ k(s’) aj(s-)l z - Z-13 ds”
j!

o j=0

J“m (-e:)jlz_ Z.lj ‘o=x k(s-) aj(s) d’”
j=’ J o
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by the absolute convergence termwise integration Thereom [7].

If the range of k(s) is infinite while the range of a(s) is finite,

the above proof is valid if the zeroth term of the series is split off.

This term-is merely the infinite integral of k(s) which is finite be-

cause k(s) belongs to L
1“

Now assume that the range of both a(s) and k(s) is infinite. Split-

ting up the summation we have

/

w

k(s’) e
-a(s”) 12-2”1 ~s.

Jo

I
m

= k(s-)

o

w

E *lz-zO[j aj(s”).
j =0

ds“

“0 j =0

Because the first series on the right is finite we can change the

order of integration and summation so it follows that

.

.
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II
co

k(s”) e-a(s’)

o

n

z-z’] ~5. _
x

(_l)j

/

~lz-z’lj ‘Kay ds”
j=O “

o

j =n+l

By a corollary to the monotone convergence theorem the right side of this

inequality can be written as

w

sx ‘j
j=n+l

where

small

the condition R3

as desired since

has been used. This last term can be made

the r~ form a convergent series. Hence
J

as
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for any z,z”, belonging to [Y,X]. Equation (5.1) now follows by

multiplication by the bounded piecewise continuous function y(z).

Since the integral in (1.lb) is a continuous function of z and z’,

K(z,z”) is a bounded piecewise continuous function of z and z- on

the interval of definition [Y,X]. That the series of equation (5.1)

converges follows from the above proof and the boundedness of K(z,z’).

Since this series is a power series, it is absolutely and uniformly

convergent inside its tadius of convergence. As the proof shows, we

are allowed to take the maximum value of [z - z-l in equation (5.1)

to estimate the radius of convergence and this value is X - Y. From

the convergence of the series in (5.1) we have

.

Lim Sup (X - Y)
j+m

~,(k(<);(s)ds-,]”j

so that

.
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Lim Sup
.+mJ

[1 ]/

m

I
llj.

k(s”) aJ(sO) ds-

0
j!

1

But the quantity on the left is by definition the reciprocal of the radius

of convergence so we can conclude that X - Y is less

convergence. From this the series is absolutely and

for all 2,2” in [Y,X].1

than the radius of

uniformly convergent

For later

is stated in a

Corollary 5.2,

reference the result derived in the last part of the proof

corollary.

IIJ
co

.

k(s-) aJ(s’) ds”
Lim Sup

o
j+m j!

L .A

We also need the following two corollaries.

Corollary 5.3.

Lim Sup

j+m

I l-m

1 llj

1
<—

X-Y
(5.2)

1Rw(z,x,y,s-) k(s-) aj(s’) ds~

o
j!

llj

++ ‘ (5.3)

w =RorL, y~ z s x, except perhaps at a finite number of z points.
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Proof: From the definitions of the R functions, it is easily seen that

they are bounded provided the integrals involving the resolvent kernel

are bounded. However, the resolvent kernel is an L1 function in both

z’ and z, and by Lemma 2.2 it is continuous except perhaps for a finite

number of points. Thus, the integrals, and hence, the R functions,

exist and are bounded except at a finite number of points. For the

points where Rw(z,x,y,s’) is bounded we have

w

~1 z

/

_ z. lj m
Rw(z,x,Y,sO) k(s’) aJ(s’) ds’

j=o j! o

m

~1< M . ‘- ‘“
\

,jl m .
k(s”) aJ(sO) ds”

j=O j! o I

and the series on the right is absolutely and uniformly convergent

with radius of convergence greater than X - Y. We conclude that the

series on the left must have at least the same radius of convergence,

hence, equation (5.3) follows.1

Corollary 5.4 The integrals

(3.6) and (3.7),which define

Hi exist.

in equations (3.1) through (3.4),

the moments Ai, B~, Ci, Di, Gi, and

Proof: This is an immediate consequence of Corollary 5.3. 1

An examination of the power series developed in Appendix A shows

that Corollary 5.3 is sufficient to ensure their absolute and uniform

convergence except for a finite number of z points.

We now proceed to examine the existence and uniqueness of solu-

tions to the various imbedding equations for the special case when

y(z) is a constant.
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VI. SOLUTION WITH y(Z) CONSTANT

.

.

We now show that the imbedding moment equations possess unique

solutions on some non-vanishing interval if y(z) is a constant. For

this we use the Neumann series expansion for the resolvent kernel

m

Q(z,z’,x,Y) =z Nn(z,z’,x,y) (6.1)

n=l

where Nll(z,z-,x,y)is the n-fold iterated kern~ defined by

Nl(z,z’,x,y) = K(z,z”) ,
.
.
.

/

x

Ni(z,z’,x,y) = Ni_l(z,t) Nl(tjz”) dt .

● Y

.

.

We recall that this series is almost uniformly convergent whenever

IIK(z,z’)1IL2 <1 (6.2)

We now derive some results concerning the R functions and the various

moments for the case where y(z) is a constant.

Theorem 6.1 If y(Z) = c, a constant, then for d z O, y. S zo~yo+d

and for A > 0

~(zo,yo+d,yo, s) = ~(zo+&yo+A+d>yo+ &s) , (6.3)

~(zo,yo+d,yo,d = ~(Zo+A,Yo+A+d,Yo+A,s) . (6.4)

Proof. We prove only equation (6.3); (6.4) is proved in a similar way.
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Using the definition of R&,% Y9s)s equation (2.15), we obtain

a(s)(zo-yo-d)

~(zosYo~,Yo,s) = e

yo+d

[

a(s)(z”-yo-d)
+ Q(zo,z”,yo+d,yo) e dz“

Jo

and

a(s)(zo+A-yo-A-d)

~(zo+A,yo+A+d,yo+A,s) = e

yo+A+d

/

a(s)(zO-yo-A-d)
+ Q(zo+A,z”,yo+A+d,yo+A)e dz‘

yo+A

yo+A+d
a(s)(zo-yo-d)

I

a(s)(z”-yo-A-d)
= e + Q(zo+A,z”,yo+A+d,yo+A)e dz’ .

YO+A

Thus equation (6.3) will be demonstrated if we show that

yo+d

/

a(s)(z”-yo-d)

Q(zo,z”,yo+d,yo) e dz0

Y. .

.

yo+A+d

/

a(s)(z’-yo-A-d)
= Q(zo+A,z-,yo+A+d,yo+A)e dz” .

yo+A
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Substitute the series expression for the

integrals appearing above. Since almost

to integrate termwise, we can change the

mation. This means that

yo+d
f

it is sufficient

)
a(s)(z”-yo-d)

Nn(zo,z’,yo+d,yo) e dz 0

v

1

I

resolvent kernel in each of the

uniform convergence allows us

mder of integration and sum-

to show that

‘o

yo+A+d

/

a(s)(z”-yo-A-d)
. Nn(zo+A,z”,yo+A+d,yo+A)e dz “ . (*)

yo+A

For y(ZO)=C, the n-fold iterated kernel can be written as

x

Nn(z,z”,x,y) = Cn
[

...(n-

Jy

m

I

a(s.

...dtn k(sl) e -

0

w

/

-a(sn)
.0. k(sn) e

o

)

4.

x

)...
/

dtl...

Y

m
Z-tl[

[

-a(Si)lti_l-til ds
dsl... k(si) e

i
Jo

‘n_pnI
dsn .

So, letting z’=tn, we can write the left hand side of equation (*) as
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yo+d

\

a(s)(tn-yo-d)
Nn(zo,tn,yo+d,yo) e dt

n

Y.

yo+d yo+d a

/ / /

-a(sl)lzo-tlln
=C ...(n)... dtl...dtn k(sl) e dsl...

Y. Y. o

m

i

I-a(si) lti_l-ti ds
.0. k(si) e i

m

/

-dQ]tn_l-tnlds eds)(tn-yo-d
. . . k(sn) e . (**)

n
o

We now show that

side of equation

Then

the right side of equation (*)

(**)● Let z’=rn in the right

reduces to the right

hand side of equation (*) .

yo+A+d

I

a(s)(rn-yo-A-d)
Nn(zo+A,rn,yo+A+d,yo+A) e dr

n
yo+A

yo+A+d yo+A+d

/

m

n ...(n)...

\ \

-a(sl)~zo+A-rlI
= c drl...drn k(sl) e dsl

yo+A yo+A o

m

/

m

/

‘a(s.j-)lti-l-tild~ . . . k(~ ~e-a(sn)Jrn-J--rnl...
k(sl) e

i n dsn
o 0

a(s)(rn-yo-A-d)
Xe ●

(***)
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Further let

‘l==l-A
.
.
.

‘i=ri-A
●

●

.

.

.

.

.

tn=rn-A .

This changes the limits of integration in the following way:

yoi-A+yo andyo-tA+d+ yo+d

Moreover,

lr-f-J-- ‘i! = lrf--~- A - ‘~ + ‘1 = ‘t~--l- ‘il

and
r -A-yo -
n

Making these changes in the right

have

d= t ‘y -d .n o

hand side of equation (***) we finallY

yo+A+d

\

a(s)(rn-yo-A-d)

Nn(zo+A,rn,yo+ti,yo+A) e dr
n

‘yoi-A

yo+d

/

yoid m

/ J

-a(sl)lzo-tll
n= c ...(n)... dtl...dtn e dsl...

Y. Y. o

co

/

-a(si)lti_l-til ds
... k(si) e ....

1

0

03

/

-a(sn)ltn_l-tnl a(s)(tn-yo-d)-
● *. k(sn) e ds en

o
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The right side of this equation is exactly the right side of equation

(**) and the theorem is proved.1

Corollary 6.2. For y(z) = c, a constant, RJY,%Y,S) , RJX,%Y,S) ,

~(Y,x,Y,s) and ~(x,x,Y,s) are constant on lines parallel to the line

x= Y* That is

~(Y,XSY,S) = ~(Y+A,X+A,Y+A,S) , etc.

Proof: We use the diagram below to make the argument clear. Any

point on a line parallel to the line x = y can be given in terms of

some (arbitrary)initial point (Yo,yo), lying on the line x = y, in

terms of equal increments of length A in both the x and y coordinate

directions and a single increment d in the x coordinate only. This is

illustrated in Fig. 1. TO show that %(Y,x,Y,s) is constant on the

X=Y

A
/

j ~/

%

(y.+A,YO+A)
(yO+A+d,yO+A)

A

(yo+d,yol
Yo -- ,~

Fig. 1 A line of constant R values.
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line through the points (yo+d,yo) and (YO+AH,YO+A) we need to show

that

~@o,yo+dsYoss) ‘~(Yo+LLYo+A+d, Yo+A,s)

But this is just equation (6.3) evaluated at Z. = yo.

for ~(x,x,Y,s) is also obtained from equations (6.3)

.

The statement

evaluated at

z
o
=yo+d. The statements for~(y,x,y,s) and~(x,x,y,s) follow

from (6.4) with Z. = y. and z = y. + d respectively.1
o

Corollary 6.3. For y(z) = c, a constant, the moments Ai(x,y), Bi(x,y),

Ci(x,y) and Di(x,y) are constant on lines parallel to the line x = y.

That is

Ai(X,Y) = Ai(x+A,y+A) , etc.

Proof: The assertion for Ai(x,y) follows immediately from the definition

of Ai and Corollary 6.2 since

m

Al(yo+d,yo) =
\

k(s-) ai(s”) ~(yo,yo+d,yos”) ds-

0

m

=
[

k(s’)ai(s”) ~(yo+A+d,yo+A,s”) ds”
Jo

= Ai(yo+A+d,yo+A) .

The statements for the remaining moments are similarly proven from

their definitions and Corollary 6.2. I
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Theorem 6.4. For y(z)=c, a constant,

~(Y,%Y,d =

R#w%Y9s) =

Proof. We pick an arbitrary point,

R+%Y,S) ,

qY,x,Y,s) .

(6.5)

(6.6)

(x,,Y,), in the region of interest,
.LJ.

the region below and to the right of the line x = y. Assuming (X1,X1)

and (Y1~Y1) are on the line x = y, this point can be reached by moving

downward from the point (Xl,Xl) a distance A = xl - yl along the line

x = xl or by moving horizontally to the right from the point (Y1,Y1)

the same distance A. See Fig. 2.

/

:X[$xf)/
/

/

fx,,x,-u)

(Xl,y,)

.

●

.

.

Fig. 2 Illustrative diagram for Theorem 6.4.
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●

Now consider

these paths

a
GRR(Yp9Y1,s) =

a
5p R%’xl’Y’s) =

a
p#pyY’s) =

a
T#JY@Yps) =

the specialized imbedding equations restricted to

-a(s) ~(y1$x9Yls s) +c~(x,x,yl,s) AO(X,YIL (6o7)

-C~(Y,X1,Y,S) AO(X1,Y) , (6.8)

a(s) ~(xlyxl$y$s) ‘c~(Y,xl,Y,s) AO(X,Y) , (6.9)

C~(X,X,Y1,S) AO(X,YJ . (6.10)

These equations can be considered as ordinary differential equations

if the variable s is held constant. We shift to a new single variable

u such that u = O on the line x = y; then dx = du. We set dy = -du

since the equations involving the partial derivatives with respect to y

need to be integrated in the negative y direction. With these changes

the specialized imbedding equations above become

a
~ RJYpYp%Y1,s) = -a(s) RR(Y1,Y1+U,Y1,S)

+C~(yl+U,yl+U,Y,S) AO(Y1+U,Y1)

.d
~~(XIYX1,X1-U,S) = c ~(x1-u,x1,x1-u,s) AO(X1,X1-U)

●

&~(x1,x19x1-uss) =-a(s) ~(x1,x1,x1-u,s)

+ c R.Jxl-u,xl,xl-u,s)Ao(x1,~-u)

(6.ha)

(6.llb)

(6.Ilc)
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T&~(Y1,YfU,Y1SS) = C~(Y1+U,Y1+U,Y1,S) AO(Y1+U,Y1) . (6.lld)

Keeping in mind that u is the distance from the line x = y and is

thus always positive, we now show that

AO(Y1+U,Y1) =

~(Yf-%Yl+wY1,s) =

R@pYpsY@) =

RJYpLY1+%Y@ =

RJYISY1+-WY1,’) =

AO(X1,X1-U) , (6.12a)

R&.ppp,s) , (6.12b)

RJX1-U,X1,X1-U,S) , (6.12c)

RJxl,xl,xl-u,s) , (6.12d)

~(x~-usxl,xl-u,s) . (6.12e)

Looking at the figure we see that the points (xl,xI-u) and (Y1+U,Y1)

both lie on the same line parallel to the line x = y. So by Corollary

6.3 equation (6.12a) is true. The remaining four equations follow from

the fact that the points lie on the same line and Corollary 6.2.

Now rewriting equation (6.11) using the relations (6.12) we

obtain

&RJYpYp$Y@ ‘-a(s) yYpYp%Yp)

+ c RR(Y1+%Y1 +U,Y1,S) AO(Y1+U,Y1) , (6.13a)

a
~R’R(Yl+%Yl+%Y@ = c ~(Yl,Yl+%Y@ AO(Y1+%YJ 1 (6.13b)

.

“

.

4

f
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.

.

●

✎

+ c ~(Y1,Yf-U,Y1,S) AJYf-U,Y1) ,

a
~ RJY1,Y1+U,Y1, S) = c ~(Y1+U,Y1+U,Y19S) AO(Y1+U,Y1) .

(6.14a)

(6.14b)

The

Now

the

initial conditions are still

RJC,5,C,S) =1 , (2.30)

R. JE9e9m ‘1 ● (2.31)

the equation set (6.13 ) with s fixed has a unique solution with

initial condition (2.30). Similarly the set (6.14) has a unique

solution with the same initial value [see equation (2.31)]. But the

two equation sets are identical.[It must be remembered that the first

argument only serves as an identifier which distinguishe~ between, for

example, ~(x,x,Y,s) and~(y,x,y,s).1 Since the equation sets also

have identical starting values, we conclude that, for the same s, the

solution sets of these equations must also be identical. This implies

that

RJY1,x~9Y@ =~(x~sxpY@ ,

R-Jxl,x~sY@J =RJY1,X1,Y1,S) .

Since this is true for an arbitrary point, we have proved the theorem.1

Corollary 6.5. For y(z) = c, a constant,

Ai(X,Y) = Bi(x,y) , (6.15a)

Ci(x,y) = Di(x,y) . (6.15b)
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Proof: Using the definition of Ai(x,y) and the theorem, we see that

m

\

.
Al(x,y) = k(s’) al(s”) ~(y,x,y,s”) ds”

o

m

=

\

k(s”) ai(s”) ~(x,x,y,s”) ds”

o

which is equal to Bi(x,y). Equation (6.15b) is proved similarly.1

We now define new variables, T and S, so chosen that the specialized

imbedding moment

dependent on the

define T by

equations and the specialized imbedding equations are

single variable T, independent of S. We choose to

T = x-y . (6.16)

The coordinate S, orthogonal to T, is obtained from the condition

VT “Vs=o (6.17)

or

aTas+a’ras o—— ——=
ax ax ay ay

.

Using equation (6.16), we have

(6.18)

as as o
s-~= “

(6.19)

which is satisfied by the function (althoughby no means uniquelY)

s .e* ● (6.20)

Lemma 6.6, For y(z) = c, a constant, the specialized imbedding moment

equations (3.6) and the specialized imbedding equations (2.34) are func-

tions of the single variable T = x - y.
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.

Proof: Since

a aT~+as a aT a as a—.=aT
k ~~~d~=——+ __ay ay aT ay as ‘

we can write the specialized imbedding moment equations in the form

aT aAf as aAi
——
ax aT

—— = -Ai+l
+ ax as + cciAo ‘

aT aci
-pas

aci
—— —— =
ay aT ay as -%Ao ‘

aT aDi as aDi
——
ax aT

——=cBA
‘Fax as io ‘

aT aBi
-}as aBi B—— —— =

ay aT ay as
-cDA i = 0,1,2, ....i+l io ‘

Herewe have used Theorem 4.2 to set Bo(x,y) = Ao(x,y). From equations

(6.16) and (6.20) we have

aT=l aT -1
ax ;—=ay

Substituting these

aAa aA2

as_s as=s
; ax ;%

.

values into the set of equations above gives

4+S*=
-Ai+l + cciAo ‘ (6.21a)

aT

-aci aci
~+s~= -cAiAo ‘ (6.21b)

aDi aD.
y+s+= CBIAO , (6.21c)

-aB1
—+s
aT

Now

aBi

~= ‘i+l ‘cDiAo ‘
i =0,1,2, ..0. . (6.21d)

if a moment is independent of the coordinate S, its partial

derivative with respect to S will be zero. Adding equations (6.21a) and

51



(6.21d) and using Corollary 6.5, we find that

~Ai
2s—= 00

as

Since S = em , S cannot be zero and hence

8Af 2Bi
—“0 .

T=as

Adding equations (6.21b) and (6.21c) and using Corollary 6.5 yields

2C2
2s-=0 ,

ds

from which it follows that

aci aDi
—= —= o
as as

This shows that the specialized imbedding

of so

The proof of the second assertion of

.

moment equations are independent

the theorem is made in a simi-

lar way using the R function equalities shown in Theorem 6.4. I

If we now affect the transformation to the variable T in the

specialized imbedding moment equations and in the specialized imbedding

equations we arrive at the sets

~Ai(T) = -Ai+l(T) + cCi(T) AO(T) ,

*CdT JO - c Ai(T) AO(T) ,

m

Ai(0) = Ai(@ =
/

k(s-) ai(s”) ds’ ,

0

(6.22a)

(6.22b)

(6.22c)

.

.

.

.
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.

w

Ci(o) = ci(ti,E) =

\

k(s”) ai(s-) ds’ , i = 0,1,2,.... (6.22d)

o

a
m% (T,s) = c

R#,s) AO(T) ,

5% %?y (T,s) = -a(s) ~y(T~s) + c ~(T, s) AO(T) ,

I$#,s) =R.#a,s) =1 ,

%zy (O’s)=RJhws)=l .

Here we have made the reidentification

%(US) ‘R#WWW)

KY(’b) = RJY,X9Y,S)

(6.23a)

(6.23b)

(6.23c)

(6.23d)

7 (6.23)

. (6.25)

we have reduced them in

in Theorem 6.4 and its

In the process of transforming these equations

number by half because of the equalities shown

Corollary 6.5. Equations (6.22) and (6.23) are now in the form of an

initial value problem. This is the form used to compute the examples

in the section on numerics. We have not yet shown the existence and

uniqueness of solutions to these sets. We now carry out a further

transformationwhich allows the application of the results in [3].

We first write equations (6.22)and (6.23) in matrix form:

(6.26)

$(2)= &i)k)Ao- bs)$(k)● (6.27)
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If we define the function f(T) by

T

f(T) = C

\

AO(t) dt

o

and assume for the moment that it is known, then the two vectors

(6.28)

each satisfy the homogeneous equations associated with equations (6.26)

and (6.27). For example, since

= c AO(T) , (6.29)

we have

The matrix

is a fundamental solution matrix for the

(6.26) and (6.27). Using this matrix we

()

‘i
vectors

vi
through the relations

($=‘(f)(3

homogeneous parts of equations

define an infinite sequence of

i = 0,1,2... (6.31)
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and define

Applying a

(6.27),we

the vector

()

‘1
by

‘2

(2)=”(’)(;) ●

(6.32)

variation of parameters technique to the systems (6.26) and

()

‘ican show that the vectors
vi satisfy the equations

d:(y) ‘,(’(.)) @:; ~

df(T)
—= UO cosh f(T) +VO sinh f(T) ,
dT

(6.33a)

(6.33b)

f(o) = o , (6.33c)

Ui(o) =Vi(o) =
[

k(s”) ai(s”) ds” , i = 0,1,2,..., (6.33d)

o

()

‘1and that the vector satisfies
‘2

21(0) = 22(0) = 1 .

()where the matrix B f(T) is defined by

()

Z1(T)

Z2(T) (6.34a)

(6.34b)

()(
- cosh2 f(T) - sinh f(T) cosh f(T)

B f(T) =

)

(6.34c)

sinh f(T) cosh f(T) sinh2 f(T)
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Allen and Kyner

proof for systems of

systems of this type

equation

[31

the

are

have given a local existence and uniqueness

type (6.33). Specifically, they show that

equivalent to the functional differential

df = F(f,t) @ (tyto;f) s t c[to,tll 9 f(to) = fo >
x

with

@(t, to;f) =
z
w a(k) (t,to;f) ~ ‘

k=O

~ (o) = E, the identity matrix ,

❑(k+l)(t,to;f)=
fo

B f(t”) ❑ %’,to, “f) dt” .

‘o

The ~ are finite dimensional vectors related to the initial conditions

of the equivalent problem of the type (6.33). They prove for appropriate

norm and appropriate ak

Theorem 6.7.
()

Suppose I{B f(T) II<

that

Then there exists

K and let [to,tl]be short enough so

j=o ‘

a unique solution to the equation

~ = F(f~t)@ (t~to;f) s f(to) = f. , t S[to,tll .

Proof: See [3].

,

.

.

.
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For our problem

The conditions

matrix (6.34c)

on the sum is

latter m note

,

i

()
Uj(o)

t = Vj(o) ‘

F(f,T) = [cosh f(T), sinh f(T)] .

of Theorem 6.7 are fulfilled because the norm of the

is easy to bound if T is restricted and the condition

a consequence of

that we may take

Corollary 5.2.

for the norm on

In order to show the

co

11~+11‘~x {lU,(o) , [Vj(o)]} =
[

k(s”) aj(s”) ds’ .
.J (J

The radius of convergence,

theorem is then determined

1 lim sup—=
R j+co

= ~ lim SU]

j+m

so that

lK& —
x-Y

Jo

R, of the series in the statement of the

from

co

\

l/j

Kj k(s”) aj(s”) ds-

0 )
j!

m

1

/j

k(s”) aj(s”) ds”

j!

I

by Corollary 5.2. Since X - Y is non-zero we are assured that the

series of the theorem has a non-vanishing radius of convergence, and

hence, the specialized imbedding moment equations have a unique solution.
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It is remarked in [3] that the moment method probably cannot be

applied in the absence of a growth constraint on the initial conditions

a.
j

This appears to be the case since, if restriction R3 is omitted,

counter example can be given which shows Theorem 5.1 invalid.

a

Given the unique solution assured by the theorem, the function f(T)

is known and the existence and uniqueness of a solution to equation

(6.26) follows from the theory of ordinary differential equations. It

is further shown in [3] that the solutions of the truncated system will

converge to the solution of (6.26). This completes the justification

of the moment algorithm as it applies to the specialized imbedding moment

equations. Given the solution to these equations, the existence and

uniqueness of a solution to the specialized imbedding equations then

follows via equation (6.32).

It remains to prove the existence and uniqueness of.a solution to

the”embedding moment equations and also to show that the solution of the

truncated problem converges to the solution of the infinite set.

The infinite set of imbedding moment equations

‘i ‘-Gi+l ‘cciGo

can be written in the form

r-= -or + f(t)

58

i = 0,1,2,..0

(6.35)

.

●

✎

✎



where 1’and f(t) are the infinite vectors

.

.

r
.

f(t)

and u is the infinite matrix

G
o

‘1

= G2

●

.

●

co(t)

cl(t)

C2(t)

.

.

.

●

CGO(t)

/

o 1 () o () .OO

o 0 () 1 () .OO

. ..e . ..O

. . . . ● *
. .

● ..* *..
.

(6.36)

(6.37)

● (6.38)
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Let rlbe a fundamental matrix for the system (6.35); then q can be

written in the form [5]

-at
ne=

Using this, we define a new variable ~ by the transformation

(6.39)

Then

r- = -~e-ut~ + e-at@.

-CJt= -Ur + e Q- .

Using equation (6.35) we find

e-ut~--= f(t)

or

8“=e ‘tf(t) ,

Ot -at
where e is the inverse of e and is given by

at
e .l+.t+#12+#+... ..

The solution to equation (6.35) is then given by

t

r e-m= rO + e-at

/

emf(w) dw .

0

(6.40)

(6.41)

(6.42)

(6.43)

We now isolate the first component of equation (6.43). First we

find the product of e
-Uteow:

(

.

.

.

.
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●

. -at ~aw
e =

I

1

0

0

3

●

.
●

-t

1

0

0

.

.

.

w-t

1

0

0

.

.

.

~2

fi

-t

1

0

.

.

.

k#2.
w-t

1

0

.
●

●

.

.

.

.

.

.
●

.

.

.

.

.

.

.

●

✎

✎

(w-t)3
3! “

(W;:)2 .
.

w-t .

1.

. .

. .

. ●

1

0

0

0

.

.
●

w

1

0

0

.

.

.

W2
~

w

1

0

.

.

.

w..

. .0

● ✎ ✎

✎ ✎ ✎

✎ ✎ ✎

.

●

✎

✎

✎

●

✎

●

✎

✎

✎

✎

✎

●I
.

.
=O(w-t).
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The integrand of equation (6.43) is thus

eU(w-t)f(w)

I

1 I~-.t4# . . . .

Olw-t. o.

00 1 . . .

I
. . . .**
● . . ...
● . . ...

I

I
m

z.>cG’
o

j=o

.=
●.

5$2.J.

I
w

x c *_l(w-t)j
CG

o j!

j=0

●

●

From (6.43) and this result,

co

c1

C2

.
●

.

CG
o

.

.

w
c .(o)

t’=

x /[zjc (W)(w -t)J

Go (t)= (J +tj+c GO(W) dw . (6=44) .
j!

j=0 O j=O
.

‘I%isis a Volterra integral equation of the second kind in Go with kernel

.
m C.(w)(w - t)J

i(t,w) = x’
(6.45).

j!
j=0
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It is a consequence of Corollary 5.3 that the series for ~(t,w) has

radius

values

X(t,w)

we can

unique

of convergence at least X - Y. Since we are concerned only with

of (w - t) which are less than this value, we can

is bounded. From the theory of Volterra integral

th~n conclude that (6.44) has a unique solution.

‘o‘
the remaining G. are also unique for they are

1

iteratively by the relations

.

assert that

equations [10]

Given this

determined

G
.

i+l =

-Gi+cci Go “
.

.

.

We now show that when we truncate the systems (6.35), the solutions

to the truncated system approach the solution of (6.35). We treat only

the convergence of Go since this is the only moment we require. At the

end of the proof we indicate how the proof can be extended to all the

‘i“ By carrying out the equivalent procedure on the truncated system,

we find that
ant

O~=e fn(t) (6.46)

where the n indicates that the system (6.35) was truncated by setting

G equal to zero for i equal to 1,2,... etc. The solution to the
n+i

truncated system is thus given by
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-ant

[

t
-Unt anw

I’e=
‘O,n + e

e fn(w) dw
n

‘o

where, as before,

-ant anw an(w-t)
e e = e

and

-an(w-t)
e fn(t) =

From this we find

& C.(v-t)j

‘n,oL ‘j!
j =0

n-1 c

G
z’

.h_l(w-t)~

n,O j!
j=0

.

.

.

G
n,OCn-l

.

.

n

z

(-l$C (o) J
G=
n,O j!

j=o
+.((~c’(w::-t)’) .n,o(w) ‘w

so that

(6.47)

m ( -l)jc.(o)tj

.,O) ‘Z ji
(G. - G

n+l

tn

[x ‘

c (W)(w-t)j
+C

j! [ 1GO(W) - Gn,o(w) dw

JO j+

t~

[x’ c.(w) (W-t)j
+C Go(w) dw .j!

(6.48)

.

.

(6.49)
J(J j=n+l
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In this equation the infinite series which appear are the tails of

uniformly convergent series by Corollaries 5.2 and 5.3. Also GO(t) iS

bounded in [O,t]. Therefore, letting n approach infinity we conclude

that

This

f(t)

the difference G - G
o

approaches the solution of
n,O

fz~m C.(w)(w-t)j
y(t) = j! y(W) dw . (6.50)

o j=0

is also a Volterra integral equation of the second kind with

= O; hence, it has the unique solution

/

t

y(t) = c i(t,w) f(w) dw = O ,

‘o
showing that

G +G o as n += .
n,O

We have proved the following theorem.

Theorem 6.8. Under the same hypotheses for which Theorem 5.1 holds the

imbedding-moment equations, (3.11), have a unique solution and the

zeroth order moment, Gn o, from the solution of the truncated imbedding-
9

moment equations converges to the zeroth order moment, G
o’

of the solu-

tion of the imbedding-moment equations.

For the remaining moments we can arrive at equations similar to

(6.49). The argument used above can be made for each of these equations

provided we can make the infinite series appearing in the first and last

terms arbitrarily small. These series involve Cj+k instead of Cj and

can be majorized by the derivatives of the series
m

Z( )

~ ]Cj] tj

[O,t] =
j=o

(6.51)
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That the series (6.51) converges for t < X - Y follows from the proof

of Theorem 5.1 and the definition of the moments, C .
j

Since it is

absolutely and uniformly convergent inside its circle of convergence the

series (6.51) may be differentiated term

series will also converge for t < X - Y.

This completes the justification of

by term and the resulting

the method of moments. .

.

.

.
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VII CASE WHERE Y(Z) IS A STEP FUNCTION

We approach the case where y(z) is a step function by first con-

sidering the problem when y(z) has a single discontinuity. This is

then extended to multiple steps. We attack the single step problem by

considering it as the juxtaposition of two problems of the type treated

in the last section, one for each value of y(z). Results are derived

as if y(z) were non-constant wherever possible. For clarity we will

discuss the problem as if it were a transport problem in a double slab.

However, this in no way affects its generality.

From the pseudo-transport equation correspondence, we know that

there exist left and right reflection and transmission operators and

that the pseudo flux, N(z,x,y,s), can be written in terms of these

operators. We will examine these operators for a slab extending from

y to x. We introduce the quantities u and v defined by

U(z,x,y,s) = N(z,x,y,s) , S>(), (701)

V(z,x,y,s) = N(z,x,y,s) , S<o. (7.2)

Thus V(Z,X,Y,S) and u(z,x,y,s) represent the left-moving and right-

moving fluxes at the point z in a slab with left edge at y and right

edge at x. From equation (2.11) we have

/

z

U(Z,X,y,S) = k(s) y(z’) ~(z’,x,y) e
a(s)(z’-z) dz.

Y

+ h(s) ea(s)(y-z)
s S>o, (7.3)
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V(Z,X,y,S) = k(s)
I

Y(z”) ~(Z”,x,y) ea(s)(z-z”) dz”

+ f(s) e
a(s)(z-x)

s &l <(). (7.4)

In these equations h(s) is the right-moving flux entering the slab at

y, while f(s) is the left-moving flux entering at x. n(z,x,y) is the

solution of the integral equation (1,1)when the limits of integration

correspond to y and x. This solution is given in terms of f(s), h(s)

and the R functions by’equation (2.17),

J
o

I
02

rl(z,x,y)= f(S”) ~(Z,X,y,S’) ds” + h(s-) ~(Z,X,y,S”) ds” .
-Ca o

(2.17)

When equation (2.17) is substituted into equations (7.3) and (7.4),

we find, after changing the order of integration,

+ k(s) [h(s-) dsO~
Y(z.) ea(s)(z’-z)

~(z’,x,Y, s”) dz”

+ h(5) ea(s)(y-z)
Y (7.5)

V(Z,X,y,S) = k(s)
c’(<) “JX ‘(i) ‘(s)(z-ti) ‘(ixsy$<) ‘i

z

+ f(s) e
a(s)(z-x)

Y
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.

We consider the slab split into two slabs at z. The left-hand slab

extends from y to z and the right-hand slab from z to x, We now have

four expressions from equations (7.5) and (7.6) for the fluxes at the

point z:

[

o

[

z
Ug(Z,Z,y,S) = k(s) fl(s-) ds” Y(Z”) ea(s)(z-Z”)~(z”,z,y, s”) dz”

J_ Jy
a

I J
z

+ k(s) h(s”) ds- Y(z”) ea(s)(z”-z)

o Y

i-h(s) ea(s)(y-z) s

U%(Z,X,Z,S) = h2(s) ,

VJZSZ}Y9S) = fl(s) $

1

0

\

x

VZ(GX,Z,S) = k(s) f(S”)ds” y(z”) ea(s)(z-z”)

-m z

+ f(s) ea(s)(z-x)

Here fl(s) is the flux entering the left-hand slab from

h2(s) is the flux entering the right-hand slab from the

R-&’, W,s”) dz”

(7.7a)

(7.7b)

(7.7C)

~(z”,x,z, s”) dz-

~(z”,&z,SO) dz” .

(7.7d)

the right, and

left,

Transport theory allows us to write two further expressions for the

fluxes at z in terms of the reflection and transmission operators,
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I
I

Ul(z,z,y,s) = TL(z,y,s)Oh(s) + ~fi(z,Y,s)0 vg(z,z,y,S) , (7,8a)

v~(z>x>zss) = ?72(Z,X,S)”UZ(Z,X,Z,S) +~(z,x,s) “ f(s) , (7,8b)

These equations are the statement of the principles of invariance for a

finite slab, The principles are shown by Chandrasekhar in [4], By com- .

paring these equations with (7,7), we can write expressions for the
.

operators appearing in equations (7.8)

I

(7,9a)

&(z,y,S) 0 = k(s) /0((0)dsf ,(/) @(s)(;-z)R#d,Z,,,#) ,/ ,
-m Y

(7.9b)

RA(z,x,s) o = k(s) (( Wdfy(z-)‘(s)(Z-i)%(<SX9ZSS-)‘z- $

(7.9C)

Tk(z,x,s) o = k(s) ~( (<))ds-~
~(z.) ea(s)(z-z-)

~(ZO,X,Z,S”) dz” ,

-co z

(7.9d)
.

( (s3) -1
The notation denotes the change of variable to s“; the action

in this case is by integration over s“. The symbol “( ) o “ denotes

direct multiplication,
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At this point it perhaps would be well to indicate how the coupled

pair of integral equations (7,8) can lieused to solve the problem of a

slab when y(z) is a function having a single step. Let z be the point

at which the step occurs; then using the results of Section VI, we

can compute the R functions appearing in (7.9) since y(z) is constant

on each of the two pieces. By the continuity of the flux in the com-

posite slab we must have

h2(s) = Uz(z,x,z,s) = u (Z,z,y,s) ,
4? (7.10a)

fl(s) = Vz(z,z,y,s) = VJZ,X,Z,S) (7.10b)

so equations (7,8) provide a coupled pair of integral equations for

h2(s) and flcs), If these equations can be solved, then the solution

to the integral equation is given by one of the equations

f
$(w) = fl(s”) ~(W,Z,y,S-) ds- +

f
h(s”) ~(w,z,y,s-)”ds” (7.lla)

-co o

or

$(w) =
r r

f(s’) R#,X,Z,S”) ds” + h2(s’) ~(w,X,Z,SO) ds” (7.llb)

-m o

depending on which side of the step the point w lies.

The direct solution of (7.8) is formidable. We attempt to simplify

these equations by using integral identities. To this end we define

J

z
a(sl)(z--z)

P(Z,Y,S1,S2) = k(sl) y(z”) e R&,z’,Y,S2) dz- , (7.12)

Y
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\

z
a(sl)(z‘-z)

t(z,y,sl,s2) = k(sl) y(z”) e ~(Z’,Z,Y,s2) dz” , (7.13)

‘Y

x

-/

a(sl)(z-z’)
r(z,x,sl,s2) = k(sl) y(z”) e ~(Z”, X,Z,S2) dz” , (7.14)

z

r

a(sl)(z-z”)
T(Z,X,S1,S2) = k(sl) y(z”) e ~(z”,x,Z,s2) dz’ . (7.15)

4
z

“Thesefunctions are the kernels

operators defined by equations

of the reflection and transmission

(7.9). Using these definitions

we can write the equations for h2(s) and fl(s) in the following

form:

/

o

/

w

h2(s) = fl(S”) ~(Z,y,S,S-) ds”+ h(s-) t(z,y,s,s-) ds’
_a. o

/

o

fl(s) = f(s”) T(Z,X,S,S”) ds”+
f

h2(s’) r(z,x,s,s”) ds”
./ -a

+ f(s) ea(s)(z-x)

We need to derive integro

“o

. (7.16b)

differential equations for the reflection and

(7.16a)

transmission kernels of equations (7.12) through (7.15). Before start-

ing these derivations we prove some relations which are needed in the

procedure.
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.

.

.

We first note that the R functions satisfy the following integral

equations

~(Z,X,y, s) = ea(s)(z-x)+[ K(z,z”) ~(Z”,X,y,S) dz” ,

Y

1

x

~(z,x,y,S) = es(s)(Y-z) + K(z,z”) ~(z”,X,y,S) dz” .

Y

(7.17)

(7.18)

Then we can show

Lemma 7.1 The R functions and the reflection and transmission kernels

are related by

w

J
~(z, z,y,s) = 1 + p(’,y,s”,s) ds” ,

0

I

a

RL(z,z,y,s) = e
a(s) (y-z) +

t(z,y,s’,s) ds”

o

co

f
~(z, X,z,s) = es(s)‘z-x) + T(z,x,s-,s) ds”

o

[

m

RL(z,x,z,s) = 1 + r(z,x,s”,s) ds” .

*O

(7.19)

(7.20)

(7.21)

(7.22)
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Proof: From (7,17)

RJ’,’,Y,’) = 1 +JK(z, z’) R.&’,’, y,S) dz”

Y

m

J[J
z

= 1 + ds’ k(s”) y(z”j ~a(s-)(z--z)

1
R.&”,’,y,d dz’

o Y

f

=1+ P(Z, Y, S”, S) ds’

o

which shows equation (7.19). The remaining three relations are proved

analogously. I

Lemma 7.2 The reflection kernels satisfy the exchange relations,

k(s2) P(Z,Y,S1,S2) = k(sl) P(Z,Y,S2@

and

k(s2) r(z,x,s1,s2) = k(sl) r(z,x,s2,s1) .

(7.23)

(7.24)

.

.

.

.
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Proof: Some manipulation shows that

P(z,y,sl,s2)

f

a(sl) (z‘-z)
—— =

WI)
y(z”) e ~(z-,z,Y,s2) dz”

Y

\

z
a(sl)(2’-2)

[

a(s2)(z“-z)
= y(z”) e e

Y

~

z
a(s2)(Z2-Z)

+ Q(Z’, Z2, Z,Y) e
1

dz2 dz”

Y

J
z

[ 1a(sl) + a(s2) (2”-2)
= y(z-) e dz*

Y

J
z a(sl)(z”-z)

J

z
a(s2)(z2-z) dz

+e dza Y(z-) Q(z’,z~,z,y) e
2

Y Y

\

z
[
ala

1
(2°-2)

= y(z’) e dz“

Y

J

z a(sl)(z’-z)
+e dz“

Y

I
z

a(s2)(z2-z) dz

x Y(z2) Q(Z2,Z”,Z,Y) e 2

‘Y

75



and

z
P(Z,Y,S2,S1) =

/

a(s2)(z--z)
y(z”) e

k(s2)
~(z”,z,y, S) dz”

Y

/

z
a(s2)(2’-2)

[

a(sl)(z”-z)
= Y(z”) e e

Y

[

a(s1)(z2-z) dz
+ Q(Z’,Z2, Z,Y) e

1
* dz”

‘Y

z

P 1
ala (z--z)

= y(z-) e dz*

Y

[

z a(s1)(z2-z)
+ e dz2

Jy

\

z
a(s2) (z--z)

x Y(z”) Q(Z”,Z2,Z,Y) e dz’ .

Y

This establishes (7.23). Relation (7.24) is proved similarly.1

We now derive equations for p(z,y,sl,s2) and t(z,y,s1,s2). For

these two functions we are interested in equations which can be

started at w = y and integrated to z. From equation (7.8a) and the

definitions of p and t, we have
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.

/

o

U(w,w,y,s) = ‘l(sO) P(W,y,S,SO) ds”
-m

f’h(s”)t(w,y,s,s’) ds” + h(s) ea(s)(y-w)
●

o
(7.25)

We set h(s) = O to obtain

\

o
U(w,w,y,sl) = flcs’)p(w, y,sl,s”)ds” . (7.26)

-m

Hence,

/

o
Ul(w,w,y,sl) + U2(W>%Y,S1) = f@#P(w,y,sl,s’) ds”

J-W

From the pseudo-transport equation

Ul(w,w,y,sl) = -a(sl)U(w,w,y,sl) -t

we have

W+ Y(w) ~(w,w,y) .

From (2.17) we have, since h(s) = O,

[

o
?-l(w,w,y)= fl(s”) ~(W,W,y,s”) ds” ,

J -m

and by Lemma 7.1

/

o

n(w,w,y) = fl(s”)

_m ,/

m

1+ 1P(WSY+2SS*) ds2 ds” .

(1

. (7.27)

(7.28)

(7.29)
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We insert (7.26)and (7.29) into (7.28) to get

.0

Ul(w,w,y,sl) = -a(sl)
I

fl(s”) p(w,y,S@”) ds”

J-

J
0

+ Usl) Y(w) fl(s-)

-m

and obtain finally

J
03

1+ P(W,y,S2,S0) ds2

o

!
J

Ul(w,w,y,sl) = fl(s”) ds”

1

-a(sl) P(w~y~sl$s”)

-m

[J

m

+ k(sl) Y(w) 1+ P(w,Y,s2,S”) ds1]2“
o

To get an expression for u2(w,w,y,s1) we differentiate

transport equation with respect to x. It is established in

this operation is

tiations are done

permitted and that the order in which the

can be interchanged. The result is

+ a(s) U2(Z,X,y,S)U12(ZSX,Y,S) = k(s) Y(Z) ~2(z,x,Y) ,

+ a(s) V2(Z,X9y9S)-V12(%%Y,S) = k(s) Y(z) ~2(z,x,Y) ,

U2(YSXSY>S) = o s

v2(x,x,y,s) = -v (X,x,y,s) .
1

dsO ,

(7.30)

(7.30)

the pseudo-

[1] that

differen-

(7.31)

.

.

.

.
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Equation (7.31) is a

port problem and its

equation (7.5), i.e.

U2(W,W,y,S1) = k(sl)

problem exactly

solution can be

analogous to the original trans-

written down immediately from

o

/[ 1
‘Vl(WSW,y,S”) ds”

-m

a(s.)(z”-w)f-w
.xI Y(z”) ~(Z”,W,y,s”) e ‘“ - dz” ,

‘Y

so by the definition of P(w,y,sl,s”)

.0

!u2(w,w,y,s1) y - Vl(W,WSYSS”) P(wsy@ls”) ds”

-m

The value of Vl(w,w,y,s ) can be taken from the

(7.32).

pseudo-transport equa-

tion so
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lqw,w,y,sl) =

[

P(W,Y9S1,S“)[-a(s”) v(w,w, Y,s”)

1
+ k(s-) y(W) ll(W,W,y) ds”

/

“o
= P(w,Y,sl,s”)

[

-a(s’) fl(s”)

-a

o

+ k(s”) y(W)
/ 1f1(s2) ~(w, w,y,s2)ds ds”
--m 2

0

/[

= fl(s-) -a(s”) p(w,y,sl,s’)

-*

/

o

+ y(w) ~(w,w, Y#) 1W2)P(w,Y,sl,s2) -ds2 ds- ●

-m

Finally using Lemma 7.1

fO [

u2(w,w,y,s1) =
1

fl(s”)

1

-a(s”) p(w,y,sl, s“)

-m

[/

m

+ y(w) 1 + P(W,y,S3,S-) ds
3

0 1

f’
x

1MS2) P(w,Y,s1,S2) ds2 ds- .
t-m

J

(7.33)

.

.
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We put our expressions for the two derivatives into equation (7.27)

which results in
6

L
o 0
fl(s-) * P(W,y,S1,S”) ds- =

[l

fl(s-) -a(sl) P(w,y,sl,s’)

-co

r~

[1+U=+ Y(w) 1 + P(W,Y,S2,S”) ds2

1

-a(s’) P(w,y,sl,s’)

o

\

[/

m

1/

o
+ Y(w) 1 + P(W,y,S3,S’) ds3

1

k(s2) P(w,Y,s1,s2) ds2 ds’

o -m

The value of fl(s) is arbitrary as far as the left-hand slab is con-

cerned, hence, we conclude in the usual way that

r
+P(wgYgs1gs2) =

I 1
L

- a(sl) + a(s2) p(w,y,s1,s2)+k(s1) y(w)

[

o

1[ ~

m
+ y(w) k(s3) P(w,Y,s@ ds3 1 +

1
f3(W,y,S4,S2) ds4 s

o

(7.34)P(YYY,S1,S2) = o ●

We can reduce this integro differential equation to a differential equa-

tion by using Lemmas 7.1 and 7.2. Applying the relation (7.3) yields
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a
~ P(%Y9S1, S2) = -

[ 1
a(sl) + a(s2) P(W$Y~S1,S2)

+ k(s) y(W)

and from (7.19)

~

o

1[ J

m

1+ 13(W,y, S3, S1) ds3 1 + p(W,y, S4, S2) ds4 ,

-m o

& P(w,y,sl,s2) = -
[ 1
a(sl) + a(s2) p(w,y,s1,s2)

+ k(sl) y(w) ~(w>w,Y,sl ) R#%%Yss~) $

P(Y,Y,S1,S2) = o s (7.35)

For y fixed this is an ordinary differential equation with constant

coefficients provided the R function is known. However, these values
R

are exactly those generated during the integration of the specialized

imbeddfng equations, so at least for y(z) a constant, equation (7.35)

can be integrated simultaneouslywith these equations.

To get a similar equation for t(z,y,s1,s2), we again use equa-

tion (7.25), but now with fl(s) equal to O, so that,

co

/

a(sl)(y-w)
U(w,w,y,sl) = h(s”) t(w,y,sl,s-) ds”+ h(sl) e (7.36)

o

and

[

m

u (%WYYS1) + u2(%%Y@ =
1

h(s”) & t(w,y,sl,s-) ds-

Jo.

a(sl)(y-w)
-h(sl) a(sl) e ●

82
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From the transport equation

Ul(w,w,y,sl) = -a(sl)

= -a(sl)

U(W,W,y,S1) + k(sl) y(W) ~(W,W,y)

a

[

a(sl) (y-w)
h(s”) t(w,y,sl,s”) ds” +h(sl) e

o

m

+’ W+ Y(w)
\

h(s’) R+W,Y,S”) ds”
Jo

= -a(sl) h(sl)

w

+ I h(s’)

o

+ k(sl) y(W)

and from equation (7.20)

Ul(w,w,y,sl) = -a(sl) h(sl)

+ W@ Y(w)

a(sl)(y-w)
e

[

-a(sl) t(w$y$sl$s-)

1
~(w,w,Y,s”) ds” ,

Co

a(sl)(y-w)
e +

JI

h(s’) -a(sl) t(w$y~slYs )

o

1]

[ea(s-)(y-w)+ft(w,y,s2,s)ds2 dS .

(7.38)
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The argument used to derive equation (7.32) still applies, but the

value of v (w,w,y,s)has changed, hence,
1

[

o
u (W,w,y,s ) = -
2 1. ~

V1(W,W,y,S”) P(W,y,S1,S”) ds”

[

o
= P(w,y,sl,$’)

[
-a(s”) v(w,w,y,s”)

J-a

1+ k(sf) 7(W) ~(W,W,y) ds”

o m

a I P(%Y,S1,S”) k(s-) y(W)
[ 1

MS2) ~(%W,s2) ds”
.OJ o

since

V(w,w,y,s ) = fl(s) = o

This gives finally

m

u2(w,w,y,s1) =

~[

h(s”)
ea(s”)(y-w) +

f
1

t(w,y,s2,s”) ds2

o 0

[1
o

x y(w)

1
W2) p(w,Y,s1,s2) ds2 de.’ ●

(7.39)

.m

Putting (7.38) and (7.39) into equation (7.37) and canceling the two

non-integral terms we arrive at
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/

m m

h(s-) & t(w,y,sl,s’) ds’ =

~1

h(s”) -a(sl) t(w,y,sl,s’)

o

+k(sl)y(w)[ea(s”)(y-w) +iot(wys3ys-)d.3]

+y(w)[ea(s)(y-w)+ ft(w,y,s4,s-)ds4]

I

o

x

1

k(s5) P(w,Y,sl,s5) ds5 ds”

-W

And by the usual argument, we have

[

a(s2)(y-w)
& t(w,Y,s@2) = -a(sl) t(w,y,s1js2) + e

r
+ t(w,y,s3,s2) ds

1
3

0

1-

/

0
k(sl) y(W) + y(W)

1
HS5) P(w,Y,s1,s5) ds5 .

-m

(7.40)

Again we can reduce this integro differential equation by using Lemmas

7.1 and 7.2 we obtain

[/

o

+~(w,W,y, S2) k(sl) Y(w) 1+
1

P(W,y,S5,S1) ds5 .

-m
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so

& t(w,y,sl,s2) = -a(sl) t(w,y,s@2)

+ k(s) y(W) ~(W,w,y@2) ~(w,w,Yssll s

t(Y,Y,sps2) = o . (7.41)

Like the equation for p(w,y,s1,s2), these equations can be integrated

simultaneouslywith the specialized imbedding equations.

We now need to obtain similar equations for r(z,x,s1,s2) and

@sx>s1$s2). Integration of these equations should start at w = z

and continue to w = x. When the necessary equations are derived we

discover that they are integro differential equations as are equations

(7.34) and (7.40),but they cannot be reduced by relations similar to

those in Lemma 7.2. The interested reader may find the derivations

in Appendix B.

It is still possible to solve the problem if we approach it in

a different way. We derive equations for r and ‘rfor integration from

w = x to w = z and use the symmetry properties of the R functions for

constant y(z) to carry out the integrations. The derivations parallel

those used to obtain equations (7.34) and (7.40), and the results are

.

.

.

.
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a~ r(wyX~s1Js2)= [ 1
a(sl) + a(s2) r(w$x}s1~s2) -

1-

!1+ r(w,x,s3,s2) ds3

o

1[(s,~y(w)+y~w)(k(s,)r(w,xYs,,s4)ds, ,

r(x,x,sl, s2) = O

and

a~ T(w, x,sl, s2) = a(sl) T(w, x,s ,S )
12

-[ 1“a(s2) (w-x) m
e + T(W,X,S ,S ) (Is

32 3
0

L

(7.42)

WI) Y(w)

T(K,X,S1,S2) =

1
We n te that these

exce t for a sign.

—
-1

0. (7.43)

two equations are identical to (7.34) and (7.40)

Using the results of Lemma 7.1 we find that

a
~r (W,X,S1,S2) =

[ 1
a(sl) + a(s2) r(w~xJs1ys2)

-k(sl) Y(w) R#J,&w,s2) R.@Wq)

and

* IJ(W,X,S1,S2 ) = a(sl) T(w,x,s1,s2)

(7.44)

-Usl) Y(w) R.&,%w,s2) R+x,w>sl) ● (7.45)

!
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If we can find a way to get the R function values needed, we can inte-

grate (7.44) and (7.45). We now investigate this problem.

Consider the two slabs shown in the figure below

I
I
I
I
I
1
I

z

Fig, 3

w, x
—

z

I
i
I
1

I
I
I

Integration on WI from z to x and on W2 from x

We assume that

-2=X-W
‘1 2“

The slab on the left represents the integration from z to x.

the direction used in Section VI to compute the R functions.

slab on the right represents the integration from x backwards

to z.

This is

The

to z.

What we want is to find expressions for ~(w2,x,w2,s) and ~(w2,x,w2,s)

in the right-hand slab in terms of the functions ~(wl,wl,z, s) and

R#rl,wl,z,s) which we compute for the left-hand slab. For the case

Y(X) = constant, the R functions at the edges do not depend on the

locations of z, WI, W2 and x, but only in the widths of the slabs.

Therefore, if

‘1-Z=X-W2 ‘

.

.

.

.

then the values at the left edges are the same. This means



RJz,wpz,s) = R#2,x,w2,s)

and

R. Jz,yz,d =R#2,x,w2,s) ●

Thus, it is possible to integrate the equations for r(z,x,s1,s2)

and T(z,x,s1,s2)backwards from x to z while simultaneously integrating

the special imbedding equations forward from z to x. When these identi-

fications are made in equations (7.44) and (7.45) and,

lation from Theorem 6.4,

R#9%Y>s) =~(Y,%Y>s) ,

is used we obtain equations identical to the equations

further the re-

fer p(z,y$s1ys9)
A-6

and t(z,y,s1,s2), except for a sign. Since the integration step is

negative, we finally find that we really have identical equations;

hence, the same algorithm which computes the kernels p and t may be

used to compute the kernels r and T.

The extension to the case where y(z) has n steps is now simple.

We first solve for the R functions and reflection and transmission

kernels for each section of the slab having a constant y value. We

denote the solutions pertaining to the jth value of p by the super-

9 P(J)
(j) “script (j). Thus, %

, t(j), etc. refer to the values of

~, p, t in the section of the slab in which y assumes its jth

value. Once the R functions and kernels are computed we then solve for

the values of the fluxes at the points of discontinuity of y. For

these fluxes we have the following integral equation set analogous

to equations (7.16):
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J
o

fl(s) =
r

f2(s”)t(2)(z2,z1, s,s”)d~+ h2(s”)P(2)(z2,z@ @)ds”

.C2. o

a(s) (Z1-Z2)
+ f2(s) e 9

/

o
‘1)(21,2.,

f

(%21,2.,h2(s) = fl(s”) p S,S”) ds”+ hl(s”) t S,S-) ds”

-m o

a(s)(zo-zl)
+ hi(s) e 9

.

.

.

.

\

o
f
n-l(s) =

fn(s”) t‘n)(Zn,zn_l,S,S”) ds-

[

m

a(s)(Zn_l-Zn)
+ hn(s-) &)(Zn,Zn_l,S,S’) ds’ + fn(s) e

rhn(s) = fn_l(S”) P(n-l) (zn_l,zn 2,s,s”) ds-
J -m

+
[

n_&-) t(n-l) (z.1,zn_2,S, S”) (k’h

o

a(s)(zn s-zn_l)
+ hn_l(s) e . (7.46)

In equation (7.46) we have set the known input fluxes to the composite

slab equal to hi(s) and fn(s) and also

r(z,x,s,s”) = p(x,z,s,s’) ,

.

.

.

.

T(z,x,s,s’) = t(x,z,s,s-) .
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After the

tions are

system (7.46) ha$ been solved, the integral equation solu-

obtained by carrying out the integration:

/

o

$(w) = cl)
fj(s”) ~ (w>zj>zj-l,s”) ds”

-m

co

+ I (j)hj(s’) ~ (w,Zj,zj_l,s”) ds’ s (7.47)

o

where it is assumed that

Swsz.‘j-1 “ j

In the next section we give some numerical examples of solutions

for both constant and step function y .

.
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VIII NUMERICAL RESULTS

We now turn to the

derived. We will first

numerical solution of the equations we have

give examples of how the computation is carried

out for the case

y(z) = constant

and then

The

z by the

step is

out the

forward

a step function.extend to the case where y(z) is

computation of the solution of equation (1.1) at the point

imbedding moment method takes place in two steps. The first

to find the R functions at z while the second step is to carry

integrations of equation (2.17). This latter step is a straight

application of standard integration techniques. We describe an

implementation of the first step in which multiple interior points are

calculated for a fixed s. Needless to say all s points could be obtained

either by calling the described routine several times or by writing the

program to also calculate all s values as well as all z values.

The required values of ~(zi,x,Y, s) and~(zi,x,y, s) are obtained

as follows. The infinite sets of moment equations (6.22a) and (6.22b)

are truncated at some predetermined number N and a value of s is chosen.

Then starting at y the truncated sets of specialized imbedding moment

equations (6.22a) and (6.22b) are integrated to

z , at which the solution to (1.1) is desired.
1

begin to integrate a truncated set of imbedding

the first interior point,

At this point we also

moment equations (3.11)

along with the imbedding equations (3.12a) and (3.12c). Here we should

note that it is unnecessary to compute R@,z,Y9s) since this value can

be obtained from the values computed for ~(y,z,y,s) by using

.

.
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Theorem 6.4. The initial conditions required for the new equations

are taken from the present values of Co(zl,y), ~(Z1,Z1~Y9S) and

~(zlszl,Yss) which are available from the solutions of the

original equation sets. At each succeeding z point, Zi, we pick up

a new truncated set of G moment equations and a new pair of imbedding

equations obtaining the initial conditions from the current values of

CO(zi,y), ~(zi,zi,y,s) and ~(zi,zi,y,s). The integration is complete

when the desired x value is reached. A flow chart of the calculation

is given below

Integrate (6.22) and (6.23) from w = ZO = y to w = Z1

I

Add equations (3.11), and (3.12) at w = Zi

and integrate to z
i+l

Integrate (2.17) for each Zi

Fig. 4. Flow chart for solution of equation (1.1) when y(z)
is a constant.

On completion the R function values are stored

repeated for other s values. The values given

and the procedure is

in Tables 8.1, 8.2,

8.3 and 8.4 below were computed with this algorithm. In the

examples, the integration was done using a fourth order Runge-Kutta-

Fehlberg routine. This is the subroutine RKF given in [9]. The
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initial

routine

In

conditions (6.22c) and (6.22d)were evaluated using the sub-

QNC7 [6]. All computations were done on a CDC 7600 computer.

order to make comparisons, a more standard solution algorithm

is required. An iterative method based on the Neumann series solu-

tion of (1.1) was used. The algorithm was

/

x

$j(z) = g(z) + ‘(2’2”)$ j-l(z-) ‘z’ ‘

Y

$1(2) = g(z) ●
(8.1)

QNC7 was used to compute the integrals needed to evaluate the kernel

K(z,z”). At each step in the iteration a multipoint Simpson’s rule was

used to evaluate the integral in (8.1). Iterations were stopped when

became less than a preset value.

Equation (8.1) can also be used to evaluate the R functions since,

for fixed s, they satisfy-integral equations of the type (1.1). It

should be noted that while the imbedding moment method allows the calcu-

lation of the solution at a single point without affecting the accuracy,

the iterative method must always compute the solution at a large number.

of

of

points.

The first numerical

the computed solution

experiment was to investigate the dependence

on the number of moments used: We give several

-lo
examples. In each an absolute and relative error of 10 was used to

.

.

control local error in the numerical integration. In the following

examples s is fixed at 0.5 and RJZ9X,Y,S) is calculated for five
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values of z.

Example I.

/

1

K(z,z”) = e-s[s-l ~-]s-[[z-z-[ ~s. ,

0

y = -1.0 ,

x= 1.0 ,

S= O.5.

Table 8.1 gives the values of ~(z,l,-1,.5) for this problem. Fourteen

moments are sufficient to obtain no further change in the tenth decimal

place. This example was checked out for a total of thirty moments.

Example II.

i

\

J.

K(z,z”) = o :,3,4 e-sin2s’lz-z’lds’ ,

Y= -1.0 ,

x = 1.0 ,

S= O.5.

Table 8.2 gives the results in this case. Thirteen moments were

sufficient to obtain no further change in the solutions.

Example III.

K(z,z”) e-s”2/o.4 e-is-l [z-z-l
ds“

Jo

y = -1.0 ,

x= l.O ,

s = 0.5 .
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.

.

.

.

The results are given in Table 8.3. Here fifteen moments are required

to reach no further change in the tenth significant figure.

It appears, at least for the examples considered so far, that the

moment method converges quite rapidly. A maximu of fifteen moments

was sufficient to obtain ten significant digits in all computed results.

Having examinedthis point we turn to the question of the accuracy

of the imbedding moment method. In Table 8.4 we list selected values of

~ for the kernel of Example I,computed by the iterative method des-

cribed earlier,as a function of the number of divisions used in the

Simpson’s rule integration. For this example we have reduced the z

interval by a factor of ten from that used in Example I; specifically

we treat the case

Example IV.

I
1

K(z,z”) =
-5
e

o

s--le-ls-l[z-z”lds. ,

Y= -0.1

X=o.1,

s = 0.5 .

We have used the smaller interval [y,x] because it is not possible in

the iterative calculation to store the matrix for

fineness of mesh on larger intervals. It will be

that the values obtained by the iterative method

to the imbedding moment values as the subdivision

K(z,z’) for equivalent

seen from Table 8.4

appear to be converging

becomes finer.

The differences in computation time are appreciable. The time re-

quired to compute the values by the iterative method ranged from 45
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seconds for 81 points to 278 seconds for 201 points. By contrast, it

required less than 5.5 seconds to compute the imbedding moment values.

This is not, however, a valid comparison since usually we require

not the solu”tionfor

tion (1..1). We wiU

When the kernel

the R functions, but rather for the integral equa-

make a better comparison later.

K(z,z”) is oscillatory, care must be taken when

evaluating it numerically. This problem can apparently be avoided by

using the imbedding moment method since the integrals required are for

the initial conditions only and these may not involve oscillations. We

give the following examples.

Y=-l.o ,

x = 1.0 ,

s = 0.5 ●

Example VI.

.

I
L

K(z,z-) =
e-5[s”] e-illos”l’ ‘

o

12-Z- I d5. ,

Y= -1.0 ,

x = 1.0 ,

s = 0.5 .

Table 8.5 gives representative

times required to compute 41 z

results. The

points by the

computation times are the

imbedding moment method.
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TABLE 8.5

VALUES OF RJz, x,Y,.5) FOR COMPLEX EXAMPLES V AND VI

Example V Example VI

z
% %?

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Real Part Imaginary Part

-1.27015 5927

-1.19886 3765

-1.12162 2242

-1.03941 6319

-0.95325 93876

-0.86418 20522

-0.77322 10302

-0.68140 82754

-0.58976 04572

-0.49926 89018

-0.41098 00948

Real Part.——

0.17997 37410

-0.11028 51397

C.98295 74648

1.08093 1388

1.16806 1621

1.24373 0120

1.39743 9640

1.35881 6818

1.39761 3741

1.42370 8010

1.43710 1336

1.43791 6727

1.42639 4345

time 1.489 sec time 46.131 sec

0.21600 17069

0.89002 72187

1.02228 9422

0.29454 55710

-0.68764 03659

-1.08685 2831

-0.62413 01549

0.32733 57243

-1.11974 1504

Imaginary Part.. -—.. .. —

-0.11603 84534

0.23978 71305

-0.32475 39841

-0.38928 04786

0.38787 80119

1.02671 4905

0.79690 15768

-0.07499 61802

-0.56065 26009

0.18440 11380

-1.04088 2114

.

-.
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The computation times show that we do not completely avoid the computa-

tional.problems associated with an oscillatory kernel.

We now consider examples when y(z) is a step function. The method

has been described in Section VII. Figure 5 is a general flow diagram for

the program used to compute the examples. This program computes only

one interior z point inside each step; this interior point could, of

course, be one of the discontinuity points of y(z).

Example VII.

e(z-l)_l 1“
@(z) =z_l +

[
K(z,z-) +(2’) dz”

‘-l.

[

1

K(z,z’) = Y(Z-)
e-5[s’l e-ls-llz-z”l ds.

o

I1. , 2<0

y(z) =
1.5 , 2>0

Note that here the function g(z) is given by the transform

that is the

1e(z-l)_l 1
e-ls-llz-ll=

z- 1 ds” ,

0

f(s) in equation (2.10) is 1 and h(s) is zero.

9

s (8.2)

(8.3)

103



I

1

Integrate (6.22), (6.23) along with (7.44) and

(7.45) for all s values required fromw = Zi ~

tow=z
i-interior

1

add (3.12), (2.28) and (2.29)

integrate from w = Zi interior to w = Zi

I

no

.=i+l

1 Iteratively solve (7.46) I
I
I

Integrate (7.47) for each zi_interior
I

Fig. 5. F1OW chart for the solution of equation (1.1) when Y(z)
is a step function.

.

.

?

.



An 81 point Simpson*s rule was used to compute the iterative solution

of (8.1) while a 41 point Simpsonts rule was used for the iteration

required to solve equations (7.16). Since the range of z is two while

the range of s is only one, this should yield comparable accuracies.

Table 8.6 gives the results for two internal points.

TABLE 8.6

SOLUTIONS OF (8.2) BY THE IMBEDDINGMOMENT METHOD AND BY ITERATIVE METHOD

Imbedding-Moment Iterative

z= (-.5) 1.0556315 1.0556368

z= (.5) 1.3487203 1.3487364

time 8.368 sec 54.706 sec

The times in Table 8.6 are representative of the total procedure for a

step function. If y(z) is a constant function the imbedding-moment

method solution can be computed in about half the time while the itera-

tive method time will remain about the same.

As a further example of the method when y(z) is a multiple step

function we compute the solution to (8.2) with y(z) given by

Example VIII.

1. , ‘l~Z< 1.8

1.1 , -.8< z< -.5

1.2 , -.5s2 <0.
y(z) =

1.3 , o.~z<04

1.4 , ().4<2<,7

1.5 , 0.7s2’=10 (8.4)
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Table 8.7 gives the values of $(z) for six z points computed using the

imbedding-momentmethod, an 81 point Simpson’s rule iterative method

and a 241 point Simpsonfs rule iterative method.

TABLE 8.7

SOLUTIONS OF (8.2) WITH y(Z) GIVEN BY (8.4).

$(2) (j(z) $(z)
z i.m. 81 point 241 point

-o 9 .96128723 .96129136 .96128565

-o6 1.03355743 1.03356202 1.03355607

-o1 1.16411936 1.16412452 1.16411831

.2 1.25087242 1.25087766 1.25087140

.5 1.34621973 1.34622488 1.34621865

.8 1.45254806 1.45255298 1.45254690

Time 11.620 sec 51.177 sec 452.758sec

The examples given above in which time comparisons are made show

that the imbedding moment method can offer substantial savings over the

iterative method. It should be pointed out that in each comparison it

was assumed that it would be necessary to integrate the kernel numeri-

cally. Since only a small fraction of all admissible kernels are

integrable in closed form, this is a valid comparison. However, if the

kernel can be evaluated analytically, the iterative method may be

faster of the two methods,
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Ix REMARKS

In this dissertation we have developed a method to solve Fredholm

integral equations with a special class of displacement kernels as ini-

tial value problems. The method has been shown to be both accurate and

economical. One of the incidental’resultsis the demonstration that

the kernels of the reflection and transmission operators can also be

obtained as the solution of initial value problems for the class of

problems treated.

There remains one major unresolved question. That is: can the

moment method be adapted to the general case where y(z) is a piece-

wise continuous function? It may be possible to utilize the existence

of solutions for a step function y(z) to prove the existence for this

general case. Even with this settled the problem of developing an

economical integration algorithm could be formidable.
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APPENDIX A

Further Examination of the Moments

This Appendix is a continuation of Section IV. We first establish

two lemmas.

Lemma Al. Under the assumptions of Lemma 4.1

Go(z,x,y) = Q(z,x,x,y)/y(x) , (Al)

Go(z,x,y) = Q(&z,x,Y)/y(z) , (A.2)

.
HO(z,x,y) ‘Q(z,Y,x,Y)/Y(Y) , (A.3)

HO(z,x,y) = Q(Y,z,x,Y)/Y(z) . (A.4)

Proof: Equation (Al) follows from Lemma 4.1 and the definition of

GO(z,x,y), equation (3.6). Equation A.2 then follows from A.1 by an

application of the exchange property (4.1). The other two equations

are proved similarly.I

Lemma A.2. The derivatives of the resolvent kernel of the integral

equation (1.1) are given by

n a

~nQ(t~r~Ey) = {
)/

-a(s”)It-r]ds.
sgn(r - t) n y(r) an(s”) k(s’) e

o

x

+ y(r)
j{

sgn(z’ - t)
)
n Q(r,z’,x,y) ds”

Y

x I ‘- -a(s’)lz“-tl ds .an(s”) k(s”) e
./
-o

(A.5)

Proof: We use the Fredholm relation (4.7) to obtain

108



I
cm

Q(t,r,x,y) = y(r) k(s’) e
-a(s’)lt-rl ~s.

o

[

x

[

co

+ Y(z”) Q(z’,r,x,y) dz”
k(s.)-a(s-)lz”-tl ds.

●

J J
Y o

Differentiating gives

co

~Q(t,r,x,y)=
{ 1/

-a(s”)lt-rl ds.y(r) sgn(r - t) n an(s”) k(s’) e
at

o

/

x

+ p(s-){=-vY(z”)’ Q(z”,r,x,y) dz”

Y o

k(s’) e-a(s-)/z“-tl ds. .

Applying the exchange relationship to the last term, we have

m

an

{
~1

—Q(t,r,x,y) = sgn(r-t) n y(r) -a(s-)lt-rl ds.
an(s-) k(s”) e

atn
o

I
x

“+ y(r)
{ }

Q(r,z’,x,y) sgn(z” - t) n dz’

Y

[

x an(s”) k(s”) e-a(s’)lz‘-tl ds. ,

0

which is equation (A.5).I
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The proof of Lemma A.2 shows that the nth partial derivative of

the resolvent kernel exists whenever its associated integral equation

has a kernel of the form (1.lb). Since the resolvent kernel is piece-

wise continuous in the variables t, x and y (Lemma 2.2) and the right

member of equation A.5 involves only the integral of the resolvent

kernel, we can conclude that the nth partial derivatives are also

piecewise continuous with respect to t, x and y.

Corollary A.3. The A and B moments are related to the resolvent

kernel by the equations,

an
—Q(t,r,x,y)
atn

an
— Q(t,r,x,y)
atn

= (-l)ny(y) An(X,Y) .
r ‘Y
t=x

r =x = Y(X) Bn(X,Y) .

ty=

(A.6)

(A.7)

.

.

Proof: Evaluate equation (A.5) at r = y and t = x. Since sgn(y - x) = -1

and sgn(z” - x) = -1 for all z , we have
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\/

w

an
— Q(t,r,x,y) r = y= ( -l)n Y(y)

-a(s’)(X-y) ~~.
an e

atn
t =x o

I
co

/

x

+- an(s”) k(s”) ds- Q(Y,Z-,X,Y) ea(sO)(z”-X) dz.

o Y /

/

co

= ( -Un Y(y) an(s’) k(s-) ds”
-a(s”)(x-y)

o

/

x

+ Q(Y,z”,x,Y) e
a(s’)(z”-x) dz.

I

●

Y

The quantity in the curly bracket is \(Y,x,Y, s”), (see equation (2.15) ,

so

/

m
n

~ Q(t,r,x,y) r=y = ( -I)n y(y) an(s”) k(s”) ~(y,x,y,s”) ds”

t =x o

= ( -l)ny(y) An(X, Y)

using the definition of An(x,y). Relation (A.7) is proved in a similar

manner. I
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Corollary A.4. The G and H moments are related to the resolvent kernel

by the equations,

an
—Q(t,r,x,y) ~ .x= (-l)n y(r) Gn(r,x,y) , (A.8)
atn

an
—Q(t,r,x,y) t =Y = y(r) Hn(r,x,y) .
atn

(A.9) -

Proof: Since sgn (z” - x) = sgn(r - X) = -1, at t = x equation (A.5) .

yields

I/man
—Q(t,r,x,y) t =x= ( -l)n y(r) an(s”) k(s”) ea(s-)(r=) ds.

atn
o

/

[

x

I
m

+ Q(r,z’,x,y) dz- an(s-) k(s-) e
a(s-)(z”-x.)ds.

Y o 1

I
m

= ( -I)n y(r)

I

an(s”) k(s) ds” e
a(s”)(r-x)

o

1

x

+ Q(r,z-,x,y) e
a(s’)(z”-x) dz.

Y I
I

m

= ( -l)n y(r) an(s’) k(s-) ~(r,x,y,s”) ds”

o

= ( -l)n y(r) Gn(r,x,y) .

Relation (A.9) is proved similarly.1
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. . .-—. -
- D moments and the resolvent kernel arecorollary A.5. ‘l’heG and

related by,

an
—Q(t,r,x,y)
atn

= (-l)n y(x) Cn(x,y) ,
r =x
t =x

(A.10)

an
—Q(t,r,x,y) r = y= y(y) Dn(x,y) . (All)
atn

t=y

Proof: Equation (A.1O) follows from equation (A.8) since Gn(x,x,y) =—.

Cn(x,y). Equation (Aill) is obtained from equation (A.9) by setting

r = y, since Hn(y,x,y) = Dn(x,y).~

We can get further insight into the relationship

solvent kernel and the various moments by considering

series expansions of the resolvent kernel for special

between the re-

the TaylorJs

values of the

arguments. It is easiest to discuss this as if y were the left edge

of an imaginary slab and x the right edge. We fix x and y, and ask for

the Taylorfs expansion for the kernel when one of the usual kernel vari-

ables is fixed at one of the edges. For these cases the kernel is a

function of a single variable and this variable, is in effect, the dis-

tance from the left or right side of the slab.

We start with Q(z,x,x,y) expanded about the left side.

The Taylorfs series is:

m

x
Q(z,x,x,y) = ~~ Q(z,x,x,y)

. azn zI =Y(z-y)n “
n=O
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Using (A.4), we find that

w

Q(z,x,x,Y) =

Using the exchange relation

y (x) z ~Bn(x,y)(z - y)n ..
*=O

(4.1), we also have

w

Q(x,z,x,Y) =

If instead, we expand about

m

y(z) x~Bn(x,y)(z - y)n .

*=O

the right edge, we obtain

zQ(z,x,x,y) = ‘~@,x,x,y)n!
aZn z =X(z-x)n

n=O

and using (A.1O) we have the two relations:

m

E ( -1)*
Q(z,x,x,Y) = Y(X) — Cn(x,y)(z - X)n ,n!

*=O

and

Q(x,z,x,Y) = Y(Z) L‘,+ Cn(x,y)(z -X)n .

n=()

We can obtain similar expressions for Q(z,y,x,y) and Q(y,z,x,y).

Since

(A.12)

(A.13)

9

(A.14)

(A.15)

we have
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mDn(x,y)

z
Q(z,y,x,y) = y(y) — (z -y)nn!

n=O

and

mDn(x,y)
Q(Y,z9x,Y) = y(z) x

(z -y)n .n!

(A.17)

(A.18)

n=O

Also, since

+ 1 L Q(z,y,x,y) ~. ~ (z - x)n ,Q(z,Y,x,Y) =&~ (A.19)
aZn

n=O

it follows that

co

Q(z,y,x,y) = y(y)z + An(x,y)(z -X)n.
n=O

(A.20)

and

m

Q(Y,z,x,Y) = Y(Z) x+ An(x,y)(Z - X)n . (A.21)

n=O

The equations above also give relations between the moments in the

specialized imbedding moment equations and between the moments of the

imbedding moment equations. For example, using Corollary 4.2, we find

that

m

x ( -l)n
Go(z,x,y) = — Cn(x,y)(z - X)n ,n!

n.o

a

Go(z,x,y). = x~Bn(x,y)(z - y)n ,

n=O

(A.22)

(A.23)
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m

HO(z,x,y) =
x ~ An(X,Y)(z - X)n.
n=O

and

m

Ho(z,x,y) =
E

fiDn(x, y)(z - y)” .

n=O

(A.24)

(A.25)

Equating (A.12) and (A.14) we find

co co

z +’Cn(X,Y) (Z- X)n=~~Bn(X,Y)(Z ‘y)n . (A.26)
.

n=O n=O

Setting z = x and then z = y gives the following two relations;

m

Co(x,y) = z + Bn(x,y)(x - y)n ,

n=o

m

Bo(x,y) =
z

* Cn(x,y)(x - Y)n ●

(A.27)

(A.28)

,

n.o

Similarly equating (A.17) and (A.20) give

m m

x +An(X,Y) (Z- X)n=~+Dn(X,Y)(Z ‘Y)n (A.29)

n=O n.o

and the two derived relations;

m

Ao(x,y) =
x ~Dn(X~Y)(X - y)”

n=O

and
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a.

DO(x,y) =
x

~An(x, y)(x - y)n . (A.31).
*.O

In fact we can get expressions for all the moments from equations

(A.26) and (A.29). Differentiating (A.26) with respect to z, and

setting z = x, produces

Ce

(-l$’ck(x,y) =
x

n(n-l). oo(n-k+ 1)
Bn(x,y)(x - y)n ,n! (A.32)

n.k

and setting z = y produces

Bk(x,y) =
x

n(n -1)...(k+l)l)
Cn(x,y)(x - y)n .*!

n=k

(A.33)

Similarly from

( -l)kA@c,Y)

(A.29)

m

z
n(n - 1).o.(n- k+l)Dx )(x-y)* ,=

n! *( ,y (A.34)

n=k

m

Dk(x,y) =
z

n(n -1). ..(k+l)l)
An(x,y)(x - y)n .n!

n=k

(A.35)

The relations for the resolvent kernel suggest an alternate method

of calculating the R functions. We start from the definition of

R&,x,y,s),

1
x

~(zjx,y, s) = es(s) ‘z-x)+ Q(z,z’,x,y) ea(s)(z”-x) dz . (2.15)

Y

Evaluating equation (2.15) at z = x and using equations (A.13) and (A.15)

gives
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RJx,x,y,s) = 1 + [xy(z-)~(;;)ncn,x,y),z._x,n Jddw-x, ~z.

“Y n=O

(A.36)

and

R#c,x,y,s) ‘1+~y(z”)~+Bn(x9y)(z--‘)nea(s)(z’-x)‘z ●

Y =

(A.37)

On the other hand, evaluating equation (2.15) at z = y and using expres-

sions (A.18) and (A.21) yields

I$Jy,x,y,s) = (w (y-x)

‘Jxy(zO)~*Dn(x$y)( z-- ‘)nea(s)(z”-x) ‘z
Y n.()

(A.38)

and

~(YsX$Y, S) = es(s) ‘y-x)

+/x~&+ ‘n(xsy)(Z” - X)nes(s)(z‘-x) dz .

Y n=O

(A.39)
From the definition of R&,x,y,s),

1
x

~(.sX,y,S) = es(s)‘y-z) +
Q(ZS.”,X,Y) ea(s) (y-z”)dz’ (2.16)

Y
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we obtain in a similar fashion the four relations:

R.&;x,y,s) = ~a(s)(y-x)

[

x

f- -1” a(s)(y-z”) ~z. ,+ Y(z”) J+MX,Y)(2” - x)n e.

‘Y n=O

(A.39)

~(X,X,y,S) = es(s)‘y-x)

+ /xY(z,~*Bn,x,y,(z. -Y,n ,a@)(Y-z-) ,,0,

‘Y n=O

(A.40)

~(y,x,y, s)
‘l+J’’y(zO)~%Dn(xSy) (zO-y)nea(s) (y-z”) ‘z- s

Y =

(A.41)

and

~(y,x,y, s) =l+fy(+w ‘n(x$y)(z--x)nea(s)(y-z”)‘z-o
Y =

(A.42)

If it is assumed that these series can be integrated term by term,

then all the edge values of the R functions can be obtained directly

from a knowledge of either the An(x,y) and Cn(x,y) or of Bn(x,y) and

.n(x,y) by summing a series of integrals. Since the values of the R

functj.onsare wanted for several values of s, this technique might repre-

sent a saving of computational effort.
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We have carried out a number of formal operations on various

power series. In Section V we have shown that these power series have

at least radius of convergence X - Y. It then follows that there exists

some region in which the Taylor’s series for the resolvent kernel

converge and in which term by term integration and differentiation

are legitimate.
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APPENDIX B

Derivation of The Equations for r(z,x,sl,s2) and T(z,x,s1,s2)

In this appendix we derive the forward integration integro

differential

transmission

in beginning

We take

equations for the r~flection kernel r(z,x,s1,s2) and the

kernel T(z,x,s1,S2). In the following we are interested

the integration at w = z and integrating to w = x.

as our starting point the following equation which iS

obtained from equation (7.9a) and the definitions of r and T:

/

o a(sl)(z-w)
V(z,w,z,sl) = f(s”) T(z,w,sl,s”) ds-+f(sl) e

-w

/

m

+ h2(s0) r(z,w,sl,s-) ds”

o

We first set

so that

f(s) = o

m

V(z,w,z,sl) =

/

h2(s”) r(z,w,sl,s”) ds’

o

and

(B.1)

(B.2)

/

a

V2(Z,W,Z,S1) = h2(s’) & r(z.w,sl,s”) ds’ . (B.3)

o

We use equation (7.31) to get an expression for v2(z,w,Z,81).

This time we find from equation (7.6)
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\

o

V2(Z,W,Z,S1) = k(sl) ‘V (W,W,Z,S”) ds”
1

-w

w

/

a(sl)(z-z”)
x y(z”)e ~(Z’,w,Z, S’) dz”

z

a(sl)(z-w)
-Vl(W,W,Z,Sl) e

using (7.15)

(B.4)
.

,

0

V2(Z, W, Z,S1) =
[[ 1‘V (W,W,Z,S4) T(Z,W,S , SO) ds’

1 1
-m

a(sl)(z-w)
-Vl(W,W,Z,Sl) e

and using the transport equations

“o

V2(Z,W,Z,S1) =
\

T(z,w,sl,s’)
[ -a(s”) v(w,w,z,s’)

-m

1+ k(s”) y(W) ~(W,W,?) ds- +
[
-a(sl) v(wgwgz,sl)

1
a(sl)(z-w)

(B.5)+ k(sl) Y(W) n(w,w,z) e .

But

and
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V(w,w,z,s) = f(s) = o

f
ll(w,w,z)= h2(s0) R.@W’J,Z,S”) ds’ . (B.6)

o

●

✎



so

o

v (Z,w,z,s ) =
2 1

f
dz,W&s2) k(s2) Y(w) ds2

_m

J
co

x h2(s”) R#J,W,Z,S’) ds-

0

/

a(sl)(z-w) m
+ k(sl) Y(W) e h2(s0) R.#J,w,Z,S’) ds”

o
m

([

a(sl)(z-w)
= h2(s”) k(sl) Y(w) ~(w, w,z,s”) e

-o

\

o

+~(w,w,z, s’) y(w) 1k(s2) ~(z,w,s@ds2 ds” .
-m

Putting this in equation (B.3) we find

/

m

hp(s’)~ r(z,w,sl~S’) ds-

o-
m

f[

a(sl)(z-w)
. h2(s”) k(sl) y(w) ~(w,w,z,s’) e

“o

/

o

+RJ%%z, s”) y(w) 1k(s3) ~(Z,W,S1,S3) ds3 ds”

-m

and by the usual argument

A

[

a(sl)(z-w)
=$r(z,w,s1,s2) = ~(w,w,z,s2) Y(W) k(sl) e

+ Y(w) rk(s3) T(z,w,s1,s3)

-co

To reduce this further we need relations

7.2 for T(z,w,s~,S2) but such relations do

1ds3 . (B.7)

similar to those in Lemma

not appear to exist.
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d

a

We now derive a similar equation for -T(Z,W,S1,S2).

Againwe use (7.39) but with

h2(s) = O .

Thus

/

o
a(sl)(z-w)

V(Z,W,Z,SJ = f(s”) & T(Z,W,S# ds 9“ + f(sl) a(sl) e

-m
(B.8)

/

o
a(sl)(z-w)

v (Z,w,z,s ) = f(s’) &j ~(ZJW,S1,S”)ds”2 1
- f(sl)a(sl) e .

-co
(B.9)

The expression for V2(Z,W,Z,S1) is obtained as before and is equation

(7.56), however, we now have

V(w,w,z,s) = f(s)

[

.

V(w,w,z,s) = f(s”) ~(W,W,Z,S’) ds” . (B.1O)

so

/

o
V2(Z,W,Z,S1) = T(z,w,s ,s”)

1
[

-a(s~) f(s-) + k(s”) Y(w)
03

I

o

1

f(s2) ~(w,w,z,s2) ds2 ds-
-m

a(sl)(z-w)
- a(sl) f(sl) e

a(sl)(z-w) O
+ k(sl) Y(w) e

J
f(s2) RJw,w,z,s2) ds2

-co

or
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a(sl)(z-w)
V2(Z9W,Z,S1) = -a(sl) f(sl) e

o

J[

+ f(s’) -a(s”) ~(z,w,sl,s )

-m

/

o
+ y(w) ~(w,w, zgs’) k(s2) ~(Z,w,s@ ds2

-m

a(s.)(z-w)1.1. . .

+ Y(W) ~(WjW~Z~S’) k(sl) e

I

ds”

putting this in (B.9), canceling the

the usual argument leads to

-1

non-integrated term and using

a(s,)(z-w)

a T(Z,W,S1,S2) = -a(s2) T(z,w,s1,s2)
-%

-t-y(w) R.JW,W9Z9S2)

[

k(sl) e A

I

o

+ 1k(s3) T(z,w,s1,s3) ds3 (B.11)

-w

The same integral is seen to occur in this equation as appeared in

(B.7). A search for exchange relations for the transmission kernels

similar to those given in Lemma 7.2 was unsuccessful.
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