CIC-14 REPORT COLLECTION REPRODUCTION COPY

YØKIFER:
A Two-Dimensional Hydrodynamics and Radiation Transport Program

An Equal Opportunity Employer

Work performed under the joint auspices of the US Atomic Energy Commission and the Defense Nuclear Agency.

YøKIFER: A TWO-DIMENSIONAL HYDRODYNAMICS AND RADIATION TRANSPORT PROGRAM
by

INTRODUCTION

$Y \not \subset$ KIFER solves the coupled hydrodynamics and radiation transport problem in twodimensional cylindrical ($\mathrm{R}-\mathrm{Z}$) geometry. It is written in Fortran IV and is run under the CRøS system on the CDC-7600 computer. A few subroutines are written in CøMPASS.

This report has been written for those using the program and is limited to a description of the program and its operation. Persons interested in details of either the physics or the numerical methods involved are directed to the following references.

The hydrodynamics problem is solved by the ICED-ALE method of the YAQUI program. Reference 1 is the basic reference for the hydrodynamics. The radiation transport problem is solved by either the Monte Carlo or S_{n} method for which references 2 and 3 , respectively, are the basic references.
I. OVERVIEW OF THE YøKIFER PROGRAM AND DESCRIPTION OF THE MAIN PROGRAM
This section describes the YøKIFER Program as a whole and the main overlay. Also
described are subroutines and calculations applicable to the entire program.
A. Program Organization

The program consists of the main program, YøKIFER (Overlay 0,0) and four primary overlays.
1,0 ØFFWEG \varnothing Input and Problem Setup
2.0 YøKKY Hydrodynamics
3.0 MCRT Radiation Transport (Nongrey, Monte Carlo)
4,0 GREYSN Radiation Transport (Grey, S_{n})
Appendix A contains a list of overlays and subroutines, a list of the common blocks and the overlays in which they are used, and a list of the file sets that YøKIFER uses. B. Input

There are two different forms of input to YøKIFER. The input reading is controlled by Sense Switch 1 .

Bubble input	Sense Switch 1	ON
Purd input	Sense Switch 1	OFF (default)

Bubble input is produced by rotating the results of a one-dimensional starter calaulation
(e.g. RADFLø) through 90° to produce bubble input cards. Appendix A lists the required input cards. Purd input will be described in a separate report. C. General order of Calculations

Calculations proceed in the order shown schematically in Fig. 1 :

The selection of Monte Carlo or S_{n} radiation transport calculations is governed by Sense Switch 2.

Monte Carlo Sense Switch 2	ON	
S_{n}	Sense Switch 2	OFF (default)

YøKIFER is the main program, which calls the primary overlays, writes data on Fileset 7, and produces dump tapes at regular intervals.

1. Variables Computed by YøKIFER

TrL Time limit on the job card (s).
Tl $\quad C P$ time at the beginning of the cycle (s).
T2 CP time at the end of the cycle (s).
TCYCLE Length of a calculation cycle (s). TCYCLE $=T 2-T 1$
TDUMP Length of computing time until the next release (stage) of Fileset 7 to tape (s).
NDUMP Number of 60-bit words written on Fileset 7.
2. Dump Procedure

Data are copied to Fileset 7 before YøKKY is entered whenever the problem time is greater than the problem output time TøUT. (The determination of TøUT is de-
scribed in Sec. E.7.) Periodically, Fileset 7 is released from disk to magnetic tape. A new, blank tape is used each time. Initially, TDUMP is set to 900 CP seconds, or TTL, whichever is smaller. After each cycle is calculated, TDUMP is reduced by TCYCLE. Fileset 7 is released to tape whenever TDUMP $<2 \times$ TCYCLE. After each tape stage, TDUMP is reset to 900 s or TML-T2, whichever is smaller.

Initially NDUMP is set to 0 . When data are copied to Fileset 7, NDUMP is incremented by the approximate number of words dumped. When NDUMP $\geq 10^{6}$, Fileset 7 is dumped to tape and NDUMP is reset to 0.

Each dump tape contains all data copied to Fileset 7 since the previous dump tape was written.
E. General Topics
I. YøKIFER Mesh

The YøKIFER mesh is a two-dimensional grid, in $\mathrm{R}-\mathrm{z}$ cylindrical geometry. (The hydrodynamics program is written to handle $X-Y$ cartesian geometry also, but the radiation transport programs cannot do this.) Each cell is a volume of revolution about the z axis with a quadrilateral cross section. (Initially, the cross sections are rectangular, but not necessarily of uniform size.) Because no physical variables depend on a third coordinate, the mesh can always be represented two-dimensionally by a grid in the R-Z plane.

The mesh consists of IBAR cells in the radial direction and JBAR cells in the axial direction, and the left boundary is the cylindrical axis. These cells are called the "real mesh." For computational purposes, a single row of dummy cells is added at the bottom, on the right, and at the top, for a total of IPI $=$ IBAR +1 cells radially and $J P 2=$ JBAR +2 cells axially. The maximum allowable value of IBAR and JBAR is 100. The maximum number of cells (including dummy cells) is 7200.
I is the radial cell index, $I \leq I \leq I P I ;$ and J is the axial cell index, $1 \leq J \leq J P 2$.

The single computationally equivalent index, IJ, is frequently used:
$I J=(J-1)(I P I)+1$.
The cell index I, J, or $I J$ refers to the lower left-hand vertex of the cell. Figure 2 shows the basic mesh conventions. Because cell and vertex properties depend on the properties of neighboring cells and vertices, a standard notation has been developed to describe the neighbor cells
(Fig. 3). The coordinate positions of the vertices are given by

$$
\begin{array}{ll}
X_{i j} & \text { Radial coordinate of vertex } i j \\
\mathrm{Y}_{\mathrm{ij}} & \text { Axial coordinate of vertex } i j \\
\mathrm{R}_{\mathrm{ij}} & \text { Geometry indicator. } \mathrm{R}_{i j}=\mathrm{l} \text { for } \\
& \text { slab geometry, } R_{i j}=\mathrm{X}_{i j} \text { for cylin- } \\
& \text { drical geometry. }
\end{array}
$$

The mechanics of setting up a mesh are described in Sec. II.

Fig. 2. The basic mesh conventions.

$I-1, J+1$ IMJP	I, J+1	$\begin{gathered} \text { I+1,J+1} \\ \text { IPJP } \end{gathered}$
$\begin{aligned} & 1-1, J \\ & \text { IMJ } \end{aligned}$		$\begin{gathered} \mathbf{I}+1, \downarrow \\ \text { IPJ } \end{gathered}$
I-1,J-1 IMJM	$\begin{gathered} \text { I.J-1 } \\ \text { IJM } \end{gathered}$	$\begin{gathered} \text { I+1.J-1 } \\ \text { IPJM } \end{gathered}$

Fig. 3. Neighbor cell notation.

2. YøKIFER Mesh Variables

The principal mesh variables used
throughout the program are described below. Other mesh variables are used locally within the program and are described by comments at the places where they are used.

$S I E_{i j}$	Specific internal energy at the center of cell ij (J / mg).
$\mathrm{TEMP}_{i j}$	Temperature at the center of cell ij (eV).
$R \varnothing_{i j}$	Density at the center of cell ij ($\mathrm{mg} / \mathrm{cm}^{3}$).
$\mathrm{P}_{\text {i }}$	Pressure at the center of cell ij (MPa).
$U_{i j}$	Radial fluid speed at vertex ij (km/s).
v_{ij}	Axial fluid speed at vertex ij (km/s).
$\mathrm{RV}^{\text {¢ }} \mathrm{L}_{\text {ij }}$	$2 \pi /$ volume of cell ij, in cylindrical geometry ($1 / \mathrm{km}^{3}$).

3. Storage of Mesh Variables

Because SCM is not large enough to contain all of the mesh data, most mesh variables are stored in LCM and periodically read into $S C M$ (usually) three rows at a time. $N Q$ words are provided for each cell, and the mesh data needed for any given cell are therefore stored in $N Q$ adjacent locations. At present, $N Q=18$. Appendix A contains a tabulation of the cell variables stored in the $N Q$ locations for different parts of the program. Mesh data are written into
and out of LCM by subroutine LøøP (Sec. F. l.) for one entire row of cells at each call.
4. Y \varnothing KIFER Units

Unless otherwise indicated, the units of all YøKIFER variables are as follows.

Time	s	
Length	km	$\left(10^{5} \mathrm{~cm}\right)$
volume	km^{3}	$\left(10^{15} \mathrm{~cm}^{3}\right)$
Velocity	$\mathrm{ken} / \mathrm{s}$	$\left(10^{5} \mathrm{~cm} / \mathrm{s}\right)$
Acceleration	$\mathrm{kem} / \mathrm{s}^{2}$	$\left(10^{5} \mathrm{~cm} / \mathrm{s}^{2}\right)$
Density	$\mathrm{mg} / \mathrm{cm}^{3}$	$\left(10^{-3} \mathrm{~g} / \mathrm{cm}^{3}\right)$
Energy	J	(10 ${ }^{7}$ ergs)
Specific energy	J / mg	(10^{10} ergs/g)
Energy density	J/km ${ }^{3}$	$\left(10^{-8} \mathrm{ergs} / \mathrm{cm}^{3}\right)$
pressure	$\mathrm{mg}-\mathrm{km}^{2} / \mathrm{cm}^{3}-\mathrm{s}^{2}$	$\left(10^{7}{ }^{\text {dynes } / \mathrm{cm}^{2}}{ }^{2}=\mathrm{MPa}\right.$)
Temperature	ev	(11 605.4 K)
Absorption coefficient	km^{-1}	$\left(10^{-5} \mathrm{~cm}\right)$
Frequency	s^{-1}	

The physical constants used are:
$c=$ speed of light $=3.0 \times 10^{5} \mathrm{~km} / \mathrm{s}$,
$a=$ radiation density constant $=137.214$
$\times 10^{8} \mathrm{~J} / \mathrm{km}^{3}-\mathrm{ev}^{4}$.
5. Equation of State and Opacity Data

The equation of state and opacity data are read from Fileset 6:

NøPT

NøPD

NFRQ

FREQ (K)
\emptyset PTMP (I) $\quad \log _{10}$ temperatures (eV) for which data are tabulated. $I=1$, NøPT, in order of ascending temperatures.
ØPDEN (J) $\log _{10}$ densities ($\mathrm{g} / \mathrm{cm}^{3}$) for which data are tabulated. $J=1$, NøPD, in order of increasing densities.
$\emptyset P S I G(K, I, J) \quad \log _{10}$ absorption coefficients ($1 / \mathrm{cm}$). $\mathrm{K}=1$, NFRQ; $I=1, N \not \subset P T ; J=1$, NøPD.
$\operatorname{SPTBL}(I, J) \quad \log _{10}$ Planck mean absorption coefficients ($1 / \mathrm{cm}$). $I=1, N \not \subset P$; $J=1, N \not \subset P D$.

SPTBL(I,J)
$\log _{10}$ Rosseland mean absorption coefficients ($1 / \mathrm{cm}$). $\mathrm{I}=1$, NøPT; $J=1$, N $\emptyset P D$.
The mean absorption coefficients YøKIFER uses are controlled by Sense Switch 3.
Planck mean Sense Switch 3 ON Rosseland mean Sense Switch 3 OFF
(default)
$\operatorname{PTAB}(I, J) \quad \log _{10}$ pressures (dynesfom ${ }^{3}$). $I=1, N \varnothing P T ; J=1, N \not \subset P D$. $\log _{10}$ specific internal energies (ergs/g). $I=1$, NøPT; J = 1, NøPD.
$\operatorname{BTBL}(I, J) \quad$ Radiation derivatives, $=$ วрI/ $\partial a T^{4}$. $I=1$, NøPT; $J=1$, NøPD.
The data are arranged on the tape in a single file. (NWL is the number of words in the record, and it is not needed by the program.)

Record 1 NøPD, NøPT, NFRQ
Record 2 FREQ
Record 3 NWL, \varnothing PTMP (1), ØPDEN(1), \varnothing PSIG (K, I, I)
Record 4 NWL, \varnothing PTMP (2), $\varnothing \mathrm{PDEN}(1)$, \varnothing PSIG (K, 2, 1)
Record 5 NWL, \varnothing PTMP (3), $\varnothing \operatorname{PDEN}(1)$, \varnothing PSIG ($\mathrm{K}, 3,1$)

Record 272 NWL, $\emptyset \mathrm{PTMP}(\mathrm{N} \varnothing \mathrm{PT}), ~ \emptyset P D E N(N \varnothing \mathrm{PD})$, øPSIG (K,NøPT,NøPD)
Record 273 SPTBL (Planck)
Record 274 SPTBL (Rosseland)
Record 275 PTAB
Record 276 ETAB
Record 277 BTBL
6. Time and Time Interval Calculations

The program is permeated by the messy calculation of problem times and time intervals. Four main variables are involved:

TIME Radiation transport (R) time,
DTR Radiation transport (R) time interval,
$\begin{array}{ll}\text { T } & \text { Hydrodynamic (H) time, } \\ \text { DT } & \text { Hydrodynamic (H) time interval. }\end{array}$
In the following discussion, this notation is used:

TIME m_{m} Time at the start of R cycle m , $D_{m} \quad$ Time interval of R cycle m, $\mathrm{T}_{\mathrm{n}} \quad$ Time at the start of H cycle n , $D T_{n} \quad T i m e$ interval of H cycle n.

Hydrodynamic Time Calculations. The hydrodynamic overlay (YøKKy) is called if and only if $T=$ TIME. The status of the time variables when $Y \emptyset \kappa K Y$ is called is:

TIME $_{\text {m }}$	Starting time of the next R cycle,
$\mathrm{DTR}_{\mathrm{m}}$	Time interval of the next R cycle,
T n	Starting time of the next H cycle,
$D T_{n-1}$	Time interval of the last H cycle (of no interest, now).

At the start of PHASEl within YøKKy, the new H cycle begins and the hydrodynamic calculations occur. The calculated quantities are
$D_{n} \quad$ Time interval for the next H cycle $=\min \left(D T_{n}^{\prime}, 5 \times\right.$ DTR $\left._{m}\right)$.
$\mathrm{T}_{\mathrm{n}+1}$ Time at the end of the next H cycle $=T_{n}+D T_{n}$. When $T_{n}=$ TIME $_{m}$, $\mathrm{T}_{\mathrm{n}+1}$ may exceed TIME m_{l}.
$D T_{n}^{\prime}$ is a time interval based on the hydrodynamic constraints described in Sec. III. The $5 \times D T R_{m}$ limitation restricts the number of R cycles between H cycles to about five. At the end of $Y \not \subset K K Y, T_{n+1}$ is compared with TIME $_{m+1}=T I M E E_{m}+$ DTR $_{m}$:
$\mathrm{T}_{\mathrm{n}+1}<\mathrm{TIME}_{\mathrm{m}+1}$ Another H cycle is calculated. If another H cycle is calculated, its $D T_{n}$ is subject to the additional restriction that
$D T_{n} \leq T I M E=D_{m}+R_{n}$.
$T_{n+1} \geq T I M E{ }_{m+1}$ YøKKY is exited and a radiation transport overlay is called.
Radiation Transport Time Calculations. The radiation transport overlays (MCRT or GREYSN) are called only if $T \geq T I M E+D T R$.

The status of the four variables at the beginning of an R cycle is:

TIME ${ }_{m}$ Starting time of the next R cycle
$D_{m} \quad$ Time interval of the next R cycle
$T_{n+1} \quad$ Time at the end of the last H cycle
$D T_{n} \quad$ Time interval of the last H cycle The time interval calculations for R cycle $m+l$ occur throughout the overlays during the calculation of R cycle m:

$$
D T R_{m+1}=\min \left(D T R_{m+1}^{\prime}, 10 \times D T_{n}\right)
$$

$D T R_{m+1}^{\prime}$ is a time interval based on radiation transport constraints and described in secs. $I V$ and V. The $10 \times D T_{n}$ limitation restricts the number of H cycles between R cycles to about 10. The problem time is advanced at the end of each radiation cycle.

$$
T I M E_{m+1}=T I M E_{m}+D T R_{m}
$$

A number of checks and adjustment are made.
TIME $_{m+1}<T_{n}$. When this condition applies, another R cycle is calculated. TIME $_{m+2}=T I M E_{m+1}+D T R_{m+1}$ is compared with T_{n}. If $T_{T M E}{ }_{m+2}>T_{n}$, the time interval is reduced to $\operatorname{DTR}_{m+1}=$ $T_{n}-T I M E E_{m+1}$.

$$
\text { TIME }_{\mathrm{m}+1}=\mathrm{T}_{\mathrm{n}} . \text { When this condition applies, }
$$ the radiation transport overlay is exited and $Y \not \subset K K Y$ is called.

Getting Started. The time calculations are initialized as follows. $T I M E_{1}$ and $D T R_{1}$ are the input numbers $T I M E$ and $D T R$. $T_{1}=$ TIME and $D T_{0}=0$ are set by \varnothing FFWEG \varnothing. When PHASEl is first called (at the beginning of H cycle 1), $\mathrm{DT}_{1}=\mathrm{DTR}$ and $\mathrm{T}_{2}=\mathrm{T}_{1}+\mathrm{DT} \mathrm{I}_{1}$.
7. Output

During every cycle there are several short prints (also written on film), and at less frequent intervals more detailed output is written on film. These less frequent times are called TøUT. TøUT is set to provide detailed output n times per decade of elapsed problem-time. If t is the elapsed. problem time at the start of the decade, output occurs at elapsed times ft, $f^{2} t, \cdots \cdots \cdot$, $f^{n} t=10 t$; hence, $f=\sqrt[n]{10}$. The output overlays (2,2;3,3; and 4,3) are called only
when $T \geq T \varnothing U T$. Initially (in \varnothing FFWEG \varnothing)
TøUT $=$ TSTART, the problem starting time. This causes YøKøUT, the hydrodynamic output program, to be called on cycle 0 . It is in YøKøUT that all subsequent chanaes in TøUT are made.

$$
\text { In cycle } 0 \quad \text { TøUT }=\text { DTR. }
$$

In later cycles $T \varnothing U T=f(T \varnothing U T-T S T A R T)+$ TSTART.
The factor f is presently set at 1.15 , which corresponds to n - 16 outputs/decade.

8. Dumps and Restarts

At the output times, TøUT, data are written on Fileset 7, and at less frequent intervals, Fileset 7 is staged to tape. The data written on Fileset 7 include all data needed to restart the problem and other data that are useful to analyze in detail after the problem is run. Data are not written on Fileset 7 after every cycle because of the enormous volume involved. Fileset 7 is staged to tape when:

One reel of tape has accumulated (NDUMP > 10^{6}).

Fifteen CP minutes have elapsed since the last tape was written.

The time limit from the job card is approaching.
Dump tape data are read and analyzed by the program NEXTWAY, described in Appendix B. The dump tapes contain as many problem cycles as may happen to be written on them. The mechanics of the dump procedure were described in Sec. D; the structure of the dump file is in Table A-VII in Appendix A. F. Subroutines

1. Subroutine L $\varnothing \varnothing$ P

LøøP, a highly efficient subroutine originally written for YAQUI, is used to transfer data between SCM and LCM. L $\emptyset \varnothing \mathrm{P}$ maintains the $N Q$ values for each cell in three rows of mesh cells in SCM -- the row for which calculations are being made and the rows immediately above and below. To aid in interpreting the source code listing, the general form of a calculation using L $\varnothing \varnothing$ p
is shown below.
CALL START
The bottom three rows of cell data are read into small core. The indices of the first cell in each row (IJM, IJ, IJP) are set.
$D \varnothing 9 \mathrm{~J}=2$, J2
Each time through this loop, mesh data are computed for row J. J2 $=\mathrm{JPl}$ for cell-centered quantities, J2 $=\mathrm{JP} 2$ for vertex quantities.
$D \varnothing 8 \mathrm{I}=\mathrm{I}$, I 2
Each time through this loop, mesh data are computed for cell I in row J. $I 2=$ IBAR for cell-centered quantities, $12=$ IPl for vertex quantities.

Set cell indices

Set indices for cells to the right and left of I, as needed, $I P J=I J+N Q$, IPJP $=\mathrm{IJP}+\mathrm{NQ}$, etc.
Calculate desired data
Increment cell indices
Set indices for the next cell in row I, as needed, $I J=$ IPJ, IPJ $=$ IPJP, etc.
8 CøNTINUE
CALL LøøP
Write data for row IJM into LCM, reset indices IJ and IJP to IJM and IJ, and read data for IJP into SCM.
9 CøNTINUE
CALL DØNE
Compute data for two top rows and write into LCM.
2. SEARCH (XBAR, X, N, NDX, and MFLAG)

SEARCH is an extremely fast binary search routine. Given a table of N values of X, and a value XBAR, SEARCH finds NDX such that $X(N D X) \leq X B A R<X(N D X+1)$. MFLAG is a returned error flag.
3. DBLINT ($K, X, Y, X T, Y T, T A B, N I, M$, MCøLS, and NDIM
DBLINT performs double linear interpolation of tabulated data. $\operatorname{TAB}(I, J)$ is a tabulated function of $X T(I)$ and $Y T(J), I=1$, MCøLS: $J=1, M . T A B(I, J)$ is dimensioned for (MC $\varnothing L S, M$). NDIM is the actual number of I values tabulated. DBLINT returns as
a function value the interpolated value of TAB which corresponds to X and Y . Normally $K=N l=0$, but $K, N \neq 0$ allows use of triply subscripted tables.
4. GETEMP (XP, $\mathrm{ZP}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{NX}$, and NY) $\mathrm{Z}(\mathrm{I}, \mathrm{J})$ is tabulated as a function of $X(I), I=1, N X$ and $Y(J), J=1, N Y$. Given the values of $\mathrm{X}, \mathrm{Z}, \mathrm{XP}$, and $\mathrm{ZP}, \mathrm{GETEMP}$ computes the corresponding value of Y by inverse interpolation. The subroutine is used with equation of state data to compute temperatures when densities and specific internal energies are known.

5. PAKFN \varnothing and UNPKFN

PAKFNØ packs three floating point words into a single word. The packed words have a seven bit exponent. UNPKFN unpacks the single word back into three words. These subroutines save significant amounts of space in return for decreasing the significant figures to six.
II. \varnothing FFWEG \varnothing, THE INPUT AND SETUP OVERLAY Overlay 1,0 (\varnothing FFWEG \varnothing) is used to read input data and to set up the initial mesh, values of mesh variables, and marker particle distributions.
A. Overview of the Overlay

The setup overlay is ØFFWEGØ (Overlay l,0), which reads card and tape input data and sets up the problem. There are no secondary overlays; the work is done by subroutines MESHMKR, PARTGEN, PARDEN, NSTART, and FILMC \varnothing.
B. \varnothing FFWEG \varnothing

1. Equation of State and Opacity Data

Equation of state and opacity data are read from Fileset 6. The input wavelengths are converted to frequencies ($1 / s$), and, where necessary, units are changed from those of the tabulated data to YøKIFER units. The frequency-dependent opacities, $\bar{\varnothing} P S I G$, are stored as a linear array, SIGA, in LCM. SIGA(IJK) corresponds to \varnothing PSIG(I,J,K) where the equivalent subscript is IJK $=K+$ (I-l)*NFRQ + (J-l)*NøPT*NFRQ. I, J, and K are the temperature, density, and frequency indices, respectively.
2. Dump Tape Input
$\emptyset F F W E G \varnothing$ reads the dump file, Fileset 7. If the end-of-information is encountered on the first reading, one assumes that there is no dump input and that initial data are to be read from cards. If data are found on Fileset 7 , the file is read until the end-of-information is encountered. When this occurs, the last dump on the file has been stored in the computer and is thus used to restart the problem.
3. ØFFWEG \varnothing Input cards
$\emptyset F F W E G \varnothing$ reads the following data from cards:

NAME Problem identification.
TIME Starting time of the problem (s).
DTR Initial radiation time interval (s).

CYI Geometry parameter.
CYL $=0.0$ for slab geometry, CYL $=1.0$ for cylindrical geometry. It is not possible at present to run radiation transport calculations in slab geommetry.
GRDVEL Rezone parameter (Sec. III). ALPHA Radiation transport implicitness parameter (Secs. IV and V).
IBAR, JBAR, IUNF, JUNF, JMID, DR, DZ, and FREZ Quantities that define the mesh (Sec. C-1 and C-2).
$A O, A O M, B O, X I, M U, L A M, ~ \varnothing M, E P S, A S Q$, GMI, GR, and GZ

Parameters used in the hydrodynamic calculations (Sec. III). REZYO Axial coordinate (true altitude) of the "center" of the mesh (km). This value defines the mesh altitude and, in practice, usually corresponds to the coordinate at the center of the bubble.

YBASE Axial coordinate of the bottom of the real mesh (true altitude). YBASE is not independent of other input quantities (Sec. C-2).
The program operates on the assumption that the altitude at REZYO $=0$. The input value of REZYO is saved for reference,
but all other altitudes ($\mathrm{Y}_{\mathrm{ij}}, \mathrm{YBASE}$) are converted to true altitude-REZYO.
REZRøN Ambient density at REZYO ($\mathrm{mg} / \mathrm{cm}^{3}$).
REZSIE Ambient specific internal energy (excluding radiation) at REZYO (J / mg).
4. Parameters Set and Computed by øFFWEG \varnothing
ØFFWEG \varnothing sets initial values of some parameters and precomputes others. These parameters are defined and described in the following sections, which describe the parts of the program in which they are used.
5. Subroutine Calls

MESHMKR is called to read and compute initial values for the mesh variables X, $R, Y, U, V, S I E, T E M P, R \varnothing$, and RV $\varnothing L$. PARTGEN or PARDEN is called by MESHMKR to compute marker particle positions for Bubble or Purd input problems, respectively. FILMC \varnothing is called to compute film-plotting parameters.

6. Marker Particle Cells

ITAB(k) is the equivalent index of the cell containing the $k^{\text {th }}$ marker particle: ITAB $=(J-I) * I P I+I$.
7. Mesh Variables

ØFFWEGØ computes the mesh variables:
$\mathrm{M}_{i j} \quad$ Mass of cell $\mathrm{ij}\left(\mathrm{mg} / \mathrm{km}^{3} / 2 \pi-\mathrm{cm}^{3}\right.$). $\mathrm{E}_{\mathrm{ij}} \quad$ Total specific material energy in cell ij (internal + kinetic) (J / mg). $\mathrm{RM}_{\mathrm{ij}}$ Reciprocal mass associated with vertex ij $\left(2 \pi-\mathrm{cm}^{3} / \mathrm{mg}-\mathrm{km}^{3}\right.$). The mass associated with a vertex is $1 / 4$ the mass of the four adjacent cells.
8. ØFFWEG \varnothing Output
$\emptyset F F W E G \varnothing$ prints the job number, the date, all input data, and parameters whose values are as set by øFFWEGø.
C. Subroutine MESHMKR

MESHMKR establishes the initial values of the mesh variables $X, Y, R, U, V, R \varnothing$, SIE, TEMP, and RVøL.

1. Uniform Mesh

MESHMKR computes the coordinates X, Y, and R for a uniform mesh of IBAR \times JBAR cells with specified cell dimensions DR
and DZ. The coordinate at the vertex, $J=$ JMID, is $Y=$ REZYO; that at the bottom of the mesh is $Y=$ YBASE. The input value of YBASE, for a uniform mesh, must be REZYO-DZ*JMID.

2. Nonuniform Mesh

The nonuniform mesh is computed when FREZ $\neq 1.0$. The nonuniform mesh contains a total of IBAR \times JBAR cells. There is an inner, uniform region IUNF \times JUNF cells, for which the inner part of the previously computed uniform mesh is used. In the outer parts of the mesh, the cells grow (or shrink) by amounts that depend on the value specified for FREZ. At the bottom of the mesh $Y=$ YBASE. The FREZ input value for a nonuniform mesh must be computed accurately using the formula

$$
\begin{aligned}
& \text { REZYO }=\text { YRASE }+\frac{\text { JUNF }}{2} \times D Z \\
& +\frac{f}{I-f} \times D Z \times(1-f \mid \text { JUNF } / 2-J M I D \mid)
\end{aligned}
$$

where $f=$ FREZ and MESHMKR sets $Y_{2}=$ YBASE. A nonuniform mesh is illustrated in Fig. 4. The algorithms used to determine the coordinates are

$$
\begin{aligned}
& x_{i}=x_{i-1}+f\left(x_{i-1}-x_{i-2}\right), i=I U N F+2, I P I, \\
& \text { where } f=\operatorname{FREZ} \text { and } x_{i}=x_{i j} \text {. } \\
& y_{j}=-t+\frac{f \Delta z}{I-f}\left(I-f^{\Delta j}\right), j=2, J B \emptyset T-I \text {, } \\
& \text { where } f=F R E Z, Y_{j}=Y_{i j}, \Delta z=D Z \text {, } \\
& t=T J=\frac{J U N F}{2}(D Z), \\
& \Delta_{j}=J D B=|J-J B \emptyset T| \text {, and } \\
& \text { JBøT }=\text { JMID }+2 \text {-JUNF/2. } \\
& y_{j}=t+\frac{f \Delta z}{I-f}\left(I-f^{\Delta j}\right), j=J T \varnothing P+1, J P 2, \\
& \text { where } f=F R E Z, y_{j}=Y_{i j}, \Delta z=D Z, \\
& t=T J=\frac{\text { JUNF }}{2}(D Z), \\
& \Delta_{j}=J D T=|J-J T \phi P| \text {, and } \\
& \text { JTøP }=\text { JMID }+ \text { JUNF/2. }
\end{aligned}
$$

3. Background Mesh Variables

Ambient values of $U, V, R \varnothing$, and SIE are placed in every mesh cell by one of two methods

Fig. 4. A nonuniform mesh.

Uniform Regions. The data read for each uniform background region are

NB Number of real cells below the region
NR Number of real cells to the left of the right boundary of the region
NT Number of real cells below the top of the region
NL Number of real cells to the left of the region
UI Input radial velocity in region (km/s)
VI Input axial velocity in region (km / s)
RøI Input density in region ($\mathrm{mg} / \mathrm{cm}^{3}$)
SIEI Input specific internal energy in region (J / mg) (radiation not included)
Figure 5 shows a uniform background region. $U_{i j}, V_{i j}, R \emptyset_{i j}, S I E_{i j}$ are set equal to

71777771717171771717177171717177

Fig. 5. Background mesh input.

UI, VI, RøI, and SIEI, respectively, for each cell in the region. TEMP $_{i j}=$ TEMPI is interpolated from the equation of state. The total cell internal energies are found from SIE $+a\left(\operatorname{TEMP}^{4}\right) / R \varnothing$. The input data and the interpolated temperatures are printed. Exponential Atmosphere. Densities that decrease exponentially with increasing altitude are computed for each row. The input value is $\rho=$ REZR $\varnothing N$, assumed appropriate at $y=$ REZYO. Temperatures corresponding to the local density and the input ambient energy, REZSIE, are interpolated from the equation of state tables. The specific internal energies are found from REZSIE + $a\left(T E M P{ }^{4}\right) / R \varnothing$, where $R \emptyset$ varies exponentially. The density, specific internal energy, and temperature are printed for each row of cells.
4. Bubble Input

Bubble input, read only for Bubble input problems, consists of the specification of
mesh variables in the upper right-hand quadrant of an $R-Z$ plane. These values are reflected to the lower right quadrant, and if required, the right semicircle is reflected to form the left semicircle.

The variables used in the code are: IBUB, JBUB Indices of vertex corresponding to the center of the bubble
II, JJ Temporary indices of cell into which data are to be placed. Typically, II and JJ begin at 1.
RøI
SIEI

VI Axial velocity at vertex II, JJ
UI Radial velocity at vertex II, JJ
The actual cell indices corresponding to the bubble location in the mesh are computed from:

Quadrant	Indices
Upper Right	$I=I I+I B U B-I, J+J J+J B U B-I$
Lower Right	$I=I I+I B U B-I, J+J B U B-J J$
Upper Left	$I=I B U B-I I, J=J J+J B U B-I$
Lower Left	$I=I B U B-I I, J=J B U B-J J$

These mesh variables are assigned to the appropriate cells and vertices, destroying that part of the background mesh. Temperatures are computed from the equation of state as previously described, and all Bubble input is printed. Bubble input is illustrated in Fig. 6, but we note that one is not restricted to spherical bubble data. D. Subroutine NSTART

NSTART is called by MESHMKR and is used only in Purd input problems.
E. Subroutine PARTGEN

PARTGEN generates marker particles for Bubble input problems and is called by MESHMKR. In addition to marking fluid positions, the marker particles are used to define the "region of interest" in film plots. For Bubble input problems, the particle regions generally coincide with the bubbles.

Fig. 6. Bubble input.

Particles may be generated in one or more regions of the mesh. The regions may be either circular or rectangular. The data that define the regions and the numbers of particles in them are read from cards.

DRPAR Radial spacing of particles in the region (kr).

DZPAR Axial spacing of particles in the region (km).
XC Radial coordinate. Center of circular region or left boundary of rectangular region (km).
YC Axial coordinate. Center of circular region or bottom boundary of a rectangular region (km). Radius of a circular region or right boundary of a rectangular region (km).
YD Top boundary of a rectangular region (km). YD $\equiv 0$ for a circular region.
A maximum of 1000 particles can be generated, and for both information and plotting purposes they should cover the area of the bubbles. If DRPAR and DZPAR equal DR and DZ, respectively, there will be one particle per
cell. The number of particles can be increased by making DRPAR and DZPAR smaller. Generally, the bubble is a semicircle along the axis, and $X C=0, Y C=R E Z Y O, X D=B u b-$ ble radius, and $Y D=0$.

Variables computed by PARTGEN are $X P A R_{k}$ Radial coordinate of the $k^{\text {th }}$ particle (km).
YPAR $_{k}$ Axial coordinate of the $k^{\text {th }}$ particle (km). XPAR and YPAR are stored in LCM block YLC2.
NPT Total particles generated (1000 maximum).
PYB Minimum value of YPAR (in all particle regions) (km).
PYT Maximum value of YPAR (in all particle regions) (km).
PXR Maximum value of XPAR (in all particle regions) (km).
All input data are printed.
F. Subroutine PARDEN

PARDEN is called by MESHMKR, and it generates marker particles for PURD input problems.

G. Subroutine FILMC \varnothing

FILMC \varnothing computes certain parameters associated with film plots. It is called initially by $\emptyset F F W E G \varnothing$, and during each hydrodynamic cycle by REZøNE. It resides with the main overlay, YøKIFER, so the subroutine and its results are available throughout the program.

Variables computed by FILMC \varnothing are:
XL Left boundary of the mesh, $X L=0$.
XR Right boundary of the mesh, $X R=\max \left(X_{i j}\right)$.
YB Bottom boundary of the mesh, $Y B=\min \left(Y_{i j}\right)$.
YT Top boundary of the mesh, $Y T=\max \left(Y_{i j}\right)$. The maxima and minima are over the boundaries of real cells.
IXL 4020 coordinate of XL
IXR 4020 coordinate of $X R$
IYB 4020 coordinate of YB
IYT 4020 coordinate of YT
Also computed and stored are the corresponding floating point values, FIXI, FIXR, FIYB, and FIYT.

XCøNV Factor for converting radial coordinates to film coordinates, $X C \varnothing N V=(F I Y T-F I X L) /(X R-X L)$.
YCøNV Factor for converting axial coordinates to film coordinates, YCøNV $=(F I Y T-F I Y B) /(Y T-Y B)$.
The region of interest is defined by the particle generator subroutine PARTGEN or PARDEN. Region of interest plots eliminate plotting those parts of the mesh in which nothing in particular is happening. The corresponding quantities for the region of interest are:

PXL, PXR, PYB, PYT
IPXL, IPXR, IPYB, IPYT
FIPXL, FIPXR, FIPYB, FIPYT
PXCøNV, PYCøNV
The present region of interest defini-
tions are:
$P Y B=P Y B-3 \times P X R$
$P Y T=P Y T+2 \times P X R$
PXR $=3 \times P X R$
PYB, PYT, and PXR on the right are values computed by PARTGEN or PARDEN.

III. HYDRODYNAMICS CALCULATIONS

The hydrodynamics calculations are done by Overlay 2,0 (YøKKY), a modification of YAQUI. The basic YAQUI hydrodynamic calculations are unchanged. The differences between YøKKY and YAQUI (other than spelling) are mostly associated with the input and output, and with the fact that yøKKy has been divided into several overlays that communicate with the radiation programs. Properties of the original YAQUI program are described in detail in Ref. 1. A. Overview of the Overlay

The main overlay, Y $\varnothing K K Y$, calls the five secondary overlays and decides whether the problem time is right for changing from hydrodynamic to radiation transport calculations.

$$
\text { 1. Overlay } 2,1 \text { - PHASEO }
$$

PHASEO performs the final calculations for each cycle. It interpolates total pressures and produces a short print of quantities of interest for each hydrodynamic cycle.
2. Overlay 2,2 - YøK \quad UT

YøKøUT, the hydrodynamic output program, is called only at output times, TøUT. The output is for the previously computed hydrodynamic cycle.
3. Overlay 2,3 - PHASEl

The hydrodynamic cycle begins in PHASEl, which performs the explicit Lagrangian calculations of YAQUI.

4. Overlay 2,4-PHASE2

The implicit Lagrangran calculation (pressure iteration) is done in PHASE2.
5. Overlay 2,5 - PHASE3

In PHASE3, the mesh is rezoned and the Eulerian (transport) phase of YAQUI is solved to give final values of all mesh variables.
B. PHASEO

1. Variables Computed by PHASEO
$P_{i j} \quad$ Pressure in cell ij computed by interpolation in the equation of state table PTAB, ($\mathrm{mg}-\mathrm{km}^{2} / \mathrm{cm}^{3}-\mathrm{s}=\mathrm{MPa}$).
TIAMB Total ambient internal energy in the mesh (J).
TI Total internal energy (in excess of ambient), including radiation (J).
TK Total kinetic energy (J).
EPøT Total potential energy (J).
TE Total kinetic and internal (in excess of ambient) energy (J).
UMøM Proportional to radial momentum of the material in the mesh ($\mathrm{mg} / \mathrm{km}^{4}$ / $2 \pi-\mathrm{cm}-\mathrm{s})$.
VMøM Proportional to axial momentum of the material in the mesh ($\mathrm{mg}-\mathrm{km}^{4}$ / $2 \pi-c m-s)$.
CIRC Line integral of the velocities around the edge of the mesh.
TMAX Maximum specific internal energy in the mesh (J / mg). ITM and JTM are the indices of the cell containing TMAX.
TGMX Maximum specific internal energy gradient in the mesh ($\mathrm{J} / \mathrm{mg}-\mathrm{km}$). ITG and JTG are the indices of the cell containing TGMX.
TMDT Time at the beginning of the hydro cycle (s). TMDT $=T-D T$.
output
The following data are printed and written on film:

NCYC, TMDT, T, DT, NUMIT
$T E, T I, T K, E P \varnothing T, T I A M B$
UMøM, VMøM, CIRC
TMAX, ITM, JTM
TGMX, ITG, JTG
DTV, IDTV, JDTV
DTC, IDTC, JDTC PHASE2, and PHASE3.
C. $Y \varnothing K \varnothing U T$

YøKøUT is called only at output times, TøUT, and it computes the value for the next output time. yøKøUT plots two zone plocis, two velocity vector plots, and one velocity direction plot. Plotting is controlled by the index NTHRU.

$$
\begin{aligned}
& \text { NTHRU }=-1 \text { Zones in the entire mesh. } \\
& \text { NTHRU }=0 \begin{array}{l}
\text { Velocity vectors in the } \\
\text { entire mesh; zones in the }
\end{array} \\
& \text { NTHRU }=1,2 \quad \begin{array}{l}
\text { region of interest. } \\
\text { Velocity vectors and di- } \\
\\
\text { rections in the region of } \\
\text { interest. }
\end{array}
\end{aligned}
$$

The region of interest is defined in
Sec. II. Contour plots of density,
specific internal energy, vorticity, and
magnitude of velocity are plotted in the
region of interest.
The coding for a long print on film is included, but this section of the program is by-passed on all cycles except cycle 0
to save film. The long print gives, for
each cell, $I, J, X, Y, U, V, S I E, R \emptyset$,
$I / R V \varnothing L, D$, and P. D is $\vec{\nabla} \cdot \vec{v}$ in $1 / s$.

1. Subroutine PARPL \varnothing T

PARPLøT, called by $Y \not \varnothing K \varnothing U T$, plots the marker particles in the region of interest. D. PHASEI

1. Time Interval Calculation

PHASEl calculates the hydrodynamic time interval.

NCYC Hydrodynamic cycle number, for the cycle to be started in PHASEI, incremented to NCYC $=$ NCYC +1 .

DT Hydrodynamic time interval for the cycle to be calculated. For the first cycle ($N C Y C=1$), DT=DTR,
the input radiation transport time interval.

In all subsequent cycles, the hydrodynamic cycle time interval is $D T=m i n$ ($D T V$, DTC), where DTV is the viscous stress time interval computed in PHASE2 and DTC is the convective flux time interval computed in PHASE3.

New maximum values of DTV and DTC are set in PHASEI. $D T V=D T C=D T \times D T F A C$, where DTFAC is a factor that causes the time interval to change so as to hold the number of pressure iterations in PHASE2 down to a small number (-5). DTFAC $=$

20 where NUMIT is the number of iterations required on the previous cycle DTFAC has a maximum value of 1.25 .

The values of DTV and DTC are recomputed by PHASE2 and PHASE3.
T Initially in PHASEl this is the time at the end of the hydrodynamic cycle just finishing, and it is incremented ($T=T+D T$) to the time at the end of the hydrodynamic cycle to be started.
2. Mesh Variables

PHASEl makes one pass through the mesh
loop and computes the following variables: $\mathrm{UTIL}_{i j}$ Explicit Lagrangian radial velocity component VTIL $_{i j}$ Explicit Lagrangian axial velocity component
GRIR $_{i j}$ Radial velocity increment
GRIZ ${ }_{i j}$ Axial velocity increment
$E_{i j} \quad A$ geometric quantity
DELSM $_{i j} \quad$ A geometric quantity $R \varnothing_{i j}=R \emptyset_{i j}$
$\mathrm{RCSQ}_{i j}$ Reciprocal sound velocity squared
$\operatorname{RCSQ}_{i j}=\frac{1}{A S Q+G G M 1 * S I E_{i j}} \quad$,
where GGMI $=$ GMI* (l+GMI) (ambient cells) and

$$
G G M I=\frac{P_{i j}}{R \emptyset_{i j} S I E_{i j}}\left(I+\frac{P_{i j}}{R \emptyset_{i j} S I E_{i j}}\right)
$$

PHASEl utilizes the improved node coupler that smooths vertex velocities by the velocities of all eight surrounding vertices.
3. Subroutine NADD

NADD is called by PHASEl for Purd problems only.
E. PHASE2

The variables computed by PHASE2 are:
$\mathrm{PL}_{i j} \quad$ Gas pressures obtained by iteration.
NUMIT Number of pressure iterations required (500 maximum).
ETIL $_{i j}$
Explicit Lagrangian internal energy.
DTV Tentative value of DT based on viscous stresses. It is the minimum of such values for all cells and the value originally computed in PHASEl. The cell is IDTV, JDTV.
F. PHASE3

PHASE3 computes the final values of the mesh variables $\mathrm{X}, \mathrm{Y}, \mathrm{R}, \mathrm{MP}, \mathrm{RMP}, \mathrm{EP}=$ SIE, U, V, RVøL, and R \varnothing. The temperature is computed from SIE by the iterative scheme described in Sec. IV. DTC, the convective flux time interval is also computed in PHASE3. DTC is computed for each cell, and the final value is the minimum of the value over all cells and the value previously computed in PHASEl. The cell is IDTC, JDTC. PHASE3 calls subroutines REZøNE (to rezone the mesh), PARTM \quad (to move the marker particles), and FILMCø (to modify the film plotting parameters).

1. REZØNE

REZØNE is called by PHASE3 when the rezone parameter (an input number) GRDVEL $=2.0$ or when the S_{n} radiation transport calculation is being used. (GRDVEL $=0.0$ and GRDVEL $=1.0$, respectively, represent Eulerian or pure Lagrangian rezones that are handled by PHASE3.) The outside of the mesh is moved with velocities FC3 (down), FCP2 (up), and FCX (tio the
right). These quantities depend on the arrival of velocities at the outer part of the mesh and on the appearance of nonambient internal energies (such as by radiation) at the edge of the mesh. The latter calculation is not presently activated. For S_{n} radiation transport problems, the mesh lines are moved, but they remain either vertical or horizontal, thus retaining the rectangular cells and representing continuously rezoned Eulerian geometry. A mesh that is not rectangular can be relaxed to rectangularity by setting the variable mesh "stiffener" parameter FSTF $=1.0 *$ RDT. The rezone constants are printed.
2. PARTM $\varnothing \mathrm{V}$

PARTM $\varnothing V$ moves marker particles to new positions based on the velocity at the particle location. New values of PYB, PYT, and PXR are computed to redefine the region of interest in film plots.
IV. MONTE CARLO SOLUTION OF THE RADIATION TRANSPORT PROBLEM
The Monte Carlo radiation transport calculations are done by Overlay 3, 0 (MCRT). A. Overview of the Overlay

The main Monte Carlo radiation transport program is MCRT (Overlay 3,0). MCRT computes variables used throughout the radiation calculation and calls the three secondary overlays.

1. Overlay 3, 1 - REEFER*

REEFER performs the Monte Carlo solution to the radiation transport problem. Its principal function is to generate and follow statistical particles. In Subroutine WALK (called by REEFER), the particles pursue the random walk and meet their statistical fates. REEFER generates NSP (internally set to l0) source particles in each cell in which the temperature exceeds a specified threshold value, TEMIT (internally set to 0.05 eV). REEFER sets values of the following parameters for each particle.

[^0]A random position in the cell,
A random direction of travel,
A random frequency (photon energy),
An energy "weight" equal to the cell emission energy divided NSP.

In WALK, the particles move from their initial positions, with the above initial properties, until one of the following randomly selected events occurs:

The particle collides and is absorbed, and the walk is terminated.
The particle collides and is scattered. The particle energy is reduced to a negligible value (set by EDEATH). The particle leaves the mesh, and the walk terminates.
The radiation time interval ends.
When a particle is scattered, its random variables are reset as follows.

Its position is the point where the scattering collision occurred.
A new random direction of travel is sampled (isotropic).
A new random frequency (photon energy) is sampled.
The energy is equal to the energy of the particle before the scattering.

If a particle has not died when the time interval ends, it becomes a "census" particle and its parameters are stored on Fileset 1 , so that its random walk can be continued on the following radiation transport cycle. The overlay REEFER reads Fileset l for census particles from the previous cycle, before new (source) particles are initialized.

When any particle (source or census) undergoes NPCMAX scatterings, its parameters are sent to the "bank." The value of NPCMAX is set by \varnothing FFWEG \varnothing and is presently 50. Characteristics of particles sent to the bank are are also stored on Fileset 1 and are read by REEFER after all census and source particles have been completed. REEFER splits each bank particle into NBP particles. The value of NBP is set by \varnothing FFWEG \varnothing and is presently three. Each sibling particle is characterized as follows.

Its position is the point where the parent particle was deposited in the bank.
The direction of travel is the same as that of the parent.
The frequency (photon energy) is the same as that of the parent.
The energy is the energy of the original particle, divided by NBP.

These sibling particles, in turn, may be deposited in the bank eventually during their random walk, and it is not uncommon to produce many particle progeny during each cycle. As the particles move around the mesh (in WALK), an exponential energy loss is associated with each move, and the energy is deposited (the weight scored) along the path of the move. When a particle is absorbed, dies from lack of energy, leaves the mesh, or goes to census, its energy is scored at the place where the event occurs, by saving the coordinates of each sample. The original particle energies, the energy scores, and the energies of the terminated particles (except census particles) are stored on Fileset 3, for use by overlay ESTEP. Also stored on Fileset 3 are the particle frequencies. Fileset 3 is included in the problem dump tapes so that. these data can be analyzed.

2. Overlay 3.2-ESTEP

ESTEP reads the particle production and deposition energies, and coordinates, from Fileset 3 and uses them to advance the internal energies, and hence temperatures, in each mesh cell.
3. Overlay 3.3-LISTING

LISTING is called at output times (TøUT) and writes (on film) detailed mesh data associated with the Monte Carlo calculation. B. MCRT

1. Mesh Variables

MCRT does one mesh loop calculation and computes mesh variables and their spatial integrals. These variables are stored in LCM unless otherwise noted.

$$
\operatorname{CENTX}_{i j}
$$

Radial coordinate of the centroid of cell if (km).

CENTY $_{i j}$
Axial coordinate of the centroid of cell ij (km).
The centroids represent the positions of cell-centered mesh variables, and they are the arithmetic means of the radial and axial coordinates of the vertices. CENTX and CENTY are set to 0 when $I=I P I$, to simlify subroutine CENTRøY.

BETALC $_{\text {ij }}$	Radiation derivative in cell ij.
SIGPLC $_{\text {ij }}$	Mean absorption coefficient in cell ij $(1 / \mathrm{km})$.

BETALC and SIGPLC are computed by double logarithmic interpolation in the equation of state tables BTBL and SPTBL, respectively,

FSCAT $_{i j}$ Absorption probability in cell ij (stored in SCM).
$\mathrm{FSN}_{i j} \quad$ Identical to $\mathrm{FSCAT}_{i j}$.
FSCAT is computed from
FSCAT $=$
$\frac{1}{1+C(A L P H A)\left(\text { BETALC }_{i j}\right)\left(S_{\text {IGPLC }}^{i j}\right.}$) (DTDLD),
where ALPHA is an input quantity and DTøLD is the radiation time interval. When ALPHA $=0, \operatorname{FSCAT}=1$; there is no scattering, and the calculation that walks each particle to absorption is explicit. When ALPHA $=1$, scattering is maximized and the calculation is fully implicit, allowing both absorption and scattering.

```
RZEDEN \(_{\text {ij }}\) Total energy to be radiated
                                    from cell ij during the ra-
                                    diation transport cycle (J).
\(\operatorname{RZEDEN}_{i j}=a \times c \times\left(\right.\) FSCAT \(\left._{i j}\right)\left(\right.\) BETALC \(\left._{i j}\right)\left(\right.\) SIGPLC \(\left._{i j}\right)\)
        \(\times\) TEMP \(_{i j}^{4}\) ) (DTøLD) volume \(i j\),
            where Volume \(=2 \pi /\) RV \(\mathrm{L}_{i j}\).
```

SIEMIN Smallest amount of internal
energy (J) in any cell in which
the temperature exceeds TEMIT.
SIEMIN is used to determine the death energy
of statistical particles. The cell con-
taining SIEMIN is IJMIN, and the temperature
and density in the cell are TMIN (eV) and
DMIN ($\mathrm{mg} / \mathrm{cm}^{3}$), respectively.
EINT Total internal energy (including
radiation) in the mesh (J).
EKIN Total kinetic energy in the mesh
(J).

EALL
Total internal and kinetic energy in the mesh (J).
URTøT Total radiation energy in the mesh (J).
2. Time Interval

The time interval for the next radiation transport cycle is calculated in MCRT. TIME Initially, the problem time at the beginning of the radiation transport cycle (s).
At the end of MCRT, TIME is advanced to the value at the end of the cycle (and the beginning of the next cycle). Initially, DTR is the time interval for the radiation cycle, but throughout MCRT it is the time interval of the next cycle. The original value is retained in DTøLD.

T2 Time at the end of the cycle $T 2=$ TIME + DTR, where TIME and DTR have their initial values.
DTR, the time interval for the next radiation transport cycle is calculated by MCRT. The inconsistencies introduced by using the time interval for cycle $m+1$ on values at the beginning of cycle m are negligible. This method is used to avoid recomputing quantities available during the MCRT calculation. The energy radiated from'a cell during a cycle is RZEDEN ${ }_{i j}$. We require that this not exceed 15% of the total energy ($E_{i j}$) in any cell where the temperature exceeds TEMIT.

$$
\left(\frac{\text { RZEDEN }_{i j}}{\operatorname{DTR}}\right) \times \operatorname{DTR} \leq 0.15 \times E_{i j}
$$

Let DTR in the denominator be the value for the current cycle, (DTøLD). Also let the value in the numerator be that for next cycle, and solve for the latter;

$$
D T R=\min \left(\frac{0.15 \times E_{i j} \times \text { DTøLD }}{\text { RZEDEN }_{i j}}\right)
$$

At the end of MCRT, DTR may be reduced, if necessary, to complete an even number of radiation cycles per hydrodynamic cycle. Before the possible reduction, $D T \varnothing L D E R=D T R$. Later values of DTR are based on DTøLDER rather than the reduced value of DTR, which is usually very small.
3. Output

MCRT prints
NCYC, TIME (at start of cycle), T2, DTøLD URTøT, EINT, EKIN, EALL
IJMIN, SIEMIN, TMIN, DMIN

C. REEFER

1. Variables Computed by REEFER

JCEN Initially, the number of census particles carried over from the previous cycle.
At the end of REEFER, JCEN is the number of census particles carried over to the following cycle.

IBANK The number of particles to be withdrawn from the bank on each pass through the bank particle calculation.
On the first pass, it is the number (after splitting) of original source and census particles sent to the bank. On each subsequent pass, it is the number (after splitting) of particles from the previous pass deposited in the bank.

ID Number of words of energy deposition data currently stored in the buffer array EBLøCK.
When ID $=$ NBUF $=6000$, EBLøCK is dumped to Fileset 3 and ID is reset to 0 . NBUF is a fixed parameter set by \varnothing FFWEG \varnothing.

NFLUSH Total number of particles for which deposition data are written on Fileset 3.
The following indices are totaled separately for census particles, source particles, and for each pass through the bank calculation.

NGEN	Number of particles started. NCEN Number of particles sent to cen- sus (for processing on the next
NBANK \quadradiation cycle).	
Number of particles sent to the	
bank.	

WALK several moves may be required to effect a collision).
NCØL The number of particle collisions (in WALK).
The random variables that define particles are listed below:
Statistical particle positions are defined by three coordinates rather than the two coordinates required by all other space-dependent variables in the program. $A(1)$, $A(2)$, and $A(3)$, are the x, y, and z components of the particle position (km). Before WALK changes them, these are called XAl, XA2, XA3, respectively. The corresponding R-Z coordinates are:

Radial coordinate $R H \varnothing P=\left[A(1)^{2}+A(2)^{2}\right]^{1 / 2}$ Axial coordinate $\quad Z P=A(3)$.

The initial positions of census and bank particles are the positions recorded at census or deposited in the bank. The initial positions of source particles are randomly sampled in the cells in which they are started. The random positions are chosen by assigning a random weighting factor to each cell vertex.

ØMEGA (1), , MEGA (2), and \varnothing MEGA (3), the x, Y, and z components of the particle direction vector.
Before WALK changes them, these are called XøMEGA1, XøMEGA2, and XøMEGA3, respectively. The initial directions of census and bank particles are the same as those of the particles that arrived at census or the bank. The initial directions of source particles are randomly chosen polar and azimuthal angles.

FREQP Particle frequency ($1 / s$). Before WALK changes it, FREQP is called XFREQP. For census and bank particles, the initial frequencies are the same as those of the parent particles. For starting source particles, FREQP is a random variable chosen by subroutine PFREQ.

EPART Particle energy (J).
Before WALK changes it, EPART is called XEPART. This is the weight that is used to score the results of random particle walks.

The weight is given according to particle type as follows.

Census Particles. Usually, EPART is the energy with which the particle was sent to census during the previous cycle. If however, EPART for a census particle is subsequently found greater than RZEDEN $_{i j}$ (the energy to be radiated in cell ij, where the census particle is located), EPART is reduced to RZEDEN. Furthermore, no single particle is allowed to carry more energy than RZEDEN/10. Thus, if the particle energy is larger than this, the census particle is split into NCP particles so that the energy of each, EPART, is less than RZEDEN/I0. Whenever census particles are generated in a cell ij, RZEDEN ${ }_{i j}$ is reduced by the energy carried by the particles.

Source Particles. NSP $=10$ source particles are started in each cell where the temperature exceeds TEMIT $=0.05 \mathrm{eV}$. The energy of each particle is EPART = RZEDEN/NSP. Bank Particles. Each particle sent to the bank (with energy EPART') is split into NBP $=3$ daughter particles, each with energy EPART = EPART'/NBP.

I, J Indices of the cell in which the particle is generated.
For source particles, I and J are known because particles are generated in particular cells. I and J are known for bank particles because WALK always knows in which cell a particle lies and deposits this information with the parent particle parameters. For census particles, the cell in which the particle lay when it was sent to census is known, but, because the mesh will generally have been rezoned in the meantime, the particle may be in a different cell. Subroutine WHERE is called to find I and J for census particles.

Tl The time when WALK is called (s). For census and source particles, $T 1=T I M E$. For bank particles, $T l$ is the time the particle was sent to the bank.

EDEATH Particle death energy (J).
Particles whose energy is less than EDEATH are terminated by WALK. For census and
source particles, EDEATH is l\% of EPART, or 1% of SIEMIN, whichever is smaller. For the first bank calculation, EDEATH = EDIE. On subsequent bank calculations, EDEATH is 1% of SIEMIN.

EDIE Minimum value of EDEATH for all source particles (J).
IDIE As input to WALK, this identifies the particle type as:
IDIE $=0$ Census or source particle,
IDIE $=1$ Bank particle.
As output from WALK, IDIE identifies the particle type as:
IDIE $=0$ Escaped or dead particle, IDIE $=1$ Bank or census particle.
ERAD Total energy of all source particles (J).
ECEN Total energy of all input census particles (J).
ECEN Total energy of all output census particles (J).
EMC Total energy radiated (ERAD+ECENI) in the particle population.

2. REEFER Data Storage

particle production and energy deposition data are stored on Fileset 3, two words per particle, in floating point and integer packed format.

Word 1	Bits	$59-40$	Radial coordinate
		$39-20$ Axial coordinate Word 2 Bits $59-18$	Energy
		Frequency	
		$17-9$	I
	$8-0$	J	

The coordinates represent the position where the particle was produced or the energy was deposited. The energy is either the negative of the original source particle energy (the emission energy), or the energy deposited at a score. Word l is floating point data packed by PAKFN \varnothing. The frequency in Word 2 is truncated, and the integers I and J are stored in the low-order bits. Census and bank particle data are read from Fileset 1 and written on Fileset 2, eight words per particle.

Word	Census	Bank
1	A (1)	A (1)
2	A (2)	A (2)
3	A (3)	A (3)
4	ØMEGA (1)	ØMEGA (1)
5	\emptyset MEGA (2)	\emptyset MEGA (2)
6	\emptyset MEGA (3)	ØMEGA (3)
7	EPART	-EPART
8	FREQP (bits 59-18)	FREQP (bits 59-40)
	I (bits 17-9)	Tl(bits 39-20)
	J(bits 8-0)	I (bits 17-9)
		J(bits, 8-0)

For census particles, FREQP is truncated as described above, but not packed. For bank particles, FREQP and Tl are packed by Subroutine PAKFN \varnothing.
3. REEFER Output

The indices NGEN, NCEN, NBANK, NDIE, IESCAP, NM $\varnothing V E$, and NC $\varnothing L$ are printed for census particles, for source particles, and for each pass through the bank particles. Also printed are NFLUSH, EMC, ERAD, and ECENI.
4. Subroutine WALK

Length of Particle Movements.
DMøVE Distance the particle moves. Generally WALK will move a particle several times between its initial position and its final position (collision, absorption, escape, or census). DMøVE is the minimum of the following:

DCEN Collision Distance. Initially, $D C E N=C(T 2-T I)$, where $T 2-T 1$ is the time remaining in the radiation transport cycle, and c is the speed of light. After each particle move, DCEN is reduced by DMøVE.

DCøL Collision Distance. Initially, DCøL is the length of a random number of mean free paths. The initial value of DCØL is given by RMFP \times DMFP. RMFP is a randomly sampled number of mean free paths. RMFP can vary from 0 to ∞, it is usually less than 1 and it is sampled from $\operatorname{RMFP}=|\ln (\gamma)|$, where γ is a random number.

After each particle move, RMFP is reduced by an appropriate amount and DCøL is recomputed.

DMFP $=$ length of a mean free path at the particle location; where DMFP $=1.0 /$ SIGNU and SIGNU is the absorption coefficient dependent on the temperature and density at the particle location, and on the particle frequency. The weighting factors for computing density and temperature at the particle position are found by subroutine CENTRøY; the subscript of the absorption coefficient, by subroutine SUBSCR.

DCELL Nominal move distance.
Because mesh properties vary continuously, DMFP is a continuous function of particle position. To approximate this continuous change, mesh properties are re-evaluated whenever a particle moves. The nominal move distance is the minimum dimension of the cell in which the particle lies.

5. Energy Scores

When a particle moves, its energy is reduced by

ESC \varnothing RE $=(E P A R T)\left[1-e^{(-F S P)}(D M \not \subset E)(S I G N U)\right]$, where FSP is the absorption probability at the original position of the particle (the weight factors for computing FSP are found by CENTR $\varnothing \mathrm{Y}$). The energy, ESC \varnothing RE, is deposited at a position RHøD, ZD, midway between the initial and final particle positions. The new particle position and energy are then computed. Subroutine WHERE is called to determine the indices I and J of the cell in which the particle lies after the move. Tests are next made to determine whether the particle went to census, went to collision, went out of the mesh, ran out of energy, or merely moved while randomly seeking one of the aforementioned fates. If the particle went to census, its remaining energy is deposited (scored) at its final position and IDIE is set to 1 to tell REEFER to store the particle parameters on Fileset 1 . If the particle left the mesh, its remaining energy and final position (outside the mesh) are saved on Fileset 3, and IESCAP
is incremented. If the particle ran out of energy, its remaining energy is deposited (scored) at its final position and NDIE is incremented. If the particle underwent a collision, NPCøL is incremented. The particle will have been absorbed (with a probability FSP), or scattered (with a probability l-FSP) at the collision. If the particle was absorbed, the remaining energy is deposited (scored) at the point of collision and NDIE is incremented. If the particle was scattered (and NPCøLSNPCMAX) the particle is continued (reemitted). Its random frequency and direction after scattering are computed by subroutines PFREQ and PøMEGA, respectively. The local mesh properties are recomputed using subroutine CENTR \varnothing. If the number of collisions exceeds NPCMAX, the particle is deposited in the bank. If it is deposited, the particle energy is made negative and IDIE is set to 1 to tell REEFER to store the particle parameters on Fileset 1.

6. Subroutine FLUSH

FLUSH is a utility routine called by WALK and REEFER. This routine writes particle production and energy deposition data (stored in the buffer EBLøCK) on Fileset 3. FLUSH is called by WALK when the counter ID = NBUF, and by REEFER after the last deposition has been made. ID is reset to 0 , and NFLUSH is incremented by the number of particles (ID/2) for which data were written.

7. Subroutine CENTR $\varnothing Y$

CENTRØY is called by WALK, and it computes interpolation factors for determining the values of the cell-centered mesh variables at the position of a particle in a cell whose indices are I and J.
 right side of I, J. I-l if the particle is in the left side of I, J. $J+1$ if the particle is in the top part of I, J. $J-1$ if the particle is in the bottom part of I, J.

CWGT $_{1}$ Weight factor for cell ISC, J.
CWGT_{2} Weight factor for cell I, JSC.
CWGT_{3} Weight factor for cell I, J.
The value of mesh variable z at a position x, y in cell i, j can be approximated by a linear combination of three known values of z :
$z_{3}=z\left(x_{3}, Y_{3}\right) z_{1}=z\left(x_{1}, Y_{1}\right) z_{2}=z\left(x_{2}, Y_{2}\right)$.
x_{3}, y_{3} is the centroid of cell I, J.
x_{1}, y_{1} is the centroid of cell ISC, J.
x_{2}, Y_{2} is the centroid of cell I, JSC.
The three known values of z form a plane, where

$$
z=w_{1} z_{1}+w_{2} z_{2}+w_{3} z_{3} .
$$

let
$\delta x_{1}=x_{1}-x_{3} \quad \delta y_{1}=y_{1}-y_{3}$
$\delta x_{2}=x_{2}-x_{3} \quad \delta y_{2}=y_{2}-y_{3}$
$\delta x=x-x_{3} \quad \delta y=y-y_{3}$
then
$w_{1}=\frac{\delta x \delta y_{2}-\delta x_{2} \delta y}{\delta x_{1} \delta y_{2}-\delta x_{2} \delta y_{1}} \quad$,
$w_{2}=\frac{\delta x_{1} \delta y^{-\delta x \delta} y_{1}}{\delta x_{1} \delta y_{2}-\delta x_{2} \delta y_{1}}$
$w_{3}=1-w_{1}-w_{2}$.
The weight factors w_{1}, w_{2}, and w_{3} are represented by $\mathrm{CWGT}_{1}, \mathrm{CWGT}_{2}$, and CWGT_{3}, respectively, in the program. In a rectangular mesh, $\delta y_{1}=\delta x_{2}=0$ and the weights are
$w_{1}=\frac{\delta x}{\delta x_{1}}, w_{2}=\frac{\delta y}{\delta y_{2}}, w_{3}=1-w_{1}-w_{2}$.
Special provisions are made for the mesh boundaries.
At the left boundary ($i-1=0$), or the right boundary $(i+1=I P I)$, set $\delta x=\delta x_{2}=0$.
$w_{1}=0, \quad w_{2}=\frac{\delta y}{\delta y_{2}}, \quad w_{3}=1-w_{2}$.
At the bottom $(j-1=1)$, or the top $(j+l=J P 2), i \operatorname{set} \delta y=\delta y_{I}=0$.
$w_{1}=\frac{\delta x}{\delta x_{1}}, \quad w_{2}=0, \quad w_{3}=1-w_{1}$.

At the corners, both conditions apply, and
$w_{1}=w_{2}=0, \quad w_{3}=1$.

8. Subroutine WHERE

WHERE is called by REEFER and its purpose is to solve the general problem:

Given a position r, z, find the cell i, j in which it is located.
Start with an initial guess i, j. In row j, move to the left (west) until a cell is found whose west boundary is west of r, z. Let this cell be $i-k$, $j \quad(k=0,1,2, \ldots i-1)$.

If the r-values of both northwest and southwest vertices are west of r, then r is in the cell.
If the r-values of both northwest and southwest vertices are east of r, then r is in the next cell.
If one vertex is east of r and the other is west of r, a test is made to determine whether r is east or west of the line connecting the vertices.
If $k>0$, the particle is in $i-k, j$, and i is set to $i-k$.
If $k=0$ (the original cell), a similar procedure is followed moving east.
When the value of i is determined, the testing is done both south and north in column i, to find j. If j is different from the original j, the entire process is repeated, because the i-value that is correct for one value of j may be wrong for another.

An improved version of WHERE is in preparation.

9. Subroutine SUBSCR

SUBSCR, called by WALK, is used to find the frequency-dependent absorption coefficient at a particle position. The equation of state variables \emptyset PTMP (J), ØPDEN(K), and FREQ(I) are tabulated. Analytic expressions have been found for
J as a function of $\varnothing \mathrm{PTMP}$,
K as a function of \varnothing PDEN,
I as a function of $F R E Q$.
Given the particle frequency and the temperature and density at a position, I, J and K can
be computed. The combined subscript of the frequency-dependent absorption coefficient is
$I J K=I+(J-I) * N F R Q+(K-I)+N \varnothing P T * N F R Q$. Note that frequency-dependent absorption coefficients are taken directly from the tabulated data and are not interpolated, and that this routine is data dependent.
10. Subroutine PFREQ

PFREQ, called by WALK, is used to sample random frequencies of statistical particles. The frequency (eV) is given by the Planckian distribution when
$\nu=-\frac{1}{\zeta(k)} \ln \left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right) T$,
where the γ 's are uniform random numbers on (0,1) and T is the temperature (eV). $\zeta(k)=\min [m, \gamma \zeta(\infty)]$,
where $\zeta(\infty)=\sum_{n=1}^{\infty} \frac{1}{n^{4}}=1.0823$ and γ is a random number uniform on (0,1). m is defined as the smallest integer for which

$$
\zeta(m)=\sum_{n=1}^{m} \frac{1}{n^{4}} \geq \gamma \zeta(\infty)
$$

The factor 2.41814×10^{14} is the conversion between $h \nu$ (energy) and v (frequency) units, expressed in $\mathrm{eV} / \mathrm{s}^{-1}$.

11. Subroutine PøMEGA

PøMEGA samples random direction vectors for statistical particles from the isotropic density function.
D. ESTEP

The variables computed by ESTEP are: EPART $_{i j}$ Total energy deposited by particles in cell ij (J).
EMSN $_{\text {ij }}$ Total energy emitted by particles in cell ij (J).
ELøST Total energy of particles that escape from the mesh (J).
EABS Total energy of particles absorbed in the mesh (J).
EEMIT Total energy of emitted particles (J).
RA Normalizing factor for absorptions.

Normalizing factor for emissions. $R E$ and $R A$ are the ratios of EMC (the total energy of all particles, computed by REEFER when the particles are generated) to the total emission and absorption energies of the particles actually retrieved by ESTEP. The ratios differ very slightly from 1 because of the loss of significance caused by packing the data. All energies are normalized by RE or RA to conserve energy. The packing errors are random, so the solution accuracy is limited by statistical error.
$S I E_{i j} \quad$ Specific internal energy in cell ij (J / mg). $\mathrm{SIE}_{i j}$ is based on the original internal energy, increased by the energy absorbed in the cell and decreased by the energy emitted in the cell:
$S I E_{i j}=S I E_{i j}+\frac{\text { EPART }_{i j}{ }^{-E M S N_{i j}}}{R \varnothing_{i j}} \times$ volume .
$\mathrm{TEMP}_{\text {ij }} \quad$ Temperature in cell ij (eV). The calculated total specific internal energy of the cell contains the radiation term, $a T^{4}$. It is necessary to find a $S I E=I(\rho, T)+T^{4}$,
where I is the equation of state internal energy for the material in the cell and does not include the radiation term. An iterative procedure is used. On the same graph, (Fig. 7)

> I. $\quad I=S I E-T^{4}$ vs T
> II. $I(\rho, T)$ vs T.

Curve I decreases from SIE when $T=0$, to 0 at some high value of T. Curve II has a positive slope. The intersection of the two curves corresponds to the T being sought. The minimum value of the solution is the ambient temperature TLDW = TAMB, and the maximum value is that at which the first curve goes to 0 , THIGH. Guess a value of T midway between THIGH

Fig. 7. Calculation of temperature from internal energy.
and TLøW and determine the value of both curves. If curve I is above curve II, the intersection is at a higher temperature value, so set $T L \varnothing W=T$. If curve $I I$ is above curve I, the intersection is at a lower value, so set THIGH $=T$. Repeat the process until THIGH and TLøW are the same.

TMAX Maximum temperature in the mesh (eV).
DMAX Maximum density in the mesh ($\mathrm{mg} / \mathrm{cm}^{3}$).
DMIN Minimum density in the mesh ($\mathrm{mg} / \mathrm{cm}^{3}$) .
ETøT Total energy deposited by particles (J).

TAVG Midpoint of the time interval (s).
THY Total energy lost from the mesh, summed over all cycles (J).
The following quantities are printed and written on tape:

ETDT, EABS, ELøST, EEMIT, ECEN, RE, RA RAVG, TMAX, DMAX, DMIN, and THY.

E. LISTING

LISTING writes REEFER mesh data on film, and it is called only at output times, TøUT. The data written, for each cell, are

I, J Cell indices.
X, Y Radial and axial coordinates of the (lower left-hand vertex) of the cell.
EPART, EMSN, TEMP, FSN, SIGPLC, BETALC, and RZEDEN.
v. S_{n} SOLUTION OF THE RADIATION TRANSPORT PROBLEM
Overlay 4, 0 (GREYSN) computes a grey (one frequency group) solution to the radiation transport problem, using the S_{n} method.
A. Overview of the Overlay

The primary overlay for the S_{n} radiation transport is GREYSN, Overlay 4.0, which computes variables used in the calculation and calls the secondary overlays.

1. Overlay 4.1 CYLSN

CYLSN performs the S_{n} solution to the radiation transport problem in RZ geometry.
2. Overlay 4.2 SNESTEP

SNESTEP uses the energy fluxes computed by CYLSN to advance the internal energies and temperatures in the mesh cells.
3. Overlay 4, 3 SNØUT

SNøUT is the output program for the S_{n} overlay, and it is called only at output times, TøUT.
B. Calculations of Overlay 4

1. GREYSN

GREYSN initializes parameters
ALPHA Implicitness parameter, originally read as input by \emptyset FFWEG \varnothing
($0 \leq$ ALPHA ≤ 1). ALPHA $=0$ leads to an explicit calculation (no scattering); ALPHA $=1$, to an implicit calculation.
ISN Order of the S_{n} calculation, originally set to ISN $=4$ by $\varnothing F F W E G \varnothing$.
Both parameters are stored in common block CRIMSN by \varnothing FFWEG \varnothing. GREYSN does one mesh loop calculation and computes mesh variables and some totals of mesh variables.

CENTX $_{i j}$ Radial coordinate of the centroid of cell ij (km).
CENTY $_{i j} \quad$ Axial coordinate of the centroid of cell ij (km).
CENTX and CENTY are the arithmetic means of the radial and axial coordinates, respectively, of the cell vertices. They are not used by GREYSN, but are required for the analysis of dump tapes.

$$
\begin{aligned}
& \text { SIGPLC }_{i j} \text { Planck or Rosseland mean ab- } \\
& \text { sorption coefficient (} 1 / \mathrm{km} \text {) } \\
& \text { associated with the temperature } \\
& \text { and density in cell ij, inter- } \\
& \text { polated from the equation of } \\
& \text { state table, SPTBL. } \\
& \operatorname{RZEDEN}_{i j} \\
& \text { Explicit radiation source in } \\
& \text { cell ij (} \mathrm{J} / \mathrm{km}^{3}-\mathrm{sr} \text {). } \\
& \operatorname{RZEDEN}_{i j}=3.2757 \times 10^{14}\left(\text { SIGPLC }_{i j}\right)\left(\text { TEMP }_{i j}{ }^{4}\right) \\
& \text { where the constant is } \frac{\mathrm{ac}}{4 \pi} \text {. } \\
& \mathrm{FSN}_{\text {ij }} \quad \text { Absorption probability for ra- } \\
& \text { diation in cell ij. } \\
& \mathrm{FSN}_{i j}=\frac{1.0}{1+c\left(A L P H A\left(B P_{i j}\right)\left(\text { SIGPLC }_{i j}\right)(\mathrm{DTR})\right.}{ }^{\prime}
\end{aligned}
$$

where ${ }^{B P}{ }_{i j}$ is the radiation derivative associated with the temperature and density in the cell and is interpolated from the equation of state table, BTBL. When ALPHA $=0, \operatorname{FSN}=1$ and there is no scattering.

AVINT $_{\text {ij }}$	The average intensity is set to 0 in all cells before the start of the iteration.
RSN_{i}	Radial coordinate of vertex $i=x(I, 2)(k m)$.
ZSN_{j}	Axial coordinate of vertex $j=Y(1, J)(k m)$.
ESN	Total energy radiated (J)

$$
E S N=8 \pi^{2} \sum_{i j}\left(\operatorname{RZEDEN}_{i j}\right) /\left({\operatorname{RV} \varnothing L_{i j}}\right)
$$

The principal time interval calculation is in SNESTEP, but the time interval is shortened, if necessary, at the 'end of GREYSN.
2. CYLSN

CYLSN computes the S_{n} constants, SNC $\varnothing N(I) I=1,181$.

These constants are computed by subroutine SNGEN on the first cycle and on any subsequent cycle when ISN is changed.
$B_{i} \quad$ Area of the top of cell i (for all j) $\left(\mathrm{km}^{2}\right),=\pi\left(\operatorname{RSN}_{i+1}^{2}-\operatorname{RSN}_{i}^{2}\right)$.

The rest of CYLSN is devoted to the S_{n} iteration.
$A V \varnothing L D_{i j} \quad$ Average intensities from the previous iteration.
$\operatorname{AVINT}_{i j} \quad$ Newly computed average intensities.
In GREYSN, AVINT ${ }_{i j}$ has been set to 0 for all ij. On each iteration in CYLSN, $A^{A V} \mathrm{LLD}_{i j}=\mathrm{AVINT}_{i j}$, and AVINT $_{i j}$ is recomputed by subroutine SWEEP.
The process is continued until AVINT ${ }_{i j} \approx$ $\mathrm{AV}_{\mathrm{LL}}^{\mathrm{ij}}$ for all ij.
ISTEP is the iteration counter. For explicit calculations (ALPHA $=\operatorname{SNC} \varnothing \mathrm{N}(182)=0.0)$, only one pass is made through SWEEP.
The calling arguments of the subroutines in the CYLSN overlay are summarized in Table I. SWEEP. Subroutine SWEEP is called by CYLSN. SWEEP and its dependent subroutines IN and $\varnothing U T$ perform the S_{n} calculation. The mesh variables computed by SWEEP are: AVINT $i j$ Average intensity of radiation in cell ij. ($\mathrm{J} / \mathrm{cm}^{2}-\mathrm{s}-\mathrm{sr}$), EMवMLC $_{i j}$ Vertical component of radiation flux in cell ij ($\mathrm{J} / \mathrm{cm}^{2}-\mathrm{s}$),
UMøMLC $_{\text {ij }}$
$F^{F} U_{T L} C_{i j}$ Horizontal component of radiation flux in cell ij ($\mathrm{J} / \mathrm{cm}^{2}-\mathrm{s}$), Net rate of flow of energy out of cell ij (J/s),

TABLE I SUBROUTINE PARAMETERS

CYLSN	SWEEP	IN, QUT	REMARKS
2SN	25N		Defined in text
RSN	RSN	R	Defined in text
B	B	B	Defined in text
SNCON (LBETI)	BETI	beta	S_{n} constant
SNCøN(LBET2)	BET 2		S_{n} constant
SNCøN (LU)	U	U	S_{n} constant
SNCøN(LE]	E	E	S_{n} constant
SNC¢N (LW)	W	W	S_{n} constant
$\boldsymbol{\lambda L}$	AL	$\boldsymbol{\lambda L}$	Defined in text
BR	BR	BH	Defined in text
BB	BB	BV	Defined in text
ibar	IT	IT	Defined in text
JBAR	JT	JT	Defined in text
NR	NN	NN	NN $=$ ISN/2
M M	Nas		KM $=15 N(15 N+2) / 8$
AvINT	AVINT		oefined in text
AVgid	AVøLD		Defined in text
	S	5	Defined in text
	CT	CT	Defined in text
	UMøM	UMDM	Defined in text
	EMDM	EMgM	Defined in text
	FøUT	FøUT	Defined in text
	1.0,	ES	-1.0 in downard calc, 1.0 in
	-1.0		upward eale.
	D2P	D2P	D2P $=2 \pi \mathrm{DZ}$
	Dz	D2	D2 - $25 \mathrm{~N}_{\mathrm{j}+1} \mathbf{- 2 S N}_{\mathrm{j}}$
	JM1	J	JMI = index of row being calcu- $\text { lated - } 1$
	AVNEW	AVNEW	Defined in text
	ML		M1 $=$ MM * 1
	H2		$\mathrm{M2}=2 \mathrm{MM}$

$S U M=\sum_{i j} F \varnothing U T L C_{i j}$.
SWEEP computes the constant M2 $=2 * \mathrm{MM}$, the total number of angles for which fluxes are to be calculated. The maximum permissible value of M2 is 72 .

SWEEP calculations are done one row at a time, and they utilize row variables, (which are the mesh variables for the row), and intensities.

```
FøUT}\mp@subsup{\mp@code{i}}{1}{= F\emptysetUTLC
EM\varnothing\mp@subsup{M}{i}{}=EM\varnothingMLC}\mp@subsup{C}{ij}{}
UM\varnothing\mp@subsup{M}{i}{}=UM\varnothingMLC
AVNEW i
CT}\mp@subsup{\mp@code{i}}{}{= SIGPLC
Si
        +(AV\emptysetLD ij )(1-FSN ij) (SIGPLC 
```

 (radiation source).
 $\mathrm{BB}_{\mathrm{i}, \mathrm{m}} \quad$ Vertical intensity for direction $\mathrm{m}, \mathrm{m}=1, \mathrm{M} 2$.
$B R_{j-1, m}$ Horizontal intensity for direction $m, m=1, ~ M 2$.
$A_{k, i} \quad$ Angular flux $k=1$, $N N$
The maximum dimensions of the variables are:
Row variables $I=100$
BB $\quad I=100, M=72$ $I \times M=7200$
BR $\mathrm{J}=101, \mathrm{M}=72$ (J-I) $\times \mathrm{M}=7200$
AL $\quad K=8, I=100, K \times I=800$
SWEEP first computes the downward flux row by row, starting with row JPI. The downward intensities at the top of the mesh (BB) and the inward intensities from the right (BR) are set to 0 . The row variables, $F \varnothing U T_{i}$, $E M \varnothing M_{i}$, and $U M \varnothing M_{i}$ are set to 0 , and $A V N E W_{i}$, $C T_{i}$, and S_{i} are computed.

Subroutine IN is called to compute row variables and new intensities, from right to left, and øUT is called to work from left to right.

When the row has been calculated, the row variables are stored as mesh variables.

When the bottom row is reached, the process is reversed and the calculation is made from bottom to top. The upward intensities at the bottom of the mesh are set to 0 . The row
variables $F \varnothing U T_{i}, E M \not M_{i}$, and $U M \varnothing M_{i}$ are initialized to the corresponding values of the mesh variables.

3. SNESTEP

SNESTEP advances the energies and temperatures in the mesh cells.

where DTøLD is the time interval of the radiation transport cycle. $\mathrm{TEMP}_{i j}$ is found from SIE $_{\text {if }}$ by the iterative procedure described in Sec. IV.

Other variables computed are:
SIETめT Internal energy, in excess of ambient, (including radiation) in the mesh (J).
URTøT Radiation energy in the mesh (J).
PWR Total radiation along the mesh boundaries (J/s).
ELøST Total energy lost from mesh during time step (J).
EABS Energy absorption rate during time step (J / s).
PWR2 Time rate of change of internal energy (J / s).
The radiation transport time interval is calculated by SWEEP.

DTR Initially, the radiation time interval for the cycle being calculated, then the interval for the following cycle.
DTøLD Interval for the cycle being calculated.
During the cycle being calculated, let ECELL $_{i j}$ be the total internal energy in cell ij and PMARK $=\left|F \emptyset U_{T L C}{ }_{i j}\right|$, the rate of energy change in cell ij. The energy change in cell ij during the cycle is (PMARK) (DTR). DTR must be such that the energy change does not exceed 15% of ECELL $_{i j}$, in any cell where $\mathrm{TEMP}_{i j}>0.1 \mathrm{eV}$. Then,

$$
\begin{aligned}
& X D T R_{i j}=0.15\left(E C E L L_{i j}\right) / \operatorname{PMARK}_{i j} \\
& \operatorname{DTR}=\min \left(X D T R_{i j}\right) .
\end{aligned}
$$

DTR may be modified further by GREYSN.

4. SNØUT

SNøUT plots the magnitude and direction L. W. Fullerton for the subroutines of radiation in each cell. These are two plots, one of the entire mesh and another of the region of interest around the bubble. SEARCH, PAKFN \varnothing, and UNPKFN.
H. M. Peek and J. Zinn for their encouragement and support.

ACKNOWLEDGMENTS

The authors gratefully acknowledge their indebtedness to the many people whose assistance and support have made the YøKIFER program possible.
E. M. Jones for assistance in adapting the hydrodynamics program YAQUI to YøKIFER.
W. H. Reed, and H. G. Horak for writing the S_{n} program and adapting it to $Y \not \subset K I F E R$.
J. W. Kodis for subroutine PARTMøV and for improved versions of other subroutines to be incorporated into YøKIFER in the future.

LASL groups T-4 and J-15 for providing the equation of state and opacity data.

REFERENCES

1. A. A. Amsden and C. W. Hirt, "YAQUI: An Arbitrary Lagrangian-Eulerian Computer Program for Fluid Flow at all Speeds," Los Alamos Scientific Laboratory report LA-5100 (March 1973).
2. M. T. Sandford II and R. C. Anderson "Two Dimensional Implicit Radiation Hydrodynamics," J. Comput. Phys. 13, 130-157 (1973).
3. K. D. Lathrop and F. W. Bunkley "TWØTRAN-II: An Interfaced, Exportable Version of the TWøTRAN Code for TwoDimensional Transport," Los Alamos Scientific Laboratory report LA-4848-MS (July 1973).

APPENDIX A

INSTANT YøKIFER

TABLE A-I

YøKKY	Class 2 Permfile
File 1	Y \emptyset KIFER program
File 2	Equation of state and opacity data
File 3	NEXTWAY program
PURD	Purd input data
	PURD is identical to Fileset 4.
Y \varnothing KIFER	Overlay file
Fileset 1	Census particle storage file
Fileset 2	Temporary census and bank particle storage file
Fileset 3	Energy deposition data file
Fileset 4	Purd input file
	Fileset 4 is identical to File 1 of PURD
Fileset 6	Equation of state and opacity data file
	Fileset 6 is identical to File 2 of YøKKY
Fileset 7	Dump file
Fileset 12	Film file

table A-IV
STDRAGE OF MESH VARIABLES

¢FFWEG \varnothing	Y $¢ \mathrm{KKY}$	MCRT	GREYSN	DUMP
X, XPAR	$\overline{X, X P A R}$		\mathbf{X}	X,XPAR
R, YPAR	R,YPAR	R	R	R,YPAR
\mathbf{Y}	Y	\mathbf{Y}	Y	Y
U	U	U	U	U
V	v	v	v	v
Rø	Rø	Rø	Rø	Rø
	MP, RMP, RCSQ	CENTX	CENTX	CENTX
E	E,ETIL	CENTY	CENTY	CENTY
RVøL	RVøL	RV®L	RV¢L	RVOL
M, RM	M, RM, VP			RM
	P, PL, EP, UP			
	UTIL, UL, CQ		EMAMLC	
	VTIL,VL		UMOMLC	
	RøL.	BETALC	FøUTLC	
SIE	SIE	SIE	SIE	SIE
	DEL5M	SIGPLC	SIGPLC	SIGPLC
	OG, GRIR	R2RDEN	RZEDEN	RZEDFN
	VG, GRIZ	FSA	FSM	FSN

```
    USE -1,0
    (\muE, O, {
    (\lambda) INPUT VISCOSIIY COERFICINI
    LAM
ARO }
    0.4
    HYDRODVNAMIC COVSIA!ITS
    FORMAT WEI2.4
            (\omega) PHASEL RELAXATION PARAMEYER
            USE 1.a
            (\epsilon) pmase 3 lleralion convekgevle criterion
            GE H. A2OO1
            ( ( }\mp@subsup{Q}{}{2}\mathrm{ ) ZERU TEMPERAILRE SOUNO SPEEO
hyorodynamic constants
    FORMAT SEI2.4
        (\gamma-1) GANHA-1 (AMEIENI)
        USE R,4
        RAOIAL GRAVITY
        USE O.A
        AXlAL giNAVITY
            USE -a,0I
            IGITIAL AHAIENI DENSIIY AI REZYYG
        REZSIE
8. UNIFDRM BACKGROUNC MESH INPUT
UNIFURM REGION CARO FIRSI REGION
        fRRMAT 4I6, पEI2.4
    NG FORMAT UIG, MEIZ.4 NJMEN OF REAL CELLS GFLCA REGICN
            NUMBEF OF CELLS OETAEEN AXIS A:00 NIÖT DOUNUAKY
    NT OF REGIUN NUMOF OF HEAL CFLLSS HELSN IGP CF REGJON
    NL NUMBER OF CELLS HEMIEEN AIIS ANO LEFJ HOJ.UARY OF
            RFGION
    UI RAOIAL VELOCITY IV MEGIUD
            AXIAL VELCCITY JN REGION
            OENSIJYIM REGIUN
            NENSIIY IN NEGIUN ENFRGY IN REGICI.
unIFORM HEGION CARO SECOID REGION
..,
...
uniform region caro last regiun
FINAL CARO
FINAL CARD INDICAIES THAT ND MORF: BACYGROUND \(\because E S K\) INPUI CAZOS ARE 10 EE REAO
- In LCoLunin 12 causts program to compllit exponenilal. aymospaere
1000 in COLUMNS
    VI AXIAL VELCCITY IN REGION
    KOI OENSIIYIMHEGIUN
```

c. Rubiale inpijt

FEAD OY MESHMKR
OMII IN PURD INPUI PROBLEMS
PURD PROBLEMS

18U8 1 INOEX OF VERTEX AI BHBULE CENTER (RAOIAL
bubble data oeck first burble
OECK
I CARS FOR BUHBLE
FORMAT
II RAOIAL INDEX
JJ AXIAL INOEX
SIEI SPECIFIC INTERAAL ENERGY OF CELL
UI AXIAL VELOCIIY AT VERIEX
ank caho first bubble
ocatiun caru secono bubble
BUBBLE DATA OECK SECONO BUBELE
.., ...
location caro
LAST BUBHLE
jata deck
FINAL blank caln
Final blaink caro inoicates there are jo more blibbles 10 he reac
table a-pi
yøKIFER COMTROL cARDS

APPENDIX B

THE NEXTWAY PROGRAM

NEXTWAY reads dump tapes from YøKIFER and plots the information on them. The program generates a uniform mesh and interpolates the values of the mesh variables to find their values at the centers of the uniform cells. These values are plotted. The plots produced are:
a. Velocity vectors
b. Three-dimensional plot, rear view
c. Three-dimensional plot, rear view
d. Variable vs radius, through the bubble center
e. Variable vs axial coordinate, along the axis

Plots b, c, d, and e are plotted for each of the following variables:

1. TEMP Temperature (eV) YT
2. SIE Specific internal energy (J / mg)
3. $\mathrm{R} \varnothing$ Density ($\mathrm{mg} / \mathrm{cm}^{3}$)
4. SKE Specific kinetic energy (J / mg)
5. RZEDEN Radiation source density ($\mathrm{J} / \mathrm{cm}^{3}$)
6. SIGPLC Mean absorption coefficient ($1 / \mathrm{km}$)
7. P Pressure ($\mathrm{M}-\mathrm{Pa}$)
8. I-FSN Radiation scattering probability
9. AVINT Average radiation intensity (S_{n} only)
For Monte Carlo calculations, the following additional plots are made:
f. Spectrum of production particles (W / eV vs eV)
g. Spectrum of energy depositions (w/ev vs eV)
h. Spectrum of escaped particles (W/eV vs eV)
i. Spectrum of census particles (W/eV vs eV)
j. Map of production particles
k. Map of energy depositions
10. Map of census particles

Input Cards

Card 1 Format 216
NXE Number of cells, radially, in the uniform mesh. Default: IBAR
NYE Number of cells, axially, in the uniform mesh. Default: JBAR
Card 2 Format 3El2.4
$\mathrm{XR} \quad$ Right boundary of the uniform mesh (km). Default: $X_{i j}$,at IPl, 2
YT Top boundary of the uniform mesh (km). Default: $Y_{i j}$, at $1, J P 2$
YB Bottom boundary of the uniform mesh (km). Default: Y_{ij}, at 1,2
Cards 3-5 Format 6El2.4
SCALEB $_{i} \quad$ SCALEB $_{i}$ is the minimum ordinate on graphs of mesh variable i.
SCALER $_{i} \quad S_{i} C A L E R_{i}$ is the maximum ordinate on graphs of mesh variable i. i refers to the variable numbers (l-9), above. The default values are 0 and $1.5 \times$ maximum value of the variable, and default values are used when $\operatorname{SCALER}_{i}=0$.

Output Cards

NEXTWAY punches a complete set of input cards that contain either the previous input values or the default values. The cards may be used in subsequent calculations to maintain uniform graph scales from one tape to the next.

APPENDIX C
SAMPLE YøKIFER PROBLEM

SAMPLE	PROBLEM			2.0	1.0		1. (Header)
0.09		0.0001	1.0				2.
34	68	0.0	0.21266				3.
20	40	20	$\underline{0.010633 ~} 0$	0.010633	1.1		4.
0.1		1.0	0.00 -1	1.0	0.1	0.6	5.
1.0		1.000E-05	$\underline{1.000 E-15}$				6.
0.4		0.0	-0.01	1.2	0.210		7.
0							Background Mesh
1	22						Bubble Coordinates
1	1	.16715E-01	. $14215 \mathrm{E}+03$	30.			Bubble Input
2	1	.16482E-01	. $14340 \mathrm{E}+03$	00		-.97405E-01	
3	1	-15765E-01	-14049E*03	00		-20660E-01	
4	1	-15678E-01	-13862E*03	30.		-47920E-01	
5	1	.15920E-01	-13527E*03	30.		-44087E-01	
6	1	-16599E*01	-13026E +03	00		-40373E-01	
7	1	-17523E-01	-12375E+03	3 00.		-. 19926E-01	
8	1	.18810E-01	-11097E•03	30.		-.42262E-01	
9	1	-22200E-01	-90066E*02	200		--25553E-01	
10	1	. 30170 E-01	. $64466 \mathrm{E}+02$	200		-.52142E-02	
11	1	.42959E-01	. $46143 \mathrm{E}+02$	20.		-19662E-01	
12	1	-10529E+00	. $18199 \mathrm{E}+02$	200		-91198E-01	
1.3	1	. $26498 \mathrm{E}+00$	-50252E+01	10.		-21146E+00	
14	1	.48079E-00	-22653E-01	10.		-3470ヶr	
15	1	. 94772 E -00	. $10976 E+01$	10.		3029゙5	
16	1	. 16702 O + 01	* $71019 \mathrm{E}+00$		- - vi	$\bullet 38295 E-01$	
17	1	$.27825 E+01$	- $54368 \mathrm{E}+00$			-31167E-01	
18	1	-25877E+01	-378775-	$\checkmark \quad .59321 E-02$.19165E-01	
19	1	. $13055 \mathrm{E}+01$	- 1 NOEE +00			. $68596 \mathrm{E}-02$	
20	1	. $12041 E+n$.	- $21000 \mathrm{E}+00$	000$.918550 \mathrm{E}=02$.68596E-02	
21	1	--~UJE+0i	-21000E $+21000 \mathrm{E}+00$	0 0.		-18533E-02	
1		-12041E+01	- $21030 \mathrm{E}+00$	0 -54952E-01		0 -	
	20	-12039E+01	-21029E*00	0 .26936E-01		-30953E-02	
3	20	-12035E+01	- $21026 E+00$	0 -21007E-01		.56656E-02	
4	20	-12030 ${ }^{\text {+ }} 01$	- 21022 C 00	0 -12194E-01		-72077E-02	
5	20	-12000E*01	-21000E+00	0 -52932E-02		-72622E-02	
6	20	-12000E*01	-21000E+00	0 -31001E-02		-49583E-02	
7	20	-12000E*01	- $21000 \mathrm{E}+00$	- $\quad .79265 \mathrm{E}-03$		-13865E-02	
8	20	-12000E*01	-21000E+00			-11422E-02	
9	20	. $12000 \mathrm{E}+01$. $21000 \mathrm{E}+00$	0 00, 0 239E-02		.71110E-03	
1	21	-12000 ${ }^{\text {c }}$ - 01	- $21000 \mathrm{E}+00$	0 .47239E-02		$0 \cdot$	
2	21	-12000E 01	. $21000 \mathrm{E}+00$	O .21657E-02		-21510E-03	
3	31	-12000E+01	. $21000 \mathrm{E}+00$	0 -12064E-02		. $39861 \mathrm{E}-03$	
4	21	. $12000 \mathrm{E}+01$. $21000 \mathrm{E}+00$. 52015E-03	
5	21	. 120000 + 01	$.21000 \mathrm{E}+00$	0 0.		. 55175E-03	
0							
$\begin{gathered} 0.010 \\ 0 \\ 0 \end{gathered}$		0.010633	0.0	0.21266	0.2	0.0	Marker Particle Input

Sample Problem - Input

RCAYOK ICF
SAMPLE PROBLEM

BACKGROUND MESH VARIARLES
EXPONF，NTIAL ATMOSPhere CAI cim ation

J	RU	SIE	TEMP
2	1．2300E＋07	2． 1 の10F－01	2．5267E－02
3	1．22．84E＋0？	？．1＾！ 0 － 01	2． $5 \mathrm{C}^{-1} 67 \mathrm{E}$－02
4	1．2入（69F＋n）	？．1nOOE－C1	2．5267E－02
5	1． $2353 \mathrm{~F}+0!$	2．1n（10F－01	？ $5267 \mathrm{~F}_{0}-\mathrm{C}$ ？
6	1．2\％38F＋n，	2－1＾ICnF－01	2．52675
7	1．2？22E＋斤1	？－1nc．0E－01	？．r－－ 12
8	1．2207E＋0）	P．1n00E－n．	－ $667 E-02$
9	1，2191F＋01！	2．1nar	2．52¢7E－02
10	$1.2176 \mathrm{~F}+90$	．r．-01	2．5267E－02
11	1，2161F＋－	． $1000 \mathrm{O}-01$	2．5267E－62
$1 ?$	1．2＇）1＇	2． 1 niloF－01	2．5267E－02
13		2. 1nUOE-01	$\begin{aligned} & 2.5267 E-d 2 \\ & 2.5267 \mathrm{E}-\mathrm{c} 2 \end{aligned}$
Fe	9．967？F－ni	3．1nu0F－01	？．5267E－02
69	9．7951E－N1	人． 1 nn 0 － 01	2．5267E－6，
70	9．6192E－n）	2．1000E－01	2．5267E－C2

Sample Problem－\varnothing FFWEG \varnothing Output
BUBBLE VAPIABLES
IBUB

JRIR

ROI	SIEI	UI	VI	TEMPI
1．6715E－02	1．4215E＋C2	0.	0.	1．9657E +00
1．6482E－02	$1.4340 \mathrm{E}+\mathrm{C2}$	－9．7405E－02	0.	1．9693E +00
1．5765E－02	1．4049E＋02	2．0660E－02	0.	1．9575E＋00
1．5678E－02	1．3862E＋02	$4.7920 E=0 ?$	0 ．	1－9508E＊00
1．592CE－02	1．3527E＋C2	$4.4087 \mathrm{E}-02$	0.	1．9398E＊0
1．6599E－02	$1.3026 E+02$	4．0373E－02	0 ．	1．9240E＊nn
1．7523F－02	1．2375E＋02	－1．9926E－02	0.	
1．881 CE－02	1－1097E 02	－4．2262E－02	0 。	
？．2200E－02	9．0066E＋01	-2.55525		$2.5963 \bar{E}-02$
3．0170E－02	6．4466E＋ 11		－4111E－02	？．5733E－02
$4.2959 E-02$	＋	02	3．9921E－02	2．5447E－02
1＋n5～～	2．1018 ${ }^{\text {a }}$－ 01	$\begin{aligned} & 1.9165 \mathrm{E}=02 \\ & 1.4526 \mathrm{E}-02 \end{aligned}$	$\begin{aligned} & 2.2299 E-02 \\ & 5.9321 E-03 \end{aligned}$	$\begin{aligned} & 2.5298 E-02 \\ & 2.5288 E-0 ? \end{aligned}$
－ $\operatorname{conCO}+00$	2．1000E－C1	6．8596E－03	3．1855E．03	2．5267E－02
1．2n（10E＋ 00	$2.1000 \mathrm{E}-01$	1．6533E－03	9．168uE．－04	2．5267E－02
í． $2000 \mathrm{O}+00$	2．1000E－ 01	8．8885E－04	0.	2．5267E－02
1．2n41F＋00	2．103nE－03	0.	5．4952E－02	2．5302E－02
1．2n39E＋ 10	2．1029E－C1	3．0953E－03	2．6936E－02	2．53C1E－02
$1.2 \overline{3} 35 E+00$	2．1026E－C1	5．6656E－03	2．1007E－02	2．5297E－02
1．2n3nE＋00	2．1022E－Cl	7．2077E－03	1．2194E－02	2． $5293 \mathrm{E}-02$
1．2i00E＋00	2．1000E－01	7．2622E－03	5．2932E－03	2．5267E－0？
1． 2 ño $\mathrm{OF}+00$	2．100年－01	4．9583E－03	3．1001E－03	2．5267E－02
1． 2 ñone +00	2．100nE－01	1．3865E－03	1．9648E－03	2．5267t゙－02
1．200nE＋00	？． $1000 \mathrm{E}-01$	1．1422E－03	7．0265E－04	2．5267E－02
1． 2 OOnF． 000	2．1000E－01	7．1110E－04	0.	2．5267E－02
1．2000E＋00	2．1000E－01	0 ．	4．7239E－03	2．5267E－02
J． $2 \cap 00 \mathrm{O}+00$	2．1000E－01	2．1510E－04	2．1657E－03	2．5267E－02
$1.2 n 00 F+00$	2．1000E－C1	3．9861E－04	1．7778E－03	2．5267E－02
i． 2 inne +00	2．100nE－01	5．2015E－04	1．2064E－03	2．5267E－02
1． 2 OOOE＋00	2．100nE－01	5．5175E－04	6.	2．5267E－02

PARTICLE REGIONS

DRPAR	$1.0633 E-02$	DZPAR	$1.0633 E=02$
$X C$	0.	$Y C$	$2.1266 E-01$

XD $2.0000 E=01$
YD
0.

556 PARTICLES GENERATED
PROBLEM CYCLE O HYDRO

T	9.0nOOE-n2 TO	Q.00ORE-0	DT	n.					
TE	$3.9804 \mathrm{~F}+13$	TI	$3.5094 \mathrm{E} \cdot 13$	IK	4.7105E.12	EPOT	$1.9178 E+13$	TIAMB	4.2044EA14
UMOM	2.3669E-n3	vmom	8.3481E-09	CIRC	-3.0656E-04				
TMAX	$1.4341 F+n 2$	ITM	1	JTM	23				
TGMX	2.7772F+C3	ITG	3	JTG	32				
DTV	IIIII	InTV	R	JUTV	R				
DTC	IIIII	IOTC	R	JUTC	R				
REZONE	Constants								
VTB FC3	$3.7921 F-01$ 6.2380 O 01	$V T T$ FCP	$9.3106 E-08$ $7.6406 E-10$	UT	$\begin{aligned} & 2.4518 \mathrm{E}-018 \\ & 6.2689 \mathrm{E}-01 \end{aligned}$				

PROBLEM	M CYCle 1		RADN T	transport								
time	9.0n00E-n2 TO		.0010E-0?	2 DTR	1.0000	ロ-ก5						
INITIAL ENERGIES												
RADN	$7.3413 F+08$		INT	4.5563E+14		KIN	4.668		TOTAL	$4.6030 \mathrm{E} \cdot 14$		
I JMIN	1726		SJEMtN	3.9273E+09		UMIN	9.476		TMIN	1.1769E-01		
PARTICLES												
		NGFN		NCEN	NBAMK		NDIE	IESCAP		nmove	NCOL	
SOURCE		476		0	67		253	156		11402	5752	
BANK				0	90		111	0		6888	6888	
8ANK		27\%		0	118		152	0		9546	9526	
BANK		354		0	56		298	0		7684	7496	
BANK		168		0	0		169	0		168	0	
373 2 DEPOSITION SAMPLFS DUMPED TO FSET3												
PARTICLE FNERGIES												
EMC	$6.3629 F+12$		EPAD	$6.3629 E+12$		ECEN1	0.					
Final radiation energies												
EMC	t. $3629 \mathrm{~F}+12$		EARS	6.3624E 12		ELOST	4.419		EEMIT	$6.3629 \underline{E}+12$		
ECEN	0.		RE	9.9963E-01		KA.	1.000					
PABS	6.3624F+17		plost	4.4198F. 13		PEMIT	6.362					
tavg	9.0005F-02		tmax	1.9693E+0n		UMAX	3.903		DMIN	1.5678E-42	THY	$4.4198 E+08$
CP	$5.3919 \mathrm{E}+01$		CYCLF	1.8923E+01		101 MP	2.510		NDUMP	0		

Sample Problem - MCRT Output

ORLEM CYCLE 33 SA RADN TRANS							
time	9.5058E-02 TO	9.5181E-n	2 OTR	1.2289E-74	ISN	4	
ESN 2.0137E+19							
$\begin{aligned} & \text { CYLSN POWEH } \\ & \text { SUM } \quad 3.9146 E+13 \end{aligned}$							
1 SN ITERATIONS							
ENthgies							
SIE	3.5796E+13	URTOT	5.5038E•98	ELOST	$-1.1830 E+04$	EARS	3.3831E+10
POWER							
PWR	9.6262E+07	PWR2.	-3.914 $\mathrm{FE}+13$				
time interval uata							
OTR	1.1414E-03	I T T	913	POWER	$3.9199 E+12$	ECEI.L	2,9927E+10
tavg	9.512nE-02	TMAX	$1.9304 E+00$	DMAX	$3.7153 \mathrm{E}+00$	DMSN	1.4366E-02
CP	$2.7141 E+02$	CYCLE	1.8005E+01	TOIJMP	2.9776E+01	noump	576270

Sample Problem - GREYSN Output

DATA WRITTEN ON FSET 7
TAPE DUMP AT 9.5181E-02

Dump Indicators

APPENDIX D.
FLOW DIAGRAMS OF THE Y \varnothing KIFER OVERLAYS AND SELECTED SUBROUTINES

$\mathbb{E} S T E P$ OVERLAY 3,2

SNOUT
OVERLAY 4, 3

APPENDIX E

INDEX LISTING OF THE YøKIFER PROGRAM

SEARCH, DBLTNT, GETEMP, PAKFNØ, and UNPKFN are written in CØMPASS and are not included in this listing.

YOKIFER	2
YOKIFER	3
YOKIFER	4
ÄLLKKOM	2
Alllkom	3
ALLKKOM	4
ALLKKOM	5
ALLKKOm	6
ALLKOM	7
ALLKCM	8
ALLLKOM	9
ALLKKOM	10
ALLKKOM	11
ALLKKOM	12
ALLKOM	13
Silver	2
SILVER	3
Silver	4
Silver	5
Orarige	2
ORANGE	3
Ohange	4
orange	5
OHANGE	6
orange	7
YELLCOW	2
YELLOW	3
GREEN	2
CrIMSN	2
SENSE	2
Yokifer	12
Yukiftr	13
YOKIFER	14
YONITER	15
Yokifer	16
YOKIFEF	17
YOKIFEK	18
Yonlfer	19
YOKIFER	20
YONItER	21
YONIFER	22
YONJFER	2
YOK1FER	24
YOKJFER	25
YOKIFER	20

29		Call hemark llohyaoui ）	YOKIFER	21
3 c		1F（JSwTCr2．EG． 2 ） 60 TO 22	YOKIFER	28
31		CALL OVERLAY（7LYCKIFER，3， 0,0 ）	YONIFER	29
32		call hemark（IOmicht	YOKIFER	30
33		GC TO 23	YOKIFER	31
34	22	Call uverlay（7Lyckirer，4， 0,01	YOKlFEM	32
35		Call memakk \umgreysn	YONIFER	33
36	23	CALLL SECOND 1 T21	YONIFER	34
37		TCYCLE $=$ T2－T1	YONIFER	35
38		TLUMP＝TUUNP－TCYCLE	YuNifter	30
39		PHiNI 2U01，T2，TCYCLE，TOUMP，NOUMP	YOK1FER	37
40		$\mathrm{T}=\mathrm{T} 2$	YOMIFER	38
41		IUUMP＝	YOKIFER	39
42		IF（TIME，GE．TOUTI LOUMPzi	YOKlFER	40
13		If（TUUMP．LEE．2．0＊TCYCLE） $10 \cup M P=2$	YOKIFER	41
44		IF（NUUMP．GE， 1000000 ，1UUNP＝2	YORIFER	42
45		If（IUUMP．ES．0）GC TO 21	YOMIFER	43
40		CALL OPEN（5LFSET1，2LST，4006，	YOMIFER	44
47		CALL CPEN（SLLSET3，2LST，4608）	Yonifer	45
48		CALLL OPEN（ ${ }^{\text {SLPSETY，} 2 L S T, 40 日 8) ~}$	YOMIFER	46
49		ALUMP＝NUUNP 1it：0LO	YOnIFER	47
50		ILL＝LOCH 1 $\angle 2$ ）－LOCF（NAME $1+1$	YOMIFER	48
51		mhile（7）（NAmE（1），$=1,1 \mathrm{lz}$ ）	Yokifer	49
52		Enutile 7	Yonlfer	50
53		AECS＝N日1＊JP2	YONIFER	51
54		NCUMP $=$ NOIL $(1 P$ P NECS	YOMIFER	52
55		Whlic（7）（AAIIIT，12IPNECS）	YOMIFER	53
50		NELS $=2$ NPT	YOKIFER	54
b7		ALUMF＝NUUMP•NECS	Yunifer	5
54		WFIE（7）［AAZ（1），I＝1，NECSI	YOKJFER	56
59		Enut ILE 7	Yoniter	57
00	33	CHLL HUOUF（SLFSET，AASC， 4600 ，LENGTH，LSTATUS）	YORIFER	54
61		CALL WTUUF \SLFSEIT，AASCOLENGTHI	Yokiter	59
62			Yonifer	O0
63		It（LSTATUSELI．2！8） 60 T0 33	yokifer	61
04		whlle（7）	YOKIFER	02
65		Enutile 7	YORIFER	63
06	34		YOAJPER	64
07		CALL WTOUF SSLFSE17，AASL，LENGTHI	YORIFER	65
08		ALUMF＝NUUNP•LENG TH	YOKIFER	06
69		Wh（le（7）	YORIEER	61
70		Enut ILE 7	YOKIFER	O8
71		phint 2003	YOMIFEA	64
72		feminu）	Yonlter	70
73		heyliva 3	Yunlfer	71
74		CaLL UPEN（SLPSET1；2LSTibl2）	YOKItER	72
75		CALL OPEN（SLHSET3，2LST，bla）	YOKItER	73
76			YOMITER	14
77		it（ILUUMP．EO．l）GC To 21	YORIFER	75
78		Call auvill	YOMIFER	76
79		LUUNP＝AMIN1（YU0．O．T2，1TL－T2）	YOMIFER	17
60		NLUMP＝：	YOCIFER	78
8）		PHINI 2JIO2，TIME	YOKIIEF	74
－2		Wh（IE（12，COOC）TIME	YORIFER	40
03		kemend 1	YONIFER	81
04		Call datamel islfsetil	YOKIFER	82
－5			YOnIFER	4
bo		（ALLL AFSKEL（3LUUT）	YUNIFER	64
67		LALL OPEN（OLRSETi2，2LST，S12）	YORIFEK	65
04		REWINO 7	YónIfer	86
09		It（TLUMP．GE．C．U＊ICYCLES GO TO 21	YOKJFER	47
$4 \times$		Stor	Yonlter	88
91		enu	YORIFER	by

	3－	54＊	uTVSAV	－R	12 CO	GRLVEL	－ 6	АСО	ITAK	（1）	10 CO
	34	00\％	uvur	－k	12 Co	GREEN	－	13 CN	ITV	－1	8CO
AOV	－	705u	EMIJ	－R	－CO	62	－${ }^{\text {H}}$	10 CO	${ }_{\text {I }} \times 1$	－1	9 CO
ALrHA	－ H	136	EPS	－ H	10 Co	ItAR	－1	8 Cu	IX ${ }^{\text {c }}$	－1	9 CO

ANC	－R	10 CO	ETAD	U／ F	2 CO	IOTC	－1	1200	$1 Y_{0}$	－1	900	nPCMAX	－1	13 C̈0	HEU	－	8 CN	vv	－R	900
andules	IJR	1160	Fitkx	－R	$\mathrm{sco}^{\text {c }}$	IOTV	－1	12 CO	IYi	－1	9 co	AU	－1	${ }^{8} \mathrm{C} 0$	HETURN	－	90F	WHITE		11 CN
ȦSt	－R	10co	＋1FXR	－R	9 CO	1E¢CP	－1	$1{ }^{10} \mathrm{CO}$	J	－1	4 CO	noit	－1	lčo	hezrun	－R	10 CL	xCCNV	－${ }^{-1}$	9 CO
AO	－R	10co	＋1FYy	－R	9 CO	1 J	－1	4 CO	J४ар	－I	${ }_{8} \mathrm{CO}$	nol2	－1	いでo	RE2SIE	－R	8 CO	${ }^{\mathrm{X}} \mathrm{L}$	－${ }^{-1}$	9 CO
AOHAC	－R	inco	＋1XL	－R	960	Ij ${ }^{\text {j }}$	－1	$a \mathrm{CO}$	JCEN	－1	1360	arvals	－1	（1čo	Rezyo	－ $\mathrm{H}^{\text {r }}$	10CO	XR	－${ }_{-1}$	9 Ci
AOM	－R	1 cco	FIXH	－k	9 CO	I Jp	－1	4 CO	Julc	－1	12c0	ASP	－1	－${ }^{\text {co }}$	rigar	－R	9 Cl	Y	－5：	4 CU
－Till	IfR	2 CO	＋1YE	－k	960	Ijps	－1	8CO	Juiv	－1	12c0	numit	－1	J C̄o	RLCl	－	7 CN	YCUNV		9 CO
H0	（1）	isco	fluat	－	2450	IM1	－1	10 CO	JNM	－I	joco	CM	－	1500	hVals	（1）	11 CO	YELLOW	－	12 cN
colamu	－R	inco	Freg	（1）	2 CO	INF	－1	${ }^{1} A^{\text {d }}$	Jpl	－1	8 CO	Cmanc	－	1二乚力	iSense	－	15 ck	YLC1	\cdots	ら¢்．
chilmsn	－	14 CN	＋SETJ	－k	jag	IPXL	－1	9 CO	Jr_{4}	－I	1 sco	CMCYL	－$-\dot{1}$	－てZo	SIGA	（1）	7L．	YLC？	－	6 CN
	－R	1000	＋Stli2	－R	j $A G$	1 PXR	－1	9 CO	JSwTCHI	－1	15co	CPUEN	$11 \dot{4}$	2 O	SILVER	－	9 Ci	YoḱIfer	－	ISU
סalarel．	－	8450	＋SElic	－R	j $A \bar{G}$	IPYO	－1	9 CO	JSwichis	－1	15 CO	CPTMP	（1）	2 $\bar{C} 0$	sncuí	If	14 CL	YSCl		3 CN
01	－k	8 CO	fSEJ3	－${ }^{\text {－}}$	IAG	IPYT	－1	9 CO	Kג1	－1	jcco	ORANGE	－	luCN		（1R	2 CO	YT	－	9 O 0
OTG	－R	12 CO	FSETA	－	JAG	$1 P 1$	－1	8CO	L．AM	－1	1：c0	CUT	$\underline{ }$	IAG	STATE	－	26 N			
ditcsav	－R	1260	FStlo	－K	1 AG	$1 P 2$	－I	1 OCO	Lume	－I	10C0	fink	－	4 CN	＋	H	8CC			
UT02	－ $\mathrm{H}^{\text {H}}$	1260	＋Seli	－k	（ $A \bar{G}$	ISCF1	－1	8CO	MU	－1	jcco	FTAD	（1）	$2 \bar{C} 0$	TAMS	－	8 CC			
dipus	－K	1）160	GLic	－	23S	$15 C F 2$	－1	ACO	NAtatis	－1	ilco	PxCunv	－	yco	TEMII	－${ }^{\text {－}}$	1300			
OTK	－k	BLO	GM1	－	10 O	1 SC 2	－1	8CO	ner	－1	13 Co	FXL	－	¢īo	IEMP	（1）	8 cc			
טiv	－R	1ぐ心	Gr	－k	10co	1 Sc 3	－1	BCO	neut	－1	13 Co	PXR	－$-\frac{1}{4}$	¢ ${ }^{\text {czo }}$	Third	－R	10CC			

SLbkOLIINE FILMCO		+ILMCO	2	
ccmmuh /Stale,	HGPT, WCPD, NFRO, OPTMP(30), OPDEN(10),	ALLKKOM	c	
1)		Allincm	3	
c	OTEL (300)	ALLLKCM		
ccimun /rscl/	AAsc (b454)	ALLKOM	5	
LCMmon mpink,	I. JJ. IJN, IJP, J	allinom	6	
LLM /YLCl/	AA) (latuvol	ÁLLKOM	7	
LCM /YLC?	$A A^{(1) 31, D O)}$	ALLKom	8	
LCM /hicl/	SIGn(sumito	ALLKOM		
GMmun riedor	tamblici, ot, uth, emlo, grovel, Imar, IJPS,	ALLKOM	0	
$!$	1P1, 1SCFI, ISCF2, ISC2, ISC3, ITV, JRAK,	ALLKOM	11	
¢	JPI. JpZ, ncrc, nuUmp, NU, Nat, helsien tamap	ALLKOM	12	
3	TEMP(1b)', I, TINE, TUUT, TSTART, TMY	ALLKOM	13	
, commun sillver/	FIPXL, FIFXF, FIPY1, FIXL, FIXR, FiYB,	SILVEN	2	
$!$	IFXL, IPXH, JPYب, IPYI, IXL, IXF, IYY,	Sislvek		
${ }_{3}$	IYI, rXCONV, PXL, FXK, PYE, PYCONV PYT,	SILVER		
3 ccmmun loranut,	RIDAK, WV, XCCAV, XL, XR, YH, YCONV, YT	Sillver		
ccmmun /orange/	ANC, 4 SL, AD, AUFAL, AUP, HO, CCLAMU, CYL.	Oraluge	2	
3]	UTPUS, EPS, UNI, G\%, GL, LM ,	orange	3	
5	IE.CF, IF2, [TAls\\|uln), JNN, JPG, KXI, LAM,	OHANGE	4	
3		Orange	5	
4	OMMAC, OMCYL; RELKUN, KEくYU, THIRO, VTEM	orange		
cciamun /white/		drange	7	
CCMMON /SENSE/	JSWICNL, JSWICH2, JSWTCen	Sende	2	
EGOIVALLENCE	(AASC(1), ${ }^{\text {a }}$, XPAR], (AASC(2),R,YPAR), (AASC (3),Y),	Euvieal	c	
$!$	(AASC(4), U), (AASC(S), W) , (AASC(6), K0) ,	Eovreal	3	
3	(AASC(1),NP, KNP NKCSI, CENTX),	EuvaEAL	4	
3	(AASC(0), E,ETIL, CE19TY), (AASC(9), RVCL.),	Euvreal	5	
4	(AASC(ll), M, Rr, VF), (AASCl)(), P, PL, EP, UP),	Euvkeal	0	
5	(AASC (12), UTILPUL COPEMOMLC),	EuvaEal	7	
0	(ANSC(13), VTIL.VL, UMUMLC),	Euvreat	8	
7		Euvreal	y	
\square	(Aasclic), DELSP'SIGPLC),	Euvreal	10	
¢		EuvaEal	11	
1		Euvkeal	12	
MEML	LAIS: LANI), N, NO, mu, muoc̈	Ejureal	13	
UiHENSIUN	X(1), XLAH(1), H(l), YPAR(l), Yill, 心(1),	Cimen	2	
c	V(l), KC(l), RP(l), RMP()], RCSO(l), CENTX(l),	UjMEA	3	
5		Oimen	4	
	VP(1), P(1), PL(1), EP(1), UP(1), UTILI),	DJIEA	5	
5	ULU) Cull, EmOMLC(1), VTllili, VL(l),	UJPEEN	6	
0		OIMEA	7	
7	SIE(J), UELSM(1), SIGPLC(l), GKIR(1), UG(1).	UIMĖN	8	
0		OIMEN	y	
$x \mathrm{LL}=0.0$		FILMCO	9	
$Y_{t}=1 \cdot t+20$		Filmco	10	
$\lambda r=Y T=-Y \mathrm{~B}$		Eilmco	11	
hiUAK=T.J/FLOATIG	ARI	filmico	12	
call start		Filmco	13	
LC ; ¢9 J=2,JP2		filmco	14	
LC lly $1=1,1 p l$		i ilma	15	
		FILmCo	16	
		- ILmco	1%	
Y) $=$ Altax) (YT, Y(IS		Filmcu	18	
$1 \checkmark=1 J . N G$		filmicu	19	
call lour		Fjlmco	20	
LLN!101J		Filmcu	<1	
$V V=U \cdot Y * \chi^{*}$ *IIEAR		Filmco	22	
+1Y0=y,4.c		Filmco	$\stackrel{3}{ }$	
$1 \times 1=4$		Filmco	24	
$t 1 x_{1}=1110.0$		Filmco	25	
FIXK=1,		Filmico	25	
$X_{l}=X_{k} /(Y T-Y y)$		Filmcu	27	
	R=FIXL*XD* (FIYB-FIYT)	Filmco	28	
		FILmCO	29	
XCUNV $=1 F I X K-F I X L$	//(XR-XL)	Filmcu	30	
YCLNV $=$ IFIYT-FIY8	//(YT-YH)	FillmCo	31	
JXL $=$ FIXL		Fillmco	32	
$1 \times \mathrm{H}=\mathrm{fI} \times \mathrm{K}$		Filmcu	33	

41	IYO $=$ FIYB
42	IYI＝FIYT
43	HALE：．！
44	（YO＝ANAX）（Prbiros）
45	
40	
47	FYr＝M－nX）（PY女－j．O＊PXF，YO）
4 H	HYI＝ANIN1（PY）＊C．C＊PXK，YI）
49	rat $=\mathrm{MNJN(12.1*PXR}, \mathrm{XR)}$
b．	FJrYo $=414.0$
bl	＋1FYI＝4．1
52	＋IFXLE110．0
$\checkmark 3$	
34	$x L=P X H /(P Y)-r y y)$
35	If（XU．LT．）＝U）FIFXR＝FIFXL＊XO＊SFIPYK－FIPYT）
bo	
37	
bo	PYCCNV $=$（FIPYT－F P PYO）／／（FYT－FYO）
59	ILXL $=$ FIr $\mathrm{XL}_{\text {L }}$ ．
$0 \cdot 1$	IPAK $=$ PIPXR
01	Lryo $=$＋IPYY
02	LFYT $=$ HJPYT
03	kelukn
04	Enu

$\overline{\text { FILmCO }}$	34
Filmme	35
F）lmco	30
Filmco	37
Filmco	3\％
Filmme	39
filmco	－ 0
filmco	41
filmco	46
FilmCu	43
Filmco	44
FIlmco	45
Fillmco	46
Filmco	47
Filmco	48
filmco	49
FILMCO	30
Filmco	51
Filmeo	52
filmeo	53
Filmeo	54
FIL．MCU	S5
F JLMCU	bo
FILMCO	57

S！ngly	RLt Er	Enceu	vakiables														－R				880
AAI	lıK	5LC	UJH	－ H	$\triangle C O$	1 JPS	－1	ACO		JSwTCH3		12 CO	notes Nol2	－1	$1 . \mathrm{CO}$	KEZSIE	－R	8 CO	time	－${ }^{\text {H }}$	8 CO
AAC	（1k	OLC	ENald	－ H	eco	$1 \mathrm{Mr}_{1}$	－1	1900			－1	10 CO	nolz	-1 -1	ilico	RE2YO	－R	10 CO	TNEUT	$-\mathrm{H}$	11 co
Anc	－R	リしu	trs	－-	16 Co	1 Pa	－1	10 CO		LAMU	－	14 P P	nrVals	S $\begin{aligned} & -1 \\ & -1\end{aligned}$	いくCo	RELY	－${ }_{-1}$	7 CN	TUUT	$-\mathrm{H}$	8 CO
angles	SRR	1ico	Eubival		13 F	1 SCF1	－1	ACU		LJtz	－1	1 CCO	CuM II	－1	icco	RVACLS	118	11 cu	tsiant	－R	
ASU	－R	1rio	Elat	UR	2 CO	1SCF2	－1	8 BCO		Lulip	－	2750	CMAMC	－	lico	SENSE	\％	12 CN	VTEM	$-R$	10 Cl
Au	－	jcco	＋1LNCC	－	150	$1 \mathrm{SC2}$	－1	8CO		miluz	－R	14 KL	CMAMC	－$-\dot{H}$	jito	S $16 A^{-}$	118	7LC	WHITE	－	11 CN
Autac	－-	10 CO	fluat	－	1450	15 Cl	－1	${ }^{\text {BCO}}$		NAIIE	（1I	860 1100	CPOUR	－í	2 CO	SILVER	（1）	9 CN	YLCI	－	bCN
ACM	－k	jrco	トREG	11%	¢CC	1TAO	（1）	19 CO		NAItijLS	－1	1 CO	CPOEN CPTMP	（1）	2CO	Sptai	UR	2 CO	YLCL	－	OCN
GTul．	If	2CU	GM 1	－${ }^{\text {d }}$	1100	ITV	－1	ec		NCYC	－1	8 CO	CRANGE	E－	$1 \mathrm{Cc} \mathrm{c}^{\text {N }}$	SIART	（1）	2050	rscl	－	3 CN
80	－R	jncu	uri	－	1.60	JJAR	－1	ACO		NUUMP	－1	8 CO	crange	E	$4{ }_{4}$	STATE	－	2 CN			
colamu	－K	11CO	Gruvel	－ H	4 CO	JNN	－1	1060		NFtu	－1	2 CO	Pink	11%	－	T ${ }_{\text {SAMT }}$	－R	8 CO			
Čy	－k	jrcu	GL	－ k	14C0	JP1	－1	${ }^{\text {BCO }}$		nupu	－1	2 CO	PIAX	NK	$14{ }^{\circ}$		$-\mathrm{H}$	8 CO			
ÓImens	1－	15%	Iとした	－1	14 CO	JP4	－1	19 CO		NOFT	－1	${ }^{2} \mathrm{CO}$	FEAL	－		lemp	UR	8 BC			
IT	－-	ocu	1 Jr．	－1	4 CO	JSwTCHI	－1	1200		NHI	－1	1 nco	RED TUKN	N－		Thinu	－R	10 Co			
Utros	－K	） 16	1 l	－1	4 CO	JṢWTCKく	－1	126													
－－－＊																					
MULIIPL	Y－ntr	creves	U vanlatL	LtS																	
$\begin{aligned} & 114 \\ & 129 \end{aligned}$		$\overline{\mathrm{z}}<\bar{u} 0^{\circ}$ 2104	$\begin{aligned} & c 0^{\circ} \\ & i 0^{\circ} \end{aligned}$																		
AASC	1 H	3Cu	1361	13EG	13 E	13E0	13 E		13E日	13 Ea		13ER	13EU 13	13E6	13 Ea	13 EO	13 EO	1SEd	13 E		
		1 Stu	13 C																		
AMAXI	－	23su	çsu	445	4750																
AMINI	－	2450	43su	40 S	4 BSU	49 SU															
delatc 1	13k	1） SE	1 Sul																		
CElatx i	（j\％	1）Jw	1																		
CEGTY 1	（1）	1 LEW	coul																		
cimmun	－	－F	3 r	$4 F$	8F	SF	10 F		$11 F$	J2F											
（1） 1	13\％	J SEW	1 bul																		
OELSM	（1）	1SEU	1 bul																		
¢ 1	11 m	1JEG	くbul																		
EMOR：LC	（1）	1SE6	loul																		
Er 1	（1）	1 SEW	1 blal																		
EIIL	（1k	1 SEW	1bul																		
FIPXL	－k	ヶしu	bi＝	ל－	S6	57	59														
FIPXt	－h	9 Cl	bs＝	boz	56	b7	00														
fipyg	－ H	ycu	b，	5	56	S8	6！														
Fipyit	－ H	$5)=$	b	bos	58	ne															
FJXL	－	YCu	3re	ל	36	37	39														
Fixk	－к	4 Cu ．	$3 \mathrm{3}=$		36	37	4 J														

OFP WEGO
OFF WEGO
OFPWEGO
OrPwEio
allekum
Allekcm
ALLKKOM
allinum
allinum
ALLKKCM
allinom
ALLLKOM
ALLLKCPM
ALLKOM
ALLLKOM
ALlinom
SILVEK
Silven
SILVER
Sillver
Orange
Orange
orance
ORANGE
OKANGE
OkANGE
GRELA
CRIMSN
Stidse
OLUE
OLUE
Euvreal.
Euvreal.
Eluratal.
EuvaEAL.
EuvREAL.
EuvREAL.
Eurkeal.
Euvkeal.
Euvkeal.
EuvaEAL
Euvreal
Euvkeal
DJMEN
Ulmen
OIMET,
U̇MEA
O) MĖ
OIMEA
UIMEA
UJMEA
OFF WEUO
UFP WEGO
OFFWEGO
OFFWEGO
Orrmeuo
OFF WEGO
OFFWEGO
OrPWEGC
OrFwEGC
Of +mEio
OrPMEGC

$<$
$\text { Cllb, }+C K N A l$
c
$\therefore \cdot . J O, \text { CKMAT }$
c
1
4
\bigcirc
0
Clus f Chmat
Cius r (rmial
cill tormal
1
-
3
16. Flmmat

IIH, MKAUN INANSPUKT OAIA*/OH ALPHA,1PË12.4 ITM, MMESH CONSTANTS*/Ori IBAR. Il2, $6 x$.

 OH UK , IPEI2.4,0x,6H UZ , IPEIZ,4,EX, (1) ri)

 1 PE12.4.0X,6H ON , PPEI2.4,5X,6H F.PS JPEI2.4.6x,GH ASQ IPEIC,4,0X,6H GNJ IPEI2.4/OH GK , (HEI2.4.EX.OH GL ,JPEIZ,
 (1) (1)

 7h NPLHAX, ilil
(on TAMIC IIRE12.4.0x.0n TEMIT,IPEI2,4,0x, OH ANC ', IPEl2.4
CALL GETG (QLKJON, JNHI)
CALL UAIEJ TUCI
Frlivl clun, JNm, U
MHile (12.2J(U) JNM, U
CHLC SSWTCH (ÉJSWICH(く)
CALL SSWICH (I, JSHICH3)
c
1f.CS $=0$
\angle NELS $=131000-1 L C S$
NELS = NiNC NECS.54S4)
CALL ECNR (A्AACC, IELS. NECS, NE)

c
--E HEAL EGUATICN OH STATE JNPUT

UC 33 KE , NfRG

+ LLG(N) $=3$. NE $+10 / R R E G(K)$
3 CLO)IN(LE
UC $4<\mathrm{J}=1$, NOHO
uC $41 \quad 1=1$ inNOT

NHL, UPIMP(I), OPOEN(J), OPSIG

al beillult
$4 \frac{\text { LCNIINUL }}{\text { LHLENIJI }}=$ OPCEN(u).3.L
42 CCNIINUE
ASIAIE=NUPO*NUPT
heku (0)
SPIHL
It (JSWTCR3.EG.1) REAU (0) PTAB
If (JSwTCH3:EU, 2) REAL (0) SPTBL
FEAU (0) PIAM

kEAU (0)
bial
$1=$;
$\nu=1$
JC 44 :J=1, NSJATE
LC 44
$i=1+1$
5
SPTOL(JJ) $=$ SPloL(IJ) 5.0

ETAO(IJ)=ETAGIIJI-10ッ0

Ort WEGC
OrPWEGO
OFPWEGO
Or r wego
OrPNEGC
OFF WEGO
OrFWEGO
OFF wego
Ortwego
Orr WEGO
Or r Wego
OFF WEGO
Or r wevo
UFTWEGO
OFPWEGC
OFPWEGC
Ofr wego
OFPWEGC
OFP WEGO
OFTWEGO
Or + WEGO
Or + WEGO
Ortweco
Or r MEgo
UFPCEGO
OFTWEGO
OFr MECO
OFFMEGO
Orrmego
OFPrevo
OFF WEGO
OFP WEGO
OFPWEGO
OFPWEGO
OFP WEGC
OFPWEGC
OFPWEGO
OFPWEGO
OrPWEUC
OFPWEGC
OFPWEGO
OFPrego
OFPWEGO
Or PWEGO
OFF WEGO
OFFWEGO
OFPWEGic
OFFWEGO
Or + WECO
OFFWEGO
OFF WEGC
OFTWEGO
OFF WEGO
OFTWEGO
Or P WEGO
UFPWEGO
Orr WEGO
OFF WEGO
OFFTEGO
OFF wEGO
OFFMEGC
Ort wEGO
UFP WEPC
OFP WEGO
OFP WEGO
OrFwEGG
OFFWEGO

1F (1.(T.NOPI) GO TO 44

Orrwelso	yb
OrtwEGC	40
Or P we：Go	47
OFPWEGO	4 d
Or＋WeGC	94
Or＋wtic	100
OrrwEGO	101
OFF WEGC	10%
Or＋WEGC	103
OFr WECGO	104
Ofrwelio	106
Ofrweuc	100
Orrmecc	107
OFF WEGO	100
OFF WEGC	104
OFTWEGC	110
OFT WEGO	111
OFFWECO	112
OFT WEGO	113
OFT WEGO	114
OFF WECOO	115
OFFWEGO	116
Or r wego	111
OFFTEGO	116
OFPWEGO	119
OFFTELO	120
OrFwEGU	121
Orrnecio	122
Orrmecio	123
OFTWEGO	124
OrrwLuc	120
OrrmEGOC	120
OFFWEUC	127
OFFTEESO	120
OFP WEGOO	129
OFPWFICS	130
Or rateco	131
UFPWEEGO	132
OFFWEGO	133
Or PWEGO	134
OFFWEEOO	135
OrPWEGO	130
Orrmego	131
OFPWEGC	130
	139
Orrmego	140
OFFWEGO	141
OFFWEGO	14.2
OFFTEEGO	14.3
OrFmego	144
OFFwicic	145
OFr＋でGC	146
OFFWEGO	14.
OrFwegc	146
Orrmeve	149
UFPWEGC	130
OFPWEGO	ノし1
Orrmegc	lb
OFFWEGC	133
OFratgo	134
OrPWEGC	15
OFPWELO	150
URFWECO	157
CFFWEGO	150
Orrmegc	13y
OrFmeGC	100
OHFNEGC	101
URPEEGS．	joc

＜${ }^{\circ} 7$	C	while dz，irici tame，lemit，anc
		－－－MESt．InNUT
C） 8		CALL．NESANKR
	C	－－－SEI UP FILM PLOJ COURUINATES
21.9		SALL P ILMCO
	C	－－－cumpute xtag ytab ltab
215		LMLL START
21）		OC $134 \mathrm{~J}=2 . \mathrm{JPC}$
612		YTAD（J）$=$ Y【」）
213		II（J．GT．2）60 TO 13j
214		UC les $1=1,10 \mathrm{l}$
215		x（Ab（1）$=x(1 J)$
2） 0	129	$1 \mathrm{~L}=1 \mathrm{~J}$ ．NQ
217	13	C．all Lnop
C（ ${ }^{\text {c }}$	134	LCWIINJIE
219		LFt $=$ NPT ${ }^{\text {P }}$ NPT
2c1$2 ¢ 1$		NFPI $=0$
	141	（ALL ECKU（AASC，IECP，LPDITES
ciel		Nr $=$ J
	15．	LC lby J＝2，jpz
224		It（YTAO（JI．GT．YPAR（KP））go TO 160
225	154	CCNİAUE
$\begin{aligned} & 220 \\ & 220 \end{aligned}$	10.	UL $1641=101 \mathrm{~J}$
		If（x）／in（l）．GT．XPAR（AP））GO TO 170
$\begin{aligned} & 2<7 \\ & <28 \end{aligned}$	169	CCivil心ut
229	1\％，	nfrt $=$ NPPT＊ 1
$211 i$		
23）		It lopple Engumil go Tu＜0s
23 ？		$\mathrm{nr}=\mathrm{nrat}$
233		GC lu log
	C	－－－cumpult me
234	206	CALL Stakt
235		U6 c＜cy $j=2 \cdot J r i$
230		Uticly $1=1$ itank
217		$1 \mathrm{PJ}=1 \mathrm{~J}$－ NG_{6}
238		Ifut＝1JF－NQ
239		
243		
241		$10=1$
242	214	ITP＝IPJP
643		CALL LUUP
244	224	crivilaut
245		CALL U UNE
	\checkmark	－－－CUIPUTE FM
240	36	CALL Stanto
247		UC 3by JJ＝2，Jrc
248		$J=$ JF4－JJ
649		UC $34411=1.191$
＜		$1=1 r\rangle-11$
くら1		1rJ＝iJ－Nu
232		IRJM＝iJN－Na
2bs		$x \times=0.0$
234		
$2 \bigcirc 5$		
cob		
くら7		
258	34.1	$H H(1 J)=4.1 \times x$
254		$1 \mathrm{l}=1 \mathrm{MJ}$
40.	344	$1 . M=1 \mathrm{MJN}$
（0）		CALLL LOUPO
$20 ¢$	357	ccilinue
203		mejura
204		ENU

OrFwEGC
Orrmeuc
OFFrato
OFFWEGC
OrPrevo
OrPMEMO
OFPWEOO
OFPWEGC
OrPWEGO
OFPWEGO
OrPWEGO
OrPmeuc
OFPrEGC
OFF WEGO
UFF WEGO
Orrmego
OFF WEGC
Orrmest
OFFWEGS．
OFFWEGO
Or raEGO
OFFWEGO
OrPrego
Urratcc
OFrwEGO
OrPwego
OFPWEGO
Or r wego
Or r wejac
Or P WEGO
Orrmego
OrP HEGO
Urratgo
OrPrebo
Urtatuo
OFF WESOO
OrraEGC
OrP WEGO
Or P Wego
OrrwEGO
OFFWEGO
OrPmego
OFPWEGC
Orrwego
OrFWEGO
UFPHEGO
OrPmego
OFT WEGO
OrFwEGO
OFFWEGO
OFPWECOO
OFP NEGO
OFPWEGO
OrPWE＊O
OFF WEGO
OrPWECO
OrFMEGO
OFTmEGO
Orrmegc
ORTWEGO
Orr wėGo
Ur r MEGO
Orr wecoo
Or r wecio


```
8
lllll
MVOL \MK leEG jBul
HZEDEN \IK
SIGGA \HK
SIGPLC (IN IOEL IBUI 
SNCON \IK IJCU Iyy= i.j= 2g2= 
SPTOL liK
    START
TAMB
TEMIT
THIKU
Time
TOUT
TS!
-H
R ECO 151= ce ork 207
l<CO lyJa coremh 207WR
1CCU 101. 
&CU 101:= C.OPh 207wk
HCU 1<OKU 133 138PG 139WR 154 203
hCU 1&OKU 133 138PG 139
H ll%
TS!AKT -K % ECU IJJ= 1JOPK 137n
UMOMLC
H
\Hk
MK
UMOMLC IJK
UTIL JK JOEG JOU
Vj \MR It, \M,
|Hn
|HK loEw joul
VP
VTEEN
Wम्\TV I- IK le
M,
X
M, -H 124%Z 132
```



```
XX
Y YBASE
HK CSJ= 254= 訪= 255 256= 250 257= <57 258
YBASE
YP
los
Z%
IK
```



```
MK
MR loEG l801 2<4
144= <
-k ljec is.00
```

1
2

Sluroutine meshmkf		mesinnk
CCrimon sitate,	NOFI, NOPD, NFKO, OPTMP \{3U), OPOEN(101.	ALLKKOM
-		ALLKKOM
$<$	hThle 300)	ALLKKCM
CCmmon /yscl/	Ansc (5454)	ALLKKOM
ccmmun /pink/	I, IJ, JJN, IJP, J	ALLKOM
LCM/YLCl/	AA (1) (-109)	ALLKCM
LLIM MとC2/	Aacilst.foti)	ALLKCM
LCM /ri.Cl/		ALLKOM
commun /reos	(JAMEIJC, OT, UTR, EMIO, GHIIVEL, IRAK, JJHS,	ALLKIOM
1)	IPI, JSCFI, ISCF2, ISCL, ISC3, ITV, JEAR,	ALLKOM
		Allikom

2
2
3
4
5
3
7
8
4
10
11
16

ALLKKOM
SILVER
Sillver
SILVER
SJILVER
Orange
Orange
OKANGE
OKMNGE
ORANGE
ORANGE
hlue
blue
SEnSE
Euvreal
EGVREAL
ÉGVEEML
Euvreal
EuvREaL
Euvreal
EwVREAL
Euvreal
Eurreal
Equrem
Euvatal
Euvithal
UIMEN
dimen
Olicien
dimen
dimen
UIMEN
UIMEN
UIMEN
me shinkr
ME SHMKR
ME SHMKR
MESAMKR
ME SHMKR
mestmar
mestinkr
ME SHIMKR
mestmar
MEStMMR
meshmar
MESHMKR
ME SHNKR
me stank
me shinga
me ShMikf
MESIMIKR
me Shikr
ME STMKR
ME SHMKR
mestmek
MESTMNf
MESANKR
MESIINKR
me shikr
me Shmin
me Shrik
ME SKMKR
MESHMKR
ME SHMKH
me Strka
me Shikr
mestark
mfameke

34		Y（1）
34		$\mathrm{X}(1) \mathrm{N} \mid$ ）$=\mathrm{x} \times$
4：1		
41	$2 . .5$	It（J．NE，¢P2） 60 TOE
42		Y（1JH）$=\mathrm{YY}$ ¢ OZ
43		入1打！$=\mathrm{xX}$
44		H（）JP！＝（1）
45	2.4	
40		
47		$x \mathrm{x}=\mathrm{xx}$－ nR
$4{ }_{4}$		$15=1 J+M_{t}$
44	214	cicillave
So		$x_{4}=u^{\prime}$
b		
52		call loup
دל	$2 ¢ 4$	LCい1lblit
34		CALL U UNE
	C	－－－cumpute variadle coohoinates
bs		IF（FkTL．EO．1．6） 6010 Jou
bo		
\％		JTUP $=$ Jinlu Junt 02
bo		JtUl＝JMJİ－Jutoru2
b9		1．$=$ rLSA．T（ U U dr C2＊UZ
0 ：		CALL SIAKI
$0)$		LCく4Y J＝2，JPC
0.1		UC＜3y $1=1,1 p 1$
03		JNJ＝TJ－Nu
04		
05		
00		JLT $=$ JABS（\％－Jlut）
07		J $\quad=$ LAHS（J－JINUT）
${ }^{6}$		
09		IF（J．Gl．JTCP）Y（IJ）$=$ TJ＊OZ＊FREZ＊（1．t－FREL＊＊JOT）＊ROMFR
7.		IF（J．EEU．2）Y（1J）＝YGASE
71		$1 \pm=1$＊Nu
72	239	CいけInut
7：		call loup
74	244	CCidT1\％吠
75		CALL UONE
76	C306	
77		It livk．EG．J WU TC 40 Oit
78		It（ivk．t（J．100）i）GC TU 500
74		xtr $=$ LLUCLO1RO：1
8		xt＝AMAXI（XPOURUEN（1）$)$
4		
8		
83		
84		：F（Y）I．GT．OP（GF（NCPT）：YH＝OFTMP（NOPT）
85		IErPi＝GExploirni
60		Hhlis lidje Nf，NK，NT，NL，ROI，SIEI，UI，VI，TENFI
07		
OH		khul＝13I．ė4と－0／＊TEMP1＊＊4／RCI
69		NrS $=$ MU $\cdot 2$
4.		NH）$=\mathrm{NH} \cdot 1$
41		NTL $=$ NT 2
42		$N_{L} 1=N L .1$
43		
44		LALL KIKOn
Y5		
40		LC Sly $1=1 . L 1, N K 1$
47		call stilj
$4{ }^{4}$		JuSL＝1JSC＊ 1
44		い（lJ）$=11$
$1!6$		vくlul＝vi
111		HCIJJ $=$ RO：
112		
11」		TEMP！IJsCimickri

me Shmkr	50
ME SMMRR	51
ME SKMKR	52
meshmaf	53
me shmia	54
ME SAMKR	55
MESHMKR	50
ME SHMKR	57
MESHEKR	58
ME．SANKR	54
mesmank	60
MESEREA	01
mestmin	02
ME SHTKR	63
me Shikk	04
me shitif	06
meshrkr	06
MEJINKR	0%
ME STiNKR	68
ME SHNKR	04
MESHRKK	70
ME StMKR	71
ME SHMKR	72
ME SHMKR	73
ME SHMKR	14
mestrkr	75
MESOINKR	76
ME SHNKR	77
MESHNKR	78
me stmir	74
MESTMNR	80
mestrin	81
MESKNKR	82
MESHNKR	83
mesmmkr	84
MESHNKR	0
ME SKKKR	00
MESTRKR	67
MESHTKK	88
MESANKR	84
Mestman	40
MESTNKR	$4)$
ME دTMKR	42
MESOIRKR	43
me Stmkr	94
mesinkr	43
me makr	40
MESJMKR	97
me Stmer	8
MESMNKR	49
MESTMKR	100
mestank	101
MESTMAK	$10 \cdot$
mejankr	105
mestran	104
ME JHNKR	105
mestmin	106
me Shmeri	101
mL SmRAR	108
me shinkr	104
ME SKMRR	110
ME SHMRR	111
mestink	112
	113
ME SKKKif	114
	115
ME SHMNK	110
MESOMKR	117

siy LChilant
COLL NIKOM
دくら
$1+$ InU？．Ive． 2 ）GU 10 3ul
$J=1$
UC 1 勺̧ $|=1,|P|$
CALL SEIId KC（IJ）＝KOI
359 CCivlinit CMLL N！HOW C．C 103 In
c

4：O $\quad x x=L M C H E \angle S I E$
FHINI lis，

WFllt（lan）
CaLL SiAn）

HCSAV＝REZRUN＊EXP（－GZ＊（REZYO－YJC2）／XX
HNUM $=$（Y（IJHI－Y（IJ））＊YY
rCEN＝FAUNAREL

OC $454 \quad 1=1,!\mu 1$
HC（IJ）$=$ ROSAV
SJE（IUIESJE（IUM）$=$ RE $\angle S I E$
$U(1 J)=J(1) J(1)=U(1 J)=V(1 J M)=0.0$
$1 J=1 J+N G$
459

Lall Loup
Lit $4 / 4 J=3, J P)$
HCN＝（YIIJP）－Y（IJIIUYY
FAUM $=$（YIIJ）－Y（IJMI）AYY

LC Moy $1=1$, Ir
SILILU）FRE7EAL
u（lJ）＝v（IJ）＝U．
（lJ）$=v(1 J)=\mathrm{U}$ ．
CCNIINIE
Lall LOUP
474 CCNTInいE
トNUM＝FNUM4 F HEL
とした＝YUEN＊FKEL
HLJHC＝RCSAV＊（xX－FNUM）／（xX－FDEN）
OC 4us $1=(1, I r)$
$k L(!J)=40 J J C$
SIE（IJ）＝RE2SIt
$U(1 \downarrow)=v(1 \downarrow)=0.0$
coivitaue
409
call voive
CALL STARI
UL $4 y y \mathrm{J=c}, \mathrm{JPL}$

$x r=6 L G A 1)(R O(1 J)$
XF＝AMAXI（XPPUHUEN（1）
Xr $=A M 1 N$ ）（AP，OPDE゙N（NOPOI）

YFEGLEMP（KP，KP，OHIIEN，OPTMP，FTAH，NOPU，NOPT
IF（YP．GT．OPIAP（NCPI））YK＝UPTHP（NOPT）
（HP（1JSC）$=$ C．EXP）J（YP
hlw lisip J．RU（IJ），SIE（IJI，TEMPIIJSC
J，hO（IJJ，SIEIIJ），TEMP（IJSC）

me Shmir	116
mestrmer	19
MES SMNKR	$1<0$
ME STMKR	$1<1$
MEstmar	122
mestmar	
mestrmar	
mestmeki	
mestrikr	126
MESHMKR	12
MESHRKR	2
ME STMMR	12
MESHNKK	130
MEstukr	131
mesthrir	132
mestink	133
me SHNK\％	
ME SHNAR	136
MES）IMNF	
MESTMKK	－
mesthrk	
mesthrir	y
mestarkr	0
me Shakr	141
mesthrke	14
ME jMMRR	14.5
ME SHMKR	144
me dhmar	145
ME SANKR	14
MESTMKR	141
ME SAMNR	148
mestinkr	149
MESHNKR	16^{6}
meshika	151
MESHNKR	152
ME StMKR	153
MESHMKR	154
ME Shmkr	155
mestmar	150
ME STMER	157
ME Sturnr	158
MESIINKR	159
mestmkr	100
ME SHMKR	101
me＇stnkr	106
MESHMKR	103
ME JHNKR	104
mestarkh	105
me stmik	100
mestinkr	101
mestivir	10
MESTMKR	10y
MESHNKH	170
MESHIKKF	171
mestmar	172
mestant	171
me Stmikr	174
MEstMKR	175
ME SHMKR	176
MESKNKR	171
meshran	178
me Shikr	174
ME SHMKR	160
ME，SHNKK	101
HE SATKR	186
MESTMK\％	183
MESKNKA	184

```
    L.SL=JJSC*T
    TEM\tilde{CJJSC(=TERMR{IUSC-)\}
    H01=131.2)4L-07*TEMR(1JSCI**&/RO\IJ)
    Sll(lu)=E\lい)=SIE(IN) *RMO
    1二=1JゃNW
    44 
        CCINTINUE
        CCANTLNUE
    4Y LCN)(NGE
5.J --- rubat.E INFUT
5.JC If (JSWICrI:Lu.2) GO TO 5?0
    KEAO lUON, IGUU, JUSUS
    IF (luv*,ED:0) vo To 51, 
```



```
    It (11,tu0) GO TO SOC
    =11+1いU6-1
    J=JJ.JMUB-1
    CALL StIIJ
    M(1IJ)=RU.1
    x = = LU{i) = JRCI|
    xF=AMINI(XP,OHUEN(NOPUS
    XF=AMAKI(XP,ORUEN(1))
    <F=6Lびいう!SIE!
```



```
    IF (YP.GT.NPIMP(HCPT)) YP=OPTMP(NOPT)
    IENTRI=NEXHIO(YPI
    HHINI IlJy: IN, JJ, ROI, SJEI, UI, VI, TEMPI
    WHIEE |Z,'DIYs II, JJ, RCI, SJEI, UI, VI, TEMPI
    I-SC=(J-1) 0(r)+1
    khul=13|.C14t-UT*IEMRI**4/HOI
    Sut(1-j=SIEI*kkuI
    u(du)=u)
    \(IJ)=ul
    CALLL WIKOW
    It (lullu,t0.1) 60 TO boc
    i=love-(!
    Ir ((1.LE.J) vo 10 502
    Inst=(J-i)#10)+1
    LaLL KIru*
    GALL SEIIJ
    kC(1J)=RUP
    SIE(1J)=S(EI&RRUI
    TEMP(IJSC)=TEMPI
    CALL wiHON
    l=I +1
    CaLL HIHON
    u(Iv)=-Ul
    V(IJ)=-Ul
        C(ILL)=VI
        I=11+1,14UH-1
5.c
    J=J-<*JJ*)
    CaLLL SEIIJ
    hCl!J!=kOI
    SJE(IJ)=SJEI*RRO!
    lいSL=jコ-1!*I*I*!
    IEMP(1JSC)=TEMPI
    CALL. *IHOw
    J^J*)
    CALL RIHOW
    CALL SETIJ
    U{!u}=U!
```

me Shmkr	186
MESIJNKR	161
MESIITKR	188
mestmik	189
mestmir	196
ME SHMKR	191
ME SOONKR	192
MESPIMKH	193
MESHNKF	144
méshmkr	145
MESTIMKR	196
MESIIARR	141
MEstMKR	198
MES）（MKF	199
MESIINKR	<00
MESAMRR	col
MESHMKR	202
MESAMKR	203
MESINKR	204
MESPIMKR	205
ME SHMKR	200
ME SHMKR	207
MESPINKR	20y
MESAMKR	204
ME SANKR	210
mesthakri	C）1
MESTMKR	212
mestmint	C13
MESANKR	214
meshmikf	215
MESHMKR	216
ME SHMNR	217
MESHNKR	216
mestmikr	114
MESANKR	220
MESIINRR	221
MCSHNRR	222
ME SHARR	223
MESMEKK	$2{ }^{\text {c }}$
ME SHMKR	<25
MESIMNR	<20
ME Stakik	227
MESHNKR	＜20
MESHKKR	229
MEjotwrir	230
MESHNK\％	C31
MESHNKR	232
meshent	233
MESHNKR	234
MESINKR	235
ME SHMER	230
me ShMnR	<37
mestark	＜38
MESAMKR	239
MEStMNR	240
MESMIPKR	<41
MESTMKR	442
MESTMKR	＜43
mestinkr	244
MESANKR	245
ME SANKR	く40
mestank	241
ME STHKK	C48
ME SMKR	C49
meshekr	250
Mestavir	231
MESTARR	2bic
MEESHEKR	25

236		CALL Wikon	ME SHyIR	C34
¢19		It（luus．so．l） 60 TO Sod	mestitina	25s
24		$\mathrm{J}=\mathrm{J}-1$	ME SHMMR	ESO
241		1＝1的u－11	MESHMKR	237
242		1 F （1．LE．N）GU 10 503	ME SMMKR	254
243		1．SL（N）－1）－IN1＋1	ME SHMKR	259
＜44		CALL himon	mestmar	200
245		call SEliJ	ME SAMKR	201
246		$\mathrm{MC(1J)}=+101$	me ShMar	202
＜47		SIt（1u）＝SIEI＋rtol	ME SHM＇K	203
24\％		TEMP（IJSC）＝¢ tr．P）	MESHMKR	＜04
244		Call mixum	ME SHMKK	cob
2bs		$1=1+1$	meshmik	216
c） 1		$J=J+1$	MESIIITKR	207
c） 2		CALL KIKO＊	MESHIKR	COH
253		（ALL SEJIJ	mestmar	209
≤ 54		し（IJ）$=-\cup 1$	MESTMER	210
cbs		V（1J）$=-v$ ）	MESHyMa	<71
256		call wirow	MESCHKKR	272
2ヶ7	5.3	uc lu bus	meshjkra	273
	C	－－－Geinerait markei－pahticles	MEStMMR	214
cbe	ら」	call parigen	mestrin	275
	C	－－－ralculaje Rvol．	MESKHKR	270
259	52	CALL STARI	MESMIUKR	277
206		U（ buy J＝2，Jt）	MESIINKR	278
＜0）			MESHMKR	274
202		LC 53y $1=3$ ，IoAt	MESTMKR	280
<03			MESHMKR	201
204		$1+J P=1 J P+N(1)$	MESHIMKR	$28 \leq$
205		1usc＝1JSC．）	meshikr	203
200		$x!=x(1$ PJ）	mestukr	284
207		$x_{i}=x^{\prime}(19 \mathrm{JH})$	MEstmin	28
208		x $3=x(1) \mathrm{JH}$ ）	MESHMKR	2 HO
264		$x_{4}=x(1 . J)$	MESAMKR	281
270		$Y)=Y(1 P J)$	ME SHNKR	
47）		Y＇$=$ Y（ 1 PJM）	ME SHMKR	284
272		$Y \geq=Y$（1，r ）	MESAMKR	290
273		$Y_{4}=111 \mathrm{l}$	MESIINKR	＜41
214		kl＝kilpJi	méstmit	242
275			ME SHMKR	293
216		$k 3=\mathrm{k}(1 \mathrm{JJ)}$	MESHNKR	＜94
		$46=k(1)]$	MEstMKR	245
278			mestinkr	290
279		If（JJWTCH）EGG．J）G0 T0 b3y	meshimhe	247
20		$x \vdash=x)+x<+x^{35} x^{4}$	MESLIUKR	C98
201		$Y 4=Y 1+Y C+Y 3+Y 4$	MESHNKR	c9y
c 82		HW11R（1JSC）$=0,25 *$ USOR1（ $\mathrm{XH**2*YR**2)}$	MES）（man	300
<03	Sut	1.10 d	me shmag	301
284		$1 \mathrm{~V}^{\prime \prime}=1 P \mathrm{~J}$	MESMMAR	30 C
cob	534	ciolinue	mestrar	303
＜00		Call bouk	mestinkf	304
287	544	CCNIRLIEE	MESHMKR	305
288		CaLL UONE	MESTMKR	306
289			MESHMKR	301
	c		ME SHMKR	457
$29:$		GETUKN	MESHMKR	4S8
24）		Enu	mesthekr	454

SINGLY	KLrEM	CEU	vanjazles																	
AA1	（1k	SLC	Ers	－	נ¢CO	IPYA	－1	900	JSwTCH3	－1	13 CO	novaj．${ }^{\text {d }}$	－1	1100	Prt	－R	9 CO	TNEUT	－R	1100
AA．	（1R	OLC	Evulval	－	145	IPYT	－1	9 CO	K×1	－1	1 l	numit	－1	J C Co	USORT	－	282SU	TOUT	－R	8ç
AbS	－	lusü	Exr	－	12350	${ }_{1}{ }^{\text {Pé }}$	－1	130	lamo	－k	15 RL ．	CM	－t	1 ¢ ${ }^{\text {cou }}$	heal．	－	15 F	tSIART	－R	8 CO
An ${ }^{\text {c }}$	－R	ifico	＋1rXL	－H	ycō	$15 C F 1$	－1	aco	L．JH2	－1	10 CO	cimajuc	－	$1!\mathrm{C} 0$	RED	－	8CN	VTEM	－R	10 CO
angles	11%	1160	tirath	－r	9 O	1 SCF2	－1	ACO	MAI	111	2601	crainge	－	İCTN	kIBAR	－R	9 CO	vv	－-1	9 CO
ASG	－k	1160	Parys	－	SCC	1 SC 2	－1	sco	Mitil	11	2．n01	PAFIGEX	－	25850	KLCl	－	7 CN	WHITE		11 CN
AU	－ H	1コし0	HIXL．	－r	sro	1563	－1	HCO	MESATIKH		isu	fink	－	4 CN	Rvals	UR	11 CL	XCUNY	－R	9 CO

Qtxp 10	－	yssu	107su	1yoss														
UTOG10	－	7450	Ocsu	10150	16450	192su	1955u											
4	（1）	14E6	100：	3 l	$46=$	40	447	44	$65=$	274	275	270	277					
hadx	（1）	Jccu	2とぐく															
hissa	ijk	14E6	doul															
READ	－	76	（6）	lobF														
hetukn	－	264r	24．t															
hezhun	－k	$1: C 0$	（c）															
re＜sie	－k	OCO	117	130	$1 ヶ 2$	153												
RE＜YO	－k	1：Cu	$1 \ll$	14］														
RM	（1）	14 EC	1001															
Rmp	（1k	14 EG	10151															
RO	UR	14E6	1001	$11=$	112.5	$128=$	$1<y=$	$141=$	152＝	161	108 PR	109 wR	173	141z	$214=$	228＝	246＝	
HOI	－	76KU	14	coth	47 wk	88	111	112	${ }_{18} 8_{\text {KU }}$	14）	142	199 PR	CUUWR	203	214	228		
ROJPt	－k	15．．$=$	1bic															
kojl	－ H	$12 t=$	124															
RUL	Un	145.6	1001															
Rumbr	－k	$16 C 0$	ct	04														
rosay	－k	123＝	120	$1<8$	139 $=$	139	141	150										
RKOI	－k	ชロ＝	11.2	113	$173=$	174	203 $=$	204	615	229	247							
RV̇OL	13	14.6	1001	2105														
RZEUEN	！jk	14EU	1001															
R^{1}	－k	274＝	270															
K2ROn	E_{-}	2745 ${ }^{4}$	$\frac{1}{2185}$		21254	215su	2cosu	2345L	24450	252su								
R^{3}	－${ }^{\text {H}}$	$270=$	278															
R4	－	2775	c10															
SETIJ	i	4750	11150	19.50	21350	22054	22154	235SU	＜4550	25350								
Sit	11／	14EU	1601	1，c $=$	$113=$	$135=$	${ }_{1}^{116} 113$	142＝	$153=$	104 14yPR	JgRPR 200WR	$\begin{aligned} & 164 \mathrm{wk} \\ & 20^{4} \end{aligned}$	$\begin{aligned} & 174= \\ & 215 \end{aligned}$	$\begin{aligned} & 174 \\ & 229 \end{aligned}$	$\begin{aligned} & 204^{2} \\ & 247 \end{aligned}$	$213=$	229 $=$	$247=$
SItI	－${ }^{\text {H }}$	7：6U	H2	bopk	87 Wk	102	113	105 k	195	19yPR	200WR	204		229				
SIGPLC	Um	（4EW	1 H01															
STAM：	－	3.50	015	121sc	15850	25950												
TEMP	$\begin{array}{r}11 \mathrm{H} \\ -\mathrm{H} \\ \hline\end{array}$	セCU	16.5 bork col	$101=$ 07 mH		${ }_{109} 109 \mathrm{~Wh}$	$112=$ $148=$	$\begin{aligned} & 172 \\ & 199 \mathrm{PR} \end{aligned}$	$\begin{aligned} & 173 \\ & <u 0 w R \end{aligned}$	$\begin{aligned} & 202= \\ & 202 \end{aligned}$	$\begin{aligned} & 216= \\ & 203 \end{aligned}$	$\begin{aligned} & 231= \\ & 216 \end{aligned}$	$\begin{aligned} & 248 x \\ & 241 \end{aligned}$	248				
	－${ }_{-}$	$8=$ $59=$	${ }_{60} 0$											248				
u	（1）	14 EG	1001	$y y=$	$131=$	131 $=$	$143=$	$154=$	c05 $=$	$221=$	236 $=$	254＝						
U6	（1）	14 EL	loul															
U！	－ H	70 HU	bork	117 rk	59	185RO	199PR	200wR	205	22）	236	254						
UL	（1） H	14EU	1001															
umiomec	（1）	14 EW	10u．：															
UP＇	（1） H	$14 E 6$	joul															
UTIL	（1）${ }_{\text {（1）}}$	14 EW	loul 1601	いし＝	131 $=$	131x	$143=$	$154=$	2nos	222＝	237＝	2bら＝						
vis	（1）	14 ES	Joul															
VI	－k	76 co	sour	niwn	160	lesro	199p\％	200wR	． 606	222	237	255						
$v!$	（1） H	14L6	1.001															
$\checkmark \mathrm{P}$	（1）	14 EW	1001															
VTIL	Uk	1456	1001															
WPITE	－	61t	ler	109F	1847	2005												
W1 H0\％	－	Jibsu	11580	$2.15 L$	21750	223SU	2J2Su	23850	2495 J	$256 S U$								
x xP	$\underset{\substack{11 \\-k}}{ }$	14 tw	1001 0	13 8.	$39=$ $41=$	43］	$\begin{aligned} & 04= \\ & H 3 \end{aligned}$	$\begin{gathered} 04 \\ 101 \end{gathered}$		$\begin{aligned} & 64 \\ & 102 \end{aligned}$	$\begin{gathered} 65 \\ 16.3= \end{gathered}$	$\begin{aligned} & 206 \\ & 163 \end{aligned}$	$\begin{aligned} & 207 \\ & 165 \end{aligned}$	$\begin{aligned} & 268 \\ & 142= \end{aligned}$	$\begin{aligned} & 269 \\ & 193= \end{aligned}$	143	194＊	194
x	－k	$\begin{aligned} & 74= \\ & 190 \end{aligned}$	0 ＝	8 ，	cl＝											J	154.	
XPAR	UK	$14 E 6$	1001															
XR $\times \times 1$	-K -H		20 ${ }_{33}=$	202	39	43	47＝	47	$50=$	117＝	123	120	$1<0$	139	139	150	150	
x \times	－R	$266=$	く76	¿8י1														
$\times 2$	－R	$267=$	210	cou														
$\times 3$	－${ }^{\text {H }}$	$204=$	210	co．．														
x^{4}	－R	209 $=$	c70	200													134	138
γ	Uk	$27^{14 E t}$	$\begin{aligned} & 1001 \\ & 211 \end{aligned}$	$\begin{aligned} & 14= \\ & 272= \end{aligned}$	$\begin{gathered} 37= \\ 273 \end{gathered}$	$38=$	－¢	$68=$	69\％	70	122	122	$1<4$	124	137	131	130	130
yuase	－ 4	j du	31	7														
YJC2	－R	12c＝	$1<3$															
Y^{P}	－k	H3\％	84	$84=$	65	165：	100	$106=$	167	196\％	197	197\％	198					
YPAK	（1）	$14 E 6$	1001															
YR	－k	＜01＝	COC															
Y	－R	3ヶ＝	14	88	42	$51=$	51	118＝	124	137	138							

－k	$<7=$	$\ddot{\circ} 10$	cul
－k	く\％$=$	210	cul
－	27え゙	218	cul
－	273＝	270	cul
K	¢\％	03	

vg	（1／k	1 JEG	1bus							
VL	（1R	J3E6	¢ Su：							
vp	（IR	JJEW	j bul							
WIL	（1）	1JEU	נbul							
WRITE	－	27t	－3\％							
χ	（1）	J 3EC	1501							
$\times \mathrm{C}$	－${ }^{\text {H}}$	द3ku	copk	27wh	29	40	41	48	56	
$\chi \overline{0}$	$-\mathrm{H}$	23\％	copr	C7WR	29	35	30	$4)$	56	
XPAR	（1）	130°	15UI	$42 \pm$	$50=$					
XHITE	$-\mathrm{H}$		3.							
XiE	－ $\mathrm{H}^{\text {r }}$	4＇$=$	41	45	48	55 $=$	55	56		
\bar{x}	－${ }^{\text {r }}$	4 ¢	44	ちし						
Y	（1）	1360	1501							
Y YOT	－	33 $=$	$30=$	37	39					
YC＇	－ 6	$\bigcirc 3 \mathrm{KO}$	¢ OPH	27 wr	$28=$	28	33	35	36	$4)$
Yu	－ K	23 ku	curk	cimm	31	32	41	47		
YPAR	（1）	1360	1bil	4．3E	$51=$					
YTE	－${ }^{\text {c }}$	34＝	41.	43	51	57	57	So		
YTOP	－	3 c		38	58					

1
CVEKLAY（YOKIFEK，2，J，
yonky

Prugham yckey		ronky
CCMİON／STA！E／	NOP1，WOPO，NFKO，UPTMP（SU），DPOEN（10），	ÄLLKOM
		ALLLKOM
\leq	BTul ${ }^{\text {cosos }}$	ALLKOM
CCiamon／rscl／	AASC 3 ¢54）	ALLLKOM
CCMMON PPINK／		ALLLKOM
LCM MrLl／	AAl（1alcru）	ALLKKOM
LCiA／YLCE／	AAClijiju0）	ALLKOM
LC，／rLLC）／	SIun（3u）uos	ALLLKOM
CCHMON／REO／	INAMC（IC），OT，DTR，EMJO，GROVEL，IRAR，IJPS，	ALLKKOM
	IPC，ISCFI，ISCr2，ISCZ，ISC3，ITV，JBAR，	ALLLKOM
$\stackrel{1}{ }$	JPI，JP2，NCYC，NUUMP̄，NG，NQI，RELSIE，TAMB，	ALLKCM
3	TEMF（ 6,10$)$ ，1，TIML，TUUI，TSTART，THY	ALLKKOM
CLAMON／YELLOW／	HTC，UICSAV，OTEZ，UTV，UTVSAV．	YECLOW
1 l	GVUY，LUTC，ITTV，JITTC，JUTV，ROT	YELLOW
CCMmON／URAHGL．／		Orange
1	OTPUS，EPS，UN），GK，GL，［MI，	OHANGE
C	IECIP LP2，ITAU（lUCSI，JNN，JP4，KXI，LAM，	Orange
1		Orange
4		Oraldge
cchmon／write／	HHVILSS RVALS 17.31 ，NANGLS，AHGLES 1351 ，TNEUT	Orange
egulvaleince		EUVREAL
1 ！	（AASC（4），U），（AASC（S），V），（AASC（0），tol，	Euvreal
\bar{c}	（AMSC（I），NP，MNP，RCS（1，CENIX），	Eurreal
3		EGVREAL
4		EGVREAL
b		OUVREAL
0	（AASC（Ij），VIIL，VLOUMUNLC）．	EVREAL
7		OUVREAL
\checkmark		EUVREAL
y	（AASC（1）］，GRIR，LGonくLUEN）．	EurREAL．
1		Euvieal
Ht．AL	LAM．LAND，N：MP，MU，MUU2	Euruteal．
OIMENSION	X（1），APAR（1），川（1），Yrar（）］，Y（1），U（1），	ŪIMEN
－		UJHEN
3		UIMEA
		UImen

KEMAKK	－	losu	dysu	${ }^{1}$ SU	2.35	25 su
pim	11k	1ctu	（4）1			
RMP	（1）	$1<E G$	1401			
H0＊	1） K	12EU	1401			
ROL	ifk	İEw	1401			
rVOL	（1k	1くEW	1401			
RZEDEN	11 H	！CEE	1401			
SIE	11R	1 CEG	1401			
SIGPLC	（IN	1 CEL	1401			
T	－	eco	$\stackrel{4}{ }$			
TIME	－	eco	11	＜0		
TOUT	－${ }^{\text {H }}$	ECO	17			
u	（1）	léu	1401			
UG	（1）	）Ceu	1401			
UL	（1）	Jćv	）401			
UMOMLC	（1k	letw	1401			
UP	（1k	léeu	1401			
UTIL	11%	1 12 ${ }^{\text {d }}$	1401			
v^{-}	1／k	12 Eu	1401			
vG	$1{ }^{1}$	Jくtu	1401			
vL	i_{k}	12EU	140I			
vp	（1\％	J CEL	1401			
VIIL．	11k	12EU	14 U．！			
χ^{-}	（IH	1CEU	1401			
XPAR	1）${ }^{\text {H }}$	1 LEU	1401			
Y	いK	ICEQ	1401			
YPAR	1 H	12EG	1401			

Prased	2
Praseo	3
ÁLLKKOM	2
ALCKOM	3
ALLKCM	4
ALLKKOM	5
ALLKKCM	0
ALLKKOM	7
ALLKOM	8
ALLKKOM	9
ALLKOM	10
Allingm	11
ALLKOM	12
Alelkum	13
YELLu＊	2
YELLOW Urange	3
Ofucige	3
OKANGE	4
orange	5
OKange	6
orange	7
1．EGVKEAL	2
	3
	$\stackrel{ }{4}$
	5
	0
	7
	8
	9
	10

 Uf,
 4 e crmal
 4 ICRMAI
 5 FCKMAT
$4 . \because 5$ FCKMAT
4 Jio flhmat
uwuit t-kmal
$i_{1}^{i}+$ CK
$<$
<--
UTVSAY INIIALILE
CIVL=POTETCSAV $=0$.
C) $H C=P C T E=T K=1$
INAX $=1$ Gim $=C .0$

C -- Cuniritie rhessures ano enefigies
CALL STAHT
$L C J y y$
$10 S=(J=1): J \mu)$
$J=(J-1)$ (\#P) 1 (UAR
IEIPL $=$ TEMF (JJ)*\&
UL lay $1=1, \operatorname{lithk}$
1tJ $=$ JJ. Nu
LFJP = JJt * NO
$1 . S L=1 J S C+1$
XNSENG=RU(1-)/KVOLI(I)
SHCNGK=(.125*(U(IFJ)**2*U(IPJP)**?*U(IJP)**2*U(IJ) * ? ?
IK=In•SPENSK*XMSENG
LK=UK•SPENCK*XMSENG

$11=11 \cdot x$ MSENG*SIE $\{1$ J

It Il.ER.IEAF.LH.J.EG.JPII GO TO 179
It (SIE (\{J).LI.TAM): gO 10160
$11 \mathrm{~m}=1$
$\therefore 11=\mathrm{J}$
io. \quad Srax=SIE(IJ)

sav=araxl (SAVh, SAVB)
lfisav.lt.TEmxi gC TU 170
$116=1$
$116=J$
T:MX $=$ SAV
17v LCMIVIACIE.
If (J.EU.JPI) PUTEFPUTE+(Y(IJFI•REZYI)/RM(1JP)

PJIIPLY-REREKENG.U VarlatLES

160-	44	48*	
$170-$	43	¢	57*
149 -	3)00	720	
199 -	civu	70	
4001 -	1e*	- ¢\%rk	Bowk
4u02 -	1/*	-1ts	bonk
$4004-$	10*	coupk	yomm
4UDS -	19**	yifk	y<wr
4006	2.	¢51m	44 w

phugram yckout		yokut
CCRIMON /STATE/		Allikom
2	FREt, (lu0), SPTELIC.0), PI	
cimmon /rscl/	AAsC (Sisis)	
common mpink/	İ 1J, IJN, 1Jp, J	ALLKum
LCl1 MLCl/	AAl(1shiou)	ALlkom
LCP1 MLCL	Ancisincus	Allicim
LCH1/xLC)	Sigaisougus	Allikut
		allkam
	IPI, 'SCFI, ISCF 2 , ISCC, ISC3, 1 TV, JPAK,	Allinum
$\stackrel{3}{3}$	JPI, JP2, NCYC, NUUMP, Na, NGI, KETSIE, tamb,	Allikum
cchmun /silvee/		Allinuign SILVER
		SILVER
${ }_{3}$	IYY, PXCONV, PXL, PXE, PYY, PYCONV, PYT,	Stlvér
	RIDAH, WV, XCONV, $A_{\text {L, }}$, XR, YB, YCONV, YI	Sicver
${ }^{\text {common /yellum/ }}$	OIC, LICSAV, UTCP, DTV, UIVSAV,	YELLOW
cimmun /urmat/	OVUY, 10IC, 1DIV, JITC, JUTV, KUT	YELLOW
common roximge/		OMange
L		Okange
	Lutr, Mu, NPT, NuIn, dial2, numit, or,	ukaryes
	omaloc, unctle kelhun, me<ro. thimo. viea	ORAHILE
CCmalun /white. UIMENSIUN	IN:VALS. KVALSIT31, NANGLS, ANGLESIB51, INEUT	orange
		011
3		IMEN
4		OIMEN
5		Oimen
\%		U1HECH
	S1L(1), DFL.SMO1, SIGPLC(1), GHIH(1), UG(1),	oimen
		Uimen
1		Euvreal
		Euvieal
3		Euvieal
4		Euvkeal
5		Euvkeal
7		Euvital
		Euvktal
$\stackrel{8}{8}$		Eurktal
		EuvkeAL
		Euvieal
KEAL	Lan. LAmd, Ni Nip, mily muoc	Euvieat
UMEMSION	IX)(1), 1×2(1), 1Y) (1), [Y2(1), XCO(4),	punoul
	rCu(4), Cunstur), Al(1)!0)	runuul
UIMENS	Tllac	yonoul
EGUIVALENCE TATI		yonual
$1 \times$ xO):(AT (9), rCa)	, (f1, ${ }^{\text {c/iN) }}$	yonual
cormeat		yonuut
1	lill Xoleh Yolit	yonuut
3	12H Silith re,	yunuut
${ }^{3}$	1214 Voliter U,	yonual
f(khal		ronuul
r (kjal		
4.00 rchmat		yonuut
1	2X.124b)	yunuut
4.0.01 C-CMmat	(2119,13.611,F6.31).	Yokut
$4.00 \mathrm{~F}(\mathrm{KMM})$	(FY.3)	Yunuut
Ficmal	(\% (surrcaicse)	yundut
41.1U $\mathrm{Cckma)}$		Yunout
$4 . \mathrm{e}$ + Cmmat		Yunuth
$41, j$ rcmmat	(1x,*(1) - 1 1 ¢) 0.3)	runuas
	(* vor!icilye)	yonuui
(1) r chmal $^{\text {a }}$		yunuli
		yonous

[^1]
It incruv. EG. - 1) 60 TO 33
yuruvi
yukuut
yonlut
CAL LPVIXC,IY1,IXKIYY
ALL LGVIXXR,1YKilxLilyo
CALL ORVIIXL.IYOIIXLIIYI
Mrur=yif
ycri=nyup

YGI=NYLU
$1 \times=1 x_{1} \rightarrow H$

Y $3=1$ YTナ 8

If (REAP-LE-O) NEXP=AEXP-
いバこく."*NEXP
か) 16 。
rilicriol
s.j4 rilitisilic-uTIL

YIIC=YIICOUTIC

(t) (ly(.LT.IYI) J.0 TO 531
tf (ly(LTT.IY!) JU TO S3)
ALL URVIIX3,IYYIIXRIIY)

Call L(NCNT(ik)IE
whit (12.4nowl YilC
Yルし=Y!に-OT16
GC 10 b 32

It $11 \times 1, G T$. IXKI 60 TO 533
ALL UKVIIX1,1Y6,1X1,1Y2
CALL LPVIIXI, IYJ,IXI, IY

CaLL LTINCAT(JHITE)
Wrlle (12.TlC) XT1C
WTIL =xTjCOTHC
LC CC í 531
533
CC(v) infle
GC 1050$)$
532
Gulinct
$Y_{L}+=r Y_{T}$
$Y L D=r Y:$
YLB=rY:
XLUNVP=PXCOAN
YCuTivt = FYCONV

F|Y| $:=1|Y|$

$+1 \times L:=F \mid \times L$
$1 Y b=1 Y u$
$1 Y 1)=1 Y \mid$
$|Y 11=1 Y|$
$1 \times 10=1 X K K$
$1 \times 1-J=1 \times k$
$1 \times L \quad=1 \times L$

rIYI $=$ FIPYY
rJXL $=$ FIPXL

1Yロ=1PYo
IYIEIFYT
$1 \times L=1 F x L$
$1 \times k=1+x+1$
ol 10510
yunuet

yunoul yonout yundit YORUUT yunuei yukout $\begin{array}{ll}\text { YORUUT } & 175 \\ \text { Yondut }\end{array}$ YOKOUT 177 YONOUT 178
YONOUT YONOUT 179
YONOUT $\begin{array}{ll}\text { YONOUT } \\ \text { YONOUT } & 101\end{array}$ Yonout 101 $\begin{array}{ll}\text { Yonout } 102 \\ \text { Yonul } & 103\end{array}$ $\begin{array}{ll}\text { YONuL } & 183 \\ \text { Yunuti } & 144\end{array}$ ronuut ibs runul' 186 YONOL 181 YOKOLT 188
YukOuT Yunout
Yunout 190

Yundut 190
Yunuut
YOKOUT 192
Yonuld 193
$\begin{array}{ll}\text { YONOUT } & 194 \\ \text { YONOUT } & 145\end{array}$
YORUUT 195
$\begin{array}{ll}\text { YONOUT } & 190 \\ \text { YONOLT } & 197\end{array}$
$\begin{array}{ll}\text { YONOLT } & 197 \\ \text { YONOUI } & 198\end{array}$
$\begin{array}{ll}\text { YONOU } \\ \text { YONOUT } & 199\end{array}$
$\begin{array}{ll}\text { Yondut } 200 \\ \text { YONUUT } & 201\end{array}$
YONOUT 201
Yunuút $<0<$
yonuet ≤ 03
YONOUT 204
Yonuul 205
YONOUT 206
YONUUT 207
YONOL 208
yunout $20 y$
yonout 210
$\begin{array}{ll}\text { YunOUT } & 210 \\ \text { YukOU } & 211\end{array}$
$\begin{array}{ll}\text { YukOu } & 211 \\ \text { yonout } & 212\end{array}$
$\begin{array}{ll}\text { YONOUT } & 215 \\ \text { YUNOUT } & 215\end{array}$
YunOuT
Yonous 215
YUNUU
$\begin{array}{ll}\text { YONOU } & 214 \\ \text { YunUUT } 215\end{array}$
$\begin{array}{ll}\text { YONUUT } & 210 \\ \text { YONOUT }\end{array}$
yunuur 217
Yonoul 218
YunOul $\leq 1 y$
Yonout 220
yunout \ll

Yunuul 22̇
yunual 22
yonuut
2íb
YORUUT 220
Yonout
Yonout
Y̌i
yonout eic
yONOUT
2EB
$\begin{array}{ll}\text { YONOUT } & 2<8 \\ \text { YUNOUT } & \text { Y } 24 \\ \text { YONOUT } & 230\end{array}$
rokuul 23
runuut 232
yonuut 2ja
YONuU Les
yoxoul


```
ra= = (1JJP)
    vz = v(IJP)
    \mp@subsup{X}{4}{}=x(1J)
    Y4 = Y(IJ)
    U4 E U(IJ)
    v4=v(lJ)
    CG(IJi<S*RVOL(IJ)*(K(IPJI*R(IPJP)*KIIJP)*K(IJ)
    2
                    *(u2+L1)*(xc-x))+(v2*v))*(Y2-Y1)
                            *)(U4+L2):(x3-x2)+(v3+v2)*(r3-ra)
    4. WSAV=n(AAX
        wAX=AN.AX((WMAX,AES(CG((J)))
        IF (WSAV.NE:WPIAX) ISVW=1
        1F(WSAV.NE:WMAX) -SVW=J
    L= = IPJ
    LuR = IPJF
    CALLL LCOP
    CCN!INJIE
    7UL GNNEI.E*G
        GMX = .E 
        CALL START
        C 7)4 J=2,up(
        GNA = AR:IN! (COIIv),GNMN
        Grx = ArAxI (co(1J).(JMx)
        16=1J.N
        LuLL LCU
    GLIMM|E
    1F (L.FW.4) GO T0 74S
        xA = GMx/ (ONMAEMDCl
        It (xx.LE-P:|l |U TO 7js
        n=1u.u/ulCGIO(xx)
        kx = n+1
        LG = 1..**(1./x"*
        n=|LUGIU(GMN(
        xx = 1%.**(K-)
        k = 1
    ix = xx-0,g
        If (xx.LT.ONTH wo T0 72
    C(IIN) = xX
        It {xx;GT.ONA) 60 10 74
    xx=x+
    xx = x x*10
    GC 1074"
```



```
    uc=.l*(xx*,Lしl)
    UC =isim n=1,ij
739-C(IN(A) = l,MN+{FLUAT(K-1))*UG
    k = 11
74. GALL AlIV(1)
    ない1!E=!
    KんG=K-1
    LC lol nK =1, KFg
    H(KK.IE.l) GU'1078<
    EncCut1B4,41U<BICD) CIN(NAI
    GC 心 7&3
    OC If(NR.DHE.KRG) GU TO 784
    ENLLUEI(4,4](S.NLCS LUN(KN)
```



```
EC TU 701
704 EnCOUE(10,41UT.EGUS CONTKK
```

 ハ。
 yonout
yonuut
yoncuit
yuncut
yonuut
yonuut
yondut
yunuul
yonout
yonout
yonoul
yonuut
yonout
yunout
yunout
yunuut
yunuut
yunout
yonoút
Yonoút
yonous
yonoul
yonout
yonuai
YONUVI
YLROUT
yenout
yukuut
yunuut
yundut
YuROUT
YunOUT
yunout
yonout
yunvui
yonoul
yonoul
yunout
yunout
yonout
Yunodi
yonuel
yonuut
yORUUT
yonojrt
yundut
yunoul
yondut
yundut
yundut
yunout
yunout
yonous
yonuut
yonuut
yanout
yuncui
yuncui
yonout
yanoul
yanuut
yanout
Yonoll
Yonoul
Yonoul
Yunul
yunols
Yonotst
yunuut
yonuut
yunuet
yunuat
Yundut
yunubl
yunout
Yunout
yunout
yunout
yonout
yunuut

```
84
\begin{tabular}{|c|c|c|}
\hline 264 & & Call lincat cha \(^{\text {a }}\) \\
\hline 264． & & 6C 101750．101．770．7051 L \\
\hline （4） & 743 & （Cla（1）\(=-0.1060\) \\
\hline 242 & &  \\
\hline ¢43 & & CCN（j）\(=\) L．COS＊LM \\
\hline 244 & &  \\
\hline 245 & & \(C C N(b)=0.155060 \mathrm{~m} x\) \\
\hline 246 & &  \\
\hline 247 & &  \\
\hline ＜yo & & \(C(N 10)=C \cdot \leq O C H N X\) \\
\hline 294 & & LCN（y）\(=0,709 \times 6 m x\) \\
\hline 319 & &  \\
\hline \(3 \mathrm{l})\) & & \(C \operatorname{Cis} 111)=4.9 * \cos x\) \\
\hline 31.2 & & CCN（1E）\(=0.9946 \mathrm{Mx}\) \\
\hline 3.3 & &  \\
\hline \(3{ }_{3} 4\) & & \(\mathrm{n}=13\) \\
\hline \(3 i 5\) & 741 & CCNINJ化 \\
\hline 360 & & GC io 740 \\
\hline 367 & 751 & mallellat409u） \\
\hline 3.8 & & 6C 1070 C \\
\hline \(3: 9\) & 705 & whllt．11＜94111 \\
\hline 310 & & GC iu 70r \\
\hline 111 & 70，1 & whllélic．4l00） \\
\hline 312 & & OC 10700 \\
\hline 313 & 710 & mhlleclic！lu \\
\hline 314 & & Whlle（lc．Alell lSVW，JSVw \\
\hline 315 & 70 & while（le，gle．j GNN，GNX，CONil］，CON（K－1），OG \\
\hline 310 & & mbile（12，400u）JNM，T．NCYC．NAME \\
\hline 317 & & CaLL STAHT \\
\hline 31 m & & UC EYY JEL，J®AR \\
\hline 319 & & CALL Loufo \\
\hline 3 Ju & & LC Boy izj，1HI \\
\hline 321 & & 1゙Jこさ」＊NO \\
\hline \(3{ }^{\text {c＇2 }}\) & &  \\
\hline \(3<3\) & & \(n=0\) \\
\hline 324 & & LiC o7y nk＝1， \\
\hline 325 & & K1 \(=\mathrm{K} \boldsymbol{2}=\mathrm{K} \underline{3}=\mathrm{K}^{4}=0\) \\
\hline 326 & & If（CLI（JJ）－LE．CON）（KK））K）EI \\
\hline \(3 \times 7\) & & it（CU（）PJM）．LE．CLTN（KN））K2m \\
\hline 328 & & It（CL（IJ）－LE． \(\mathrm{CCN}(\mathrm{KK})\) ） \(\mathrm{K} 3=1\) \\
\hline 3 cy & &  \\
\hline 330 & &  \\
\hline 331 & & if（N．gT．O）wU TÓ BOU \\
\hline 332 & & \(1 \sim U=1 J M\) \\
\hline 313 & & J－4 \(=1 J\) \\
\hline 334 & & UC 744 JJ＝1， \\
\hline 335 & & LC 7oy 11＝1， \\
\hline 330 & & \(\underline{1+J o}=1 \mathrm{~J}\) J＋Nu \\
\hline 357 & & LFJA \(=\) IJAPAQ \\
\hline 33\％ & & \(\mathrm{N}=\mathrm{N}+1\) \\
\hline 336 & & \(X C U(6)=.25 *(X(1 P J E(* X(1 P J A) * X(1 J A) * X(1 J B))\) \\
\hline 341 & & \(Y(U C N)=.25 *(Y(1 P J 甘)+Y() P J A)+Y(I J A)+Y(I J B)\) ） \\
\hline 341 & & \(1.4=1 r J A\) \\
\hline \(34 \bar{c}\) & 764 & lub \(=\) IPJ才 \\
\hline 343 & & \(1.8=1 J\) \\
\hline 344 & 749 & \(1-4=1 J H\) \\
\hline 345 & そし & LL \(=0\) \\
\hline 340 & &  \\
\hline 340 & & lce \(=3\) \\
\hline 349 & & \(1^{\prime}=1 \mathrm{JM}\) \\
\hline 351 & & 1．2＝1」 \\
\hline 3bl & & ASSION olv ！ 0 KRd \\
\hline 35 ？ & & GL in Ha \\
\hline 363
364 & 0）． &  \\
\hline 3 s & & ice \(=\) ？ \\
\hline 3 3ヵカ & & \(1.1=1 J M\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline yonuut & 304 \\
\hline yonout & 305 \\
\hline yonout & 305 \\
\hline yonout & 307 \\
\hline yonout & 300 \\
\hline Yonoul & 304 \\
\hline yonout & 310 \\
\hline Yoncut． & 311 \\
\hline yunuut & 312 \\
\hline yunout & 313 \\
\hline yunout & 314 \\
\hline yunoul & 315 \\
\hline yunuut & 316 \\
\hline Yonout & 317 \\
\hline yunout & 310 \\
\hline yukout & 319 \\
\hline yonout & 320 \\
\hline yonoul & \(3 \times 1\) \\
\hline yonout & 322 \\
\hline yonout & 313 \\
\hline yonout & 324 \\
\hline yondut & 325 \\
\hline yundut & 320 \\
\hline yunout & 361 \\
\hline yunoul & 328 \\
\hline Yonuel & 329 \\
\hline Yokout & 330 \\
\hline yokout & 331 \\
\hline Yunout & 332 \\
\hline yonout & 333 \\
\hline Yundut & 334 \\
\hline YOnUut & 335 \\
\hline ronues & 336 \\
\hline YONUUT & 331 \\
\hline yonuut & 330 \\
\hline yonuut & 334 \\
\hline YONOUT & 340 \\
\hline Yunout & 341 \\
\hline yonout & 34.2 \\
\hline yonout & 343 \\
\hline Yukuut & 344 \\
\hline YOKOUT & 345 \\
\hline Yunout & 340 \\
\hline yunout & 347 \\
\hline Yunout & 348 \\
\hline yonout & 349 \\
\hline Yonudt & 3 O \\
\hline Yonout & 361 \\
\hline yonout & 354 \\
\hline Yonout & 353 \\
\hline YOKOLT & 354 \\
\hline yunout & 355 \\
\hline Yonout & 366 \\
\hline Yokout & 357 \\
\hline yonout & 356 \\
\hline yokuut & 359 \\
\hline Yокоut & 300 \\
\hline yonout & 301 \\
\hline yonout & 306 \\
\hline yonout & 303 \\
\hline yonout & 3.04 \\
\hline yunuut & 305 \\
\hline yonout & 360 \\
\hline yokout & 367 \\
\hline yonout & 308 \\
\hline Yonuy & 304 \\
\hline yonuet & 370 \\
\hline Yonout & 371 \\
\hline
\end{tabular}
```

o6. it in 440

Yonout
Yonubl
yonul
yonuut
yonuur
yonout
yokout
Yonout
yunous
yonout
Yonout Yonoul Yunoll YUNOUT
YOROUT yonout Yonout yonout yonout runout runout yunout yonout yunout yunuut yundut yunuut yonout YOROUT
YOROUT yonout YOKOUT Yokuut yukout yonout yonout yonout yonout Yoncut
yokuut yokout yunuul yonout
yonuet yokout yunout yokout yokout yonult
yokout yonout YukOut yonout Yokout yokuut YOKOUT yonout yoruut Yuncut yokuut

4. 1

 1F (1xI.G1.1xh1 fo 10 SEs
 340
341
342
343 434


```
    EんLLUE(1),1001.1IC) IKIIE
    JHIE=FLOAT()YO)*゙.0025*).0
    n+1lt (12,TIL) XTIC
    MTIC=XTIC*OTIC
```



```
    50.
        : (CIMIN⿱㇒⿴囗⿱一一夊心
C.% CMLL LUNGFHINI ANU +ILM
    4:L CALL AMVIJ)
        LJNES=1
        UC 40y J=1,JPZ
        UC 474 I= I,IHI
        IrJJM=IJN + NO
    IPJ=JJ = NG
    L=rKV=PRSIE=0.0
    IF 11.FW,IPl .U4, J.EG.JP21 GO TO 45:
    FHSIE = SIE(IJM)
    x)=x((PJM)
    Y) = Y(1P,M)
    H)=h(IPUMJ
```



```
    V! = V{JPJM,
    \lambda\dot{c}}=x\mp@code{x(1(J)
    K2 = g(IPJ)
    lE = UI[PJ)
    v% = vilPJ)
    lac}=v(1P
    Y2= Y(IJ)
    H3=x(IJ)
    L3 = (IJJ)
    va}=v(1J
    \mp@subsup{x}{4}{4}=x(1)JN)
    k4 = Y(1)NM
    k4 = h(lJN)
        v4 = vilum)
        = .&5*RVOL(IJM)*((K)*H2)*((U)*UZ)*(Y2-Y))*(V)+V2)*(X1-X2))
            *(\mp@subsup{r}{}{P}+\mp@subsup{r}{}{3})\bullet({)\mp@subsup{r}{}{2}+(\mp@subsup{c}{}{3})&(\mp@subsup{r}{}{3}-\mp@subsup{y}{}{2})+(v\mp@subsup{v}{}{2}+\mp@subsup{v}{}{3})*(\mp@subsup{x}{}{2}-\mp@subsup{x}{}{3}))
                    *)
    45i ?
    Mt (LINES.EG,G) WFITE (IC,4D & (H)
    L(I,ES=LINES+i
        If (LIHLLS.OF.DU) LINES=v
    HFIIE (IZ,4DG&) I, J, x{IJN{, Y(IJNI,U(IJM), VIIJM), PRSIE,
    jrlle (l2,40Ly) I, J, X\IJKj, Y(IJNI, U
40
    IN= IPJ
    LCM = IPJN
    CALL LCIOP
CCIIINIIE KESIORE FILN PAKAKETERS
    MALL RESJN
    &1Yu=r IYov
```



```
    +{XK=rixH)
    HXLEFIXL:
    l YO=1(t,
    IY1=1YY
    IXK=1\timesKL
    (XL=IXLG* (0LFSET12,CLS),512)
    CMLL, AGV(y)
```

yonual	440
yonout	441
yonoul	44%
yokout	443
ronuel	444
yunout	443
yunult	446
yonuut	447
yunout	440
yonout	449
yunout	450
yundut	4
yukuut	45
yonout	433
yonuut	454
yunout	455
yundut	450
yorout	451
yondut	458
yonuut	459
yonout	400
yondut	401
yonoul	402
Yonout	403
yonuut	404
yonul	405
yundut	406
yonuut	40
YOKUUT	400
yonult	409
Yonout	470
yondt	471
yonult	472
Yonuut	473
yonjut	474
Yol．OUT	475
yunuut	476
yondut	477
Yonuut	476
yunout	47
yonuut	480
yonuel	48
Yonout	48
yonuut	483
yondut	46
yunuut	485
yunout	48
yonout	487
yonout	488
yonuut	489
yonout	490
yunout	491
yunout	44
yonout	4
yokuut	449
yunout	445
yonuet	496
yundut	44
yanoul	448
yundut	449
yunout	500
yonul：	501
yonout	Sod
yunuut	bu3
yunuet	b04
yonolt	505
yonuut	b

Firxt	－${ }^{\text {H}}$	960	153															
riryo	－H	yco	15										$4<1$	479＝				
fixl	－	5 CO	1	7	$7 \overline{7}$	73	124	145	$152=$	177	179	375	4.1	$479=$				
＋ixL0	－k	14b＝	474 144	1bs＝	$478=$													
F1×ん0	－k	$144=$	410															
Firs	－	ycu	74	75	76	77	115	142	$150=$	173	175	376	412	$476=$				
Piymu	－k	$14 \ddot{c}=$	470															
fiys	－-1	（4）${ }^{\text {1 }}$	$171=$	$477=$														
fiyio	－h	14．je	47%															
FLUAF	－	115	leusu	13枵	21350	416 SU	4 chsu	$\begin{aligned} & 42750 \\ & j, 95 \end{aligned}$						$31 F$	32 F	33F	34F	
t jikmat	－	1 ） y	2.1	cit	22 F	${ }^{23 F}$			$26 F$	27 F	28 F	29F	3 F	$31 F$	32			
＋SN	（1）	1311	14とし．															
GRIK	（1）	1311	14.6															
GRIL	UR	1301	14.6									443	47 jwn					
1	－1	4 Cu	buc	02	17100	197110	21200	235	24000	32000	43 O 0	443	47 Jwk					
IHAR	－1	tud	b．ul	19700	21200	－ 27000												
161	－1	347\％	$33^{34}=$	3012	$3611=$	375	315 370	376	370									
162	-1	$34 \mathrm{t}=$	－${ }^{\text {bil }}$	3025	369 53 50	375 37	370 01					175	175	177	179	179	183＝	183
1 J	－1	$1 \mathrm{cse}^{4 \mathrm{Cu}}$	$3)$ 140	by	53 199	37 2011	2012	200	172 202	¢172	204	213	2＜？	228	229	230	231	$23 i$
		2j3	934	çl＝	217	244	24．9	249	3	328	333	343	300	370	$388=$	440		457
		458	454	$40 \cdot$	471＝													
IJA	－1	233＝	331	23y	316	$341=$	3447											
$1 \mathrm{l}{ }^{\text {d }}$	－1	$33 i=$	330	2J4	340	$342=$	$345=$						402	463		． 405	466	4 40WH
1 jM	－1	4 Cu	322	$3<0$	312	344	330	$3^{47}=$	439	444	445	461	402	463	404			4．7
1 JP	－1		4frimk	47 CWh	47 CWK 6 C	47CWR	416 201	202	co2	203＝	203	214	＜＜3	224	2.25	220	231	$\because 388$
		344	joye	3 34														
bJ1	－1	345＝	3bo $=$	2035	$370=$	374	314											
1 JL	－1	151 $=$	351＝	$304=$	$371=$	374	365											
${ }_{\substack{191 \\ 19 J}}$	－1	116 510	${ }_{34}^{3 c}$	So		とu0	2.2	202	213＝		216	217	218	231	237	$321=$	329	304
		371	300	94，$=$	451	452	43	454	455	471								
IPJA	－1	337＝	334		341													
1P\％	－1	$33 \mathrm{t}=$	334	345	342													
$\mathrm{LP}^{\text {JM }}$	－1	322＝	327	337	363	385	387	43920	446 $414=$	447 219	44 A 220	449 221	420 222	472 231	238			
1＋゙Jp	－1	$\mathrm{Sc}_{6}=$	54	\bigcirc	87										238			
1PXL	－1	4 Cu	150															
dixh	－1	4 Cu	137															
PPYt	－1	¢CU	134															
IPYT	－1	YCU	135															
1゙ら1	－1	OCU	17100	43000	443								425＝	426EC				
dilt	－1	$115=$	1c．llo	$160=$	129 C	276s	204 AG	2U7AG	CH8＝	288	4165	4） 7 AG	425	426EC				
${ }_{1 \times \mathrm{L}}^{15 \mathrm{Vm}}$	－1	235 460	314 nH 4 Jut	Y／AG	98AK	$98 \wedge 6$	1vj	11746	149	$150=$	378	3424 G	394AG	395AG	345AG	400	414AG	
1×1.	－1	$149=$	483															
IXR	－1	9CO	b ．	$0]$	${ }_{450}$	96Ag	ytat	47at	104	$118 A G$	125	148	$157=$	978	100	378	39246	3y3AG
		3istu	3444t	4.1	4）5AG	$42 \overline{5}$	40 Cix											
${ }_{1 \times 1} \times 1$	${ }_{4}^{-1}$	$14 \mathrm{t}=$														178	181AG	1－2AS
1x1	（1）	1L1II د7E		70 3%	$\begin{gathered} \mathrm{HO} \\ 3 \mathrm{HOAG} \end{gathered}$	81146 $381 / 16$	84 AL 3024 C	$1<4=$ $343 A O$	125 $4 \% 1=$	$\begin{aligned} & 120 A G \\ & 422 \end{aligned}$		423ag	424 ag	$424 A G$	425			
1×2	（1）	leus	10t6	$71=$	＋1	buAg	obac	ju3＝	137AG	$179=$	187	İIAG	30：AG	4007	414 AG			
1×3	－1	$1 \dot{c}=$	せぐい	－bac	114	Heag	$4 v 1=$	$415 A g$										
1×4	－1	$73=$	brav						105	lćgag	137	$14 t$	1）4\＃	174	176	377	343 AG	3－4AGG
IY＊	－1	4CU1	719 3¢46		yRAG 483 AO	$\begin{array}{r} 971 \\ 42.7 \end{array}$	$\begin{array}{r} 97 A 0 \\ 40 C= \end{array}$	y8ag	ins	$126 A G$								
IY80 IYt	-1	I $4 \mathrm{C}=$ YCu	40.1 70	74	95AG	95AG	Y0AG	YHAG	1 n 6	116	J27AG	141	ノやられ	174	176	377	392AG	392AG
		Sysab	345ab	4，3	$413{ }^{\circ}$	42446	$48 i=$											
IYTO	$1{ }^{-1}$	$141=$	401												119			174
1 Y 1	（1） 1	lutad blat	$\begin{aligned} & 10 \mathrm{LCO} \\ & 10 \mathrm{CHG} \end{aligned}$	$\begin{array}{r} 14 x \\ 270= \end{array}$	$\begin{array}{r} 78 \\ 377 \end{array}$	$\begin{array}{r} 78 \\ 377 \end{array}$	$\begin{array}{r} \text { BJAG } \\ 3011 A G \end{array}$	$\begin{aligned} & 84 A G \\ & 3 甘 1 A G \end{aligned}$	$\begin{aligned} & 115= \\ & 3 \mathrm{BAGG} \end{aligned}$	$\begin{aligned} & 116 \\ & 3 H 3 A G \end{aligned}$	$412=$	413	414 AG	414 AG	$415 A G$	415 AG	416	
142	11	1ev！	catu	$73=$	79	79	04 AO	BSAs，	$1,5=$	I2GAG	175＝	110	110	181AG	jubag	40 \＃	$423 A 0$	
143	－1	$70=$	Hon	－כat	$1: 6=$	127AG	$4 v^{3}=$	4C＇4AG										
174	－i	$77 \times$	Ocha	0									443	470 WR				
J	－1	4 CU	夕ノUい	د	17600	19610	21100	236	24500	31800	4370	442	443	470 wr				
JUAR	－1	acu	טון															

u	（1）R	$\begin{array}{r} 1301 \\ 47 . w 1 . \end{array}$	14L6	b	$17 ?$	173	242	202	202	2112	217	221	225	229	449	434	459	464
us	JK	3311	1456															
UL．	（ik	1301	14とし															
UMOMLC	（1）	136	14 cta															
UP	（1k	1301	$14 . \mathrm{EW}$															
Ull	い1．	1901	14とい															
$u^{ \pm}$	－${ }^{\text {c }}$	$217=$	236	こ3c	$449=$	460	400											
42	－11	＜＜1	－32	cse	$456=$	406	406											
43	－ H	くら̌＝	234	CJs	－54	460	400											
4	－k	く29＝1	238	c ${ }^{\text {c }}$	406：	406	400											
v	いR	$\begin{aligned} & \text { 1sus } \\ & 47 . w k \end{aligned}$	14EU	53	172	$1!5$	2 c	202	202	202	218	222	$2<0$	230	450	455	460	465
vg	（1）	1301	14ted															
VL	いK	（3）1	14 EG															
VMAX	－${ }^{\text {H }}$	$47=$	$53=$	53	164	167	J 87 mR											
$v p^{-}$	（1）R	1301	14 LG															
$v \dagger$ IL	（1\％	［3il	14L6															
vi	－${ }^{\prime}$	ycl	107	172														
v_{1}	－ 4	21t＝	232	¢ 32	$450=$	400	400											
$v 2$	－k	く2c	332	$\bar{c}^{\text {c }}$－	$455=$	406	400											
vi	－1：	$220=$	232	cac	$460=$	406	400											
V^{4}	－k	＜3．$=$	¢32	¢ ${ }^{\text {c }}$	$405=$	1.60	400											
WLCH	－	2045	2.0756															
WMAX	－ H	$211=$	233	¢ $19=$	234	23E	2 sh											
wRIJt	－	（2）1	1321	10cF	$163 F$	167F	16bF	307 F	3198	－11F	313 F	314 F	315F	316 F	418 F	429F	467F	470 F
wSAV	－k	＜3s $=$	$\therefore 36$	¢ 30							313	J．		3.6				
X	（1）	$\begin{aligned} & 1301 \\ & 451 \end{aligned}$	1466 450.	44	$\begin{gathered} 55 \\ 470 \mathrm{Wk} \end{gathered}$	56	51	177	179	215	219	223	22！	339	339	$33 y$	339	440
$x<0$	いK	1001	106u	239\％	315	375	315											
XCONV	－	9 Cu	46															
XCONVP	$-\mathrm{H}$	$4 \leq 5$	71	11	$7 ?$	73	$1 ? 4$	$140=$	177	179	375	421						
${ }^{\text {L }}$	－${ }^{-1}$	960	7.	71	72	73	$1 \leq 4$	177	174	175	421							
XPAR	（1）	130）	1460															
X ${ }^{\prime}$	$-\mathrm{H}$	9 Cu	10＜11k															
XIIC	$-\mathrm{H}$	11．$=$	124	136mk	$133=$	133	411%	421	4294 H	$430=$	430							
$x \times$	－H1	254 375	235 370	c30	257＝	25a	200x	202＝	＜6？	203	204	205	207n	207	269：	270	271	$374=$
$x 1$ $\times 14$	－-H	$54=$	02	04	70	215＝	232	232	$446=$	466	466							
$\times 14$	－k	$\bigcirc \mathrm{C}=$	00	07														
$\times 2$	$-\mathrm{H}$	っこ	$0 \cdot 1$	04	71	$215=$	232	232	$451=$	466	460							
$\times 23$	－ 11	－ $3=$	00	07				232	－51	4.6	460							
x 3	－1：	be＝	03	$0{ }^{\circ}$	$7 ?$	$223=$	232	232		406	405							
${ }^{\times 4}$	－k	S7＝	＇ct	05	． 73	22\％$=$	232	232	$401=$	406	406							
Y	11\％	131．1	1450 451	50	59 470 wr	69	01	173	175	210	$22 n$	224	2＜8	340	340	340	340	447
YH	－к	$45 c$	$4{ }^{4} 1$	$\begin{aligned} & 402 \\ & 102 m k \end{aligned}$	470 wr													
YCO	111	1005	jobl	34，$=$	376	376	370											
rōonv	－ $\mathrm{H}^{\text {H }}$	scu	41															
YC̄Onvp	－k	$41=$	74	15	76	77	115	$141=$	173	175	376	412						
YLb	－${ }^{-4}$	$45=$	14	15	76	$? 7$	$1: 1$	113	115	139＝	173	175	310	398	410	412		
YLBI	－${ }^{\text {r }}$	11c＝	111	$344=$	498													
YPAR	11%	1301	14LU．															
YTIC	－K	${ }_{\text {¢ }}^{\text {¢ }} \mathrm{Cu}$	10，inh															
YI．C	－H	1） $1=$ 4）ヒwir	$\begin{aligned} & 11<= \\ & 101 y= \end{aligned}$	$\begin{aligned} & 11< \\ & 419 \end{aligned}$	163	114＊	114	115	121wR	122＝	122	$400=$	$4,9=$	409	410	411＝	411	412
rup	－	．yy	$130=$	240														
YUPI	－ R	（b1）	$397=$															
1	\cdots	505	$0<$	04	74	210 $=$	23c	232	－47	466	466							
Y2	－-1	ら¢E	01 08	04 04	75	221：	ç	232	45c $=$	460	465							
Y21 Y_{3}	$-1 /$ $-1!$	$64=$ 015	03 6.3	O4	76	224 $=$	232	232										
$Y 34$	－－	$00^{\circ}=$	Oo	64			23	23	$4{ }^{4} 7=$	406	406							
Y	－h_{1}	$01=$	$0 \cdot$	06	77	22E $=$	23i	232	$462=$	406	403							

＊－＊－＊－＊－＊－＊－＊－＊－＊－＊－＊－＊－＊－＊－＊

3ヶ2う	07	75
3021	3¢＊	37
3122	34＊	47
3 3＊23	411	4＊＊

PYI	－${ }^{\text {H }}$	9 cu	22	OLnR							
R	（1）	1301	14 L.								
RCSA	（1\％	1301	14LU								
RM	11\％	j301	14EG								
RMP	1／R	1301	14tは								
KO	（1）	1301	14Ew								
ROL	11\％	1301	14EG								
RVOL	（1）	1301	14EC								
R2EDEN	（1）	1301	14EC								
Stio．	（1）	1301	14E6								
SIGPLC	（1R	1301	14te								
T	－k	とCu	Oink								
TIC	（1）	1tol	bscc	SOWR							
\checkmark	11 N	1sul	14 CO								
UG	13 H	1301	14EC								
UL	${ }^{1} \mathrm{~K}$	1501	1464								
UMOMLC	（1）	1301	$14=0$								
up	（1）	1301	14 LL								
UTIL	（1R	1301	14EU								
v	1\％	1301	14E0								
vg	（1）	1301	14 E＇0								
VL	（1）	1301	14 EC								
ve	If	1301	14E0								
$\begin{aligned} & \text { VIIL } \\ & \text { WRITE } \end{aligned}$	UK	1 Ju： $45 f$	$\begin{aligned} & \text { 14EO } \\ & \text { jof } \end{aligned}$	$01 F$	$62 F$						
\times	（1）	juvi	$14{ }^{\circ} \mathrm{CO}$								
XPAR	（1）	1301	14 EC	07	68						
XTIC	－${ }^{\text {H }}$	． $4=$	40	SOWR	S7E	57					
Y	UN	1301	14 EU								
YLH	－${ }^{\text {H }}$	$23=$	31	36	39	69					
YPAR	（1\％	1301	14 tc	04							
YTiC	－	ite	$35=$	ל	36	$38=$	38	39	45 WR	$46=$	46
Yup	－	てくこ	$3)$								

1

OVEKLAY（YOK）	2，31	Phasel	$\dot{\sim}$
phughala prasel		phased	3
CCMMON／STAIE／	HOP），NCPO，NFRO，UPTMP（3u），OPDEN（10）	ALLKOM	
	FREM（1）0（1），SPTBL（3．－n），PTAOI3001，ETAB（300），	Allikut	3
2	日TOL（J！）	Allikom	4
ccmmun mysi，	Ansc（bibu）	ALLKOM	5
Clhmur／PINK／	IF $1 \mathrm{JP} 1 \mathrm{JN}, \mathrm{1JP}$.	ALLKUM	6
LCM／YLG／	L．Al（1slinu）	Allkom	7
LLCM／Yi．CL）	Ancislewo	Allikum	8
LEM／RLCl／	SIGA（Jituj）	allikon	9
CCMMUN／hed		Allikom	0
］	10］，ISCF＇，ISCF2．（SCX，ISC3，liv．Jear，	Allikom	11
c	JP），JHS＇，NCYC，NUUMP，NGP NGI，kE／SIE，TAMB，	Allificm	1.
3 ．	TEFR（ibnu），T，Tlice IUUT，ISJART，Iny	Allinom	13
cgamun／yEliun／	Ull，ulcsav，uto？．Hiv．ulvsav．	Yellow	2
	UVUY，IUTC，IOJV，JIITC，JUTV，KOT	YELLOW	3
ccmmun／ohange／		ofange	¢
	Olrus，EPS，UN1，GO．，GL， 1 M ），	（ 1 halv）it	3
c	IELH，（P2，ITABAl：U），JNN，JP4，KXI，LAM，	Orange	4
3		OKANGE	5
	OMANC，CMCYL，KELKUN：KEZYG，THIRU，VTEM	Orangt	0
Ccmmon／widit／	t，ivals，KVALS（73），Ni＇NGLS，ANGLES（3S）．TNEUT	oratait	7
CCMMUN／SETISE／	JSWICHI，JSY（Ch？，，ISNTCH3	SEirst	2
EGUIVALEEHCE		turkeal．	2
	（AASC（4），U），（AASL（4），V），（AASC（0），RO），	EuvaEAl．	3
¢	（AASC（ 1 （，RP，KM）＇，HLSIM，	Euvreal	4
		Euvital．	5

4
5
0
7
8
9
1
KEAL
UIMENSIUN
3
3
5
0
1
1 Masc（l己），UTILOULOLIJEMUMLC）
（AASC（1د），VIIL，VL，UM－3MLC），
 （AASCCl161，DELSN，SIUPLC），
 Aht，ArD．No NP，MiP MUUA Xi：LARD，N．MP，MIP MUUZ Vili，KU（ll，NRII，RMP（l），KCSQ（i），CENTX（1）， E（I），ElIL（i），CEN）Y（li，KVOLII，M（I）：RM（I），

 UMURGC（1），KUL（11，HEIALC（1），FOUILC（1）， SIE（1）UELSM（1），SIGPLC（1）：GRIN（1）UG（J）．

c－－－incrfment time
N（YじNCYC\＆．

UIV＝DTC＝UIOUTFAC
UI＝AMIN（UT，S．（＊DIR）

$T=T$－UT
$\mathrm{KCl}=1.10 T$
ulue＝．Sall
－－－auu neutrun elvergy
it（JSwTCHigtu．a）CALL NAUO
C．
CALL STAR

OC（L\＆y $\quad=1,10)$
InJ＝1JMNG

$+J N=$ J Jmoi－R
RNJF＝iJP－1．0

XXEYY＝1
にことく1」
If（1．EU．1）GU TO 1002
L4＝U（IMJ）
$L_{4}=U(1 M J)$
$V_{4}=V\left(1 M_{j}\right)$

$13.2 \mathrm{U}_{4}=\mathrm{U}(1 \mathrm{PJ})$
$v 4=v(1 P J)$
$x x=1, u$

$v_{t}=v(I P J)$
1 LC UE＝U（（MJ）
$v t=v(1 m J)$

$L^{=}=U(1 \mathrm{JM})$
$v=V(I J M)$
$J C(1)$
$1 \ll U_{6}=U(1 J P)$
$v_{i}=v(1 J t)$
1 Il it（J．tu．JP2） 60 TO 1 ；3S

GC lul．4）

Euvaral	
E（JVREAL	
Euvreal	¢
Eiguntal	9
Euvatal	
Euvreal	
Equreal	
Eguneal	
Dimen	
dimen	3
UIMEN	
Oimbn	J
OIMEN	6
OIMEN	7
UJMEN	b
01 mb	y
prasel	
Prases	
phasei	
prase 1	
Prase！	
prases	
prasel	
porasel	
Prasel	
pmasel	
phasel	
prasej	
Prasej	
prasel	
Prasel	
frasel	
pmase：	
frase：	
prase：	
Prase 1	
Prasel	
prase！	
Prasel	
prasei	
prasel	
prase：	
prased	
prasel	
phasel	
prasel	
Promel	
Phase！	
prasel	
Prase！	
Pilase！	
Prasel	
Prase 1	
Prajel	
prasel	8
phase！	9
phasel	
Prasel	1
Prasel	
Phase！	
Prasel	
Phasel	5
prasel	
prasel	）
Prasel	
Prasel	
Prasel	00
phasel	01

$\begin{aligned} & \text { sent } \\ & v t=v(1) J(1)\end{aligned}$ $Y Y=:-1$
141. It (1.EN(1) 60 TO 1342 it (J.Eu.?) GU TO 1044

vit vill
4 C It (J.Fu.2) GU 101043 $u\left(=し(1)\left(\begin{array}{ll}(1)\end{array}\right)\right.$
$v)=v(1 P J M)$ $V_{1}=V(1 P J M)$
$x_{A}=. .(1)$

J 0
V $=v(11) J P) ~$
$x_{A}=, Y=: 0$
uc (u) 151
$\begin{aligned} & \\ & 44 \text { V) }\end{aligned}=\begin{aligned} & \text { U (JIGJP) } \\ &V)=v(1 M J P)\end{aligned}$
$Y Y=U . U$
1.bI tr (1.EM.IPl) GJ TO Jijc if 'J.FH.?' GU TO 10 b
U? $=0(1 \mu \mathrm{JM})$

1 bel
If (J.EU. 2) ol 10 105.

$x x=0$
${ }_{6} C$ iv 1
1 bs Ug=u(InJP) $v .=v(I(1 J P)$ $x x=y y=\hat{r}$
oc $J u \geqslant 01$
د" US=U(IPJP)
$v r=:-1$

1. 01
$r=0$
it iJ.fu. JPZ Gu 1062 it U.FU.JPZ) 64 iO 104 $v i=v(1 M J P)$ CL 1011.71
 $u 1=U(1 P J P)$
$v y=y(1 P J P)$ $v /=v(I P J P)$ $x x=: u$
$u c$
$u T$
L.uj U7=U(SpJM)
 $x \lambda=y y=-0$
of 101171
04 LT $=$ U(IMJM) $v 7=v(1$ IMNM) $Y=V . U$
171 it $1.5 \mathrm{Fu} .1 P 11$ GU 103.76 if (J.Fw.JP2) GU io lifa し $4=0$ (IPJP) $\checkmark s=v i r \mathrm{JPI}$
GC $101 \cdot 81$
 $L_{\zeta}=(1$ (MJP)
$V_{\zeta}=V(1$ MJP) $v_{y}=v(1$ MJP)

1.75 U4 $U_{y}=U$ IIMJMC $V_{s}=v(1 H(J M)$

GC 101.11

Prasts	130
Pliasel	131
prase:	132
prasej	133
Prasel	139
prasel	135
PHASEI	136
PHASE:	131
Prast	138
Prasel	134
PHASEI	140
Prasel	141
Pitasel	145
Prast!	143
Prasel	144
prasel	14.5
Prasel	146
prasel	147
Prased	148
phasel	144
Prasel	150
phasel	151
Prasel	l 1
prasel	153
phasel	134
phasel	1 bS
phase:	150
prasej	157
phasel	150
Prasel	1 ¢
P) MASE 1	100
prase:	101
phasel	102
Prase 1	101
Prusel	104
Prasel	105
Prasel	100
prasel	107
Prasel	108
prasel	$10 y$
frase:	170
froasel	171
phasel	172
prasel	171
Pirasel	174
Prase1	175
Pmasel	170
phasel	177
prasej	178
prasel	179
Phasel	180
pmasel	181
Prasel	18 C
prase?	163
phasel	18
Praseit	185
Prast 1	160
Pi(ase)	187
Prasel	100
Phale 1	104
prasel	191
prasel	191
Phase	192
prasel	19
Phasel	194
Phast]	145
Prustl	196
Pranse1	147

$\begin{aligned} & \lambda P A R \\ & x X \end{aligned}$	$\\|_{-k}$	$\begin{aligned} & \text { l3E6 } \\ & 3 I= \end{aligned}$	$\begin{aligned} & 1301 \\ & 40=1 \end{aligned}$	bls	$16=$	$8_{6}=$	$4{ }^{\circ} \mathrm{F}=$	$47=$	$110=$	114＝	127＝	131＝	$14 \underline{y}$	151	214＝	215	222	2318
		4i；	دز）	is4＝	2！6	237	$234=$	240	241	＜42＝	243	244						
xXA	－-1	＜1cı	2）4	¢17	217													
X ${ }^{-}$	－ $\mathrm{H}^{\text {r }}$	ナ¢ヶ＝	21	c， 1	$2<9$													
$\times 1$	－-1	$17=$	145															
$\times 2$	－F	175＝	14															
$\times 24$	－	$14=$	145	c． 1	26^{4}	213	231	239										
$\times 3$	－-m	$18=$	14C－															
$\times 31$	－p	$14 \mathrm{c}=$	14.	¢ 3	21：4	213	234	242										
$\times 4$	－H	106＝	14															
γ	ifr	（SEU	1 bul	171	176	161	100											
YPAR	Ifr	13 Lu	1bu：															
YY	－	315	$0=$	$01=$	$80=$	$84=$	4 ？$=$	$101=$	$114=$	$110=$	131：	$1 \mathrm{JS}^{2}=$	（b）	152	216＝	222	$230=$	232
		433	¢3n＝	iso	237													
YYA	－h	$213=$	－10	¢17	217													
	－－	20 $=$	147	140	1717	193												
YZ	－h	$17 \%=$	141															
Y24	－4	$191=$	1195	\bar{c}	$21 ; 4$	212	236	231	<39									
Y 3	－	｜ب11	193															
Y 31	－	19：＝	$1 y^{19}$	\dot{c}	214	く1く	234	235	くic									
44	－r	$1+1=$	（b）															

CVERLAY（YCKItER	2， 41	Prasez	2
hhughan prasel		phasez	3
ccmmun／state＇	NORT，HOPO，NFRE，OPTMP（3u），OPOEN＇10＇，	ALLKCM	2
1 ）	FRELMOU），SPTEL（3．0），PTAO（300），ETAE（300），	ALLKKOM	3
$<$	HTOL．s（：）	ALLKOM	4
Ccimmun／ysci，	AASC（bibu）	ALLKOM	5
	I＇1J，IJN，LuP，J	allicm	0
LCM MrLCl／	Ad）（latula	ALLKOM	7
LCN／rices）	AACllal：un）	ALLKKOM	8
LCM／ri．61／	SLGASJOUVUS	ALLKKOM	4
CCmmin meoor	NAME（！＜），DT，UTR，EMID，GKUVEL，IRAR，IJPS，	ALLIKCM	10
1	IFI．ISCFI，ISCF2，ISCく，1SC3，ITV，JEAF，	ALLKKCM	11
c	JPl，JP2，ncrc，NOUR：P，NQ，NQI，REESIE，TAMB，	Allinom	12
3		ALCKOM	13
LChmun／yellum／	UTC，UICSAV，OTR2，JITV，UTVSAV，	YELLOW	2
$)$ ）	OVESY，IOTC，LOIV．JOTC，JOTV，ROT	YELLOW	3
cchion／ohange／	AIC．ASG，AO，ALFICL，AUM，IIJ，COLAMU，CYL，	Órange	2
1	Citrus，EPS，UNI，GK，GL，JNI，	ORANGE	3
$\overline{\text { c }}$		Orange	4
3	Luti，Mu，Npl，Nalni Nulce NUNIT，on，	Orayge	5
4	ONANC．CMCyt，rechund ke／yu，iniku，viem	Orainge	6
LCmmon／write／ といUM以LNCE	 	orange Euvrtal	7
1		Eovreal	3
2	［AASC（！ 1 ，RP，HNP，RCSIPCENIX］，	Equreal	4
3	（AMSC（0）DE，EllL，CEI，YYi，（AASC（9），RVCL）．	Eavreal	b
4		Egumeal	0
\leq		Eurrenl	7
0	（Alsc（13），VTIL，VL，Umentec），	EuvaEal．	${ }^{4}$
7		Euvreal	9
6	（AASC（（1）．）．DELSN，SH．PLC），	Euvieal．	10
4		Egureal．	11
1	（Aasc（10）＇ghizevgorsil	EuvaEal．	12
REAL	LAM，LANU，N，NP，RUP MUUZ	EuVKEAL	13
LIMENSIUN	X（l），AFAR（l），R（l），YPAm（l），Y（l），U（l），	DIMEA	2
\％	V（l），KO（l），NP（l），RmP（I），RCSG（l），CENTX（1），	UIMEA	3
3		OLimen	4

4（3）．FCKMAI
VP（1），P（1），PL1），EP（1）：UP（1），ITILII）， ULIJ，CWIG，ENOMLC（1），VTILIH：VLII）， SIEII：UELSM（I），S）CPLC（1），GRIA（I），UG（J） RLEGEN（I），GHIZ（1），vG（1），FSN（1）
（IM．＊IIEHATICN LINIT EXCEEUED RUN NAY AGORT＊）
26Ji ALMIT INITIALILE ITEKAIIUK CONSTANTS
MLSITII $=0$
PLHAX＝ENIC
20）：CACL STARTN ITERATION
LC cics $9 \mathrm{~J}=$ ？，JFJ
C $<\boxed{\circ} I=1$ ，IVAK
1tJ $=$ IJ．Piv
$x_{1}=x_{1}\left(1 P_{-1}\right.$
$x)=x\left(1 P_{-}\right)$
y
$(r)=k(I P J)$
$\omega=U_{L I I P J)}$
$v_{1}=V_{L(I P J)}$
$x\rangle=x(1 P J P)$
$y=x(1 P J P)$
$\mathrm{K}_{\mathrm{K}}=\mathrm{K}=\mathrm{K}(1 P J P)$
$L_{P}=$ VLIIPJPI
$V V^{2}=$
$x 2=x(1 J F)$
$Y_{2}^{2}=Y(1 J+)$
$H^{2}=x(1 J F)$
$v_{v a}=u .\{1 J p)$
$v^{2}=V(I J P)$
$x_{4}=x(1 J)$
$x_{4}=x(1 J)$
$r_{4}=y(1 J)$
$r_{4}=Y(I J)$
$L_{4}=U_{L}(I J)$
$v_{4}=v_{1}(1)$
$x\left(G=1 .-/\left(K^{4}+R J+R^{2}+R 1\right) * C Y L\right.$
$\left.x \vee \cup=1,1\left(x^{2}-x^{3}\right)-\left(y^{2}-y^{4}\right)-\left(x^{2}-x^{4}\right) *\left(y^{2}-y^{3}\right)\right)$
$L \cdot L K=(u) \cdot U 2+\left(\dot{3}+U^{4} 1 * X U G\right.$
н $A_{k}=x \vee G$

$j=(U U U X+U V \cap Y) \&(1)$, UCK UT）\＆UOR

LELくこう．＊1）ELSM\｛IJ！

LF $=$－UN＊S／FA
（LMAX＝KMAXI

C－－－iEST FOK CONVEHGEMCE IA CELL
C MLSTJI $=1$
FL（1J）$=$ FL（IN）
$\begin{aligned} Y^{4} 4 & =Y^{2}-Y^{4} \\ Y^{2} 1 & =Y 3-Y)\end{aligned}$
$\left.Y_{3} 1=Y 3-Y\right)$
$\left.x+1 J=. b\left(R 1+x^{3}\right) *(x)-x 3\right)$

$x_{x}=U \dot{T}_{2 *} 0^{F}$
（ JUCM1 $=x y_{*}^{*} k m\left(1 P_{J}\right)$
LTUCME $=x x$ mm（IPJP）
UJUCHS $=x \times \operatorname{HM}(I j P)$
UTLiM4 $=x \times$ \＆r．（1j）


```
            VL(IPU) = VI-LTO2r)*xR24
            LIJJ =V4-UIOEM4*XRIS
            &)(J.EE.0JP!) GU TD Z1(1)
            M, (1)
    v.(1Jr)
    <<0y L゙N=|PJ*
        LL (IJ)= LL(!JH)= UL(IJF-NGIH) = UL(IJ-NQIO) = 0.
        CALL LUUP
        CCNIINUE
    CaLL UNNE TESI IIERAIION CULOSTANTS
        |=|!,j! r
        HOL!\leqTIT.EG.!) GC TU 25GU
        r(Slll=:
        1t (NLNIT.LT.SOG) GC TO 2GIO
        --- ilgratiun FIGISHEU complite etil
        CUNJII.UE
        CuCHCHYJ=2,NNJ
        LUC'SOI I=I,IBAR
        lNJ=I,1-NG
        jHJP={MH.MO
        x'=x(:HJ)
        XI=x(!rJ)
        h)=к(1f()
        u)L= U((IFJ)
    ui= vi(PW)
    VIL=v(|PJ)
    vにV(1FJ)
        xc=x(if JP)
        M= Y(fHyP)
        HEK(lwjF)
    LCL= U(1PJP
    lc}=U(IPjp
    vic}=v(IrJF
    xj=x(1, #)
    Y =Y(|JP)
    Y}\begin{array}{l}{Y=Y(1JP)}\\{MJ=r((JP)}
    LコL=ULIIM-1
    (2 =U(1JP)
    V=L=VL(IJP
    v\underline{Z}=v(1)JP)
    x4=x(lJ)
    ra=r(lJ)
    MC=K(\J)
    L4 = vilj)
    VムL=vL!!
    v4 Ev(lj)
    *.Ev(1JJ)
        x (1)=x>-x1
        <4=Y<-Y4
        (1) = Y S-Y1
        H1c=rl-h2
        H44=HS+F4
        HKLJ= . E*(KlQF3)
        HNC4=:5*(HC**4)
        0}=\!
        S4=11د.L4
    MXY=1.i/XY
    HXY=1.1/XY
```



```
    U% 4r=LP-U4
```

Phase 2 Phase Phist 2 Phasec PHASEL	
Mhast 2 Prasec	
Phasec PhaSE 2	
phaSEZ	
Praser	
PHASE2PHASE2	
Prasez	
$\begin{aligned} & \text { PHASE2 } \\ & \text { PHASE } \end{aligned}$	
phasez Phasf 2 Prase，	
Prasec	
Prase	
Prase	
phasez	
Pruse ${ }^{\text {Prase }}$	
Prasez	
phase 2 Phase 2	
phasez	
phase 2 phase 2	
Phasez 2	
phase 2 PifASE 2	
Pruste 2	
Phase 2 phase 2	
Phase 2 pimase 2	
phased	
phasez pmased	
prasez	
prasez	
$\begin{aligned} & \text { pMASEZ } \\ & \text { PMASE2 } \end{aligned}$	
prasez	
Pruste	
Praste	
Prased	
PHASE2	
prasez phase2	
$\begin{aligned} & \text { PKASE } 2 \\ & \text { PHASE } \end{aligned}$	
Phase2	
frase 2 Phasez	
Prase	
pkaSE2 PMASE2	

	いうM $=$ し1－U3	Phasez	140
	Vにけハ＝vア－v4	PHLSEL	141
	い13N＝v1－v3	PHASE2	142
		PMASEL	143
		Prase？	14.
		Prase？	145
		Prasect	140
	$x x=と(1)$ ）	Phase 2	147
		Phase 2	148
	It（nxi．LT．O）6U 10253°	Prastic	144
		Phase 2	130
		Prasel	151
cらlc	LC4＝ $114 * *$ ？＊v．＊＊2	Prasec	152
		fraseic	153
		PHASE？	154
2317		Prasec	155
	ANU $=4 \mathrm{ANH}$	phasez	150
		phase？	157
	NLUC $=.5 *$ M U	prase 2	158
		PHASE？	154
	FIXX 2 F MUOC＊LUUX + LAMO	Prase2	100
		Prast？	101
	F（XY＝	PMASE2	105
	H1Tr $=. .(5 * x)$（f mUC2＊UUR－LAMO＊CYL）	Praseiz	103
		Praser	164 105
		Prasel	105
		Phasez	160
		Prasta	107
		p）AMSE2	108
	$Y_{Y}=Y_{Y}{ }^{\text {P }}$	Prase？	107
	UG＝KUIIJI＊ONATL＊XX＊YY／（C．n＊（ALAN＊2．0＊AMU）＊（XX＊YY－EMIO）	prasez	170
	UL＝NOS（UU）	phase 2	171
		praser	176
	It（uTVSAV．NE，Ulvi loivei	phasez	173
		prasel 2	174 175 176
	GlvSAV＝utv－	phastz	175
	$x+15=$ ．$+\left(R 1+x^{(1) *(x 1-x 3) ~}\right.$	Prasec	176
		Praseic	177
	6x＝r（IJ）	Prastz	178 174 170
	$6 Y=6 X-P I Y Y$	Prase 2	174
		Prasez	160
		Prasez	181
		prastz	182
		Phase 2	103
	$\left(U^{\prime}\right.$	Prasti	184
		Prince 2	ל618
	LELE＝	PHASE 2 PHASE2	180 187
	E）IL（（J）＝SJ！IIJ－GFLE $1 コ=1 ト 」$	Prase 2	188
chel	（Jtrjrju	phasez	184
	cacl lucp	Prases	140
Cber	cunt inue	praste	141
	LALL．Uune	Prase 2	192
	－－－SET RCL ANU ETIL UN BCUNUAKIES	Prasec	143
	CALL START	Prasez	144
	1tancil	Pluase 2	145
	しく＜1，J J 2 ，JF 1	Prast 2	190
	$1 \cdot C<71: 1=1$, Itaf	Phase 2	147
		Prast 2	140
	1t J＝ivenos	Pruntt 2	194
	It Jt $=1$ JH＊NR	prasel	CO1
	It（u．nter）Gu Ju 15C	prasez	201
		Prase？	＜02
		Prasec	203
	1t（1．NF．IRAP）GO TO 15） 1	Prashe	C05
		Prase 2	240
		Pruste 2	＜07

2：3	131	
c^{4}		HCL（IJH）$=$ HO（1UP）
$2 \cdot 5$	156	It（l．nf．inaf）Gu to isis
2.0		
＜i7		と1LLIPJ）$=$ ETIL（1J）
C． 4	153	1.01 J
2． 4		しっトこトトコP
219	271.	
く11		crill lour
212	ぐ7，	（tid）lhite
く13		calc uqjue
	C	
2）4		CHLL Stakt
215		しく こと¢ J＝2，JP2
610		LC C304 I＝ 1 ，1FI
217		
61\％		1FJ＝1u＊Nud
（1）		
261		
2c）		$x \lambda=1$.
で？		YY＝1．
2＜3		It（11．r．6．））．0．（1．EG．（p））$x \times=0$ ．
くご		
cc		
Cib		I．（IlJM）＝E（INJMI＋VIENPQRVOL（IMJM）／RO（IMJM）
¢¢7		
く＜0		E（INJ）＝É（IMJ）－WEMrarvolilmji／RO（IMJ）
264		
C3		
23）	$1(6)$	If（1．NE．1）Gu 10 lied
232		
d 33		E（IJM）＝E（IJ．i．2，＊VIEMP＊HVOLIIJM）／ROIIJM）
く34		！！JJ）$=$ E（IJ）＊2．＊VTEHF＊RVCL（IJ）／RO！JJ）
く 3		C 101.80
430	1402	1t（1．nF．Ifi）UC IC lueb
¢ 37		
230		
23\％		
24.		OC luliek
241	1＊6	1t（J．EO．ci Go 10 Jo96
242		
243		
24.4		
245	169	
240		E（INJ）$=$ E（INJ）＊2．＊VTEMP＊\＆VOLIIMJI／RO（IMJ）
247	11.88	chivtinue
j4H		$15=11 \cdot \mathrm{~J}$
＜49		$1 . P=1 \sim P \cdot \mathrm{Na}$
25	<564	1，M＝1 Jiotad
cbl		LALLL LUEP
こと	とうも	C（1s）（A）t
253		chll ulite
	c	I
Cb4		ktiukis
¢b5		Enc

Phase 2	cue
Prasez	209
Prasec	214
pmasec	211
Prase2	412
Prasez	213
prasez	214
prasez	215
Phaste	216
phasec	217
P）uSE2	216
prasez	219
Prase2	220
Phasez	2 Cl
Prust2	2\％
prasez	¢
prasez	224
Prasez	225
Prasez	＜26
rhasez	$\ll 7$
prase 2	228
Pmasez	でき
Prabeic	230
Praseic	C31
P）IASE2	232
phase2	233
PluSE2	c34
Prase2	¢3
prase 2	230
Prase2	C37
Prast2	238
Picasez	234
Prasel	240
prasez	＜41
Phasez	24
prasez	<43
Priasez	244
Pfinse2	245
Prasec	446
ramse2	241
Phasea	24t
prasec	249
Prasec	250
P）ASE2	251
Phasez	262
pmasez	＜53
Prasez	254
Praseic	2 bs
Prasez	＜56
Prust2	$2 \bigcirc 7$
Phase 2	2So
Prasec	254
Phasez	200
Prasez	201
Prasez	＜02
phasez	263

2ヶU	－	10^{*}	Ullsav	－	sco	IJPS	－1	8 CO	L．JH2	－1	lico	OPLEN	（1）	2CO	hezyo	－R	1000	tout	－${ }_{\text {R }}$	$8{ }^{\circ} \cdot$
AA1	1311	SLC	urics	－ H	14 CO	1M1	－1	1 ncu	NamF	U1	8 CO	CPTM，	（1k	$2 \bar{C} U$	HLCl	－	7 CN	tSiART	－	8 CO
AAP	11\％	OLC	U）	－h	HCO	jpa	－ 1	jico	NAMELS	－I	1100	crange	－	1． C N	rvals	13R	110	VTEM	\cdots	10 Ci
Alut	－r	$1 \cdot し$	eluival	－	12F	ISCFI	－1	er，o	HCYC	－1	ACO	frast 2	－	l su	S（GA	（1）	7L6	WHITE		IICN
Angles	11k	） 10	clat	UN	éco	ISCF2	－1	act	nuvap	－1	aco	Finn	－	4 CN	Stial	（1）	2 CO	YELLO＊	－	4 CN
Asw	－R	1 Cu	rimmal	－	15 F	1 Sc 2	－1	aco	nf Ha	－1	2 CO	FRIGT	－	GMF	SJATE	－	2 CN	YLCI	－	SCA
${ }^{\text {A }}$ C	－R	ircu	ratu	13\％	2 CO	1 SC 3	－1	8co	nor	－1	2 CO	PTAX	UR	2 Cu	T	－ H	ecc	rlce	－	6 CA
Alitac	－ H	${ }^{\circ} \mathrm{Cl}$	und	－r	${ }^{1} \mathrm{CO}$	$11 / 8$	$1{ }^{1} 1$	190	nort	－1	2 CO	GSCMT	－	14.3 Su	tamb	－R	8 Cl	rscl	－	3 Cin
Al．P1	－ H	$1 . \operatorname{cu}$	us	－-		ITV	－1	aco	NH	－1	11.60	HEAL	－	13	IEmP	（1R	8Ll			
cjol．	$\cdots \mathrm{H}$	icu	Gruvel	－R	HCO_{0}	JHAR	－1	aco	N（1）	－1	8 CO	RFE	－	${ }^{\circ} \mathrm{CO}$	ItIRU	－ $\mathrm{H}^{\text {r }}$	10cc			
Br	－H	116	Us	－k	1：co	JUIC	－1	9 CO	nos？	－i	$1{ }^{\text {nco }}$	HETUKN		＜ 64	try	－k	BCC			

YPAR	（1）	1cew	1401									
YY	－ii	145＝	131	$104=$	104	104	116	170	く\％2＝	224＝	225	
Y \％	－r．	－${ }^{\prime}=$	45	40	61	98＝	160					
Y2	－${ }^{\text {r }}$	$3=$	45	40	on	1is＝	127					
Y 24	－k	$0=$	04	11	$127=$	135	143	145	184	106	18 ¢	180
Y	－${ }^{\text {H}}$	3゙ $=$	45	40	61	112＝	18					
Y 31	－${ }^{\text {H }}$	$01=$	7	76	$128=$	13.5	14.3	143	165	107	189	180
$Y 4$	－k	$4 \cdot=$	45	40	07	$115=$	$16!$					

1

Luthemay lyokiler	2． 51	prase 3
phugmam panse 3		phase 3
ccrmun／siale／	NCPI，NCPU，NFRO，UPTMP（301，OPDENI	ALLIOM
1 ）	FREU（l60），SPTOL（310），PTAB（300），ETAE（300），	Af．LIOM
く	HTGL（30．）	ALLinom
（Chinun／YSC）／	AASC（3454）	ALCKLim
LCinvor／Pilik，	1.1 JP 1JN，1JP，J	ALLKMM
（6）ハYL6）	AAlisical	ALLKCM
LGP1 MLL？	AAくい」l（LD）	ALLKum
tじ／rしCl／		ALCKOm
chinun／heos		ALlkom
1	IM：ISCFI，ISCF2，ISCC，1SC3，ITV．Jtak．	ALLKUM
i		ALLKom
3	TEMP（IDid）．T，TIMT，IUUT，ISIART，THY	ALLngm
GLmmulv／SILVER／		SILVER
1 ）	IPXL，IPXH，IPYH，IUYI，IXL，IXR，IYY，	SILVER
c	IYI，rXCONM，PXL，PXK，PYE，PYCONV，PYT，	Sillver
3 isman	RIUAR，VW XCCIN：XL＇XR，YGY YCONV，YT	Silver
CLMNUR／YELLUM／	UTL，UICSAV，ctia＇，IITV，Ulvsav，	YELI．OW
	UVUY，LJIC．LOTV．JIIC，JUTV，ROT	YELLOW
LCMmun／uhatiol／	AAC，HSC，AO，AUFAC，ALM，BO，COLAML，CYL，	OKANCL
	OTHIS，EFS．GMI，GM，GL，IMI．	UKardet
5		Ohrivge
3		Orwnge
4	Orinci，limcyl，helrue，helru，thirug vitim	Orange
（chinut／writt／	NKWM．S．AVALS（7j），Noglecls，ANGLES（3E），TNEUI	orange
E．U）VALEIICE		Ewrreat
$!$ ！		Euvical
c		Euvatal
3		Elsurital
4		EUVAEAL
5		EUVHEAL
0	（1）ISC（13），VIIL．VL，UHUMLC），	Euvreal
1		Euvieal
		EuvaEAL
1		Euvreal
1	（Aasc（1m）．fntlovgotsil）	Euvieal
hEA A_{L}	LAli，l．anu．N，LAP，MU，MUOC	EuvMeal
U（IAETVSJON	X（i），XIAR（l），E（l），Yrak（l），Y（l），U（l），	UIIHEN
c	v（l），（ll），Nr（l），RMP（l），RCSO（l），CENTX（1），	Uinits
3		OJMEA
4		OIMEN
b		UIMEN
0		Uimicn
7		O1IILN
0		UIMEN
LEXT	OELIN）	Phase 3
OLNEGSIUN	4T）（1）F Fi（100）	prisel 3 PHMSE ${ }^{3}$
OTUIO＝i．nteseut		Prase 3
JnELIri＝1．r／12．0		Pruse ${ }^{3}$
－－－TESI fur		

－－－SUMHUTE LG VG $\begin{aligned} & \text { Y } \\ & \text { K IEULERIAN UH LAGHANGIANI }\end{aligned}$
Lall Start ART $=2$, JRC

L：（IJ）$=0 . S^{*} G K U V E L *(U L(I J)+U(I J))$
velIJ）＝f．5「GRUVFL＊（VLIJ）＋V（IJ）
$x(1 J)=x(\{J)+\omega G(1 J) * U 1$
$Y(I J)=Y(I J)+v G 1 I J$＊O
KIIJ）$=X(1 J)$（ML＊ONCYL
$1 \mathrm{c}=1 \mathrm{~J} \cdot \mathrm{~m}(\mathrm{~N}$
30：4
cthl Lour
3 J 4
Givilnut
CuLL UNIE

「」は，
CMCL HE MOCRE
c
－－－CULARUTE MP EP RVOL
CALLL START

$1 \mathrm{M}_{-}=1 \mathrm{~J}-\mathrm{NW}_{6}$
际＝ $1 J+1+6$
$1 N_{X} P=T H O N W$
$x_{1}=x\left(1 P_{J}\right)$

$\lambda_{c}=x(1 H \mathcal{L})$
$Y_{j}=Y(1 P J P)$
$Y_{j}=Y(1 P J P)$
$K_{2}=k(I P J P)$
$x_{2}=x(17 \mu)$
$t:=\{13 \mathrm{Jj})$
$h=h(1 J P)$
$x_{4}=x(1 J)$
$\mathrm{Y}_{\mathrm{H}}=\mathrm{Y}$（1J）
$k_{4}=$ KIJ
$u_{l}=\| L 1 P-1$
$V_{L}=V L(P P J)$
ULC＝ULIPPJ

$V_{L}=$ JILIIJP）
$V_{L}=V(11 J P)$
UJ． $4=U L(1 J)$

$V(E=V G(1) P J O J-1-5 \cdot(V L i+V(1) P J P))$
U：$J=v 0(1 J+i-1,5 * 1 L L J+U(1 J P 1)$
V（JavG（IJP）－C．5 NLL

$x_{F}=x-U 1,1+0 T$
$x_{r}= \pm \wedge c-U 12 * 01$

YFIEYJ－VIIMUT
$Y \vdash c=Y c-V U 2 *(1)$
Yrsaydevu3＊01

KHI＝XF1＊CYL＊UMCYL


```
\begin{tabular}{|c|c|}
\hline & \(=x\)
\(=\)
\(y<-\lambda 1\) \\
\hline Y3． & V \(\mathrm{r}-\mathrm{r} 2\) \\
\hline Y4．\({ }^{1}\) & \(=r^{4}-y^{3}\) \\
\hline Y14 & Y）－Y4 \\
\hline k＇く & HI＋\({ }^{2}\) \\
\hline kic & HCon \({ }^{3}\) \\
\hline h：4 & H29 \({ }^{4}\) \\
\hline （4） & H．4．t） \\
\hline いく & （IL） 1 HLC \\
\hline UTJ & （1L．2 •（1） \\
\hline U：4 &  \\
\hline L4！ & HL4．0． \\
\hline いく & VLI \({ }^{\text {a }}\) W \\
\hline vis & VL？＊VLS \\
\hline \(v=4\) & い3． \\
\hline いい & VL \\
\hline
\end{tabular}
```



```
114
\begin{tabular}{|c|c|c|}
\hline 139 & 33： & CLLL STERT \\
\hline 14 & &  \\
\hline 141 & & UC 33LY \(1=1.1010\) \\
\hline 142 & & ＊C（1J）\(=\) NP（IJ）＊RVOLIJJ \\
\hline 143 & & E（lJ）\(=\) EP（1J） \\
\hline 144 & & It（J．Ew．i ）ROIIJW）＝EOL（1JN） \\
\hline 145 & & It（J．Fu．cel）MO（IJF）\(=\) HOLIIJP） \\
\hline 140 & &  \\
\hline 147 & & 1．W \(=1 \mathrm{JM}+\mathrm{NO}\) \\
\hline 148 & & IW \(=\) JJP＊（18 \\
\hline 149 & \(\pm 34\) &  \\
\hline 15 & & CfLL COUP \\
\hline 151 & 3319 & chivilnue \\
\hline 152 & c & LALL UONE \\
\hline 1 b 3 & & CALL STARTO \\
\hline 134 & & UC Jju4 JJ＝2，JPC \\
\hline 135 & & \(J\)＝Jrt－JJ \\
\hline 156 & & UC suty \(1(101,1 P)\) \\
\hline 157 & & \(1=1+\cdots-11\) \\
\hline 138 & & 1rJ＝IJーN0 \\
\hline 159 & &  \\
\hline \(10 .:\) & &  \\
\hline 101 & &  \\
\hline 102 & &  \\
\hline 103 & &  \\
\hline 104 & & If H．NE．1－ANU J．NE． 2 ；\(X X=X X+\mu \mathrm{P}\)（IMJM） \\
\hline 105 & & \(\operatorname{mar}(1) \mathrm{l})=4!1 \lambda \lambda\) \\
\hline 106 & & 1.15 \\
\hline 107 & 3うty & \(1 . M=1 M J N\) \\
\hline \(10 t\) & & CaLL LOUHO \\
\hline 109 & 3344 & CCN！ \\
\hline 17 r & 3410 & CrLC Start \\
\hline 171 & & UL J4ヶ4 J＝2，JR2 \\
\hline 172 & & LC 3404 I＝J，1FJ \\
\hline 173 & & \(x *\)＝hatifivithmilj） \\
\hline 174 & & Lト（1J）\(=\times \times\) 昛（1J） \\
\hline 175 & & vF（1J）\(=\) xx＊VL（）J \\
\hline 176 & 3404 & \(I_{0}=1 J . N G\) \\
\hline 117 & & CaLL LOOP \\
\hline 116 & 344y & LCivilinué \\
\hline \(1 / 4\) & & call unlie \\
\hline & C & －－－tlmpute uf vp \\
\hline 10 & & Call StakI \\
\hline \(\left\{\begin{array}{l}81 \\ 8.2\end{array}\right.\) & & uC jeyg J＝？，upJ LC J勺Y9 \(1=\)＝，lOAK \\
\hline 103 & & 1rJ \(=1 \mathrm{~J}+\) N0 \\
\hline 104 & & luju \(=1\) Jpain \\
\hline ； 55 & & \(\left.x^{1}=x(1)+5\right)\) \\
\hline 100 & & \(Y^{\circ}=Y(1 f J)\) \\
\hline 187 & & \％1 \(=\) R（tpj） \\
\hline loy & & い1＝以（IPJ） \\
\hline 109 & & LG）＝UG（（PJ） \\
\hline 191 & & \(V_{L \prime}=\) VLIPJ \\
\hline 141 & & VG1＝VGOFJ！ \\
\hline 142 & & \(\left.\left.x x^{\prime}=x()+J\right)^{\prime}\right)\) \\
\hline 143 & & \(\mathrm{y}^{2}=\mathrm{y}(1 \mathrm{ray})^{\prime}\) \\
\hline 144 & & he \(=\) H（1pJP） \\
\hline 145 & & LLC＝ILIPJP） \\
\hline 140 & &  \\
\hline \(1 \times 7\) & & \(V L C=V L\{I P J P\}\) \\
\hline 148 & & Vt：c \(=\) VG（（PJu） \\
\hline 144 & & \(x: \underline{O}=x(I J P)\) \\
\hline 2． & & \(y \underline{z}=Y(1 J P)\) \\
\hline 2.1 & & \(\mathrm{Hz}=\mathrm{R}(1 \mathrm{JP}\) ） \\
\hline ct2 & & CLJ＝ILC（）JP） \\
\hline 23 & & LGS \(=\)（K）（1）JP） \\
\hline 44 & & Vus＝Vc（ldP） \\
\hline
\end{tabular}
```

prasej	15c	
Prase 3	154	
Prase 3	154	
Pmase 3	15	
Prase 3	156	
Prase 3	157	
Prase 3	158	
Prase 3	159	
prase 3	100	
Prase 3	101	
Phase 3	$10{ }^{\circ}$	
Prase 3	103	
prasta	104	
Prast 3	106	
phase3	100	
prase 3	101	
prase 3	108	
phast 3	104	
Phast． 3	170	
Phast 3	171	
prase3	172	
prases	173	
Prase3	174	
prase 3	175	
prase3	176	
Prmse 3	177	
pmase 3	178	
Prase 3	174	
Prase 3	180	
Prase3	181	
Primse 3	186	
Pluse 3	163	
Prase3	184	
Prases	16	
Prast 3	160	
Phase 3	187	
Prase 3	180	
Prase3	189	
Phase3	190	
prase 3	191	
Prase 3	J42	
frase3	193	
rrase 3	144	
Prase3	145	
Prase 3	190	
phase 3		
Protse 3	190	
Prase 3	199	
Mrrse3	200	
Prinses	601	
prase3	$2 \\|$	
frase 3	203	
Prasej	C04	
prast 3	205	
proste3	206	
Pruse 3	201	
Prate 3	20b	
Prast 3	264	
Prase 3	210	
Prase 3	211	
prase 3	215	
Prases	213	
pmast 3	214	
prase 3	215	
prases	416	
Prase 3	217	
Prased	210	
Amsed	Cly	

 \(V G_{4}=V G(1 J)\)
 \(x \times=\) CTUI 0 ROL(IJ)

$L 1 J=t .1 s *(V L 1+V L 3+V(I P J)+V(1 J P))$
$U L \subset 4=i \cdot b+C U L \angle+U L 4+U(I P J P I+U(I J)$

HL $=+(340 \mathrm{ONH}(\operatorname{loj} \mathrm{JF})$

$+N 4=E 13 \times R N F I J j$
$x_{x}=0$-4. $\operatorname{*RvCL}(1,1 / H U L(1 J)$

$\mathrm{ALC}_{4}=\mathrm{An*SIGM(1),F241*} \mathrm{\times x@F24}$
(FALI3 $=1.0$ aLI 3
PALCL =1
Crati3 $=1 .-$ ALI3
MALCL $=1 .-A L 24$
$x \mathrm{X}=\mathrm{ULJ*CMALC4*ULI*UPALC4}$

$x x=$ LLA*CMALI $3+U L 2 * U P A L 13$

H(IJI $=$ UPSIJJ + +M4*
$x=V L 3 * C M A L<4+V L$ I $O H A L L^{2}$
V(IRJ) $=V P(1 P J)-P M(* x X$
F(IJP) $=V H(I J P I+\& M E x X$

トf((rJJ) $=$ VP(IfJP) - トMC*x
H(LJ) $=V H(I N)$ - トM4*x
$10=10 \mathrm{~J}$
KH: = IPJF $=U P(1 J P)=U P(I J H-N G I 8)=U P(1 J-N Q I O)=n$,
HIJU $=$ UP(IJP) $=L P(I$

-
It (J.NE*.JPD) 60 TO 304 L
UL 301 IJP = $J J T S$ IJPC, NG
vF (1JP) =?
all LOUP
30YY CCININUE゙
CALL LONE
3/G, CALL STAKI
C $3714 \mathrm{~J}=2 \cdot \mathrm{JP}$
C $17.9 \quad 1=1.1 \mathrm{P}$
U(IJ) $=U P(I J)$
GH(IJ) $=\operatorname{Rmp}^{\operatorname{Han}}(1 J)$
37 y
CALL LCOUP
3719 Ccivilinue
call onde
380
-- clmpute sie temp
CALL STARI
UC joy9 Ja2,JP
LSL $=(J-1)!!1$
C Jooy $1=1$!
$1 F J=1 J+A_{0}$

Prase 3 Prase 3 PMASEJ Prase 3 Prabe3 prase 3 PHASE

PRASE PrASE PraSE 3 PHASE 3 PHASES PHASE 3 PMASE3 PMASE3 | PHTSE |
| :--- |
| PriASE | PriASE 3 prase prase Phase 3 Pilase 3 Pluse 3 PMASEES Prase 3 Prase 3 Prabe

PliASE PMSE
PJOSE 3
prase
prase 3
PHASE
Phase 3
PRMSE 3
MMASE，
Prast＇
prase 3
PrHASE
Pmase
HAMSE
MASE
PHASE 3
Phase 3
PHIASE3
PlíaSE 3
phase 3
prase
Phase
phase
prase 3
Pronse 3
phase3
Prases
phase
phase 3
jhase 3
phase 3
phase
phase
prase 3
PMASE

－Jutle	1 H	13tw	1501															
＋R	－k	1.7	$116=$	113	113	110	121	123										
FSN	（1\％	13 EL	1 101															
FY	（ik	l tul	11	114＝	115	115	110	121	123									
＋13	$-\mathrm{R}$	21t＝	2＜1	2＜1	225	225												
＋20	－	219＝	24	2＜2	226	226												
gruvel	－ H	ECu	$\stackrel{4}{4}$	6^{4}	25													
GHIR	（1）	1JEG	1301															
6iP12	（1）	13 EV	1501															
1	－I	4 CO	＜300	380	114	106	110	111	114	115	115	113			121	121	121	123
		123	$1 ¢ 3$	1aluc	146	$157=$	101	102	163	164	17200	18200	25300	26900				
IBAR	－1	8 CO	şuo	1 ＋	14100	146	16200	20900										
IUTC	－1	1 cu	118＝															
II	－1	15eud	157													28	29＝	29
【」	－1	4 CU	¢4	${ }^{4} 4$	24	25	23	25	26	20	26		$2 ?$	27	28			$12 i$
		34	4	31	52	53	00	01	68	68	69	69	102	103	117	$1<1$	121 143 176	121
		121	121	121	122	122	123	$1<3$	124	12S＝	133	134	137	142	142		173	143 183
		140	146	14\％$=$	149	158	102	165	166＝	173	173	174	114	175	175	1702	176	183 142
		210	207	$\bar{c} .8$	249	210	211	212	213	216	217	223	$2<4$	224	230	230	242	242 275
		243 $=$	545	${ }^{4} 45$	247じ	248	256	2 ¢	2¢	259	260	260	201	2020	202	270		
		2%	$\stackrel{74}{ }$	213	278	275	$3 \times 2=$											
IJM	－1	4 Cu	$1<1$	$1<3$	123	$127=$	1c1	144	144	$147=$	147	159 67	101	367＝				
I ${ }^{\text {P／}}$	－1	4 CO	41	48	49	50	bo	54	66	66	67	67			222	23 1	$233=$	239
		143	$148=$	148	164	199	266	201	＜n2	263	204	245	214	215				
		234	$244=$	c4 ${ }^{4}$	245	25000	251	271	anl＝									
1 PPS	－1	tCu	？ $\mathrm{b}_{\text {cou }}$															
1 JṠC	－1	$206=$	$276=$	$\dot{¢} 7$	340													
1 MJ	－1	$34=$	1c1	1ca	123	134 $=$	150\％	103	166									
IMJM	－1	154＝	184	107														
1PJ	－1	${ }_{140}^{4}=$	44 107	43 180	44 149	54 14.	by	62 214	62 215	$\begin{array}{r} 63 \\ 220 \end{array}$	$\begin{array}{r} 63 \\ 232 \end{array}$	$\begin{aligned} & 104 \\ & 232 \end{aligned}$	$\begin{aligned} & 121 \\ & 238 \end{aligned}$	$\begin{aligned} & 123 \\ & 238 \end{aligned}$	$\begin{aligned} & 123 \\ & 243 \end{aligned}$	$270=$	$\begin{aligned} & 183= \\ & 302 \end{aligned}$	10
$1 P$ JP	－1	140 415	45	40	47	56	）	04	64	65	65	120	1042	172	193	174	145	196
1P		（4）	140	c10	217	221	235	235	441	241	244	271 $=$						
$1{ }_{1} 1$	－1	HCU	c 3u0	15000	16°	16 c	17200	25700	264									
$1 r 2$	－1	116	1															
$1 \mathrm{SCH}^{\text {che }}$	－1	－Cu	24700															
$15 \underline{2}$	－1	eco	34700															
J	－1	4 CO	ċl 0	$310 c$	195 208	105	114	14000	144	145	155＝	161	102	163	104	17100	16100	246
		245	E＇suud	colvo														
JUTC	－1	11 Cu	$119=$															
JJP1	－1	15400	135															
JPl	－1	$\bigcirc \mathrm{CU}$	3700	13	14000	145	16100	249	c6700									
JP2	－1	ricu	czuo	$1 b+0 c$	162	103	$1 / 100$	25600										
Jra	－1	116	150															
LAM	－r	1 Cu	14 KL ．															
LCM	－	$\because \vdash$	or	$7 F$														
L．JP2	－1	11 Cu	23 uv															
LOOP	－	3isu	l cosu	13．Su	1775	252su	203su	30450										
M	IH	13EU	14rı．	isul														
MP	（1）	1 SEG	14 kL	bul	$121=$	123	142	161	162	163	164							
MU	－	（1Cu	14 kL															
NOPU	－1	－Cu	802	ことく														
NOP． 1	－1	CCO	241	69	292												184	24700
ne	－1	25．00	204	49	$\begin{array}{r} 47 \\ 271 \end{array}$	41	$1<7$	146	146	147	148	149	158	159	116	183	184	24.00
Molb	－1	25.00 1100	20¢	245														
OMAL．3＇	－－	225＝	234	c 4														
OMALC4	－ H	$23=$	231	637														
OMCYL．	－k	110	＜0	78	79	80	$\theta 1$											
$0 P^{\prime} \bar{A}_{\text {L }} 13$	－R	＜27 $=$	234	＜4：														
OPALC4	－h	226＝	231	ご3														
OPOEN	（1）	¿CO	282	C03	292													
OPIMP．	（IR	2CO	241	Cy2														
P	（1）	13 tc	jbul															
PL	（1k	1 Jeg	1501															
OLOGIO	－	coisu	$24 \leq 0$															
USURI	118	285 s	coosl							194		298						
H	（1）	13 E	Ibu：	co：	44	47	50	53	147	194	201	298						

VL． 2	－k	S\％$=$	06	40	39	197＝	217	240										
VL24	－k	c） $1=$	＜14															
VL3	－	Sy $=$	67	$4 y$	100	$264=$	213	237										
VL．	－ $\mathrm{H}^{\text {r }}$	$01=$	09	$1 \cdot 0$	1il	211 $=$	21！	240										
Volc	－ H	（1） $3=$	113	113	121	123												
Vi．R	－	113	$114=$	113														
VOLT	－ H	$113=$	1 l	115														
vi	IIH	12E6	loul	1／b＝	238＝	238	23y＝	239	$241=$	241	24？$=$	242	2488	$251=$	<45			
vill	1\％	13Ew	！bul															
$v!2$	－ $\mathrm{H}^{\text {r }}$	¢E	$1 \cdot 6$															
$v<3$	－	$94=$	$1<$															
$\checkmark 94$	－${ }^{-}$	$11^{1}=$	112															
v41	－k	1：1s	fic															
$\boldsymbol{\lambda}$	（1）	13 EG	15U1	COE	26	28	42	45	48	53	185	192	149	206				
$X P A R$	（1）	13E6	loul															
$\times \mathrm{Pl}$	－ H	$7=$	10	112	136													
¢．¢2	－${ }^{-1}$	$71=$	74	（1）	112	114	114											
$x+3$	－ H	1\％$=$	－	114	13？													
$\mathrm{x}+4$	－${ }^{-1}$	$73=$	01	132	13？	136	136											
$x \wedge$	－H	$116=$	117	10．$=$	161 $=$	$16 \bar{C}=$	102	$103=$	163	$104=$	104	165	$173=$	174	175	213＝	218	219
		$274=$	245	200	231＝	232	233	234 $=$	235	236	237＝	238	239	$240=$	241			
$\times 1$	－	$4 \dot{c}=$	7	He	¢ 5	112	112	124	136	130	$18 \div=$	218						
$\times 12$	－ $\mathrm{H}^{\text {r }}$	HC＝	114															
$\times 2$	－k	4 ¢ $=$	71	HL	83	112	114	124	192＝	219								
X2」	－${ }^{\text {H}}$	832	J「															
$\times 3$	－	$40=$	14	¢	¢4	114	114	124	132	132	： $99=$	218						
． 34	－ H	84 $=$	1 l															
${ }^{14}$	－ $\mathrm{H}^{\text {r }}$	$51=$	13	84	85	124	132	136	crua	219								
$\times 4.1$	－k	－	$1: 8$															
Y	11%	$13+6$	（bul	＜78	？ 7	43	40	49	52	180	193	200	c．？					
YPAR	（1）	1JEG	1sul															
Ypl	－k	$74=$	11く	112	136	136												
Y	－k	7上＝	$11<$	112	112	112	114	114	114	114								
Y＇${ }^{\text {¢ }}$	－k	$76=$	114	114	132	$13 \overline{ }$												
YM＇4	－k	$77=$	132	13 c	132	132	130	136	136	130								
Yi	－k	$43=$	74	80	$\bullet 9$	112	112	112	112	124	136	136	130	136	$186=$	214		
Y14	－ K	Hy＝	142															
Y2	－ H	$4 \mathrm{t}=$	75	Ho	87	112	112	114	114	124	193＝	＜19						
Y21	－	$8 t=$	14.2															
Y3	－ $\mathrm{H}^{\text {r }}$	$4 y=$	70	87	68	114	114	114	114	124	13 ？	132	132	132	$200=$	218		
Y 32	＋	¢1＝	11.															
Y4	－k	5\％＝	77	ט	89	124	132	132	130	136	$207=$	219						
Y43	－	＊ ＝$^{\text {c }}$	1：${ }^{\text {c }}$															
2UE	－r	194	く4b	¢yo														
$2 \mathrm{E}^{-1}$	－	274＝	＜0b	CHY														
2E1	，	265	244															
2E2	－k	293s	294															
2E2L．	－	292＝	－43															
$2 \bar{R}$	－k	＜70＝	＜	col	285													
2KINV	－R	c）：$=$	204															
くkL	－k	$2 \mathrm{Hl}=$		¢̄力d	$2+3=$	283	242											
21	－	く7し＝	cot $=$	－00	25 C	295	290	247 $=$	298	300								
2 il	－	$29=$	［4］＝	こと）	252													

AAZ（1）（11GO）
SIGA（JCGDOJ，UTR，EMIO，GROVEL．IBAR，IJPS．
IPI，ISCFT， 1 SCF2，ISCC，ISC 3 ，ITV，JHAK，
JPI，JPĒ，NCYC，NOURF，NG，NAI，RELSIE，TAMB，
TEAPC／SUOJ，T，TIME，TUUT，TSTART，THY
FIPXL，FIPXF，FIPYK，FIAL，FIXR，FIYB，
$\begin{aligned} & \text { IYI. PXCONV, PXL, PXK, PYY, PYCONV, PYI, } \\ & \text { RIOAK, VV, XCCNV, XL; XR, YY, YCONV, YT }\end{aligned}$
$\begin{aligned} & \text { RIGAK, VV, XCCNV, XL, XR, YB, YC } \\ & \text { UTL, UICSAV, OTGZ, OTV, UIVSAV, }\end{aligned}$
OVLY, LUTC, $10 T V$, JUTC, JUTV, KOT
OTPOS. EPS, GNI, Wノ, GL, $1 \mathrm{MI}, \mathrm{CCLAMC}$,CYL
$\begin{aligned} & \text { IECR, IPZ, ITAM IJGOS, JNN, JP4, KXI, } \\ & \text { LJHE, ML, NF!, NGIO. NWI2, NUMIT, ON, }\end{aligned}$
OMANC, CMCYL: K\&ZRUN, KELYM, THIKD, VTEM
NRVWLS: RVALS(73), N NGOLS, ANGLES(35). TNEUT
JSWTCH1, JSWTCHZ, JSWICAS
SAASC（T），MA，KNPDRCSUDEIVTXI．

ALLLKOM
（AASC（D）PE，EIIL，CENTY）＇（AASC（9），KVCLI，
（AASCC（LU），（1．RN．VP），（AASC（11），P，PL．EP，UPI，
（AASC（1）Ji．VTIL，
（AASC（14），RCLIGETALCFFOUTLC），（AASC（15），SIE）， （AASC（ (C) ）UE CSM，SI）OPLC）．

（AASC（IE），GRILOVGOFSN）
LA11，LARO， N, HP ，MIP MUOZ
$\mathrm{X}(1), ~ X P A K(1), ~ R(1), ~ Y P A R(1), ~ Y(1), ~ U(1), ~$
V（l），KO（1），
V（1），KO（1），MP（1），KMP（1），RCSGII），CENTX（1）， E（l），EIIL（I），CENTY（1），KVOLIJ，M（1），RN（J）， VP（1），P（1），PL（1），EP（1），UP（1），ITIL（1），

SIE（l），UELSM（1），SIGPLC（1），GKIK（1），UG（1） RLEUEN（I），GKIL（I），VG（l），FSN（1） RMMI时EZUNE CONSTANTS＊IOM VTA

OH fCK ，lPEI2．41
 EGVKEAL
EUVKEAL EUVREAL EUVREAL EgVREAL EqVREAL EQVKEAL EGVREAL EGUREAL EUVKEAL EuvaEAL UUAEEA
UI MEN
UINEN
JIAEN
OIMEN
OIMEN
UIMEN
diritn
REONE RELUNE deLUNE helone

צ．）		$\vdash 6(1)=-5 t 3$	RELONE	106
10	11.50		Rt $<0 N E$	101
1.1		し¢（1J）$=16 \times$	Lit Cunt	Jut
1／2		$v \in(1 J)=-+C 3$	HECONE	108
1，3	1， 7	LF（I．NE．J．OR．J．NE．JP2） 60101050	RECONE	110
1.4		vellul $=$ Cr2	reclunt	111
1：3	1 1 bo	It（1．NF．1H1：UH．J．NE．JHC）© TO JC59	RECONE	112
lio		（）：（1J）$=$＋Cx	kEくUNE	113
1.7		$v \in(1 J)=r c t 2$	retcont	114
lis	1；${ }^{\text {¢ }}$	corilinut	Re＜une	115
1ig			Recone	110
（1）			どtくunt	117
111			recont	118
112	1 us	cciclinuf．	どECUIVE	119
113		call loup	recune	120
114	170	clividnue	recunt	121
115		call uone	retzune	122
	6		melline	121
110	1く，	CuLL StART	recunt	124
117		U 16EY J＝？，JḞ	melune	120
11 H			MECUNE	120
119			hecone	127
ic．		$x(1 J)=x(I J)+U 0$（1J）＊UT	hECUNE	128
$1<1$		1t tJ．NF． 21 ¢U TU 127．	Relune	129
$1<2$		1F．（Y（TJ）＊REくYC＊VG（IJ）＊OT．LE．D．0）VG（IJ）$=(-Y(1 J)-$ REZYO）＊KUT	helune	130
$1<3$	127：	CLivilitu－	Hecune	131
124		Y（lJ）$=$ Y（IJ）＊VG（IJ）＊UT	RELUNE	132
$1<5$			decone	133
$1<0$	187\％	$1 \mathrm{~L}=1 \mathrm{~J}$ NGL	fecune	134
$1<7$		chlil loup	RELUNE	135
$1<8$	1＜b？	CCII！${ }^{\text {cide }}$	tecount	136
$1<9$	6	call lone	heculve RE $\angle O N E$	137 130
13.		LfLL START	RE CONE	נ̇4
131			LELCONE	140
13			RECUNE	141
133		（1） $13 ¢ 9 \mathrm{~J}=2, \mathrm{j} \boldsymbol{1}$	RECONE	142
134		LC laty $\mathrm{J}=1$ ，IGAK	recune	143
135		$1 \mu \mathrm{~J}=1 \mathrm{~L}$	RELONE	144
136		$1+J P=1,1 P+1,0$	retcunt	143
137			RECONE	140
13			RECONE	147
134			ktくune	140
14.			MEくUNE	149
141		$\mathrm{CLH}=1 \mathrm{JM}$－NL	LEECUNE	150
142		$1 . \%$ IJJP NG	KとCOnE	151
143	130y	$I_{\sim}=(P)$	Hefione	155
14.		Call lour	ht $\angle 0 N E$	153
145	1348	CCNIInce	helone	154
140	c	call uune	HE FONE LE CONE	136
147		hatiulan	delcune	157
14d		EnU	Recunt	150

S！NGLY WEFEKENCEU VAKIABLES

1200	－	1160	uiv	－K	10 CO	IOTV	－1	1000	juc	－1	1000
AA1	（1）	SLC	ulvsar	－R	1－CO	IECP	－1	1100	jotv	－1	$1 . \mathrm{Co}$
AAL	（1\％	${ }_{\text {OLC }}$	uvur	－R	1：C0	1 JPS	－1	9C0	JNM	－1	11 CO
ANL	－k	リじ	tint	－	HCO	${ }_{1 P \times 1}$	－1	960	JFH_{4}	－1	11 co
Angles	（1）	1くしい	Ers	－	110	1 PXR	－1	9 CO	JSWTCHI	－1	13 CO
ASW	－ $\mathrm{H}^{\text {ch}}$	）cu	LGLIVAL	－	14 F	dPyo	－1	9 Cu	JSwTCH3	－1	13 CO
Al．	－	リル	clat	（1R	2 CC	IPYT	－1	9 CO	Kス）	－1	1 CO
Astac	－	）co	rirxc	－K	4 CC	1 P2	－1	118．0	Lamo	－R	15 RJ ．
ÁOM	－H	1160	r，1－Ath	$-\mathrm{H}$	9 CC	［SCF］	－1	ACO	LJH2	－1	1100
B！ol	（1m	2（11	＋1ryb	－	¢CC	1SCF2	－1	RCO	MUU2	－	15^{KL}
81	\rightarrow H	1／しJ	F｜xL	－r．	SCC	$1 \mathrm{SC}_{2}$	－1	ACO	Natie	111	9 CO
cucamu	－${ }^{\text {r }}$	いしJ	＋1815	－	4 CC	ISC？	－1	9 co	Nandels	－I	12 CO
Oimens 1	－	10 F	tiro	－	9 CO	ITAB	（1）	1100	NCYC	－1	RC0
טו6	－	1：60	P urnal	－	17F	JV	－1	${ }^{9} \mathrm{CO}$	noump	－1	${ }_{3} \mathrm{CO}$

not	－1
noio	－1
nali	－1
nrvals	1
numit	－1
CH	－
Cmaluc	－
cPCEIN	（1）
CPTAP	（1）
CRalige	
Fink	－
PRINT	－
PIAG	11 k
PXCONV	－

PYt	－R	9 Cu
REAL	－	15F
KEU	－	8 CN
RETURN	－	147 F
KEZUNE	－	150
RIbak	－R	9 CO
HLCI	－	7 CN
RVALS	IJR	12 co
SENSE	－	13 CN
SIGA	1］R	7LC
SILVER	－	9 CN
SPTBL	（1）	200
＇SIATE	－	2 CN
\dagger	－R	8 CU

YK
YCONV
YELLOW YELLOW
YLCl


```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline jilcsav & －k & 1：CU & トr＝4 & （1） H & ¿CO & 1）\({ }_{\text {L }}\) & －1 & 9 CO & N＋kw & －1 & 2 CO & PXL & －k & 9 yc & 1 Ams & －R & \(\mathrm{HCO}^{\text {a }}\) & YLCZ & － & 6CN \\
\hline טiuz & －R & 1． Cu & Oh & －\({ }^{\text {c }}\) & 11 Co & ixF & －1 & 9 CO & nuto & －1 & 2 CO & PXR & － & 4 Cu & lemp & 11R & 8CC & YSCl & & \\
\hline ulpus & －- H & 1160 & gruvel & －k & \＆C0 & IYB & －1 & 960 & nut \({ }^{\text {d }}\) & －1 & ？ 60 & PY8 & －-1 & 4 CO & \(\operatorname{lngrd}\) & － & 110 & \(Y\) Y & － H & \\
\hline טוr & － H & － 6 & Iいし & －I & 1．CO & IYt & －1 & 9 CO & N＋1 & －1 & 110 & PYCUriv & － & \(4 \bar{C} 0\) & Thy & －R & 8CU & & & \\
\hline
\end{tabular}
```



```
    1640- 3.UNO 4/*
    1150- 2y0U 43%
    115% = 54 bo%
    l052= b0 0% 04 yc*
    l053-
```



```
    los7= jur lli3*
    l058= 1.13 108 105 1.80
    jund - bl00 1120
    1070= 5.00 114*
    127, \: 5.00 12%*
    1<79 - 11%UU 1<0%
    l<89 - 11100 1280
    j399- 1340U 143*
```



```
ABS - j3SU 14SU
AMAX1 - 33SU 34SU JbSU 子a,SU 37SIJ 30SU
AHEAF GK
BETALC UR JUEW IOUI
CENTX JRR IUEW IOUI
CENTY JHK
CYL
OELSM l|K llCO l<b
llll
llllllll
EPN
lllllllllll
Flll
FSN 
GML 
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 6 CR 12 & \(1 \%\)
\(-k\) & \[
14 \mathrm{EW}
\]
IICu & 136 & & & & & & & & & & & & & & & \\
\hline 1 & －1 & 4 Cu & 3 ט0 & 35 & 38 & 5100 & 54 & 54 & 83 & 86 & 89 & 98 & lus & 103 & 105 & 11800 & 13400 & 139 \\
\hline I \(\forall A_{R}\) & －1 & \(\triangle C U\) & ＜4 & 1340 C & 139 & & & & & & & & & & & & & \\
\hline 1J & －1 & 4 CO & \(3)\) & 31 & 34 & 35 & 30 & 36 & 37 & 37 & 3 R & 30 & \(3 y=\) & 52 & 33 & 55 & 56 & 58 \\
\hline & & So & bs & 59 & 59 & 59 & 64 & 09 & 80 & 80 & 81 & 81 & & 83 & & & & \\
\hline & & 96 & 47 & 94 & 16 & 102 & 104 & 106 & \(3 \mathrm{c}^{7}{ }^{7}\) & 1092 & 119 & 119 & \(1<0\) & 120 & \(1<0\) & 126 & 122 & 2 \\
\hline & & \(12 \overline{4}\) & 124 & \(10^{4}\) & 124 & 125 & \(1<3\) & \(120=\) & 126 & 135 & 137 & 138 & 143＝ & & & & & \\
\hline IJM & －1 & 4 CO & 01 & 00 & e？ & 96 & 111＝ & 111 & 138 & \(141=\) & 141 & & & & & & & \\
\hline 1 JP & －1 & 4 CO & 32 & 10 & 37 & S 7 & 63 & O8 & \(11 \times\) & 110 & 136 & 137 & 145 & 140 & \(142=\) & 14. & & \\
\hline IMESM & －1 & \(24=\) & 35 & & & & & & & & & & & & & & & \\
\hline IMJ & －1 & 53＝ & \(50=\) & 0. & 65 & 83 & 41 & & & & & & & & & & & \\
\hline 1M！ & －1 & 1） 0 & 3 טo & 38 & & & & & & & & & & & & & & \\
\hline
\end{tabular}
```

IPr	－1	$31=$	36	$3{ }^{3}$	$411=$	52＝	b $3=$	02	67	109	135＝	137	138	139	139	14.3		
tejr	－1	$3 \mathrm{c}=$	4	3i＝	1365	137	134	140								14.		
1pl	－1	ucu	bluo	154	49	100	1115	11800										
J	－1	$12 i^{4 C u}$	2yu0	13184818	34	36	3！	$\checkmark 600$	54	54	82	42	Y）	98	100	103	105	11700
JBAR	－1	121	jusul z40u	138 37	140													
JhMe＇Sh	-1	\％	co	31														
JP1	－1	HCU	13506	14：														
JP2	－1	${ }^{8} \mathrm{CU}$	＜	<0	50	54	45	103	105	11700								
JSWTLI2	2－1	13 cu	21															
JIMESH	－1	cte	34															
LiAM	－k	licu	1 skl															
Lim	－	$\leq \mathrm{r}$	or	72														
Lour	－	4 Ca	Hjsu	icisu	144 SU													
m	11 k	14 EJ	1bol	1001														
MP	（1）	14 EG	1 but	joul														
MU	－${ }^{\text {r }}$	licu	lbhe															
${ }_{\text {NMMCYL }}$	-1 -2	OCO	131	32	5？	53	So	56	57	110	111	126	13	136	141	142		
${ }_{P}^{\text {OMCGML}}$	－1／	1150	125															
PL	Uk	14 EL	1001															
k	（1）．	14EC	1001	1cb＝														
RA！	－k	$7=$	74	14	16	76												
RA2	－h	$71=$	74.	74	76	76												
RA3	－-1	$71=$	74	74	76	70												
RA4	－k	$73=$	74	74	76	76												
Riso	it	14t6	1001															
401	－	1 co	10	36	37	38	120											
heLhun	－R	1100	130	139	140													
REESIE	－	8Cu	30	37	38	131												
RELYU	－h	1100	122	$1<2$														
－	（1）	14E6	loul															
RMP	（1）	14EG	Ioul															
ru	j1\％	14E6	1601															
HOL	（1）	$14 E C$	1001	$130=$	139＝	$140=$												
rvol	（1）	14E6	jout															
HZEUEN	（1）	14EL	1001															
SAE	11R	$14 E G$	1001	30	37	38												
SLGFLC	いK	14 EW	leus															
Stanl	－	20su	4ysu	11050	13.5 U													
Sw！ch	－k	$2=$	$<1=$	bo														
u	（1）	14 EW	joul	St														
U1）	（1k	14 EW	1001	$3 \mathrm{~s}=$	800	80	$02=$	82	$87=$	$90=$	$96=$	90	1112	$106=$	120			
ULMMLC	Un	1 HEG	10 l	36	58													
UP	1 h	14EG	joul															
UT	－r	$<{ }^{\circ} \mathrm{C}=$	jos	38	44 Pr	4SWR												
U1IL	110	14EV	joul															
v^{-}	（1）	14 E	1001	by														
v	（1）	$\begin{aligned} & 14 \mathrm{EU} \\ & 12 \mathrm{c} \end{aligned}$	$\begin{aligned} & 1001 \\ & 122= \end{aligned}$	$\underset{1<4}{b y}$	$81=$	H1	$0 \square_{0}$	831	$91=$	9）	$93=$	975	49\％	$102=$	$104=$	107：	119x	119
VL	（1k	14EN	1001	J	34	59												
vp	11\％	14 EG	1001															
$v V^{8}$	－H	くな $=$	$30=$	30	44 PR	$45 W \mathrm{R}$												
VEEM	$-\mathrm{H}$	1100	119															
\checkmark Vil	11\％	14 EW	1001															
\checkmark J！	－k	\bigcirc c $=$	$31=$	37		45 WR												
x	11k	14EW	1001	38	38	60	01	02	63	64	$120=$	120	125					
$\times \mathrm{x}$ AR	11\％	14E0	1001								120							
x	－k	13）$=$	1 l															
${ }^{1} \hat{1}$	－k	$0 \cdot=$	7	13	74	7%	78											
x ${ }^{2}$	－${ }^{\text {r }}$	01%	7	71	74	74	78											
${ }^{3}$	－r	－$C=$	71	12	74	74	78											
${ }^{4}$	－h	$0.3=$	76	71	74	74	78											
x^{5}	－${ }^{-1}$	$04=$	7.	1.	71	71	72	72	73	73	74	74	14	74	78			
Y 1	（1）	$\begin{array}{ll} 11066 \\ 131 \end{array}$	$\begin{aligned} & 1001 \\ & 13 \% \end{aligned}$	$\begin{array}{r} 30 \\ \hline 13 \end{array}$	36 138	37 139	31 134	65 140	146	67	68	69	$1<2$	122	124＝	124	137	137
YPAR 1	11 F	14 EG	1001															

YY	- ${ }^{\text {r }}$	13č $=$	130	139	14\%										
Y^{\prime}	-r	Cb=	7	73	76	76	79								
Y2	-	065	7	71	16	76	14								
Y 3	-i	$67=$	7)	75	76	76	79								
Y^{4}	-h	0t=	72	13	76	76	14	$137=$	138	139	147				
Yb	-h	O42	7	7 !-	71	71	72	72	73	73	76	76	10	7ϵ	79

1	SLOFOLTine paktmov		PARTM.UV
$?$	ccmmon /staild	NOK1, (1OPO, NFRD, UPTMP (30), OPDEN(10),	ALLKCM
	1 -	Freldilou), SPTEL $13: 01$, PTAB(300), ETAE (300).	ALLKCM
	\bar{c}	8 90L(360)	ALLLKCM
2	CCamon /ysci/	Aliscrimisi	ALLKCM
4	chimen /pink/	I. IJ. IJN, IJP. J	ALLKCM
5	CCM/YLC)	AA) 13 l 1100)	ALLKKCM
c	LCM /rLLC,	AACliclodos	ALLKCM
7	LCM /rLG1/	SIGA(SLOUD)	ALLKKGM
H4	CCMmion /RED/	NA(HL) llc), OT, UTR, EMID, GRUVEL, IRAR, 1 JPS,	ALLKCM
	1	IPI, iSCFI, ISCF2, ISC2, 1SC3, ITV, Jeak,	ALLKOM
	c	JPI, JPC, NCrC, nUUMP, NG. NQI, heZsie, lame,	ALLKCM
	3	TEMP(7לJU), 1, TIME, TOUT, TSTART, THY	ALLKKOM
	cCmmun silvek,		SILVEH
4	,	IFXL' IPXR, IPYR, IPYT' 1XL, IXK, TYR,	SILVER
	$\frac{1}{3}$	IYT, FXCONV, PXL, PXK, PY甘, PYCCNV. PYI.	Ṡilver
		RIblll, VV, XCONV, XL, XP, YH, YCONV, YT	Stilver
10	ccmmon mellua/	DTG, UICSAV, DTOZ, UTV, UTVSAV,	YELLOW
	ccamun /ornanut/	Gruy, ITIC, ICIV, JHTC, JLTV, HCT	YELCOw
11			ORANGE
		UTFIS, EPS, GNJ, GK, GLi, IMI,	Orange
	c		ORANGE
	3		Orange
	4	ORANC, CMCYL, KELKON, KELYC, IHIKU, VTEM	Orange
12	CCMmun /wh?TE/		ORANGE
13	Eguivalence	(AASC(1), X, APAR), IAASC (2), R,YPAR), (AASC (3), Y),	Eurreal
	buTVal	(AASC(4), () , (AASC(S),V), (AASC(O), FO).	Eurretal
	$\stackrel{\square}{4}$	(AASC (1).UP, KMP, HCSSICENIX).	Euvretal
			Euvreal
	4		Eurreal
	5	(Ansc(l2).U)IL.ULICUSEMUMLC()	Eurretal
	0	(AASC()3),VTIL,VL,UNYHLC).	Euvital
	7	(AESC(14), ROL PlETALCIFUU(LC), (AASC(1S), SIE).	Euratil
	0		Eurrtal
	9	(AASC (17),GRIF-UGoh EEULN),	Euvreal
	1		Euvreal
1415	$I_{\text {KEAL }}$	LAM, LAND, Na MP, MUP MUOZ	Euvteal
	UIMENSION	X 11 , XPAR(1), R(1), Yparill, Y(1), U(I),	O1GEN
	c ${ }^{\text {c }}$	V(1), KO(l), NP(l). RMP(1), HCSO(1), CENTX()),	Uimen
	3	E(1), ETILIj) CENIY(1), GVOL(y), M(1), RN(1).	UJPMEN
	.	Vf(), P(), flll, EP(1), UP(1) HTILIJ,	UIMEN
	5	ULil) Cuili, EnOMLC(1), Viflill, VL(J).	Ulinen
	0		Ulmein
	7		UIIEN
	t		Uimen
10	Cuid flkmat		palitrue
	C		pithinut
			jakinur
17	NFPI $=$ JOLO $=0$		Pahinut
10	IECPA $=1 E C P$		parinut
19	L. $\mathrm{H}=1.61$		parinoz
<	PYHE).0te2¢		Parimuy

NFP $=$ NPPT
XIE $=X P A R(K P)$
It（XTE．LT．O，）vo TO 150

$16 \mathrm{EL}=1 \mathrm{TAB}(\mathrm{NPPT})$
$J=1$ CEL／IPl－i
$1=\mid C E L-(J-1)$ If 1

JIKM $=$
If（J．EW．JOLU）GO TO 110
IECEMUー
JCLU $=1$
CALL ECK
（AASC（ISC2），ItC．NGI2•NE）
it（nñ．G1．1（6．）GC TO 4ye
$i_{i}=(T-1)$ AnG $15 C$ ©
$\operatorname{lFJ}=1 J \cdot N 0$
I＿P＝IJ•NG1

$x_{1}=\hat{y}^{\prime}\left(P_{\mu}\right)$
$x_{2}=y^{\prime}\left(P_{j}\right)$
$Y_{1}=Y_{1}(P)$
$x_{i}=x_{i}(I P J P)$
$x_{3}=x(1 J p)$
$y_{z}=Y(1 J J)$
$x_{1}=x(1 J)$
$y_{4}=y_{t}(1 J)$
x $\mathrm{CH}=\mathrm{xTt}$
YF＝ YTE
$x+x y=x+-x 3$
$Y \vdash Y 3=Y$ Y－$Y 3$
$y)$
$y=y)-r 3$
$x(1)=x 1-x 3$

us＝Yisexpxi－xi34yrys
it（Ul3．GE．0．6）GC TC 115

If（UCY．LT．0．1）GC TU 11
$0) \in(y p-y) i(x \mathcal{L}-\dot{X}))-(X P-X 1) *(Y 2-Y))$
it（UI戸．L．．．．．1）GC TO 110
IヒK＝1
$01 \mathrm{kl}=(. /$（Y2J＊x）3－x23＊ylu
（17）ot 10125
117 It $\left(J . E Q \cdot\right.$ Pl $^{(1)} 60$ TO 490 $u=J+1$
GC 101
110 It $11 . E W . J A A K I$ OD TO 490 $1=1+1$
$6 C$
$x_{4}=x_{4}=x_{3}$
$\begin{array}{lll}14 & x 4 & J Z \\ y & x_{4}-X 3\end{array}$
$0: 4=X 430 Y P Y 3-Y 43 \times X+x 3$

U） $\left.\left.4=(Y P-Y 4) *(X)-X_{4}\right)-(Y)-Y 4\right)+\left(X P-X_{4}\right)$

GC 10125
 $1=1-1$
a
le）It（J．Eb．？）G 10 49： $J=J-1$
$G C$
12b ú＝し（lp）
$v i=v(\mid P J)$
pakimul
arimor
pakinov
PAKTMOV
partimov
pahtiguy
pakimuv
partivu
Pastmov
partiog
paktrug
paktmov
pakivor
pakinor
Pakinov
PatiNóor
pahinog
parinuz
pakimog
pakinov
pahinov
PAHINOV
paktrov pahinov Parimov pakinoz partrag
partimag
PAKTMOV
parimog
pakinug
pahtioug
partiol
partrov
parimov
pakimóv
paktimul
parimó
Pahing
Paminur
parinuog
paitinog partmo
pacinua
parinor
parimug
pakinov
pahimug
pakimon
Pakimu
pakiNOV
PAKIMOV
Pakimo
Paktmon
pakino
PaKTKUV
Pakinug
parinug
PAKTMOV
Paktmov
Paktmo
pabtruy
partmon
Paktivag
户口AKtmug
paktivan
partmon
PAKTMOV
Pakimov

RO	11%	(JEU	1501				
ROL.	(1)	1JEG	1501				
RVOL	(1)	13 EG	1bul				
RZEOEN	(ik	1 JEG	lbul				
S ${ }^{\text {det }}$	(1)	1JEG	1501				
S'Gple	11 R	1JEU	lbul				
$u^{\text {- }}$	(1)	13E6	1501	48	90	92	44
us	(1)	13E6	1 bul				
UK	-R	$97=$	1L,	1.3			
UL	UH	138 L	1501				
UMOMLC	(1)	13EU	1501				
UP	(1)	13 E	1501				
UTIL	Hk	13 EQ	1 bul				
U1	-k	¢ $=$	41	160			
UK	-R	$9:=$	10				
U3	-k	4く=	97	100			
U4	-k	$94=$	97				
,	(1)	1 13EW	1501	89	¢)	93	95
vo	1\%	13 EQ	1501				
vK	-k	Yos	1 $13=$	4			
VL	(1R	ISEU	1501				
$v{ }^{\text {P }}$	(1)	1 JEG	1501				
VIIL	(1)	13 EW	1501				
$v_{0}^{\text {g }}$	-r	$84=$	48	101			
$v 2$	- $\mathrm{c}^{\text {c }}$	51=	111				
$v 3$	- H	$93=$	Y0	11			
$v 4$	- H	$95=$	40				
χ	(1)	1 1EG	1501	43	45	47	49
x	- H	5) $=$	53	63	78		
XPAK	(1R	13 EL	1301	25	$1033=$	107	$118=$
xpx ${ }^{\text {a }}$	-k	5J=	¢7	01	76		
$\times \dagger \underline{ }$	- ${ }^{\text {r }}$	$25=$	60	51	1:3		
$\times 1{ }^{-}$	- H	43 C	50	61	63	78	
$\times 13$	- H	$5 \mathrm{t}=$	57	60	80		
$\times 2$	-R	$45=$	0	03			
$x{ }^{2} 3$	- $\mathrm{H}^{\text {r }}$	$0=$	01	00			
$\times 3$	- ${ }^{\text {R }}$	$47=$	b	50	60	74	
$\times 4$	- ${ }^{\text {r }}$	$49=$	14	18	78		
$\times 43$	- ${ }^{\text {r }}$	$14=$	76	θ b			
Y	(1)	13te	1501	44	46	48	30
YP	-	5%	b4		78		
YHAR	(1)	1 1EW	bus	47	$174=$	105	1110
Yrys	-r	$54=$	b7	01	76		
YTE	-r	$27=$	b2	4			
Y	-k	$44=$	55	03	63	78	
Y13	-k	$55=$	57	00	40		
Y2	-k	$4 \mathrm{C}=$	by	03			
Y23	-	ゝ¢	01	00			
$Y 3$	- ${ }^{\text {H}}$	$40=$	34	b	59	75	
$Y 4$	- H	$5 \cdot$	15	78	78		
Y43	-r	$75=$	70	U			

CCMMON／YSCD／ CCMMON／PINK／	
LCH／YL	し1／
LCM／YL（2）	
LCFM／hLl）	
ccmmon	／REO／
1	
2	
3	
CCAMUN	／GREEN／

AASC（3454）

I．iJ．jJN：IJP，J
$A A)(131090)$
$A A^{2}(1311,00)$
S16L130300）
NAME（IL），OT，OTR，EMIO，GROVEL，IBAR，IJPS，
IP），ISCFI，ISCF2，ISC2，ISC3，ITV，JBAF， JPI，JH？，NCYC，NUUMP，NQ，NGI，KELSIE，TAMB， TEl：it＇（1SU＇今，T，TIME．TOUT，TSTART，THY GLHHA，NHP，NHUF，WSP，NFCMAX，JCEN，TEMII
UETIS（1／LJ），ELLOCN（AOOO1，ECEN，EMC
FSLAII（SCC），10，IESCAF，NCOL．
MASC（1），x，xFARI SIENIN，＇I，T2
（AASC（4）：U），（AASC（5），V），（AASC（0），RO）：
（AASC（！），RP，RJPDORCSW，CEN（X）．
（AASC（B），EDEIIL，CENTY），IAASC（9），HVOLI，

（AASC（121，UTILD）LLCLUEMUMLCI，
AASC（13），VTIL．VL UMUMLC），

（AASC（（ \because ），，I）ELSN，SI UPLCC），

（1）x ，
（i），KCAK（I），H（l），YPAR（1），Y（1），U（J），
（1），KC（l），FPP（l），RMP（1），RCSO（1），CEMTX（）I， （i），ETAL，CENTY（1），RVOL（I），M（l），RN（I）， （1），UP（l）UTIL（1）． （II），EMOMLC（1），villill，VLill， JMUMLC（1），HULII），hETALC（1），+ OUTLC（1）， SIE（l），UELSM（1），SGGPLC（1），GKIR（l），UG（I）， RLELENIII，GHICHI，VG（JI，FSN（J）
Lext DBLINI
C．if rammat

2！$C<$ FCKMAI

1
2
2fi3 fCRMAI
（1HI，＊PRUHLEM CYCLE＊IIO，0X，＊RAON IRANSPOKT＊／／

（1HI＊INIIIAL ENEROIES＊／Oh RADN ，IPEIZ．4，
OX．OH INI ，IPEI2．4．EXIOH KIN ，DPEI2．4，

OX，GH UNIN ，IPEIZ．4，6X，OH TMIN •IPEI2，4
NEEP＝1 INITIALILE VARIABLES
L：TULUEH＝UTR
1̈̈＝jMEかUIR
UULU＝U1R
EINTKENIH＝UKIUT $=0.0$
S（EM）A＝1．（E
XVOL＝411．642E＋1 د＂OTOLU
ACHI＝J．1E＊CS UTULC＊ALPHA
6

c
CALL STARI
UC by J＝2•JP）
i．$S C=(J-1)=1+$
IF J＝1
If
1F JP
I
$+S C=1 J S C \cdot 1$

－＝TENOMUSC

GLUG＝GLUGICIUP）
1f（ULOG．LT．UPUEN\｛1］）ULOG＝OPOENI］）
IF（ULNU．GT．URIENINCPUI）ULCG＝OPUEN（NOPUS）O，NOPT，NOPU，NOPT
OETALC I IJI＝1O SH＝UOLIN1 10
SIURLC（JJ）＝Sp
＋SCA）（ JSC）＝1．0／（1．0＊XCAT＊BP＊SP）
$r \leq(+11 J)=r S C A 1(1 J S C)$
$1 \mathrm{r}_{+}=1$ ト＊ 4
HKVUL＝6．？ $43184 /$ RVCL $11 J)$
H EEUEN（IJ）＝SF＊TPG＊XVOL＊HKVOL＊FSCATIIJSC
$x x=L$ ，VE $+15 * O P \& K I C V C L$
xSIE＝XX世SIFIIJ
It T1P\＆LT．TEIIITI GO TO S4
IF JXUTKOLTUIRI OTI

IF（XSIE，GT：SIEMIN）GO TO 54
SILMAR＝xSIE
IUNN $\mathrm{Cl}=1 \mathrm{SS}$
TNINETP
UNINEUP
－3 EINIEEINT＊XSIE

V（1JJ＊＊ $2+V(1 f J) * * 2 * V(I f J P) * * 2+V(1 J P) * * 2)$
ULTUTELKTCT＊137．214E＊，B＊IN4＊RRVOL
$1 \cdot=1 P J$
brajpjp
chindas
CALL LOUP
by CCIIIINUE
UTKニUTR＊UTOLUER＊O． 15
EALLXEINT•EKIN

MCHT	47
mCht	46
MCK	45
MCH T	bu
MCKT	51
MCHT	bc
MCHT	53
MCKT	54
MCH T	b
MCH	50
MCKT	57
MCKT	S8
MCHT	54
Mcht	60
MCHI	01
mCKT	62
mCKT	03
MCht	04
mCrt	65
MCKT	06
MCRT	67
mert	－4
mCKT	69
mCNT	70
MCKT	71
MCRT	72
MCK 1	73
mCNT	74
MCK ${ }^{\text {ch }}$	75
mCat	76
MCKT	77
MCKT	78
MCKT	74
MCht	8
MCHI	81
MCHI	82
MCHT	03
MCKT	84
MCKI	85
ment	86
MCNT	87
mCKT	88
mCKT	89
MCKT	90
MCet	91
MCKT	92
мсхт	43
MCK ${ }^{\text {c }}$	44
mCKT	9
mact	90
mCkt	47
mCH	98
MCNI	49
mCKT	1 l 0
mсет	101
mCht	102
ment	103
мС¢	104
мСе	105
мС¢ ${ }^{\text {¢ }}$	100
MCKT	107
мскт	108
MCH	109
мскт	110
MLEm	111
mert	112
HCOI	113
MCrt	114

SINGLY REF EKENCEU			vakiances		2 CO	1 SCF 2	－1	ACO	LAvNDER	－	10 CN	nCO	－1	1000	PINK	BR	$\begin{aligned} & 4 \mathrm{CN} \\ & 2 \mathrm{CO} \end{aligned}$	START STATE	－ $24 \mathrm{SI} \mathrm{\prime}$															
			Elas	JH																														
A 42	$1 / \mathrm{H}$	occi	1 Ktb	1！k	？${ }^{\text {co }}$	1 SC2	－1	8 CO	LEXT	－	14 F		－1		Mexalo	6R		State	－R HCN															
AMINI	－	gssu	gruvel．	－R	¢CO	15 Cl	－1	$9{ }^{9} 0$	LUOP	－	7350		－－1	8CO	Gexplo		50	tame	－R BCL															
OJmens	$1-$	$13+$	OREEA	－	9 CN	1 ！V	－1	9 cos	mCHT	－	150		SH－1	1 lco	KEAL		12 F		－R ${ }_{\text {－R }}$															
DONE	－	75SU	（U）	－1	1－20	JUAR	－1	aco	MU	－R	12RL	\wedge A	－1	2 C	REU		${ }_{96 \mathrm{~F}}$	TStART																
EhCOCK	（1H	$1 \cdot \mathrm{Cu}$	Itscar	－1	JiCO	JCEM	－1	9 CO	muo？	－R	12 LL	NMC	E－1	12C0	RETUR	－R	96		－R $\quad 10 \mathrm{CN}$															
ECEN	－${ }^{\text {ch }}$	1：c0	1 um	－1	4 CO	${ }^{\text {Jfa }}$	－1	$4 \mathrm{CO}^{0}$	NA ${ }^{\text {che }}$	111	8 CO	AP	AX -1	9C0	RE2SIE			YLCD	${ }^{5} \mathrm{CN}$															
EmL	－R	$1 \cdot \mathrm{CU}$	lurs	－1	HCO	LAN	－-1	1201	Nor	－1	$9 C 0$ 960	へ（	－i	y 0	$\begin{aligned} & R_{L} C_{1} \\ & S_{1} G 2 \end{aligned}$	JR	7LC		${ }_{3}^{6 \mathrm{CN}}$															
EloIVA	AL－	$11+$	1s（t）	－1	$\square \mathrm{CO}$	land	－R	$1 ? 114$																										
MULTIPLY－KEREMENLEU VAMIAELES																																		
	－	59	02	07.																														
58	－	3 ？ 00	72＊																															
S9	－	3 uO	74．																															
61	－	－ 9	4	4456																														
2001	－	15\％	cirk	cumk																														
2002	－	$10 *$	lork	tisw																														
2003	－	17.	O． Hk	Hlwr									J1E0		l1EU	11 EO	11Eg	11E0	11E0															
AASC	（1x	$\begin{gathered} 3 \mathrm{Cu} \\ \mathrm{HEU} \end{gathered}$	リとu Itu	Jlea	JEd	1150	JEQ	1）EO	1lee		1）E	Heg	JEO	Hevo	Hevo	Heg	1．E																	
ALPra	－r	¢しu	20																															
ut talc	（1）	JEG	1301	$48=$																														
$B \bar{P}^{\text {a }}$	－к	$41=$	40	bc																														
8ibl	（1）	？Cu	41																															
CEATX	（1）	leu	1301	$30=$	$38=$																													
CENIY	（1）	Jfe	1301	$37=$	383																													
comman	－	＜r	st	45	8F	9 F	IVF																											
Co	11 M	1化u	1301																															
UOLINT	－	14 LX	4150	$4{ }^{45}$																														
UELSM	（1\％	litu	1301																															
UENS	（1） H	1 CO	$4 \mathrm{C}=$	43																														
UL̇OG	－ H	$44=$	45	$45=$	46	46：	$4 ?$	49																										
OMIN	－k	to $=$	0 H1	81 mk																														
0 O	－k	$41:$	44	57	66																													
01	－k	0 Cu	45																															
UİOLU	－k	$21=$	＜ 4	co	27Pm	28wh																												
MYLLEK	$-k$ $-k$	19 OCU	70 19	47 4.	21	22＝	01	$61 \times$	$76=$		76	95x	45	97	48	$98=$																		
t	（1k	lleu	1301																															
CALL	－k	$77=$	7ern	79wH																														
tlit	－k	－ $3=$	0%	07	77	78PR	$19 \times R$																											
Eikin	－ K	$23=$	－6：	－0	77	78pR	74wn																											
emomlc	JK	1）	（sul																															
EMlC	－k	ccu	46	yo																														
EP	UK	JIEU	1301																															
till	UR	1 LEL	juvi																															
fobmat	－	15 t	10 r	J／F																														
FOUTLC	！ 1 k	jitu	juvi																															
FSCAI＊	（1）	1 Cu	bca	bs	56																													
FSN	1 H	1）E	1301	53：																														
Grith	（1）	JEG	1301																															
GR1／	1 H	lew	1301																															
1	－1	4 Cu	jcuu	¢																														
$1{ }^{\text {I A A }}$	－1	eco	$3 \div 00$	30										30	58	60	68	68	$70=$															
$1 J$	－1	4 CJ	33	36	36	37	37	42	48		S1．	53	55	so	S8	60																		
IJMIN	－1	$04=$	－PR	OIWH																														
1 jp	－1	4 CO	34	30	37	68	60	$71=$																										
IJŞC	－1	$31=$	$35=$	3	39	42	43	52	53		56	6																						
$1{ }^{1}+$	－1	3j＝	30	37	38	30	68	68	70																									
IPJp	－1	$34=$	30	31	68	68	71																											
IPI	－1	OCu	31																															
\checkmark	－1	4 Cu	300	31																														
JP1	－1	ecu	3 u0																															
KEEP	-1	105	${ }^{4}$ or	$\begin{array}{r} 42= \\ 1 F \end{array}$																														
m^{-}	（1）	llew	12 LL	1301																														

```
```

ث

11°	（1）	leu	$1<\mathrm{kc}$	1301					
jucyc	－1	ECO	＜7．k	CuwR	97	92			
NODPO	－I	－ 0	46	40	47	49			
－${ }^{\text {dept }}$	－1	eco	41	$4)$	47	47	44	49	
NU	－1	－Cu	33	34					
OHOEN	11 k	¢CJ	43	45	46	46	47	49	
ortar	（1）	ccu	41	41	47	49			
uverlay	－	¢5su	4754	ylsL					
P	Jf	11E6	l3ul						
P_{L}	（1）	11E6	13ul						
PKint	－	27 r	7 or	BuF					
GLioglo	－	$4{ }^{\text {4 }}$ S	4454						
R	Jk	JIEU	1301						
RCSG	（1）	lEu	1301						
kematk	－	Hisu	oosu	4356					
HEWIND	－	bit	83 r	$\mathrm{H4}$					
RM	（1）	11E6	Jul						
RMP	Uk	JEG	1 ul						
kO	（1）R	JVE	1301	42					
kils．	（1k	JEW	jull						
HHVOL	－k	らこ＝	bu	51	69				
KVOL	リk	11E6	13J1	55					
RZEUEN	（1k	11EW	13ij：	bos	60				
SLE	11k	11EW	1301 $24=$	50					
SiEmin	－k	1 Cu	$24=$	02	$63=$	8 CPR	81wR		
SIUPLC	1才k	11 EW	1 bul	bl $=$					
st	－k	49\％	$\mathrm{b}_{4}{ }^{\text {a }}$	b．	51	52	56		
SPIBL	13k	－Cu	44 40						
T	－${ }^{-1}$	\＆CO	40	98	98				
TEMIT	－	4 Cu	by						
TEMP	（1）	OCU	94						
TiME	－k	tcu	$\stackrel{\rightharpoonup}{4}$	S／rk	28WR	$94=$	90	48	98
TLOG	$-\mathrm{H}$	$4=$	41	4）$=$		49			
TMIN	－k	05＝	0 Ph	OLWR					
TOLT	－	rco	－y						
$T{ }^{T}$	－h	3¢ $=$	4	54	S9	65			
TP4	－ H	5i＝	50	oy					
12	－k	1：60	c：$=$	cith	28 NR	89	44		
u	（1）	lied	1301	ot	68	68	68		
UG	（1）	Jeu	13u1						
UL	（1） n	11Ed	jJul						
UMOJALC	11 n	JEG	「Ju！						
UP	（1）	11E6	1301						
UKIOT	－k	23こ	$04=$	04	78 Pr	79 WR			
Ull	（1）	ILEG	1301						
v	（1）	HEG	1301	68	68	68	68		
vo	（1）	l EG	13u1						
VL	（1\％	l Eu	1361						
vf	（1）	lleg	1301						
VIIL	lik	let	（3ul						
WRITE	－	ĖもF	79	olf					
χ	（1k	lieu	〕Ju！	30	36	36	30		
XCAT	－k	$2 c=$	be						
XU！ R	－k	6！$=$	01	01					
XPAK	（1）	1）EU	1301						
xSIE	－k	5e	－	02	63	67			
XVOL	－r	$2 b=$	bo						
XX	－k	$51=$	50	60					
Y	（1）k	JIEU	1301	37	37	37	37		
YI iR	（1）	J！	13L1						

```


\begin{tabular}{|c|c|}
\hline REEFER & 106 \\
\hline REtren & 107 \\
\hline REtER ER & 108 \\
\hline REEEEN & 109 \\
\hline REtrer & 110 \\
\hline REEFEK & 111 \\
\hline helter & 112 \\
\hline REETER & 113 \\
\hline REETEK & 114 \\
\hline REEFER & 115 \\
\hline REEFEK & 116 \\
\hline fetien & 117 \\
\hline REEFER & 118 \\
\hline Recter & 119 \\
\hline REEFER & \(1<0\) \\
\hline MEEFER & 121 \\
\hline REEFER & 122 \\
\hline REEFEK & 123 \\
\hline REEEER & 124 \\
\hline REEFER & 12ら \\
\hline REEFER & 126 \\
\hline REEREK & 127 \\
\hline HELFER & 120 \\
\hline REEFER & 129 \\
\hline HEEFER & 130 \\
\hline REEFER & 131 \\
\hline RetFer & 132 \\
\hline MEEFER & 133 \\
\hline RELFER & 134 \\
\hline MELFER & 135 \\
\hline REEFEM & 130 \\
\hline REEFER & 137 \\
\hline MEEFEH & 138 \\
\hline HELFEM & 134 \\
\hline HEEFEH & 140 \\
\hline REEFER & 141 \\
\hline HEtFER & 142 \\
\hline REEFER & 143 \\
\hline REEFER & 144 \\
\hline REEFER & 145 \\
\hline AEEFER & 146 \\
\hline REEFER & 147 \\
\hline ¢EEFEM & 148 \\
\hline AEbFEH & 144 \\
\hline MEEFER & 150 \\
\hline REEFER & 151 \\
\hline REEFER & 152 \\
\hline REEF＇G＇K & 153 \\
\hline REEFER & 154 \\
\hline REEFEK & 155 \\
\hline REEFEK & 156 \\
\hline Rtefek & 151 \\
\hline RELFER & 158 \\
\hline MEEFER & 154 \\
\hline REEFER & 160 \\
\hline HEtFER & 161 \\
\hline REtFER & 162 \\
\hline REtFEK & 103 \\
\hline HEtFer & 164 \\
\hline GEtFER & 105 \\
\hline REEFEK & 106 \\
\hline REEFEK & 101 \\
\hline REETER & 100 \\
\hline HEtFER & 104 \\
\hline REEFER & 170 \\
\hline REtFER & 171 \\
\hline ṘEtFEH & 172 \\
\hline fetfer & 173 \\
\hline
\end{tabular}


CHCULK（1）＝EPAKT
LrLULK（H）＝FREGH
LALL \({ }^{\text {n TUUH }}\)（SITSEI2：CBLUCK，O）
NLP＝N（P－）
It（NLR．GE 1 ）GU 104
IECS＝IECS－トCG1＋10
LALL ECWH（XEUEN，IECS，），NE）
if（LStATLSEEG．U GO TO 3
kewlnus，
call memafk izomCemsus particles completeo
JCEA＝ACEN
JHANK＝（NGANK＊NOP NGEN，NCEN，NBANK，NUIE，IESCAP，NMOVE，NCOL HHINI 2，J7，
NGEN，NCEN，IUBANK，NUIE，IESCAP，NMOVE，NCOL
NGEN，HCEN，NBANK，NOIE，IESCAP，NMCVE，NCOL WrIlE \(132, \operatorname{COO7B}\) NGEN，HCEN，
\(--\quad\) ASSIGN SOURCE PARIICLES
12 ERAUEU．
HNR＝1．：／FLOAT（NSP）
NGEN＝：
ALEN＝AHANK＝AUIL \(=1 E S C A P=N M C V E=A C O L=0\)
CALL START
UC IG
\(J=2, J P I\)


\(1 F J=1 u \rightarrow N G^{\circ}\)
It Jras jutno

It lTN．LT，TEEMITGGOTO
IT THR LTATEMITIGONP

y（IPuFI－y（IPJ）！
LC \(10 \quad r=1\) ．\(N \subseteq\)
NGEN＝NNEN＋1
mal＝hanivon（Cumpiy）
RAC EKANUON（OLUMMY）
MRA＝KANUUN（UUN：MY）


\(A(C l E L, G\)
\(A(J) \approx \times R N *(R N) * Y(I J) * R N R * Y(I P J) * R N J * Y(I P J P) ~ \& R N 4 * Y(I J P) ~\) \(\boldsymbol{J = I I N F}\)
EFAKI \(=\times\) EPAR I
EHAU＝EんAUGEPART
c
CaLL PrkEL：RHEGP，TH
Ir \(=3,14\) iS 52 \＆KANUON（OUHMY）
SIn＝SINTMI

PFEO．CASIH4＊RANOON（OUMMY）

ONEGA（1）＝STHOCPM
UREGA（ \()\) I＝STHASPH
GNEGA（3）＝CTH

UCELL＝XUCELL

If（EUEATF．L），EUIES EIILIEEDEATH
CALL WALK（A，ONEGA，IOIE，FREGP，EPART，EUEATH）
If lloIE．ER，O1（jO TO 16
c
```

If IEPAKT.LT.U.(.) GO TO 14
NCEN=NCESN+1
EEN=ECEN*EPAKT
GC lo lb

```
    14 AEANK=HBANK 1\()\)
15 CELOLK(1)=A(1)
        CELOLK \((1)=A(1)\)
Cr.LOLK \((\dot{L})=A(2)\)
        Cr.LOLK (<) \(=A(2)\)
        Celucn \((\mathrm{J})=\mathrm{A}(3)\)
        CeLOCK(4) =CNEGAI
        CELOCK(b) =ONEGA12
        CHLULK(7) =EPAKT

        CALL WTUUF (SLFSET2, CBLUCK, 8
    16 CCIVIINut
    lu=1PJ
    I CCNIINUE
        CALL LOUH
    -1! CCIN CALL UONE
.C
CALL REMARK \(\{2 G H S C U R C E\) PARTICLES COMPLETEU)
        JCEN= JCEN \(+N C E N\)
        IEANK=IGANK + NBANK"NBP NGEN, NCEN, NBANK, NOIE, IESCAP, NMCVE, NCOL

        WFIIE 112,20CBI VG
    31 WHIIE (2)
        enur ile
        CALL COPYF (5LFSET2,SLFSET])
        REWINOJ
        REWIND J
        IF (IOANK,EO.G.O) GQ TO BI
        AEENEIHANK
    NEENEIK
IUANR \(=\bar{\circ}\)
    ACEA \(=\) NBANK \(=\) AUIE \(=I E S C A P=N M O V E=N C O L=0\)
        KNUP=1, O/ILOAT(NGF)
        ECEAIT=EUIE
        CLLL CPEN \SLFSET1.2LST14600

        CALL KUBUF ISLFSE 11, CE
CC 38 IJCEN=1,LENGTHZ,8
        CC 38 I JCEN=1, LENGTHZ,
        XEPARI = CBLOCK (IJCEN+O)
IF (XEPARI. LT. \(0, \tilde{0})\) GU TO 33
        IF (XEPARI. WTHUF (SLASEI2, CGLUCK(IJCEN), 8)
        GALL TU 38
    33 XEPAKT \(=-\times\) XPAKT
        \(X E P A K I=X E P A R T\) KRNF
        XA) =LロLUCK(IJLEN)
        \(\times A \leq=\operatorname{LOLUCK}(1 J C E N+1)\)
        \(x A J=C U L U C K(I J C E N+2)\)


        \(\times C M E G A 3=C O L O C N\) ( 1 JCEN + )
        X CHEUUP \(=\) CGLOCK (IJCEN +7 )
        \(1=S H 1 F T(X F R E ̂ G F:-4)\). ANU.777B
        \(\mathrm{J}=\) AFKEKH.AND, 777 B
        CALL UNPKFN (XYREGP, XFKGT)
        XFKEGP=AFMRT(1)

        \(1=1\)
        \(=1\)
\(E(S=(J-)) * A N I+(1-1) * N Q\)
        CALL ECRO \{X(IJ), IECS, 30, NE\}
        Yllj) \(x \times(1 J+2)\)
        \(Y(1 J+\cap G)=\dot{x}(1 J+N O+2)\)

\begin{tabular}{|c|c|}
\hline REtFek & 174 \\
\hline MEEFER & 175 \\
\hline REEFER & 176 \\
\hline REEFEK & 177 \\
\hline REEFEN & 178 \\
\hline REEFER & 179 \\
\hline ṘEEFER & 180 \\
\hline ṘEtren & 181 \\
\hline REEFER & 18d \\
\hline REEFER & 183 \\
\hline REEFER & 164 \\
\hline REtFER & 185 \\
\hline REEFER & 186 \\
\hline REEFER & 187 \\
\hline REEFER & 180 \\
\hline KEEFER & 109 \\
\hline ŔEEFER & 140 \\
\hline REEFER & 191 \\
\hline Retrek & 142 \\
\hline MELFER & 141 \\
\hline REEFER & 144 \\
\hline RELFER & 145 \\
\hline REEFER & 146 \\
\hline REEFEK & \(19 \%\) \\
\hline GEEFER & 198 \\
\hline REEFER & 149 \\
\hline REとfER & 200 \\
\hline REtrer & 201 \\
\hline HEEFER & 202 \\
\hline hEtFEM & 203 \\
\hline REEFER & 204 \\
\hline REEFER & 205 \\
\hline REEFER & 206 \\
\hline REtFER & 207 \\
\hline MEELER & 208 \\
\hline SEEFEK & 609 \\
\hline KEEtER & 210 \\
\hline REEFER & 211 \\
\hline RetFER & 2：\({ }^{\text {c }}\) \\
\hline RetFer & c13 \\
\hline REtFER & 214 \\
\hline REEFER & 21b \\
\hline ¢̇Eと「EK & 216 \\
\hline HELEEH & 217 \\
\hline REtrer & 218 \\
\hline REEFPER & 219 \\
\hline REtFER & ． 220 \\
\hline KEEEFER & ＜21 \\
\hline REtFER & 220 \\
\hline REEFER & 223 \\
\hline MELFER & 224 \\
\hline HEEFER & 2くら \\
\hline REtrer & くct \\
\hline HEEfER & 227 \\
\hline REEFER & 228 \\
\hline REEFER & 22．9 \\
\hline RELFER & 230 \\
\hline REEERER & ［3） \\
\hline REEFER & 232 \\
\hline REEFER & 233 \\
\hline REETER & 234 \\
\hline REEFER & 235 \\
\hline HEEREN & 236 \\
\hline GEtPEK & 237 \\
\hline Getren & 238 \\
\hline HEtrem & 234 \\
\hline HEEFER & 240 \\
\hline REtFER & C41 \\
\hline
\end{tabular}
1FGSILCSANOI
CALL ECKU（XIIJP），IECS，30，NE）
Y（IJPI＝x（IJP・く）
\(Y(1) J P+(N G)=X(1 J P+N G+21\)
Y（1）
Y（IJP）－Y（1J）＊Y（IUP＊N（J）－Y（IJ＊NGI）
TH＝TENP（ISC）

\(A(1)=X A)\)
\(A(C)=x A 2\)
\(A(S)=X A S\)
UNEGATII＝XOMEGA
ONEGA，（ว）＝XONEGAZ
ONEGA13］＝AOMEGAS
EPARTEXEPAPT
\(+\operatorname{HLOP}=x+\) REQP
UCELL＝XUCELL
1じLE \(=1\)
It（LU）EK（A，UMEGA，IOLE，FREGP，EPART，EUEATH）

NCEN＝NCEN 1
ECEN＝ECEN．EPAKI
oc iu 35

しとLULん（く）\(=A(2)\)
Celulk \((\mathrm{s})=A(\mathrm{~s})\)
LHCULK \(141=0\) HEGAS 1 ）

しとLULんいい＝EPAKT
CELULK（t）＝EPAK
jo（ALL wibut（jLFSET2，CGLOCK，8）
37 CCINIINIE

HEWlive 1
c
LALL RHMAFK İ4HOANK PAKTICLES COMPLETEO）
J゙EIv＝JCEN＊NCE゙N
\(11 \cdot M M A=\) MDAAK
PMINT Z（ing，HGEN，NCEN，NBANK，NOIE，IESCAP，NMOVE，NCOL
WF1IE \((12\), COl＇Y）NGI．N．NCEN，NGANK，NOIE，IESCAP，NMOVE，NCOL
\(G C\) in 3 il
C

CALL rlust
FHINT 2：JU5，
－
HRINT 2：／05：COCS
NFLUSH
WhIIE（3）
tNCILILE 3
EnClILE 3
Titnlive 3
TLEMINU 3
CALL CPEH（SLRSET3，2LST•DI2）
\(c\)

HKHTT 21O4，EML EKAU，ECEN

héluka
EAU
helur
EAU
CEU
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 30 & \(202 \%\) & EOLCLCK & 11 R & 10 CO & IJN & －1 & 4 CO & LavNoer & 10 CN \\
\hline AAL & If & bLu & Elwh & － & llist & 1 JPS & －1 & 8CO & LOUP & laisu \\
\hline & （1N & 6LC & Eく1し & － H & ＋CO & 1SEFI & －1 & RCO & mauve & 14 CN \\
\hline ria & －4 & ycou & cr．vival & － & \(11 F\) & ISCF2 & －1 & BCO & M．U & －R 12 KL \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { E1IL } \\
& \text { FCUAT }
\end{aligned}
\] & \[
11 \mathrm{k}
\] & \[
\begin{aligned}
& 11 E G \\
& \text { si.isu }
\end{aligned}
\] & \[
\begin{aligned}
& 1501 \\
& 19456
\end{aligned}
\] & & & & & & & & & & & & & & & \\
\hline fiomat & － & 10 r & 111 & 184 & 195 & 20 F & 21F & & & & & & & & & & & \\
\hline FOUILC & \(11 \%\) & jeve & 1Jし1 & & & & & & & & & & & & & & & \\
\hline PREGF＇ & －\({ }^{\text {r }}\) & \(84=\) & ylag & 1．S & 147 Ac & 161AG & 175 & \(244=\) & 24746 & 261 & & & & & & & & \\
\hline ＋511 & 11 k & 166 & 1301 & & & & & & & & & & & & & & & \\
\hline usik & 11 k & leb & 1301 & & & & & & & & & & & & & & & \\
\hline 6Kl／ & （1） & （1EG & 13111 & & － & & & & & & & & & & & & & \\
\hline 1 & －1 & 4 Cu & \(31=\) & SOAS & 57 & 57 & 01 & 12600 & 2） \(8=\) & 224 & 234 & & & & & & & \\
\hline IHANK & －1 & \(\angle 4=\) & \(110=\) & \(1110=\) & 126 & 195 & 140 & \(147=\) & \(209=\) & & & & & & & & & \\
\hline IHAR & －1 & scu & co & icouc & & & & & & & & & & & & & & \\
\hline 111 & － & 1 cu & くく＝ & & & & & & & & & & & & & & & \\
\hline IUIE & \(-1\) & \(8 x=\) & Y1ab & \(4 \times\) & 157＝ & 161 Ag & 102 & \(240=\) & 2474 C & 248 & & & & & & & & \\
\hline IECS & －1 & \(61=\) & OCll & 605 & 66 & 07 AG & 169 & 119 & 11 UAG & 2そム & 225ag & 224＝ & 229 & 23040 & & & & \\
\hline IESCAP & －1 & \(1 . \mathrm{cu}\) & \(31 \times\) & \(11 / \mathrm{Pr}\) & 11 ¢fue & 122x & 167PR & 188mR & \(198=\) & 271 FF & 272 mF & & & & & & & \\
\hline IJ & －1 & 4 Cu & \(0 \cdot=\) &  & 63 & 63 & 64 & 04 & \({ }^{2} 5\) & 127 & 132 & 133 & 131 & 141 & 143 & 178＝ & 223＝ & 225AG \\
\hline & & \(<20\) & 20 & でく & 227 & 228 & 233 & 233 & 2.33 & \(\bigcirc 33\) & & & & & & & & \\
\hline IJCEN & －1 & 4100 & 4.4 & 44 & 45 & 46 & 4！ & 48 & \(4 \%\) & 50 & 20400 & 205 & 2u！ag & 211 & 212 & 213 & 214 & \(2!5\) \\
\hline JP & －1 & 215 4 CO & 217 & 67AG & 68 & 68 & 09 & 69 & 128 & 133 & & & & & & & 231 & 231 \\
\hline & & c32 & esc & －3） & 233 & 233 & 231 & & 128 & 133 & 133 & 141 & 143 & 1795 & \(2 ¢ 8=\) & 2304 G & 231 & 23 \\
\hline 1 JSC & －1 & くぐく & 1cy＝ & 1 cg & 130 & \(234=\) & 235 & & & & & & & & & & & \\
\hline 1 HJ & －1 & \(127 \times\) & 13： & J 3 & 141 & 143 & 118 & & & & & & & & & & & \\
\hline IPJP & －1 & 120 & 133 & 133 & 141 & 143 & \(17 \%\) & & & & & & & & & & & \\
\hline 1 H I & －1 & 8 Cu & 57 & \(1<5\) & 234 & & ＋ & & & & & & & & & & & \\
\hline J & \(-1\) & 4 Cu & \(5 \%=\) & SUAG & 58 & 58 & 01 & 12400 & 125 & 2192 & 224 & 234 & & & & & & \\
\hline JCEN & －1 & ycu & 35 & 36 & \(37 \times\) & 115＝ & \(185=\) & 105 & 268＝ & 208 & & & & & & & & \\
\hline JPı & －1 & HCu & co & 16400 & & & & & & & & & & & & & & \\
\hline JP2 & －1 & OCO & So & & & & & & & & & & & & & & & \\
\hline \(\kappa\) & －1 & 13400 & cjouv & & & & & & & & & & & & & & & \\
\hline LCM & － & \(\leq 1\) & or & 78 & & & & & & & & & & & & & & \\
\hline LENGTHz & －1 & 4.40 & 4100 & c．jug & 20400 & & & & & & & & & & & & & \\
\hline LSTATUS & －1 & 4：AG & 112 & C：3AG & 265 & & & & & & & & & & & & & \\
\hline M & 11 k & jutw & \({ }_{\text {jck }}^{\text {KL }}\) & 1301 & & & & & & & & & & & & & & \\
\hline M1 & －I & 14 CO & C \(5=\) & & & & & & & & & & & & & & & \\
\hline Mj & －1 & 14 Cu & CO＝ & & & & & & & & & & & & & & & \\
\hline MP & UR & leg & \(\mathrm{l}_{\mathrm{cki}}\) & （30） & & & & & & & & & & & & & & \\
\hline ：17 & －I & 14 Cu & ぐ7 & & & & & & & & & & & & & & & \\
\hline Mul & －1 & 14 CO & ct \(=\) & & & & & & & & & & & & & & & \\
\hline NBANK & －1 & \(38=\) & \(47=\) & 47 & 116 & 117 PR & 118wR & 122＝ & \(167=\) & 161 & 186 & 187PR & 18UwR & \(198=\) & 2b3＝ & 253 & 269 & 271PR \\
\hline & & 27 EwR & & & & & & & & & & & & & & & & \\
\hline NGP \({ }_{\text {NCEN }}\) ． & －1 & 360 & \({ }_{4}^{110}\) & 180
46 & 199
115 & 23600
117 PR & 269 \({ }_{110 \mathrm{mR}}\) & & & & & & & & & & & \\
\hline & －1 & cickk & & & & & & 122＝ & 1645 & 164 & 185 & 187PR & 188WR & \(198=\) & \(250=\) & 250 & 268 & 271PR \\
\hline NCOL & －1 & リCu & \(30=\) & 117 rk & liswk & 122＝ & \(147 P R\) & 188WR & 198＝ & 27）PR & 272＊R & & & & & & & \\
\hline NCP & －1 & \(73=\) & 74 & \(14=\) & 75 & \(107=\) & 1U？ & 108 & & & & & & & & & & \\
\hline nóle & －1 & J1．C0 & \(30=\) & 117PR & 118wk & \(122=\) & J GiPR & 188w & \(198=\) & \(\angle 71 P R\) & 272hR & & & & & & & \\
\hline NE & －I & Oche & 0746 & 11．4G & 2ZSAG & \(230 A g\) & & & & & & & & & & & & \\
\hline Nt LUSH & －1 & \(1 \cdot \mathrm{Cu}\) & c \(3=\) & E10ph & 277ink & & & & & & & & & & & & & \\
\hline NOEN & －1 & \(30=\) & 117 Pk & j jown & 121： & 135 \(=\) & 136 & 187PR & 188WR & 196＝ & 271PR & 272WR & & & & & & \\
\hline NMOVE & －1 & \(1 \cdot \mathrm{Cu}\) & \(38=\) & 11／pk & 1）8wk & 122＝ & 187PR & 188 mR & 198＝ & 271 PR & 27anR & & & & & & & \\
\hline NO & －1 & \({ }_{8} \mathrm{CO}\) & ＜ 7 & 61 & 04 & 04 & 0 ¢ & 09 & 127 & 128 & 224 & 227 & 227 & 232 & 232 & 233 & 233 & 233 \\
\hline & & 233 & & & & & & & & & & & & & & & & \\
\hline NQ 1 & －1 & eco & ＜ 8 & 01 & 05 & 06 & J． 9 & －224 & 228 & 229 & & & & & & & & \\
\hline NSP & －1 & 9 Cu & 1ct． & 13400 & & & & & & & & & & & & & & \\
\hline OMEGA & 13k & \(1 \leq 01\) & \(01=\) & \(0 \mathrm{C}=\) & \(83=\) & 914 AG & 101 & 102 & 103 & 154＊ & 155\％ & 156＝ & 1014 A & 171 & 172 & 173 & \(240=\) & 241： \\
\hline & & 24cs & こ4\％ & ¿b7 & 258 & 25 S & & & & & & & & & & & & \\
\hline OPEN & － & 34 SU & 3ysu & E． 150 & 202Şu & 28150 & 28＜su & 283Su & & & & & & & & & & \\
\hline P & （1） & litw & 1301 & & & & & & & & & & & & & & & \\
\hline PH & －\({ }^{\text {H}}\) & \(151=\) & 1）2 & 1 & & & & & & & & & & & & & & \\
\hline FL & （1） & JIEG & juut & & & & & & & & & & & & & & & \\
\hline Phint & － & 3 C & 11\％ & 187\％ & 271 F & 276F & 204F & & & & & & & & & & & \\
\hline \(\mathrm{H} \quad 1\) & 1／k & HEV & 1301 & & & & & & & & & & & & & & & \\
\hline hanvor & － & 13050 & 1375u & 138SU & 139SU & 148SU & islsu & & & & & & & & & & & \\
\hline Riso 1 & UR & 11E6 & 1301 & & & & & & & & & & & & & & & \\
\hline ROOH． & － & 41：SU & ？ijsu & & & & & & & & & & & & & & & \\
\hline htmakk & － & 11450 & 10450 & 20750 & & & & & & & & & & & & & & \\
\hline kĖIND & － & 1 （1） & 1917 & 193su & 194SU & \(266 F\) & 200F & & & & & & & & & & & \\
\hline
\end{tabular}
```


Cu	(1)	Jと6	1311		
UELSM	(1)	llew	1301		
E	(1k	lead	1 dul		
EHLOCK	(1k	1 CO	14 AJ		
EMOMLC	(1k	HEU	1301		
Er	(IR	1)EG	1301		
ETIL	(1)	JEL	1301		
foutce	(1k	lew	1301		
FSM	(1)	lew	1301		
GRIR	(ik	JEU	jus		
GRIL	(1k	11E6	131.1		
10	-I	10C0	14 AG	15	16*
LCM	-	SF	or	7F	
m^{-}	(1)	Jew	12kL	1301	
MP	(1k	Jleg	1 CmL	1301	
nt-LuSh	-1	${ }^{1 / C U}$	$15=$	15	
P^{-}	If	lleu	jund		
PL	(IR	1 EG	juvi		
R	(1\%	l Lew	1301		
RCSO	(1)	leg	1301		
$k{ }^{\text {M }}$	(1)	lew	1301		
RMP	(1)R	1)E	1301		
RO ${ }^{-}$	(1)	JIEG	1301		
ROL	(1)	leg	131		
RVOL	$1{ }^{1 / \mathrm{K}}$	HEU	1301		
R2EOEN	11 R	HEU	1301		
S 1 E	(1)	HEU	1 Sul		
síGplf	(1H	JEG	jual		
u°	(1)	lutw	1301		
UG	1 k	11E6	liul		
UL	(1)	11E0	1301		
UMOMLC	(1)	leg	1301		
UP	(1\%	${ }^{11} \mathrm{tu}$	130j		
UT! IL	(1)	lleg	coul		
v	(1)	1E6	1301		
vG	(1R	1)E	1301		
VL	(1R	lled	1301		
vp	(1)	1)ES	1301		
VTIL	(1)	lew	131		
\times	(1)	J)E	13.15		
XPAR	(1)	1IEG	1301		
Y	(1)	11tG	1311		
YPAR	(1)	いEU	j301		

$\stackrel{\sim}{\infty}$	NUPO	－1	2 CO	2.	く		
∞	NUPT	－1	ccu	10			
	OUUEN	（1）	CCl	10			
	GExP10	－	I3su	cjus			
	TLOO	－r	1 AG	11	12	15	
	\times xOG	－${ }^{-1}$	リご	15	＜1＝	22	22
	YLOO	－ H	2く＝	23			

w 2	-4	27	$47=$	S4:	5A										
XX	-R	$56=$	${ }^{\text {b7 }}$	bo								18	$\angle 2 A G$	23	24
AYECS	UR	SUI	$8{ }^{8}$	9	10	12AG	13	14	15	16	17	18	c2ag	23	24
2 H	-	çu	C6												

WALK	2
WALK	3
WALK	4
WALK	5
WALK	6
ALLKKOM	C
ALLKKOM	3
ALLKKOM	4
ALLLKOM	5
ALLKKOM	\bigcirc
ALLLKOM	7
ALLKOM	8
ALLKKOM	${ }^{9}$
ALLLKOM	10
ALLKKOM	11
ALLKCM	12
AlLkcm	13
greta	$\stackrel{4}{4}$
Gavnoer	c
lavnuef	3
Lavinuek	4
Euvieal	4
Equreal	3
EJVWEAL	5
Elurieal	5
EGVreal	6
Eurreal	7
Egvieal	8
Euvreal	4
EuvaEal	10
EuvREAL	11
EUVREAL	12
Eurreal	13
DJMEN	$\stackrel{2}{2}$
UIMEN	3
OIMEN	4
OIMEA	5
OIMEN	0
UIMEN	7
UIMEN	8
UIMEN	4
WALK	15
WALK	13
WALK	14
WALK	15
WALK	16
WALK	17
walk	18
walk	14
WALK	20
WALK	c1
WALK	¢2
WALK	4^{3}
WALK	24
WALK	2
wALK	20

INIIIALILE PARTICLE PROPERT
It SEPA
JCLU
ICI
JCLUEI
JCLUEJ
ArCUL=
15JER=
HRUR $=6 S U R T(A()) * A(1)+A(2) * A(2))$
$\angle r=A\{3\}$

1．STURE＝STIFT（I，y ） 4
 SICHE＝KEOP．ANO．NASK
 It（IUJEEEOB GO TO

LEP（）$=$ KHO
$L E P(\dot{c})=\angle P$

Call fanfno（tuep，eblock（101］．IRNG）
F ILANG．NE：U）GO TC 201
ELUCKIIU）＝FSIURE，OR，IJSIOR
If IIL．EG．N甘LF CALL FLUSH
1し1ヒ＝
if－－－COMFUTE UENS TEIMP ISCAT AT PAKTICLE LUCATION
il LSLE（JULU－1）IRI＋IOLU

St＝r SCAT（IJSC
or $=$ eins
or vicinsil

JSL＝JULU
LACL CEINTHOY（ISC，uSC，CWGT）
$1<\begin{aligned} & \text {（LSL } \\ & \text { luSCe } \\ & \text {（JULO－} \\ & \text {（JSC－1）}\end{aligned}$
H＝TENP（IUSG）＊CWGT（1）＋TENP（IJSC2）＊CwGT（2） IERP（IJSC）©CWGT（3）

13 ut＝utMs
－LCNSilusion
C 21 TLUG CGOMHOTE MAIERIAL OHACITY ANO MEAN FREE PATH
$\mathrm{UL} U G=61, \mathrm{UG}$ ） n （UT）
TLUGZAN（N）（！LUG，UPTMR（NLUT）
ULOG＝AMINI CLLUG OFOEN（NCHOI
HLUG＝AMAXI（TLUG：OPTMR（1）
ULUG＝AMAXI（ULUG，OPUEM（1）
CaLL SHUSCR ir REGP；ILOG，ULOG，IJK
$\mathrm{Cr}=$ SLGA（IJK）
SIGAV＝OEXFIOCUH
6－CUMPUŤU CULLISION UISTANCE
It lislep．GT．4 GC TU 22
It lislepogT．ul
iNFP＝AKS（4）OG（RN1）

UNOVE＝AMINI PUCUL．OCEN，UCELL） －－m luve particles
24 EALW＝EPARI＊FXT（－FSP＊UMOVEWSIGNU） ESLOKL＝EPART－ENEW
E－AKI＝FNEw
ROUVE＝IN：OVE +1
A（1）＝A（1）－ONOVEONEGA（1）
A（2）$=A(z)$－ONUVE ONEGA（2）
A（3）＝A（3） •（J）UVE＊ONEGA\｛3）
$\angle=\angle P$
ir UO＿RGOP
$2 H=A(3)$
CYUP $=U S U R T \quad(A(1) * A(1)-A(2) * A(2)$
It（ESCUKE．LE．1，DE－20） 60 TO 28

hr UL＝U．De（RHUR•RHCO）
ELLP（1）＝R－OD
としぐりく）$=\angle 0$
ELER（3）＝ESCOKt
$1 し 1=10+1$
Lalle Panfno（EuEP，Ealock（IOJ），IRNG）

WALK	27
WALK	Co
walk	29
WALK	30
walk	31
Walk	32
nALK	33
wALK	34
walk	35
walk	36
walk	31
walk	38
wALK	34
WALK	40
walk	41
wALK	42
walk	－3
walk	44
WALK	45
WALK	46
wal．k	47
walk．	40
WALK	44
WALK	50
WALK	51
Wal．k	b2
WALK	53
WALK	54
WACK	5
WALK	56
WALK	57
WALK	58
WALK	59
WALK	60
walk	01
WALK	02
WAL．K	63
wALK	64
WALK	6
WALK	06
WALK	07
HALK．	－0
WALK	09
WALK	70
WALK	71
WALK	72
Walk	13
WALK．	74
WALK	75
WALK	70
WALK	77
WALK	78
Walk	14
WALK	80
wAL．K	81
WALK，	82
WALK	83
WALK．	84
WALK	45
WALK	86
WALK	87
wAL．K	H6
wack	84
WALK	90
WALK	91
WALK．	42
walk	93
WALK	44

It（1ktion AE （C） 60 TO 20）
ELLOLK（IU）＝FS（GKE．OK．IJSIORE
IF（IU．EU．AHCHICACL．FLUSH－
©（able whent ifllu＇JULU） LSIUKESS（IFI IIULO，G1－JUL．
$\begin{array}{ll}\text { If IERART．LE．LUEAIN } \\ \text { If IICLU．GT．IGAKI GO } 10 & 10 \\ \text { If }\end{array}$
 い LA＝CREN－OÑOVE It GLEK．LE．U．OU
it IUCOL．1F．C．OI GO 1010 1STEト＝1ら1EF\％1
TI＝11•价OVE＊（．．333333E゙－05
 © 10 in
－ 81 ILIt \Rightarrow（EENSIIS PaK！ICLE
FHLUR＝1 STCRE．LK．IUSTURE
ELET（1）＝RFOP
ELLH（く）＝R．P
ELLPしSにEPAR
（
all Panfio（evep．Eblock（101），Ifng
It IINNO．NEgU）GO TO 201
$1=1 \omega_{1}$ ？
It IILIII）FituF
F ILive．theurs Call rlush
C 41
41 It PARIICLE ESCAPE FRUM NESH
It（LPAKT．LE．I．C．E－20）GU TO 93

ELCP（J）＝EPAR
1C）＝10．）
CaLL fantao（LUEP，EGLOCK（101），IRNG
It（IMRU．NF．（U）GO TO 201
lu＝1しゃ？
ELLCKK（ $(U)=F S I U)$ E，OR．IJS！ORE
4）IESLAF＝IESCAr．
héluma
－－－PARIICLE COLLISON
1.1 AFCOL $=N H C C L$

It INFCOL．G1，AN（MAX） 10 10 121
C－－－INITIALILE FEEMITIEZU PARTICLE FROPERTIES －－－fnEfi ANL UIFĖCIJUN OF REENITTEU PAKTICLE

if（IEMR（i．ISC）＝GT．（TAMB＋1．OE－DO）GO TO 111 rst＝r SCAT（！：USC）
It（ranuon（lugrmy）．gT．（1．0－FSpj）go to 151 1rまitrp（IVSC）
GC TU ils
11 IEC＝1CLU
GPLL LEIGTMDY \＆LSC，JSC，CwGT
1．SCl＝（JOLD－1）＊1P1＋1SC
1－SLC＝（JSC－1（＊1pI＋10LU
HSP＝F SLATIIJSL！）＊CWG1（1）\＆FSCAT（IJSC2）＊CWGT（2）＊

＂（kakuur iCurmyl，GT．（1．0－FSP） 00 TG 151

1 ItMr（IJSC）＊CwGi（3）

WALK	45
walk	46
WALK	97
WALK	98
WALK	99
walk	100
WALK	101
WALK	102
WALK	103
WALK	104
walk	105
WALK	100
walk	101
WALK	juy
WALK	109
WALK	110
Watk	111
WALK	112
WALK	113
WALK	114
WALK	115
WALK	110
WALK	111
WALK	118
WALK	119
WALK	$1<0$
WALK	121
WALK	122
WALK	12.
WALK	124
WALK	125
WALK	120
WALK	121
WALK	128
WALK	129
WALK	130
WALK	131
WALK	132
WALK	133
WALK	134
WALK	135
WALK	136
WALK	137
WALK	138
WALK	139
WALK	140
WALK	141
WALK	142
WALK	143
walk	144
Walk	145
WALK	146
Walk	147
WALK	148
WALK	144
WALK	150
WALK	151
WALK	1 ¢
WALK	153
WALK	154
WALK	155
WALK	150
walk	157
WALK	158
WALK	154
WALK	100
WALK	101
WALK	102


```
Slgrultine mmehe 11, J)
\CMMON /MAUVE/ IHMRN,JPI,NG,NOI, RHOP, ZP, OCELL
C INEN=IULU=1
        JNEN=コOLU=J
        ELS=(J-1)*NG1*(I-1)*NO
        LALC ECKO) (XYLCS.IELS,JV,NE)
        XS|=xYELS(1)
        x<c=xYとしS (140. 
        Y\L=xYHCS(MC-3)
        ltcs=1FCS*NO1
        CHLL ECNO (XYECS,IECS,30,NE)
        ANr=xYECS(1)
        YAN=XYFCS(3)
        MAC=xYELS(:NO*)
        YME=AYECS(iNO*S)
    c =- OtST
        11 IF (HNF*.LE.I) GO TO 91
```



```
        It (KROP.LTjxSW) ITEST=1TEST+1
        It II(ESI-Ijyl, 21, 31
    C1 TtSI=xS**(XNw-XSH)*(\angleH-YSW)/(YNW-YS*)
```



```
    S\ InEwablitw-
        ANL=XNW
        YNE=YN
        MSE=xS*
        Y=ニ=rSW
        lcLS=(JNEW-1)*NOI* (1NEW-1)*AO
        LALL ECKU (XYECS,ILCS,3,NE)
        x\leqm=xYFLS(1)
```



```
        YS#=XYECSS\3)
        CALL ECrO (XYECS,IECS,3,NE)
        \^n=xYELS(1)
        YAm=\lambdaYt.CS(3)
        OC lu ij
    C
    yl It IINEw.NEg\ULO\ GO TO<ll
    C || MESIENHS.
        111 IIESI=# (r,OP.GT=XILES ITEST=ITEST*I
        It (rMOP.GT:XINESITEST=ITEST*I
        it (MmON.GTOXSE),ITESI=1
```



```
        ItSl=ASE+(XNE-XSE)*(Lr-YSE)
    SI INLNEINENO
        It {INEW*GT:10AN\ GO TO 4.j)
        ARM=AR.E
        YnN=YAt.
        M,
        Y\leqw=YSE
        IECSE(JNEW-1)*NGI*INEN*NG
        CALL ECKU (XYECS,IECS,3,NE)
        xSE=XYELSS(I)
        YSt=xYECS(3)
        ItCSEICLSONC1
        XAE=AYELS(1)
        MAE=AYELSS(1)
        Mnc=xYFCS
    C<|l llesl=?UUTH
    <1) (1ts)=
    If (&H.LT.VS*I ITEST=1TESI*)
```

WHERE
WHERE
WHE HE
WWEHE
WHERE

01
02
02
03
04
05
80
80
${ }_{C}$

It（ $\angle \mathrm{H} . \mathrm{LT} \cdot \mathrm{YSE}$ ITEST＝ITEST•
It（llFSi－1）＜y）；2ci，23
21 IEST＝YSE＋（YSW－YSE）©（ 11 HOP－XSE）／（XSW－XSE）
1 JMEWEJNEW－1
IF（JNEw．LT＿己） 60 TO 401

XAL $=X S E$
$Y S L=Y S E$
Y）． $6=Y$ YE
It $C S=(J V E F-1)$＊NUI－（INEW－1）＊NO
CFLL ECHO（XYLCS，ILCS，3L••NE）
$x S_{n}=X Y F C S S(1)$
$Y S=X Y F C S$
YSW＝XYFCSI3）

YSC＝xYELS（NOPB）

د11 ॥CSIミNUTH
it（ $\angle F \cdot G T . Y N W) \quad 1 T E S T=I T E S T \cdot 1$
It（ $\angle P . G T . Y A E) I T E S T=1 T E S T+1$
2 $\begin{aligned} & \text { It } 111 \text { SST－1）} 391 ; 321,3 J 1 \\ & \text { It ST }=\text {（NE }\end{aligned}$
321 If（\＆F
If $\angle F$ ．LT．TE
うこし JNLW＝JNEW＋！
It（JNEW．GT：JHI）GO TO 4UJ
$x \leq W=\lambda$ にW
$Y \leq W=Y$ にW

$Y S t=Y \wedge f$

CALL ECRU（XYECS，ICCS，JU•NE）

Ynn＝XYELS（3）
XNE＝XYECS（HG－1）
YNE＝xYECS（NGO＋3）
3y1 it（JhFn．fog．JULU）

」CLU $=$ ニNE
GC TU 11
C $4: 1$ I $=1 \mathrm{NE}_{\mathrm{E}} \mathrm{W}$
J＝JNE W
CCLLL $=-25$（XNE－XNW＊XSE－XSW＊YNW－YSW＊YNE－YSE） ke lurs

WJotre	70
Whekb	71
wheke	12
Whleke	13
WHLKE	74
Where	75
WHEKE	76
WHERE	77
WHLRE	78
wothe	74
Wetthe	H0
WHETE	01
Whene	－2
Where	03
WHERE	H_{4}
WHEKE	45
where	86
WHLKE	67
where	8
Wrere	09
Wheke	90
WHEHE	91
WHLKE	92
WHERE	43
MTEKE	44
WHEKE	45
WHEKE	40
WHERE	47
WHERE	98
where	44
WHERE	100
where	101
Whehe	102
WHERE	103
WKERE	104
whike	105
WHERE	100
WHERE	107
WTERE	dos
	104
WHELE	110
wreke	111
WHERE	112
WKEHE	113
WHERE	114
WHe RE	115
WHERE	110
WHERE	117
WHERE	110
WHEHE	114

COMMCiV－ $2+\quad$ UINERSI－
2t ulnEんSI－
MULTIALY－hEREREJHCLU Vamiatlets
11
21
31
91
111
121
131
211
621
231
291
311
321
331

392		01 47	04	86	100%	04＊												
UCELL	－r	ccu	$160=$															
ECERU	－	isu	13s	1156	35SU	s3su	3？Su	7450	94 SU									
1	－1	1 Ab	7	0	$11_{4}=$													
IUAR It	－1	CCU	${ }^{47} 7 \mathrm{AG}$	1゙̇	12		$30=$	31AG	$34=$	34	35ab	52＝	b 3 AG	567	56	57AG	73＝	74AG
		43＝	Y4AG		12	13 AG	305	Jiag	$34=$	34	Jsa							
INEW	－1	$4=$	16	cbs	$\ddot{5}$	30	34	$46=$	46	47	$5 ?$	73	43	101	104			
10Lu	－1	$4=$	34	1．1）														
ITEST	－1	$19=$	$2 .=$	cu	$21=$	21	¿2	$40=$	$41 \pm$	41	4？$=$	42	43	$01=$	$02=$	02	63%	$\underline{6}$
J	－1	${ }^{194} 146$	$81=$		42 1.15	83\％	83	84										
JNE W	－1	b＝	3	52	67 ＊	07	08	73	HO	$87=$	87	88	43	100	102	105		
JoĹo	－1	$b=$	81	lu	102＝													
JP1	－1	$\bigcirc \mathrm{Cu}$	8															
NE	－1	7 AG	I JAC	3146	35AG	53AG	b7AG	74AG	94 AG									
$\mathrm{Na}^{\text {a }}$	－1	aco	0	14	1）	16	17	30	52	73	77	78	93	97	48			
NO1	－1	cCU	6	12	30	34	b2	56	73	93								
khop	－	cCu	く	＜1	？ 4	41	42	45	65	85								
TEST	－ R	วj＝	24	445	45	$65=$	00	$8 \mathrm{~S}=$	86									
XNE	－ H	$16=$	CO＝	41	44	48	Sos	$71=$	HS	85	91	$97=$	1－0．					
XNW	－	$14=$	く，	c 3	26	$3 \mathrm{t}=$	$48=$	0^{69}	6S	89	95＝	100						
XSE	－	1：＝	COE	42	44	44	bo	$54=$	65	65	71	77＝	$41=$	106				
XSTW	－k	$s=$	C 1	＜	23	28	3120	SO＝	65	69	75＝	895	1.0					
XYECS	（1）	311	746	－	9	10	11	13 AG	14	15	10	$1 ?$	31 AG	32	33	35AG	36	37
		S3AG	54	b	57 A	Sos	54	74 AG	75	70	77	78	${ }^{44 A G}$	95	46	Y！	98	
YNE	－	$17=$	$27=$	44	49	$59=$	$76=$	¢ 3	45	85	42	985	1.9					
YNW	－${ }^{-1}$	$1 \leq=$	＜ 3	<7	37＝	45\％	$90=$	02	85	90	$96=$	116						
YSE	－k	$11=$	$24=$	44	44	51	bs＝	63	05	05	$7 ?$	$74=$	420	106				
YSWW	－k	$y=$	c ${ }^{\text {d }}$	c ${ }^{1}$	29	33＝	ble	02	65	70	$76=$	$90=$	1.0					
$2 P$	－ K	cco	c ${ }^{3}$	44	62	63	00	t2	83	86								

OVEKLAY（YOKJfep，3．2）		ESIEP	2
Phugham estep		ESIEP	3
		Esiep	4
Ihis phogram 15 desigheo to read the energy defosition		ESIEP	5
Uala ano solve the heat equation to give new temperatukes		ESIEP	6
		ESIEP	7
，CCMMON／STATE／GCFI，NCPC，NFRQ，OPTMP（3J），OPDENI10）		ALLKOM	2
${ }_{\text {l }}^{\text {c }}$	FKEG： 100 ，SPTGL（3：0），PTAB（300）．ETAB（300），	ALLINCM	3
	8Tblijuol	Allikom	4
ccmmon／rscl／	AASC（bisu）	ALLKKOM	5
çmmon tpink，in ijo iju，ijp，J		ALLKKOM	6
LCM／YLCl／Anlililuvol		ALLKKOM	7
LCM MLCL AAClISCLOU		ALLKKOM	$\stackrel{8}{8}$
LCM／ELCI，	SICA（julidos	ALLKKOM	9
CCMMUN／REO／	NAME（12），OT，OTR，EMIU，GRUVEL，IRAR，IJPS，	ALLKKOM	10
1 chmun meor	IHI，ISCFi，ISCF2，1SCL，ISC3，ITV，J8AK，	ALLKOM	11
$\stackrel{c}{3}$	JPI，JTZ，NCYC，NOUMP，NU，NQI，HEZSIE，I SME，	ALLKOM	14
	TĖ）p（bfis，1，TINE，TOUT，TSTART，TMY	ALLKCM	3
CCMMUN／GKEEM／ ccmán／lavĩuth／	ALPHA，NHP，NRUF，MSP：NPCMAX，JCEN，TEAIT	GREEA	2
	OENS（TGUU），EQLOCK（SOj0），ECEN，ENC，	Lavnotr	2
	FSCATIISUn），iU，ILSCAR，NCOL，NUIE，	Lavinuer	3
ceguivalence	nFi－ust，NMOVE，Sitmin，11， T^{2}	lavnutr	4
		tuvreal．	2
1	（AASC $\{4$ ），U），（AASC（b），V），（LAASC（0）．f0），	Euvkeal	3
c	（AMSC（7），NP，HNP，RCSU．CEMTX），	Euvatal．	4
3	（AASC（t），E，ETIL，（E），TY），（AASC（y），HVCL），	Euvreal．	5
4		EuvREAL	6
5	（AASC（12），UTIL，UL．CWPEMOMLC）．	Euyreal	7
6	（AASC（13），VTIL，VL，UNUNLC）	EGVREAL．	8
7		Eurreal．	y
\checkmark	（Aasc（lg），DELSN，SIUPLC）．	Eurreal．	10

$\operatorname{SiNGLY}_{A A 1}$	RERER （1）	Enctu	variaeles gruvec	S -H	$\triangle C 0$	1 TV	－1	BCU	name	111	8CO	NQI			RLCI		7 CN	TSIART	
$A_{A A} A^{\prime}$	1 L	OCC	Greta	－	$\mathrm{cich}^{\text {chen }}$	JUAR	－1	ACO	NoP	－1	9C0	ASP	-1	$9 \mathrm{C} \mathrm{O}^{0}$	SHIFT		3554		$\begin{aligned} & 10 \mathrm{cu} \\ & 33 \mathrm{su} \end{aligned}$
ALTHA	－R	YC0	10	－1	1rco	JGEN	－1	9 CO	NCUL	－I	1 1， CO	Pink	－	4 CN	SIEIIN	－R		UNPKFN	
Biol	（1k	260	1tSCAP	－1	1.60	Lin	－	12 KL	NCYC	－I	$8{ }^{860}$	PTAE	（1）	2 CO	SIGA	（1）	1LC	YLCl	5 CN
OOAE	－	13 su	1 JFS	－1	－CO	lano	－k	${ }^{3} \mathrm{HL}$	nuie	－1	$14 C 0$	CEXP	－	66 SU	SPTuL．	（1R	\bigcirc		3 CN
UT	－${ }^{\text {r }}$	HCU	1PN	－1	99	lavtinet	－	1 CON	NUUMP	－1	8 CO	RURU	F	，Su	SIARI		5750		
טT\％	－	8 Cu	1sct 1	－1	8 CO	LEET		$16 F$	NFLOSH	－I	laco	REAL	－	12 F	STATE		2 CN		
tem10	－-1	OCO	1sctz	－1	9 CO	LOOP		16150	Nr ＇Kı	－1	2co	REO	－	1145		－R	9 CO		
EsiEf	－	isu	1sta	－1	بCO	Mu	－-1	12HL	nmuve	－1	1 CO	RETO	NO	11．4F	TEMI	－${ }_{-1}$			
EREG	UH	2 CO	IsC3	－1	8CO	MUC2	－K	12 kL	NFCMAX	－1	9 CO	REW1	NU			－ H			
MULIIPL	Y－14t	EんE1くくら	v vatiart	L．t．S															
15	－	く314	20＊																
11	－	31.	3.																
25	－	34	4.	44＊															
27	－	30	474																
c9	－	3cou	45	40	49＊														
36	－	00	710																
37	－	4．	96																
38	－	7	4	＋34															
34	－	OUU	16.0																
$4{ }^{\text {4 }}$	－	5.00	120																
2001	－	1%	113 rk 11	114 mr															
cous	－	16＊	117 rk 1	118 mh															
CuO4	－	194	115 PH 1	110 ws								1）EO	11Eg	11Eg	11Ew	11 EO	11Eu	11E0	1180
AASC	（1）	$\begin{aligned} & \text { jucu } \\ & \text { litu } \end{aligned}$	$\begin{aligned} & \text { Jitu } \\ & \text { Iftu } \end{aligned}$	lleg	נEQ	HEQ	1180	Q leno	－Jeg		Heg	1）EO	JEG	HEd	Heg				
ahsum	$-\mathrm{H}$	$0 \%=$	06																
Amaxi	－	oisu	70 U	4450	9550														
aMINI	－	7こらU	tusu	4650															
UETALC	（1）	HEW	1 jul																
CENTA	11 K	UEG	1 jul																
CENTY	（1）	JEW	1 jul																
cómmun	－	ct	3 r	4F	8 F	$9 F$	10 F												
CG J	Jk	11EN	1301																
Lolint	－	lols	$05 s 0$																
ULLSM	13k	1164	1×1																
LIENS	（1k	）Cu	136																
UIMENS：	－	13 3	14 r																
UMAX	－r	$2=$	Yb $=$ ． 4	.45	117P\％	118 WK													
UMliv	－k	c1＝	yo $=$	40	117PK	118WH													
E	13k	HEW	1301 $42=$									114 WR							
tabs	－${ }_{-1}$	2¢	$42=$	${ }_{3}^{4} \times$	$\begin{gathered} 52 \\ 32 \\ 3 \end{gathered}$	$54=$	54	106	$11)$		Il3PR	114＊R							
tBLUCK	UR	1．cu		$33 A G$ 114 wk															
ECEN	－k	1． Cu 1404	11juk	114 10				45			48								
EUEPIT	OR -2	1401 $24=$	$4 \mathrm{c}=$	4 C	51	53 5	53	112	113 PR		114 WR								
ELOS 1	－ K	$\cdots 1=$	$45=$	45	5 ？	55＝	5	106	10%		110	$113 P R$	J14WR						
EMC	－ H	1 co	bl	๖く															
Emit	－ R	$04=$	ot																
EMDMLC	13k	lew	1301																
E．MSN	flk	$14(3)$	136	cb＝	47 $=$	47	64												
EP ${ }^{\text {P }}$	13K	11 Ew	130］																
EPAKT	（1k	1401	） 366	$24=$	4）$=$	41	$44=$	44	65										
Elujival	－	115	15																
etay	13 H	¿CO	85																
Eitl．	（1\％	JEU	1301																
ETOT	－${ }^{\text {R }}$	1：0	11 SPK 1	114wR															
FÖrmat	－	$17+$	1 18t	19 F															
foutlc	（1k	jew	1301																
FSCA	（1）	1 cu	1 bek																
FSK	（1k	jeb	$13 i$																
fitome	－R	$34=$	35	30															
GRİ	（1）	JEG	1301																
GRIL	（1）	JEG	1301																
1	－I	${ }^{4} \mathrm{Cu}$	3 b	37	39	6000													
IISAR	－1	tCu	34	ould	66	66	06	07	67		68	71	72	45	96	97\％			
1.	－	－																	

```
FN
```

```
FN
```

γ	（1）	l1Ew	1sul								
YPAK	11 K	l1E6	1301								
211E	－	¢1＝	00	09							
＜t	－	$7 \dot{7}=$	18	$t<$							
くE1	－h	Uc＝	07								
くt2	－-	ロー	0%								
＜E2L	－${ }^{\text {r }}$	H上＝	00								
2 H	－ $\mathrm{r}^{\text {r }}$	71	13	74	78						
2RINV	－r	$73=$	02								
2 HL	－${ }^{\text {c }}$	$74=$	$75=$	15	$76=$	76	85				
2 T	－ $\mathrm{c}^{\text {r }}$	09\％	t．$=$	t	83	88	－y	$90=$	91	93	94
LTL．	－k	8：$=$	$64=$	04	¢S						

1	CVEKLAY（YOKItERi3．3）		L．ISTING	2
，	proukam listing		LISTING	3
	Tris Suoroutine		LISTING	4
		Pfints heefer output	Listing	5
			Lisiling	6
？	，cCmmun／state／	NOPI．NOPD，NFKO，OPTMP（3J），OPDENIIO），	ALLKCM	2
		FREGIUC），SPTHL\｛3：10），PTAB（300），ETAB（300），	Allikcm	
	i	BThL 300 ）	ALLKOM	4
3	ccmmun /rsci,	AASC（3454）	ALLKOM	5
4	CCmimun ipinke	I．IJ IJN，LJP，J	ALLKom	6
5	$\mathrm{LCM} / \mathrm{YLCl}^{\text {che }}$	AAl $1131100{ }^{\text {a }}$	ALLKOM	
6	LC\％Mrlcz	$A A^{\prime}(131500)$	ALLKOM	8
7	LCRi／HLCl，	Slots（10u0）	ALLKKOM	＋
8	CCMMUN／RED！	HANEIICJ，DT，UTK，EMIO，GRUVEL，IRAR，IJPS，	ALLKOM	10
		1H1．ISCFI，ISCF2，ISC2，ISC3，ITV，JEAR，	ALLKOM	11
	\leqslant	JP1，JPZ，ncyc，NOUMP，Na，NOI，REISIE，TAMX，	ALLEMOM	12
	1	TEHF（7bLU），1，TIME，TUUT，TSIART，THY	ALLKOM	13
${ }_{6}^{4}$	CClimun／gheen／	ALPHA，NHP，WHUL，IVSP，NPCMAX，JCEN，TENIT	Grien	2
	ccmmun／laviuth／	OENSISGOI，ERLOCK（6COU），ECEN，EMC，	lavnutr	c
		FSCAT（ISU0），IO，IESCAP，NCOL．NUIE，	Laviuger	3
11.		H）LuSm，NMOVE，SIEm（N，11，T2	lavnuer	，
	，EGUIVALENCE		Euvatal	2
			Euvatal	3
	c	（AASC（！），NP，KNP，RCSUPCENIX），	Euvafal	4
			Euvreal	5
	4	（AASC（IU），MPAR，VP），（AASC（I）．，P，PL，EP，UP）．	EuvaEAL	6
	\bigcirc	（AASC（I？），UT1L．（IL，LIT？EMCMLC），	Euramal	7
		（AASC（İH，VTIL．VL，URÜMLC），	Euvatial	8
	0		Eurretal	9
	\bigcirc		ElvREAL	10
	9.	（AASC（17），GKIEIGGM荷UEN），	EqurfaL	11
	1		EQvREAL．	12
1213	U（MENSIUN	LAM．LANJ），N，NP，MU，MUO2	EuvREAL	13
		X（1），XPAR（1），H（l），Yrat（l），Y（1），U（I），	Uimen	
	$<{ }^{\text {c }}$	V（l），Ki： $11, \mathrm{NPil}, \mathrm{RMP(1)}, \mathrm{RCSG(l)}, \mathrm{CEINTX(1)}$.	dimien	3
	\pm	（1），ETHLI），CENTY（1），HVOL（1），M（1），RN（］）．	ÓLIMEN	4
	4		UIMEN	b
	5	UL（l），COIJ），EmUMLC（1），villill VL（］）．	OIMEN	6
	0		OLIEN	7
	7	SIE（1），UELSM（1），S¢GPLC（1），GKIK（1），U6（1），	UPMEN	8
		RくEIEN（l）．GRI［l），VGIl），FSN（l）	U1MEN	4
	C		Lisidng	12
14	LIMEHSION EJ．UIVALENCE．	EPAKTSISU\＃1，ENSN（1500）	LISIING	13
		（FSLAI，EPART），（UEINS EM．SN）	LIsIjNg	：4
10	$2:-1, \text {, CKMA }$	（1ricameefer cuipulalion l．6m J．	Listing	is
			Lisling	10
	？	İ̄k EMSN，i2n TEMP I2m FSCAT，	Lisijng	17
	3	$12)$ Sigrlcilim 日etalc．	LIsting	18
	4	İ̈ R2EUEN／1	Listing	19
17	$20: 2$ ECKMA	（216．）rgel2．4）	lisilive	<0
	c		Lislivg	21


```
    eguivalgence
            EAL
            OIMENSION
        c
        l
        CChMON /SNOWIIE/
        LEXI
    2OvC FCRNAT
        !
        < +Crma
c
4.1 1\overline{c}=11ME +OTR
    ESN=J=\hat{N}
        ALPMA= SNCCN()O2)
    ISN=MCVESSNCUN(183))
        NCYC, IIME, T2, UTR, ISN
    MHINT 2UOZ;*OUS) NCYC, IIME, T2, UTR, ISN
C WHITE COMPUTE SIGFLC RLEOEN FSNN
    KN(1)EU.0
    LC 4-4 JE2,JP)
    LSN(J)Er(1J)
    IF (J.EG.JPI) <SN(J+I)=Y(IJP)
    UC 4<0 I=1, IGAK
    IFJ=1い*NG
    IFJP=1JF+AO
    1LSL=1JSCC1
    If (J.EG.2) RSN(I~1)=X(IFJ)
    VINT(IJSC)=0.0
    CEN)x(1)J=C:< < * (x(IN) +x(IPJ) +x(IPJP) +x(IJP))
    CENTY(IJ)=C:2S*IY(IJ!&Y(IPJ)+Y(IPJP) & Y(IJP))
    j.UG=GLUGIO(TLMF (IJSC))
    1.UG=GLUGIO(REMFIN)
    CLUG= AMINI(ULULICPOEN(NOPUS)
    SH= UG) IH:I(O,ULUG,TLUG,OPOEN,OHTMP,SHTBL,D,NOPT,NOHD,NOPT)
    SH=WEXPIOISP)
    IUPLCIIJI=6
    S\angleCULN((J)=3.<<'S7E*14*SP*TENP(1JSC)***
    S%=ESN`R/EOER(IIJI/KvOLIJ!
```



```
    XF SL=1,U*3, CL,CS*ALPRA*OT*SP*OIF
```



```
    1~ =1PJ
```



```
420 CClvilnot
    - CALLL LOUP
    Ch CGIvIINUE
    CALLCCONE
```



```
(AASC(1),X,XPAR), IARSC(2),R,YPAR), (AASC(3),Y), EUVNEAL
    (AASC(4),XOXPAR), IAASC(2),R,YPAR), (AASC(3),Y), EUVNEAL
    EAASC(4),U), (AASC(S),V), (AASC(0),RO): EUVKEAL
    EAASC(0),NP,RNP,RCSGY位 (AASC (Y),RVCLI, EUREAL
    AASC(1)|,M,KN,VP), (AASC(1)1,P,PL,EP,UP),
    AASC()E},UILL,HL,CUPEMUMLCS,
    AASC(13).VTIL,VL,UMUMLC).
```



```
    (AASC(IO), OELSM,S)].PLCCI,
    AASC(17%,GOIR,LGOHIEOENS.
    AASC(lo),GHIZ,VGOFSN/
    LAM, LANU, %:MP, NU, MUOL
    X(1), xPAR(1), R(1), Yrak(1), Y(1), U{I!,
    V(!), KU(J), NP(I, RMOMI, RCSQ(JI, CENTXII),
    E(J), EIIL(I), CEM(Y(I), RVOL(I), M(1), RN(I);
```



```
    SIt(1), OELSIII), SIGPLC(I), GRIK(J), UG(1),
    SIt(I) UELSIII), SIGPLC(I):GRIK(I), UG(1),
    RLEUEN(1), GRILU), vG(1), FSN(1)
    RLEUEN(II, GRI\angleOI', VG(I), FSN(1)
Obli(y)
111:, #PHOHLEM CYCLE &10,0X,*SN RADN TRANS*//'
* |ME*,IFEIC.4,* TO*,1PE12.4,6X,*DTR*,1PE12.4.
Ex.01S(4*,I5)
(1HG,SMESN ,IPE12.4)
ESN
```

 EUVKEAL


```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { EMUMLC } \\
& \text { EMIO }
\end{aligned}
\] & \[
{ }_{-k}
\] & \[
\begin{aligned}
& 1 \operatorname{tev} \\
& \mathrm{ECU}
\end{aligned}
\] & \[
\begin{aligned}
& 1301 \\
& 71
\end{aligned}
\] & 11 & & & & & \\
\hline ENOP ILE & － & 7 bf & 7 or & & & & & & \\
\hline EP & （1H & JEU & 1301 & & & & & & \\
\hline ESN & － H & \(19=\) & 45＝ & 45 & 55＝ & 55 & SOPH & & \\
\hline ETIL & （1R & 11EG & 1301 & & & & & & \\
\hline fürmat & － & Jof & 1／r & & & & & & \\
\hline Fbưtic & （1） & ）（tu & 1301 & & & & & & \\
\hline FSN & （1\％ & 1）E & 1301 & －8x & & & & & \\
\hline GRIM & （1） & J EG & 13u1 & & & & & & \\
\hline GRIL & （1） & l＇EG & 15］！ & & & & & & \\
\hline 1 & －1 & 4 Cu & 3 uv & 34 & & & & & \\
\hline IUAR & \(-1\) & とCO & 3 uo & & & & & & \\
\hline \(1 J\) & －1 & 4 CO & cu & 11 & 36 & 36 & 37 & 37 & 39 \\
\hline \(i\) jmax & －1 & \(01=\) & ぐ儿 & & & & & & \\
\hline 1 jp & －1 & 4 CO & く4 & 32 & 36 & 37 & Sus & & \\
\hline 1 JSC & －I & 27＝ & \(33=\) & 33 & 35 & 38 & 44 & & \\
\hline 1PJ & －1 & \(31=\) & 34 & 30 & 37 & 45 & & & \\
\hline 1 PJp & －1 & 3 c ¢ & 30 & 37 & 50 & & & & \\
\hline 1 \({ }^{\text {I }}\) & －1 & ecu & \(<7\) & 01 & & & & & \\
\hline \(15 \%\) & －1 & 14 Cu & くこ & C＜Pr & 23 Wk & & & & \\
\hline J & －1 & 4 Cl & Etul & \(<1\) & 2 C & 29 & 29 & 34 & \\
\hline JP1 & －1 & －CO & couo & 24 & 01 & & & & \\
\hline L：M & － & bF & or & 7 F & & & & & \\
\hline M & （1） & let & 1 CHL & 1301 & & & & & \\
\hline mp & （1） & litu & 1 hhL & 1301 & & & & & \\
\hline NCYC & －1 & OCO &  & c3wh & & & & & \\
\hline HOPU & －1 & cCu & 4. & 41 & 46 & & & & \\
\hline NUPT & －1 & çu & 41 & 41 & 46 & 46 & & & \\
\hline NU & －1 & \({ }^{\text {a }}\) CO & 31 & 32 & & & & & \\
\hline OPUEN & （1） & 2 CU & 4.1 & 41 & 46 & & & & \\
\hline Or＇mp & （1k & 2 cu & 41 & 40 & & & & & \\
\hline OVEHLAY & － & 54su & －3¢ & o6Su & & & & & \\
\hline P & Vk & ILEU & 1361 & & & & & & \\
\hline PL & lik & led & 1301 & & & & & & \\
\hline PRINT & － & くら「 & Sor & & & & & & \\
\hline GLOGIO & － & 3rsu & \(3 y 50\) & & & & & & \\
\hline R & （1k & JEk & 130I & & & & & & \\
\hline hCsid & （1R & lew & 1301 & & & & & & \\
\hline REMAKK & － & c4SU & oisu & & & & & & \\
\hline REWILV & － & 512 & cit & 77 F & 78 F & & & & \\
\hline RM & （1） & IIEU & j3ul & & & & & & \\
\hline RMP． & If & ＂1E＂ & 1301 & & & & & & \\
\hline R0＇ & IIR & leg & 1301 & 39 & & & & & \\
\hline ROL & いた & いÉu & juol & & & & & & \\
\hline RSN & UR & 14 CU & ctis & \(34=\) & & & & & \\
\hline RQUL & lik & 1）\({ }^{\text {ded }}\) & jubl & 45 & & & & & \\
\hline RzEutn & lik & 1IEU & 1301 & \(44=\) & 45 & & & & \\
\hline StE & UR & lew & 1301 & & & & & & \\
\hline Stuple & （1） & ＂Ew & 1301 & 4313 & & & & & \\
\hline SNCON & Uk & YCO & 2 & 21 & & & & & \\
\hline SP & － & \(41=\) & \(4 \mathrm{c}=\) & 4. & 43 & 44 & 4？ & & \\
\hline こrith & Uk & ＜cu & 41 & & & & & & \\
\hline \(\mathrm{T}^{\text {－}}\) & －n & tcu & 7. & 11 & 71 & & & & \\
\hline TEMP & （1） & tco & 980 & 44 & & & & & \\
\hline TlME & －R & ECU & 10 & ＜2PR & 23WR & －8\％ & 70 & 7） & 71 \\
\hline TLUG & －k & \(30=\) & 41 & 90 & & & & & \\
\hline TOUT & －k & HCO & ¢＇ & & & & & & \\
\hline T\％ & －K & \(16=\) & Cirk & ＜3Wk & 65 & 68 & & & \\
\hline \(\cup\) & （1） & 1）EW & 1301 & & & & & & \\
\hline UG & （1） & JEu & 13ul & & & & & & \\
\hline UL & （JR & Jew & 1301 & & & & & & \\
\hline UMOMLC & （JR & JEU & 13u1 & & & & & & \\
\hline UP & （JH & JEL & 1301 & & & & & & \\
\hline UTIL & （JH & JEU & 1301 & & & & & & \\
\hline \(v\) & Ifk & 11EG & 1301 & & & & & & \\
\hline vg & UH & 1） & 1301 & & & & & & \\
\hline \(v[\) & Uk & JEG & 1301 & & & & & & \\
\hline vP & （Jk & 1＇EG & 1301 & & & & & & \\
\hline
\end{tabular}
```

$\begin{aligned} & \text { vIlL } \\ & \text { WRIIt } \end{aligned}$	lik	$\begin{aligned} & 11 t^{\prime} \\ & 2 y_{1} \end{aligned}$	$\begin{aligned} & 1 \text { sul } \\ & 7 s_{r} \end{aligned}$	14 F					
χ	（1\％	1比し	ju01	14	36	36	36	36	
$X \mathrm{SSH}$	－k	$47=$	48						
XPAK	（1）	JIE6	1301						
Y	（1）	11 EW	1301	28	29	37	37	37	37
YPAK	（1）	Lew	1301						
ZSN	Uk	14 Cu	c8＝	cy $=$					

```
        GVEKLAY (YOKIFER, 4, J) CYCLSSN 2
        FHUGGAM CYLSN GYLLSN
            CrilsN
            CYClSN
            CYCLSN
            ALLKKOm
            ALLKOM
            ALLINOM
            ALLINOM
            ALLLNOM
            ALLLKOM
            ALLCKOM
            ALL_NUM
            ALLLKOM
            ALLKKOM
            ALLLNOM
            CRINSN
            CRINSN
            CYLLSN
            CrCLSN
            CYCLSN
            CYLLSN
            CYCLSN 14
            CrCLSN 
            CrCLSN 16
            CrLLSN 17
            CrilSN 18 10
                            CYCLSN
                            CYLLSN 20
                            CYCLSN 
                            CYLLSN
CYLLSN
GYiLSN
GYLLSN
CYLLSN
CYLLSN
EYLLSN
CYLLSN
GYLLSN
CYLLSN
GrllSN
CrLlSN
CYLLSN
CrCl.SN
YLLSN
CrLLSN
CrCLSN
CMLLSN
CYCLSN
CrCLSN
```

C

```
C
                    ZU CYLHIDMICAL. SN HADIATION TRANSHORT COOE BY GILL REED (14)
                    ZU CYLHIDMICAL. SN HADIATION TRANSHORT COOE BY GILL REED (14)
        CCMNUN /STATE/ NOPT, MCPO. NFRA, UPTMP(SO), OPUEN(10),
        CCMNUN /STATE/ NOPT, MCPO. NFRA, UPTMP(SO), OPUEN(10),
                NOPT, NCPO, NFRG, UPTMP(30), OPUEN(101,
                NOPT, NCPO, NFRG, UPTMP(30), OPUEN(101,
                OTOL(3LO)
                OTOL(3LO)
                L. IJ:IJN, IJP,J
                L. IJ:IJN, IJP,J
                AAl(iSLOUU)
                AAl(iSLOUU)
                AAĊ(laljun)
                AAĊ(laljun)
                SIGA(SigNO)
                SIGA(SigNO)
                NANE|CI, DT, UTR, EMIG, GKOVEL, IRAR, IJPS,
                NANE|CI, DT, UTR, EMIG, GKOVEL, IRAR, IJPS,
            IPI, LSCFI, ISCF2, ISC2, 1SC3, ITV, JBAK,
            IPI, LSCFI, ISCF2, ISC2, 1SC3, ITV, JBAK,
            JFI, JPL, NCYC, NUUNP, NO, NOI, RE2SIE, TAMB,
            JFI, JPL, NCYC, NUUNP, NO, NOI, RE2SIE, TAMB,
                            TEMP(7SLO:, T, TIME, TOUT, TSIART, TMY
                            TEMP(7SLO:, T, TIME, TOUT, TSIART, TMY
                            SnCIINIly31, zz
                            SnCIINIly31, zz
                    ISN, AVINT<750M, KSN(101), ISNC10?:
                    ISN, AVINT<750M, KSN(101), ISNC10?:
                    Av(LU\ISNUS, GR(7CUU), QBIT2OOI,
                    Av(LU\ISNUS, GR(7CUU), QBIT2OOI,
                            8(1.01, AL{800)
                            8(1.01, AL{800)
                            (AASC14|UI),0], (AASC(4)Ul),AL
                            (AASC14|UI),0], (AASC(4)Ul),AL
                            \ISNF, SNCON(II)
                            \ISNF, SNCON(II)
                            CSNF, SNCON(11) (aA.SC(4)01),AL)
                            CSNF, SNCON(11) (aA.SC(4)01),AL)
                            \!IML,IS,* SN ITERATIONS*)
                            \!IML,IS,* SN ITERATIONS*)
    c
    c
    <
    <
        ccmmun /yscl/
        ccmmun /yscl/
        CCMMON /PINK/
        CCMMON /PINK/
        LCM YLCl/
        LCM YLCl/
        C(M MlCZ/
        C(M MlCZ/
        LiM/HLCJ/
        LiM/HLCJ/
        CCMMON /rED/
        CCMMON /rED/
        i
        i
            EccmRimN /CRINSN
            EccmRimN /CRINSN
            l(MMIUN /CRIMSN/,
            l(MMIUN /CRIMSN/,
            UIMENSIUN
            UIMENSIUN
        eguival.EICE
        eguival.EICE
            ECUIVALEHCE
            ECUIVALEHCE
    Su.1 F(GMA)
    Su.1 F(GMA)
            FCRMAI OOTAIN SN CGNSTANIS
            FCRMAI OOTAIN SN CGNSTANIS
            |STEP=:
            |STEP=:
            AN=1SN/<
            AN=1SN/<
            NN=1\SN=(ISN+\overline{C})//g
            NN=1\SN=(ISN+\overline{C})//g
            LC=く
            LC=く
            LE=LU\bulletMM
            LE=LU\bulletMM
            1.tE!l=LM+NM
            1.tE!l=LM+NM
            LECTC=LGETI*MM
            LECTC=LGETI*MM
            IF(ISNP.E(O,ISN) GC TO S
            IF(ISNP.E(O,ISN) GC TO S
            LaLLL SNGEM'(SNCON(LU), SNCON(LE), SNCON(LW), SNCON(LRETI),
            LaLLL SNGEM'(SNCON(LU), SNCON(LE), SNCON(LW), SNCON(LRETI),
            1 E|CON(LUET2). ISN. HM)
            1 E|CON(LUET2). ISN. HM)
            1SINF=1SN
            1SINF=1SN
    C b Ui ic calculate area elevents
    C b Ui ic calculate area elevents
    b UL 16 I=j,18fh
    b UL 16 I=j,18fh
    O(II=3.14159C*(KSN(I+1)**2-RSN(I)**2)
    O(II=3.14159C*(KSN(I+1)**2-RSN(I)**2)
    (u iCNIINut
    (u iCNIINut
    C 11 ISIER=ISTCP.1
    C 11 ISIER=ISTCP.1
    II ISIER=TSTCP*:
```

 II ISIER=TSTCP*:
    ```


```

 UC I2 i=1;IEAK
    ```
        UC I2 i=1;IEAK
        UuSL=1JSC*I
        UuSL=1JSC*I
        AVULU(1JSC)=AVINT(1JSC)
        AVULU(1JSC)=AVINT(1JSC)
        AV|GT(JUSC)=0.0
        AV|GT(JUSC)=0.0
    (c. CLN'INOE
    (c. CLN'INOE
    c
```

 c
    ```


```

] SNCON(LE), SNCOM(LWI,GLL GR, BB, IOAR, JBAR, NN, MM, AVINT,
    ```
        ] SNCON(LE), SNCOM(LWI,GLL GR, BB, IOAR, JBAR, NN, MM, AVINT,
            < avulus
```

 < avulus
    ```

STOKOUTIHE SWEEP (ZSPI, KSN, B, GETI, BETC, L, E, W, AL,
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline cCMmun /staje/ & Hor't, MCPO, OFGC, UPTHP(30), OPGEN(10) \\
\hline - &  \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
1． \(\mathrm{SL}=1 \mathrm{JSC}\)
AVINT（IJSC）＝AVAEW（I）
AASL（1， \(11 \pm\) EMOM 11
}
als \((1 J \cdot 1)=\) cinum
\(\mathrm{I}_{1}=\mathrm{IJ}+\mathrm{Nu}\)
195 CCIIIINIT
く．し CClal）Nitit
\(c\)
\(c\)
\(c\)
－－－calculate flild in upwaro uirection
UC \(<431=1,12\)
or（1）\(=-\) ？
c
1ECB
vi \(31, u, J=2, J P 1\)
un \(1=J-1\)
IFCS \(=1 E C S+\mathrm{NO}_{1}\)
CNLL ECHU（AASC，leCS，NQS，NE）
L \(\angle 2 \angle S N(v * 1)-\angle S T J(J)\)
iv＝1c
1し \(L=(J-1) *|p|\)

IUSL \(=1 J ゝ C+1\)
ENUM（I）＝aASC（）J）
\(\operatorname{UNUN}(1)=\mu A S C(1 J+1)\)
AvロヒW（1）＝AVINTIJJSC）
Avitw） \(\mathrm{CT}(1)=A A S C(I J * 4)\)
\(5(1)=A \operatorname{ASC}(I J+5) * A A S C(1 J * 0) * A V O L O(1 J S C) *(1,0-A A S C(: \cdot 1 * 0)) * C T(1)\) 1
Cul
（J）
c－a－JNmard SwEF．P
LaLL IN（Ef（I，M）），Gb，al，RSN，B，bt Tl，U，E，W，S，CT，UNCM，

c－－E NUTwA）O SWEEP
CALL（！）IRR（I）MII），B甘（I，N））．AL，KSN，8，甘ET2，U，E，W，S，CT，
！CHUM，EMCM，FUUT，1．I，UZP，DZ，IQAK，JOAR，NN．JHI，AVNEWI
0
10 \(=12\)
I．\(S C=(J-1) * 1 P 1\)
Ccccy \(1=1\) ；
AVIに1（1JSC）＝AVNEW（
AASC（1）JIEGCN（I）
AASC（1J）天E（UCNCI
AHSL \((1 J+C)=F\) UUT
AAS \((1)\)
A
S
SLM＝SLK＋t ClIT（1）

299 CALL ECNR（AASC，IECS，NGI，NE
3：UCLIIJMIL
FHIN 2，CI：
Sum
Wrlle
SUM
HEIU

\begin{tabular}{l}
00 \\
01 \\
02 \\
02 \\
63 \\
04 \\
05 \\
60 \\
01 \\
08 \\
69 \\
70 \\
71 \\
72 \\
73 \\
74 \\
75 \\
76 \\
77 \\
78 \\
74 \\
80 \\
81 \\
06 \\
83 \\
84 \\
65 \\
86 \\
87 \\
80 \\
89 \\
90 \\
91 \\
42 \\
43 \\
94 \\
45 \\
40 \\
47 \\
90 \\
94 \\
7100 \\
101 \\
102 \\
103 \\
104 \\
105 \\
106 \\
101 \\
108 \\
109 \\
110 \\
111 \\
112 \\
113 \\
114 \\
115 \\
116 \\
117 \\
118 \\
114 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline AAI & 1 H & SLC & EGCIVAL & & 1）F & 1 SCF 1 & －1 & 8 CD & noump & －1 & 8 CO & AB & 119． & 260 & StATE & & 2 CM & tStart & & \\
\hline AAC & if & OLC & E120 & 1\％ & 2 CO & 1 SCF2 & －1 & ACO & Nram & －1 & 2 CO & FEO & & 8 C N & SwEETP & & 1 SO & WRITE & & \\
\hline GTBL & （1） & c & rimmal & － & J2F & 15 SC 2 & －1 & RCO & NOPO & －1 & 2 CO & RETURN & & Ybē & & －R & 8 CO & YLCl & & \(\bigcirc{ }^{\text {CN }}\) \\
\hline Crims & － & yしJ & Phtb & （1） & 2CC & 15 C 3 & －1 & 8 CU & nort & －1 & 2 CO & REZSIE & － & 8CO & TAMB & －\({ }^{\text {R }}\) & 8 CO & YLC2 & & \(\bigcirc \mathrm{CN}\) \\
\hline OIMENSI & － & \(1+5\) & grivel & － & － 60 & 1 TV & －1 & PCO & Oruen & （1） & 2 CO & FLC \(]\) & － & 7 C N & TEMP & （1） & 8 CO & YSCl & & \({ }_{\text {3CH }}\) \\
\hline 0 T & & & & －1 & \({ }_{4} \mathrm{CO}\) & －AxO & － & S & OPIMP & （1） & 2CO & SICA & （1\％ & 750 & Thy & －H & 8 CL & 2.4 & － R & 96 \\
\hline
\end{tabular}

```

N 1
SLGnLUTINE IN IGF,BV,AL,R,G,GETA,U,E,W,S,CT,UMOM,EMON,FOUT,ES

```

```

LIHENSIUN BF(JT,I),GVIIT,I),AL(AN,(),R(1),O(1),BETACI),U(1),
E(I),W(I),S(I),CT(I),UMUM(I),ENON(I),FOUT(1)
OIMENSICN AVNEW(1)
CC i(N) 1I=1,11
I=II+I-II
N='
CC luOK=1,AN
lc lCu L=1,K
N=H+!
AA=U(N)先P*K(1+1)
比=E(ん)*\&(I)
CC=\dot{U<F*(R(I\&))-K(I))*BETA(M)}

```


```

 fr(1)"C20CT(1)
 RCUl(l)=FCU1(I)*W(M)*(U(M)*O2F*(T*R(1)-BH(J*N)*R(I*I))*BB*
 (T-Hv(I,N)!)
 URIM(I)=UNCN(I)-W(M)*U(N.)*T
 ENUM(1)=ENOV(1)*H(H)*E(M)*ES*T
 AvNEM(IIEAVNLW(I)*C..(79b7749*n(N)*T
 br(J,N)ET
 Ev(1,N)=T
 H(N,1)=
 .f (clu)Hr.j(E
 heluma
 t^u
 | | |
| :--- | ---: |
| IN | 2 |
| IN | 3 |
| IN | 4 |
| IN | 5 |
| IN | 0 |
| IN | 7 |
| IN | 8 |
| IN | 9 |
| IN | 10 |
| IN | 11 |
| IN | 12 |
| IN | 13 |
| IN | 14 |
| IN | 15 |
| IN | 10 |
| IN | 17 |
| IN | 10 |
| IN | 19 |
| IN | 20 |
| IN | 21 |
| IN | 22 |
| IN | 23 |
| IN | 24 |
| IN | 25 |
| IN | 26 |
| IN | 27 |
| IN | 20 |

| $\begin{aligned} & \text { Singl } \\ & \text { IN } \end{aligned}$ | Y REF | $\begin{aligned} & \text { IENCEU } \\ & \text { ISO } \end{aligned}$ | vahlab L | －1 | 4DO | kETU | － | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | | | | | |
| MUL！ | $P L Y=K 1$ | $\begin{aligned} & \text { ERENC } \\ & 4000 \end{aligned}$ | vakı 706 | LES | 21＊ | | | | | | | | | | | | | |
| AA | －k | J＝ | 13 | 13 | | | | | | | | | | | | | | |
| $A L^{\text {a }}$ | If | lag | くul | 13 | $2 \mathrm{r}_{1}=$ | | | | | | | | | | | | | |
| GINEW | 1 H | 146 | 301 | 117 | 17 | | | | | | | | | | | | | |
| \bigcirc | （1） | 190 | 201 | 11 | 13 | 13 | | | | | | | | | | | | |
| B | － | $11=$ | 13 | 12 | 14 | | | | | | | | | | | | | |
| BE！A | （1） | 1ab | 201 | 15 | | | | | | | | | | | | | | |
| BT | （1） | 14 G | 201 | 13 | 14 | $18=$ | | | | | | | | | | | | |
| $\checkmark \mathrm{V}$ | （1） | | 2ul | 13 | 14 | $15=$ | | | | | | | | | | | | |
| CL | － H | $1 \dot{c}=$ | 13 | 13 | | | | | | | | | | | | | | |
| ${ }_{c}{ }^{\text {i }}$ | （1） | 140 | ＜ul | 13 | | | | | | | | | | | | | | |
| U：＇IEN | | C | 3 H ． | | | | | | | | | | | | | | | |
| 02 | －r | 140 | 13 | 13 | | | | | | | | | | | | | | |
| U2P | －k | 1 AG | 1. | 14 | 14 | | | | | | | | | | | | | |
| E | Uk | $1 A^{\prime}$ | cul | 11 | 16 | | | | | | | | | | | | | |
| EMOM | Uk | lag | くu1 | $10=$ | 16 | | | | | | | | | | | | | |
| ES | －k | lag | 10 | | | | | | | | | | | | | | | |
| f OUT | 16 | 1 al | 2ul | $14=$ | 14 | | | | | | | | | | | | | |
| ${ }^{\circ}$ | － 8 | $5=$ | 11 | 11 | 12 | Jè | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 14 | 14 | 14 | 14 | 15 |
| | | 12 | 10 | 10 | 17 | 17 | 14 | 20 | | | | | | | | | | |
| I！ | －1 | 400 | 5 | | | | | | | | | | | | | | | |
| 11 | －1 | 1 AG | 201 | 400 | 5 | | | | | | | | | | | | | |
| J | －I | ${ }^{1} \mathrm{AG}$ | 13 | 14 | 18 | | | | | | | | | | | | | |
| JT | －1 | lag | くし1 | | | | | | | | | | | | | | | |
| K M | －1 | 700 | ¢0 | 13 | $\xrightarrow{20}$ | 11 | 12 | 13 | 13 | 14 | 14 | 14 | 14 | 15 | 15 | 10 | 16 | 17 |
| | －1 | ${ }_{\text {it }}=$ | 19 | 4 | | | | | | | | | | | | | | |
| NN | －1 | 106 | くい | 70. | | | | | | | | | | | | | | |
| R | （1\％ | 140 | cul | 1：＇ | 12 | 12 | 14 | 14 | | | | | | | | | | |
| 5 | lit | iav | cul | 13 | | | | | | | | | | | | | | |
| T | － | $13=$ | 14 | 14 | 15 | 10 | 17 | 18 | 19 | 20 | | | | | | | | |
| u | （1） | lab | cul | 10 | 14 | 15 | | | | | | | | | | | | |
| UMOM | （1） | lab | 261 | 15 C | 15 | | | | | | | | | | | | | |
| \cdots | （1m | 140 | くい | 14 | 15 | 16 | 17 | | | | | | | | | | | |

```



\begin{tabular}{|c|c|}
\hline SNGEN & 71 \\
\hline Sinute & 72 \\
\hline SNuEA & 73 \\
\hline Snuen & 74 \\
\hline Snden & 75 \\
\hline Snutn & 70 \\
\hline Sinuen & 77 \\
\hline SNuEN & 78 \\
\hline SNuEN & 74 \\
\hline SNGEN & 80 \\
\hline SNGEN & 81 \\
\hline SNGEN & 82 \\
\hline ṠNUEN & 83 \\
\hline SNutN & 84 \\
\hline SNGEN & \({ }_{8}\) \\
\hline S̃NUEN & 86 \\
\hline Struen & 67 \\
\hline Snuti & 88 \\
\hline Snuen & 84 \\
\hline ŚNuEN & 40 \\
\hline SNGEN & 91 \\
\hline Snden & 42 \\
\hline SNGEA & 43 \\
\hline Snven & 44 \\
\hline Snuen & 95 \\
\hline Struen & 40 \\
\hline Singen & 97 \\
\hline Sngen & 98 \\
\hline Snuen & 94 \\
\hline SNuEN & 100 \\
\hline ŞNUEN & 101 \\
\hline SNGEA & 102 \\
\hline SNuEN & 103 \\
\hline SNGEN & 104 \\
\hline Sinuen & 105 \\
\hline SNGEN & 100 \\
\hline Snuen & 107 \\
\hline Snuen & 108 \\
\hline Snuen & 109 \\
\hline SNGEN & 110 \\
\hline SNUEN & 111 \\
\hline SIvGEN & 112 \\
\hline STNGEN & 113 \\
\hline SNGEN & 114 \\
\hline Sngen & 115 \\
\hline Sngen & 116 \\
\hline Snuen & 117 \\
\hline SNGEN & 118 \\
\hline Sinuen & 119 \\
\hline SNGEA & 120 \\
\hline Snger & 121 \\
\hline SNuEN & 122 \\
\hline Snuen & 123 \\
\hline Snuen & 124 \\
\hline SNGEN & 125 \\
\hline SNGEN & 120 \\
\hline SNGEN & 127 \\
\hline Snuen & 128 \\
\hline SNGEN & \(1<9\) \\
\hline SNGEN & 130 \\
\hline SNGEN & 131 \\
\hline Snden & 132 \\
\hline SNGEN & 133 \\
\hline SNuth & 134 \\
\hline SNGEN & 135 \\
\hline Sngea & 130 \\
\hline SNGEA & 137 \\
\hline SNGEN & 138 \\
\hline SNGEN & 134 \\
\hline
\end{tabular}



THIS RRCGGam is desigineo to read the energy depositicn UAIA ALD SOLVE TME HELT EQUATION IO GIVE NEW TEMPFPATUKE UAIA AI．D SOLVE TME HELT EQUATION 10 GIVE NEW TEMPFRATUKES
MUC IHICATJUNS HaVE GEEI，MAUE TO CUMMUNICATE WITH THE S－N COUE 0／24／73－－11．T．S． FREGU（IU），SPTHLI3IOI，PTA甘（3OD），ETA甘I（30G）， 8 TULISCl
I．IJ：IJN，IJP，J
AAl（1） 1 COD
SIGABJUOCL
NAPIE IICI，OT，UTR，FMID，GROVEL，IRAR， \(1 J^{2} S\) ， IHI，ISCFI，ISCF \(2,1 S C 2,1 S C 3,1 T V, ~ J 8 A K\) ， JH，JF゙C，HCYC，NUUMP．NG，NOI，REISIE，TAMB， TEMPI7bIEI，T，TIME，TUUT，TSTART，THY
Snconilr3j，\(\angle 2\)
（AASC（1），X，XPAK），（AASC（2），R，YHAR），（AASC（3），Y），
（AASC（4），U），（AASC（b），V），（AASC（6），FO）． （AASCI！！NP，HNF，RCSHPCEATX），
（AASC（B）OE，ETIL，CEII）Y），（AASC \(\{9\) ），HVCL．），

（AASC（ \((2)\), ，IIL．UL，LurEMUMLC）

（AASC（1）），DELSN，S（OHLC），
（AASC（1） \(1, G)(1 R, U(G, H E E U E N)\) ．

LAM，LAMU．N．MP，HUP MUUL
SNE STEP
SNESTEP
SNESTEP
SNE STEP
SNESTEP
SNESTEP
SNE STEP
SNE STEP
SNE STEP SNE STEP ALLKKM
ALLKOM ALLLKOM ALLKOOM


ALLEKOM


EUVREAL

JIMEN
OIMEN
VP(1), P(l), PL(I, EP(I), UP(I), पTIL(I)

OIMEN

OIMEN

UIMEN
UIMEN
KLLUE) (l), GKI<(1), VG(1) FSN(1)

UIMEN SIMEN SNESIEP SNESIEP SNESIEP SNLSIEP Sivesitep STHESTEP SNESTEP SNESIEP S̈̈LESTEP SLIESTEP SNRESJEP SNESIEP SNESIEP SNESTEP SNESIEP SNESTEP SNESIEP SNESIEP ぶルSTと SNESIEP
SNESIEP SNESIEP
ic \(3 y\) l＝1，IPAK
1rJ＝1U＊NG

CUlLC（IJ）\(=-ト\) いしTLC（lJ


\(C L=0.203184 / r v \cup[(1 J)\)
\(x=1\) OUILCIJJUIOLI


CELL＝SIE（TJ）＊HU（IJ）＊とUL＊）OE•I
FRAKん＝AUS（FOU）LC（IJ）

It LUJK．LT．AUIRS GO TO 35
UIN＝天UTK
\(1-u)=1\) Js \(C\)
FCWLK＝PNAIKK
ECLLLUI \(=E C E L L\)
3）UELSIE＝AUSMEM／AU（IJ）＊1．UE－15


f（SIF（IJ）－nt \(\langle S I E . G T).\). OE－NO）GO TU 36
\(\angle 1=1\) anti
LEC＝SIE（1J）
G6 1038
So \(\angle E=S 1611 J\)
\(\operatorname{Cr} 1 N V=1.0 / 2 R\)
\(\angle M L=W L O U I\)
\(L U W=1\) AMB
T1 \(\angle E\)＊ \(2 R * 0.011788789 E=071\)

37 UKI \(=137.214 \mathrm{E}-し 7 *\) LT＊＊
\(\angle t^{\prime}=\angle t-U R 1 \cap Z R I N V\)
1L＝WLOW）（2T）
E＜L＝UHLINT U，LEL，LTL，OPOEN，OPTMP，ETAG，D，NOPT，NOPU，NUPT

\(\angle L=\angle t)-\angle E^{2}\)
it \(1 \angle U F \cdot 6 T \cdot 9 \cdot W\) TLOW \(=\angle T\)
2t \(1 \angle C E \cdot L T \cdot 0 \cdot L\) ThIGh＝ 1
It（IMIUH－TLUM．LE．I．LE－UG＊ZT）GO TO 3
GC TO 37

TNAXEANAX）（TOMX，TEITR（1JSC））
LNIN＝AMINI IDNINORC（IJ）
UN \(101=\left(I K 10 T+137.21 \pm E+1 . \theta^{*}(\right.\) TEMP（1JSC）＊＊4）＊VUL \(1=1 P_{v}\)
CCN LOUF
4．CCHIINLE
call．unive
C PWK＝FWR／FLOA（（2＊IEAR•JBAR）
PnK \(=\) PnR／FLOANU
PKKC＝USIE／DTULU
HKKC＝USIE／DTULU
IAVU＝IINE＊O：S＊UTOL
ELUST＝－PNGMO゙ULU
AOS＝EAOS\＆DTULU
FINI 2C．C5．SIETOT，URTOT，ELOST，EAGS
mble（12，COOS）SLETOI，URTOI，ELUST，EABS
HINI 2 4110.6 PWK，RWF2
hlit（1く．00Co）
PHINT 21．97，
PWK，FWFZ
PWik，KHKZ
Whlit（12，cgu7）OTR，1JOT，PUWFR，ECELLLOT OTK，IJOT，POWEK，ECELLUT



this loue gives output for the sfn calculations
 1
2

OVERLAY (YOKIFER, 4, 3)
snout
\begin{tabular}{|c|c|}
\hline SNOUT & \\
\hline snuut & \\
\hline sinuut & 5 \\
\hline Snuut & \\
\hline ĀLLKOM & \\
\hline Allicm & \\
\hline ALLKKOM & \\
\hline ALLKOM & 5 \\
\hline ALLKKOM & \\
\hline ALlkom & \\
\hline ALLLKOM & 8 \\
\hline ALLLKOM & \\
\hline allikom & 0 \\
\hline Allikum & 1 \\
\hline Allikom & L \\
\hline Allikum & 3 \\
\hline ChIMSN & \\
\hline Silver & \\
\hline SILVER & \\
\hline Silver & \\
\hline Sillver & \\
\hline Egureial & 2 \\
\hline Egrreal & 3 \\
\hline EuvREAL & 4 \\
\hline Euvieal & 5 \\
\hline Eovreal & 6 \\
\hline Eavreal & 7 \\
\hline Eovreal & 8 \\
\hline EuvREAL & \\
\hline EgVheal & 10 \\
\hline Eqvieal & 11 \\
\hline Euvieal & 12 \\
\hline EGVREAL & 13 \\
\hline DIMEN & \\
\hline OIMEN & \\
\hline ÓlMEN & \\
\hline dimen & 5 \\
\hline Oimen & 6 \\
\hline UIMEN & \\
\hline DIMEN & 8 \\
\hline OIMEN & 9 \\
\hline snuut & \(1 く\) \\
\hline SNUUT & 13 \\
\hline Snumt & 14 \\
\hline Snout & 15 \\
\hline Snumt & 16 \\
\hline snuut & 17 \\
\hline Snuut & 18 \\
\hline SNUUT & 19 \\
\hline Snuet & 20 \\
\hline Snout & 21 \\
\hline Snuut & 22 \\
\hline S̃NUUT & 23 \\
\hline Snout & 2 \\
\hline S̃NOUT & 25 \\
\hline S̃NOUT & 20 \\
\hline SNOUT & 27 \\
\hline S̃NOUT & 28 \\
\hline SNOUT & 29 \\
\hline Snuut & 30 \\
\hline Shuet & 31 \\
\hline Snout & 32 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 33
34 & & \[
\begin{aligned}
& O F=A M I(N(C O R \cdot U \angle 1 \\
& O R O U=1 . Z * D R / A M A X^{1} \text { (UMAX,VMAX) }
\end{aligned}
\] \\
\hline & \multicolumn{2}{|l|}{C} \\
\hline 35 & & CALL AOV(1) \\
\hline 36 & &  \\
\hline 37 & & CALL. StART \\
\hline 38
34
4 & & OC \(435 \mathrm{JE} 2 \cdot \mathrm{JP}\) I Yix<SN(N) \\
\hline \(4{ }_{4}\) & &  \\
\hline 41 & & x)=RSN(1) \\
\hline 4 ? & & \(x \bar{C}=x)\) UMOMLC(1J)*OROU \\
\hline 43 & & \(Y \dot{C}=Y(\) EMONLC(IJ)*OROU \\
\hline 44 & &  \\
\hline 45 & &  \\
\hline 40 & &  \\
\hline 47 & &  \\
\hline 48 & & CALL Onvilxi, IY, IX2,IYCi \\
\hline 49 & & \(\mathrm{I}=1 \mathrm{~J}+\mathrm{Na}\) \\
\hline 53 & 434 & cCNtinue \\
\hline 51 & & Call loup \\
\hline 52 & 435 & ccinilaue \\
\hline 53 & & CALL. UdNE \\
\hline 54 & &  \\
\hline 55 & & JYO \(=1 Y G 10\) \\
\hline 36 & & \(J \times L=10\) \\
\hline \multirow[t]{2}{*}{57} & & CALLL ULCH (JXL, JY8, 49, TITLEE, 2) \\
\hline & \multicolumn{2}{|l|}{C} \\
\hline 58 & & CALL ADV(]) \\
\hline 59 & & CALL FRAME (IPXL, IPXR, IPYT, IPYB) \\
\hline 00 & & CALL START \\
\hline 01 & & \(0 \mathrm{C} 4 \mathrm{C}^{5} \mathrm{~J}=2, \mathrm{JP1}\) \\
\hline 02 & & \(Y)=\langle\) SN(J) \\
\hline 03 & & If [Y].LT.PYG,OR,YM.GI,PYT) 00 TO 445 \\
\hline 04 & & OC \(444 \mathrm{l}=1\), IBAR \\
\hline 65 & & XIzRSN(I) \\
\hline 66 & & IF (XI,LT.PXL, OK.XI.GT.PXR) 00 T0 4 43 \\
\hline 67 & & \(x E=x 1+U M U N L C(1 J) \# O R O U ~\) \\
\hline 6 & &  \\
\hline 09 & &  \\
\hline 70 & & \(1 \times 2=51 P \times L \cdot x\) ** PxCONV \\
\hline 71 & & [Ylx 1PYu*(YI-YB)*PYCONV \\
\hline 72 & &  \\
\hline 73 & & CALL. ORV (IX1, 1Y1, IX2, IY2) \\
\hline 74 & 443 & \(1 J=1 \mathrm{~J} * \mathrm{NG}^{\text {d }}\) \\
\hline 75 & 4.44 & CCNIINUE \\
\hline 76 & & CALL LOUP \\
\hline 77 & 445 & CCNT 1NJE \\
\hline 78 & & Cali done \\
\hline 79 & & (ALLL OLCH \{JXL, JY8, 49, TITLEE 2) \\
\hline \multirow[t]{2}{*}{80} & & CALL ADVEI) \({ }^{\text {a }}\) \\
\hline & C & \\
\hline 81 & & RETURN \\
\hline 82 & & enu \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Snout & 33 \\
\hline ṠNUUT & 34 \\
\hline SnUut & 35 \\
\hline Sinuut & 36 \\
\hline Snulut & 37 \\
\hline STNOUT & 38 \\
\hline SNUUT & 39 \\
\hline Snout & 40 \\
\hline Snout & 41 \\
\hline snuut & 4. \\
\hline Snult & 43 \\
\hline Snout & 44 \\
\hline Snumt & 45 \\
\hline Snout & 40 \\
\hline S̃NOUT & 47 \\
\hline snuet & 48 \\
\hline Snout & 49 \\
\hline snuet & 50 \\
\hline SNUUT & 51 \\
\hline SNUUT & 52 \\
\hline SNNUT & 53 \\
\hline SNUUT & 54 \\
\hline SNOUT & 55 \\
\hline SNOUT & 56 \\
\hline SnUut & 57 \\
\hline Snuut & 58 \\
\hline Snuut & 59 \\
\hline SNOUT & 60 \\
\hline SNOUT & 61 \\
\hline SNAUT & 02 \\
\hline Snout & 63 \\
\hline snuut & 64 \\
\hline sinout & 05 \\
\hline SNOUT & 60 \\
\hline S̃NOUT & 67 \\
\hline snuut & 68 \\
\hline Snout & 69 \\
\hline S̄nout & 70 \\
\hline ṠNOUT & 71 \\
\hline S̃NOUT & 72 \\
\hline SnNOUT & 73 \\
\hline S̃nout & 74. \\
\hline Snout & 75 \\
\hline Snovi & 76 \\
\hline Sndout & 77 \\
\hline SNOUT & 74 \\
\hline snout & 79 \\
\hline SNUUT & 80 \\
\hline Sñout & 81 \\
\hline snuut & 8 \\
\hline SNOUT & 83 \\
\hline SnuUt & 84 \\
\hline Snout & 85 \\
\hline
\end{tabular}



mastek linuex

List of all vakjables uerineu in infut
© mears Variable was whr ineu in Cchmoln ill that routine





 \(A \quad\) HEEFEK \(\angle I U\) HCIILOA 70 SUUSCR IU CRUSS 70 WALK 180 HONFAR TYME
 PKEO \(C\) SCOSCK \(C\) WAL

 SCoSCh \(D\) walk


2 CO he \(\angle O N E \quad\) CD HaRIMci 4 CO \(\qquad\) MCK KKKy YLSN CO
CO PHASEO CU YOKOUT REETER CU YLUSA SWEEP 2LCU SNESTEP \(C L\)
\(C L\)
\(C O\)
\(C O\)
AAL

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & OU & Yunlter & c & ＋ulaco & c & UHFCEGO & 3 C & MESCIMKR & & c & paktgen & C & yukky & \(\underline{\square}\) & Praseo & C & YOKOUT & c & PARPLOT & ¢ \\
\hline & & C & ro（ASL） subscim &  & FrASEC
chuss & \[
\begin{gathered}
\text { C }
\end{gathered}
\] & prase 3 & SC & RELCNE & & c & partmov & C & & & & & & & & \\
\hline & & \(¿_{\text {Cbloch }}\) & cktitek & \[
400
\] & 0 l & & & & & & & & & & & & & & & & \\
\hline & & Ctlahla & Pliase） & 3 & prastc & 2 & & & & & & & & & & & & & & & \\
\hline & 5 & Cemiruy & cenikuy & 1 & maln & 2 & & & & & & & & & & & & & & & \\
\hline & & ĆENTX & r llacu rhase？ & U & \[
\begin{aligned}
& \text { crtrecuo } \\
& \text { rrystej }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & MESHMKK KEZZCNO & \[
\begin{aligned}
& \text { u } \\
& 0
\end{aligned}
\] & Partijen PARTMCV & & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { YCKKY } \\
& \text { CLRRT }
\end{aligned}
\] & \[
20
\] & phaseo reEFER & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
yokout \\
flush
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & PARplot CENIROY & \[
\begin{array}{r}
0 \\
170
\end{array}
\] & Phasel WALK & 0 \\
\hline & & & ESicp & 0 & LISIING & 0 & Gherstu & 10 & Snesiep & & 0 & SnOUT & 0 & & & & & & & & \\
\hline & & CENTY & ＋ilmCu & u & Lrtwego & 0 & MESTAKM & 1 & partgen & & 0 & yukky & 0 & Phaseo & 0 & yokout & 0 & PakPlot & 0 & PHASEI & 0 \\
\hline & & & Prase： & 0 & prasts & 0 & ketcine & J & partmov & & 0 & mCht & 20 & REEFER & 0 & Flush & 0 & CEntiRuY & 170 & WALK & 0 \\
\hline & & & ESTER & \(u\) & Lisling & 0 & GHEYSJ． & 10 & SnESIEP & & 0 & snout & 0 & & & & & & & & \\
\hline & & \begin{tabular}{l}
CIKC \\
colaku
\end{tabular} & Prase
Yuxitig & 11 & ＋ILMCU & C & OFFWEGU & 16 & meshmir & & & Pahtgen & C & Yukky & C & Phasey & C & Yonout & C & PARPLOT & C \\
\hline & & & Phastil & \(: し\) & MrNStic & ic & Prise3 & ¢ & RE 10 He & & \(\overline{\text { c }}\) & Parimov & c & & & Praseo & & ronour & － & Patrot & \(\underline{-}\) \\
\hline & F & （0mjour & ruklitk & 11 & LCur & \(\stackrel{+}{*}\) & ＋1Lrco & \(0^{-}\) & OrFWEOO & 11 & & MESHMKR & 9 & Parigeiv & \(\bigcirc\) & Yonky & 7 & Prasto & 7 & yokout & 8 \\
\hline & & & Patrilut & 0 & Prusti & 8 & phasez & 7 & Prase 3 & － & & he \(\operatorname{lone}\) & 9 & PARTMCV． & 8 & MCNT & 0 & REEEER & 7 & FLush & 6 \\
\hline & & & frktg & 4 & Stosch & 4 & CENIROY & 1 & walk & 7 & & HOMFAR & 1 & whthe & 1 & ESTEP & 0 & LIS！ING & 6 & GREEYSN & \\
\hline & & CON & CYLSN Yukcill & \[
\stackrel{0}{2 b 0}
\] & SNLE \({ }^{\text {P }}\) & 5 & SlaESTEP & \(b\) & sauut & 7 & & & & & & & & & & － & \\
\hline & 5 & çuryf & Ortmevo & c & HELPEM & J & & & & & & & & & & & & & & & \\
\hline & S & Cos & KEビと\％ & \(<\) & rCMEGA & 1 & & & & & & & & & & & & & & & \\
\hline & & CPH ［PHI & PEETER
PUREGA & 2 & & & & & & & & & & & & & & & & & \\
\hline & & co & fllicio & 0 & cFrateo & 1 & MLSHIKR & 0 & Partgen & & 0 & Yukky & 0 & Phaseo & 0 & yakout & 140 & Parplot & 0 & PHASE： 1 & D \\
\hline & & & Hbisee & 1 & Prajes & \(u\) & RLL \(\angle\) CHE & 0 & PARTMOV & & 0 & MCRT & 0 & HEEFER & 0 & flush & 140 & WALK & 0 & ESTEP & 0 \\
\hline & & & Lisilive & \(\checkmark\) & cherst． & 0 & SHESTEP & 0 & snult & & 0 & & & & & & & & & & \\
\hline & L & CRIMSN & POKIFLE & 1 & LFFIEGO & 1 & GHEYSt， & 1 & CYLSA & 1 & & SWEEP & 1 & SNESTEP & 1 & SNOUT & 1 & & & & \\
\hline & S & ĖruSs & Punegr & 4 & cruss & 2 & & & & & & & & & & & & & & & \\
\hline & &  & SWEETP
GEEFEN & 0 & 1 N & 20 & OUT & 20 & & & & & & & & & & & & & \\
\hline & & Citat & Punioga & 4 & & & & & & & & & & & & & & & & & \\
\hline & & CwGT & Celatmur & OU & WALK & 2.08 & & & & & & & & & & & & & & & \\
\hline & & CYL & yunjtell & \(c\) & ＋1LNCO & c & Ur＇r wego & 4 C & ME SHMKR & 2C & & Partgen & c & yokny & ¢ & Prasev & \(c\) & Yokout & c & PASPLOT & C \\
\hline & & & Prase I & c & Prastic & 3 C & Prase 3 & S & RELONE & 1 C & & PARIMOV & c & & & & & & & & \\
\hline & 5 & CYLSN & CYLSIN & 1 & & & & & & & & & & & & & & & & & \\
\hline & & & yuncul & 3 & Prasei & 2 & rinasez & \(\bigcirc\) & Phases & \(?\) & & mCwFAR & 8 & & & & & & & & \\
\hline & 5 & OAlAAEL & Yunifur & 1 & & & & & & & & & & & & & & & & & \\
\hline & \(F\) & OAla & Fumbia & 1 & Scosck & 2 & WALK & & & & & & & & & & & & & & \\
\hline & 5 & OAIEI & UrFwEGU & & & & & & & & & & & & & & & & & & \\
\hline & & UGLINT & rmase & 10 & frase3 & 10 & MCRT & cu & Esiep & 10 & & GHEYSN & 20 & SHESTEP & 10 & & & & & & \\
\hline & & ICCLL & hetreh & 106 & CEINHOY & c & walk & 1 C & WHERE & 1 C & & & & & & & & & & & \\
\hline & & UCEN & WALK & 0 & & & & & & & & & & & & & & & & & \\
\hline & & טO & mumtar & \％ & & & & & & & & & & & & & & & & & \\
\hline & & UELE & Prabe．＇ & 0 & & & & & & & & & & & & & & & & & \\
\hline & & OELSIL & SNESTEP & \(<\) & & & & & & & & & & & & & & & & & \\
\hline & & UELSM & ＋Blecu & 1 & CFFratigo & 0 & Mésjhikh & ט & partien & & 0 & yokky & 0 & Phasec & U & yokout & 0 & PARPLOT & 0 & PHASEI & 10 \\
\hline & & & Mrasec & 11. & frasts & 0 & hezulde & 0 & PARTMOV & 0 & 0 & MCRT & 0 & REEFER & 0 & FLUSH & 0 & WALK & 0 & ESTEPP & 0 \\
\hline & & & LISTIAL & U： & Gheys & \(1)\) & SIUESTEP & 0 & SNOUT & 0 & 0 & & & & & & & & & & \\
\hline & & UtL2 & maste & 2 & & & & & & & & & & & & & & & & & \\
\hline & & Utivs & M（1） & cic & hectic & c & rlusil & C & WALK & 8 C & & ESTEP & Co & LISTING & Cu & & & & & & \\
\hline & \(F\) & UJMEnS & ＋ilncu & 1 & Lrtategu & 3 & MESMOKR & \(2^{-1}\) & partgen & 1 & & Yukky & 1 & phaseo & 1 & YOKOUT & 3 & Parplot & 2 & phase 1 & 1 \\
\hline & & & Phaste & 1 & frast 3 & 2 & PeEz＇rit & 1 & Pahtmov & & & MCRT & 1 & HEEPER & \(\leqslant\) & reush & 1 & POMELA & 1 & CRÓSS & 1 \\
\hline & & & Centily & 1 & maln & 2 & howfar & 1 & WHEME & 1 & & ESTEP & 2 & LISIINO & \(\leftharpoonup\) & GREYST & 1 & Crisin & 1 & SWEEP & 1 \\
\hline & & & & 2 & UCl & 2 & Snotil & ， & SAEStep & 1 & & snuut & 2 & & & － & & & & & \\
\hline & & UISC & muntar & 7 & & & & & & & & & & & & & & & & & \\
\hline & \(s\) & OLG14 & Suntil & ¢ & & & & & & & & & & & & & & & & & \\
\hline & & \(H_{L}\) & MLET & 1 & Stasche & ？ & walk & 0 & GREYSN & 5 & & & & & & & & & & & \\
\hline & & UMAX & Esitp & \(b\) & SNESIEP & 9 & & & & & & & & & & & & & & & \\
\hline & & OntP & waln & 2 & & & & & & & & & & & & & & & & & \\
\hline & & UMin & Hじ「 & 3 & EStep & 5 & SUESTEP & 5 & & & & & & & & & & & & & \\
\hline & & UMMVE
UntG & wach & 117 & & & & & & － & & & & & & & & & & & \\
\hline & S & Uolue & Luor & 1 & CFFWEGO & & me Shmik & 5 & Phaseo & 1 & & yokout & 2 & Phasel & く & Phasez & 4 & Phase3 & 7 & REZONE & 3 \\
\hline & & & MCHI & 1 & kterta & \(i\) & ESTEP & 1 & LISTING & 1 & & GREYSN & ） & SNESTEP & 1 & SNOUT & 3 & & & & \\
\hline & & UP & rhase： & 3 & NCKI & \(\cdots\) & walk & 5 & & & & & & & & & & & & & \\
\hline \(\infty\) & & UPLS & thumt ar & 7 & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & c）lugk & P（t） & \(\downarrow\) & HELRER & C & flush & 1 C & halk & 10.6 & ESTEP & 36 & LIST10 & c & & & & & & \\
\hline & citli． & SMESILT & j & & & & & & & & & & & & & & & & \\
\hline & Ecellul & SNE 1 Er & 3 & & & & & & & & & & & & & & & & \\
\hline & Écta & MLHJ & \(0_{0}^{6}\) & retren & 75 & r LuSh & c & WALK & C & ESTEP & 2 C & LISTINO & C & & & & & & \\
\hline & S E（ri） & Luct & 0 & crrween & 1 & parflol & 1 & Paktrov & 2 & heefer & 4 & CEN：RCY & 3 & Where & － & SWEEP & 2 & & \\
\hline & S ECimh & Luur & \(b\) & CFtwEUO & ， & fartoen & 1 & Paktmov & 2 & HEEFER & ， & SWEEP． & C & & & & & & \\
\hline & EULAll & HEEAES & 0 & math & 2 & & & & & & & & & & & & & & \\
\hline & Ever & WALA & \(i b u\) & ESIEF & to & & & & & & & & & & & & & & \\
\hline & EリIE． & rettrek & 5 & & & & & & & & & & & & & & & & \\
\hline & EtMIT & chitr & 9 & & & & & & & & & & & & & & & & \\
\hline & Eldet & MLiPI & 1 & & & & & & & & & & & & & & & & \\
\hline & Endn & MCh 1 & 0 & & & & & & & & & & & & & & & & \\
\hline & Elust & Eslit & 11 & Snlstep & 4 & & & & & & & & & & & & & & \\
\hline & EML & MCF1 & \({ }_{4}\) & MELtEK & 3 C & flush & \(c\) & WALK & c & EStep & 2 C & LSTING & \(\underline{\square}\) & & & & & & \\
\hline & EMET & ESIEP & ¢ & 10 & 30 & OUT & 30 & & & & & & & & & & & & \\
\hline & Emumlc． & ＋ilnco & u & CFF WEGO & 0 & MESHMKH & 0 & Paktgen & 0 & y Okky & 0 & Phaseo & 0 & & & & \[
0
\] & & 0 \\
\hline & & Praseir & \(u\) & fraseg & 0 & KEZCLE & 0 & PARTMCV & 0 & MCHT & 0 & HEEFEH & 0 & FLUSH & \[
0
\] & WALK & \[
0
\] & ESTĖP & ù \\
\hline & & cisilive & \(u\) & cher ysh & 0 & SluESTEP & 0 & snout & 30 & & & & & & & & & & \\
\hline S & Sthrit & Yuncirl & 1 & & & & & & & & & & & & & & & & \\
\hline & ［rılı & Esitp & 40 & Listing & 10 & & & & & & & & & & & & & & \\
\hline & EMs \({ }^{\text {H }}\) & runitik & \(\stackrel{\square}{6}\) & Llut & c & Filmeo & \(c\) & OFFwEgo & \(2^{C}\) & MEShmik & c & Pahtien & C & Yokky & 1 C & Phaseo & & yokout & \\
\hline & & Pabrlut & C & frases & ic & prasez 2 & ＜c & Prases & 1 c & HELONE & c & pahtmey & \(\overline{\mathrm{c}}\) & MCRT & 2 C & REEEEK & \(\overline{\text { c }}\) & Fluse & \(\overline{\mathrm{C}}\) \\
\hline & & Pr hets & i & Scusth & C & walk & c & ES！EP & C & LISTING & c & GREYSA． & c \({ }^{\text {c }}\) & CYLSN & C & SWEEP & c & SNESTEP & \\
\hline & & Sivili & \(c\) & & & & & & & & & & & & & & & & \\
\hline ＋ & ENLODE & yuncus & 5 & farplut & 1 & shout & 1 & & & & & & & & & & & & \\
\hline F & Elufile & yunitik & 4 & hetren & ？ & ghersi & 2 & & & & & & & & & & & & \\
\hline & EMLW & mata & ； & & & & & & & & & & & & & & & & \\
\hline & Eldiky & Luur & 7 & & & & & & & & & & & & & & & & \\
\hline ＋ & Eur & URFmpuu & 2 & & & & & & & & & & & & & & & & \\
\hline & E．E & UFPricul & 30 & & & & & & & & & & & & & & & & \\
\hline & ¢P & ＋1）．rcu & \(u\) & CFPWEGO & 0 & nit Srjikt & 0 & & & YCKK & & rKASEG & \[
0
\] & & & & & & 0 \\
\hline & & Fraste & \(\checkmark\) & frasts & 70 & RELCHE & 0 & PAKIMOV & \[
0
\] & MCHT & \[
0
\] & HEEFER & \[
\dot{0}
\] & flush & \[
0
\] & WALK & \[
0
\] & ESTEP & 0 \\
\hline & & Lisilive & u & creysi & 0 & STESTEP & 0 & snuet & \[
0
\] & & & & & & & & & & \\
\hline & EDART EPUT & befrek Prast． & \[
2:
\] & main & 14 & ESTEP & OU & listing & 10 & & & & & & & & & & \\
\hline & EPS & Yunlter Prinst 1 & c & トILMCO
rraste & \[
{ }_{1 \mathrm{c}}^{\mathrm{C}}
\] & \begin{tabular}{l}
OFFVEGO \\
Phase 3
\end{tabular} & \[
\underset{C}{3 C}
\] & \begin{tabular}{l}
meSrMKR \\
RE CGTE
\end{tabular} & C & Partgen pahtmov & \[
\underset{\mathbf{c}}{\mathbf{C}}
\] & yukky & C & Phaseu & C & yokout & C & PARPLOT & C \\
\hline F & theuival． & ＋blicu & 1 & crameos & 1 & MLStMKM & \(i^{\circ}\) & PAKTGEN & 1 & YCKKy & c & Phased & J & yokout & 2 & PARPLOT & 1 & PHASE 1 & \\
\hline & & Praste & ， & frase 3 & 1 & hezine & 1 & paktal & 1 & HCHT & 1 & HEEFER & ， & flush & 1 & WALK & 1 & ESTEP & 2 \\
\hline & & Lisling & 2 & Ghersa & 1 & crishd & 2 & SWEEP & 1 & SAESTEP & 1 & SNOUI & 1 & & & & & & \\
\hline & Ehas & metrem & 0 & & & & & & & & & & & & & & & & \\
\hline & Ethe & crish． & 4 & & & & & & & & & & & & & & & & \\
\hline & Es & 1 N & c & CCl & 2 & & & & & & & & & & & & & & \\
\hline & Escorit & matn & 3 & & & & & & & & & & & & & & & & \\
\hline & EsN & GLEETSIA & － & & & & & & & & & & & & & & & & \\
\hline S & Estep & ESTEP & 1 & － & & & & & & & & & & & & & & & \\
\hline & ETAH & YONJFLK & 6 & LCUP & c & Filmeo & c & OFFinEgo & & MESMMKR & & Parigen & & & & Phaseo & & & \\
\hline & & ratrbl3l & \(\stackrel{1}{ }\) & rrasel & C & Pfustz & c & Prase＇3 & IC & helune & \[
c
\] & PARTMOV & \(\overline{\text { co }}\) & \[
M C H T
\] & C & REt ÉK & \[
\mathbf{C}
\] & FLUSA & \(\dot{\text { c }}\) \\
\hline & & Prates & 6 & Stosch & 6. & malk & c & ESIEP & jc & LISTING & \[
\ddot{\mathrm{c}}
\] & GKEYSA & & CYLSN & c & SWETP & & SNESTEP & 1 － \\
\hline & & Snvili & \(\checkmark\) & & & & & & & & & & & & & & & & \\
\hline & ETIL & tilacu & \({ }^{\prime}\) & CrFWEGU & ＂ & MESINPKK & 0 & Phktions & 0 & yekky & 0 & PMASEU & 0 & Yokout & & & & & \\
\hline & & frase． & 7 & Frise 3 & Su & hELCME & \(u\) & PAKIMOV & 0 & MCKT & 0 & HEEFER & 0 & flusi & \[
0
\] & WALK & \[
0
\] & ESTEP & 0 \\
\hline & & cisilug & \({ }^{\prime}\) & GHEYSA & D & SHESTEF & \(u\) & Snolt & 0 & & & & & & & & & & \\
\hline & EリUT & ESTLP & 3 & & & & & & & & & & & & & & & & \\
\hline 5 & Exit & Snut） & 1 & & & & & & & & & & & & & & & & \\
\hline & Exi & ricstmkn & 1 & helcine & 3 & WALK & & & & & & & & & & & & & \\
\hline & & Phast．） & 7 & & & & & & & & & & & & & & & & \\
\hline & Fir2 & ke／livi & 1 & & & & & & & & & & & & & & & & \\
\hline & F6x & Ke／cist & 1. & & & & & & & & & & & & & & & & \\
\hline & Fし & heノLNL & 1 & & & & & & & & & & & & & & & & \\
\hline & FutN & restrink & 7 & & & & & & & & & & & & & & & & \\
\hline & \({ }^{1 L H}\) & Yunifer & c & & & & & & & & & & & & & & & & \\
\hline S & E ILMCS & －ilace & 1 & criwteo & 1 & Phase 3 & 1 & & & & & & & & & & & & \\
\hline & 1 IPXL & YJinlrien & \(\stackrel{C}{C}\) & －ILMCC & 5 C & Orfinego & \({ }^{\text {c }}\) & neshmikr & c & pamtgen & c & YokOut & 1 C & Pakplut & 2c & Phasez & \(\underline{C}\) & RELONE & C \\
\hline & firxh &  & \(\stackrel{C}{c}\) & ghtysi r JLMCC & c
5 & SIVCLT
UPFEEGO & c
\(C\) & & & & & & & & & & & & \\
\hline & rirxh & \[
\begin{aligned}
& \text { Yuktcu } \\
& \text { fousuv }
\end{aligned}
\] & \[
q_{1}^{c}
\] & ＋JLMCC GHEYSN & \[
\mathrm{SC}_{\mathrm{C}}
\] & UHFWEGO shult & \[
\stackrel{c}{c}
\] & NESHMKR & C & pamtgen & C & rokOut & 18 & PARPLUT & C & Phase 3 & C & RELONE & C \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { L GREEN } \\
& \text { S GREYSIV }
\end{aligned}
\] & Yunjtile
GKEYSA & & crawego & 1 & MCRT & 1 & Regfer & 1 & FLUSm & 1 & WAL．K & 1 & ESTEP & 1 & L．1SIING & 1 & & \\
\hline GHIR & ＋1LPCu & \(u\) & Lr＋wEGO & 0 & MESTMMK & 0 & paktgen & 0 & Yekky & 0 & Prasec & 0 & yokout & 0 & PahPlot & 0 & Prasel & 10 \\
\hline & H．iast 2 & 16 & Frasca & 0 & KECLI．E & 0 & Pakinct & 0 & nCht & 0 & heeter & نِ & Flush & 0 & WALK & 0 & ESTEP． & ¢ \\
\hline & Lisilitu & 0 & GFtysi & 0 & StiESTEP & 0 & snout & 0 & & & & & & & & & & \\
\hline GH12 & rilaco & 0 & cramego & 0 & MEStamkt & 0 & partgen & 0 & ycker & 0 & Phased & 0 & yekeut & 0 & PahPlot & 0 & phasel & 10 \\
\hline & Phasel & ル & frabes & 0 & He \(\angle C\) ToE & 0 & pahtrov & 0 & MCKT & 0 & KEEFER & 0 & Flush & 0 & WALK & 0 & ESTEP & O \\
\hline & LISIING & \(\checkmark\) & Greysa & 0 & SNESIER & 0 & SnOUI & 0 & & & & & & & & & & \\
\hline G6 & runltek Phase I & \[
\underset{<c}{c}
\] & ＋limcl Prasec & \[
\begin{aligned}
& c \\
& c
\end{aligned}
\] & UFGREGU MHASE 3 & C & ne Shmikr re LONE & PC & PARTGEN PAKTMOV & \[
\begin{aligned}
& \mathbf{C} \\
& \mathbf{C}
\end{aligned}
\] & yokky & C & Phaseo & 1 C & rokout & C & PARPLO！ & C \\
\hline 5 humfar & munt ak & 1 & & & & & & & & & & & & & & & & \\
\hline He 13 & prasel & 3 & Praste & 3 & & & & & & & & & & & & & & \\
\hline HKく4 & prasel & 3 & prasté & 2 & & & & & & & & & & & & & & \\
\hline & Yuniter & 06 & lcut & jc & filmco & 1 C & OFF wego & \(3{ }^{\text {c }} \mathrm{C}\) & me Stamkr & \(24 C\) & fartien & c & Yokkr & C & Phased & 6 C & Yokout & \\
\hline & Paintlut & \(\checkmark\) & frast1 & 8 C & phasez & 116 & Prase 3 & 49 C & RELONE & 106 & PARTMOV & 4 C & MCKT & 2 C & REEFER & 4 C & flush & C \\
\hline & Preth & c． & stusck & C & walk & \(3{ }^{\text {c }}\) & mUMFAR & 10 & WHERE & 4 & ESTEP & \(4 \bar{C}\) & LISting & 2 C & GREYSN & & CYESN & \\
\hline & SwEtr & 314 & 111 & 24 & OUT & 24 & Snuen & A & SNEStEp & 3 C & SIMOUT & \(\bigcirc \overline{C O}\) & & & & & & \\
\hline S IAOS & Mestinit & c & & & & & & & SNESTE & & & & & & & & & \\
\hline libulik & hetrek & \(\stackrel{ }{*}\) & & & & & & & & & & & & & & & & \\
\hline IGAR & runit eir & \(c\) & lutur & C & Filmeo & 1 C & OFFWEGO & 8 C & me Smmkr & 1 C & Partgen & C & Yokky & C & Phased & & Yokuut & \\
\hline & panplut & \(\checkmark\) & Prasel & 1 C & PHASE2 & Sc & Pmase3 & （c） & RELONE & 3 C & Parlmov & \(1 \overline{0}\) & HCRT & 2 C & REETER & \(2 \dot{C}\) & Flush & \({ }^{-1}\) \\
\hline & Prkte & c & Stosck & c & CENiRCY & 2 C & WALK & 1 C & Wrere & 1 C & ESTEP． & & LISTING & & GREYSN & & & \\
\hline & SWEEP & 4 & SPESTEP & 3 C & SIVOUT & دC & & & & & & & & & & & & \\
\hline 1 BUH & MESIMINR & 11 & & & & & & & & & & & & & & & & \\
\hline IbuF & Luch & 4 & & & & & & & & & & & & & & & & \\
\hline lCEL & Pahimuz & 3 & & & & & & & & & & & & & & & & \\
\hline 1 Cl & runi．ul & \(\bigcirc\) & & & & & & & & & & & & & & & & \\
\hline ICC & yuncul & 0 & & & & & & & & & & & & & & & & \\
\hline 10 & PLHI & c & helter & 1 C & FLUSH & 34 & Walk & ＜SC & EStep & c & LISIING & C & & & & & & \\
\hline luct & HeEtref & \(y\) & Walk & 9 & & & & & & & & & & & & & & \\
\hline luc & YUKItER & \(\stackrel{1}{6}\) & yciky & c & Phaseo & ＜C & yokcut & C & parflot & C & Phasej & C & Phasez & c & Phase 3 & 14 & REZONE & C \\
\hline & Pahthut & c & & & & & & & & & & & & & & & & \\
\hline luiv & \[
\begin{aligned}
& \text { Yunder } \\
& \text { Paklinut }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{c}
\end{aligned}
\] & ycnky & C & Phaseg & 2C & yokout & C & PARPLOT & C & Phasel & C & Phase2 & 1 C & Prase 3 & \(\underline{C}\) & hezone & C \\
\hline 1 lump & Yunıter & \(t\) & & & & & & & & & & & & & & & & \\
\hline 101 & mala & 11 & & & & & & & & & & & & & & & & \\
\hline 1 lc & luer & \({ }_{4}\) & Pakimev & \(?\) & & & & & & & & & & & & & & \\
\hline lecp & Yuniftik & 6 & 1 ILMCU & c & UFFWEGU & & & & partgen & & yukky & ¢ & Phasess & C & Yokout & C & PARPLO！ & 1 C \\
\hline & Pricsel & 6 & frasec & c & phase 3 & \[
\underline{i}
\] & RELONE & \[
\mathbf{C}
\] & PAKTMOV & \[
7 \mathrm{c}
\] & & & & & & & & \\
\hline 1tLPX & Patiliur & 2 & & & & & & & & & & & & & & & & \\
\hline ltic & cout & 18 & & & & & & & & & & & & & & & & \\
\hline lels & LHtwegu & 0 & melfek & 13 & centaoy & \(\square\) & Where & 19 & SWEEP & 10 & & & & & & & & \\
\hline LECN & LUuP & 12 & & & & & & & & & & & & & & & & \\
\hline IESCAP & NCFI & c & metrer & sc & Flush & \(\underline{C}\) & WALK & 2 C & ESIEP & c & LlSTINO & C & & & & & & \\
\hline 1tHKE & Priases & \(\stackrel{2}{2}\) & & & & & & & & & & & & & & & & \\
\hline 11 & Or Prigu & 2 & mesmakfe & H & yukcut & 1 & Phase 3 & 2 & IN & 2 & & & & & & & & \\
\hline 1J & Yuxiter & \(\checkmark\) & LCur & \({ }^{6} \mathrm{C}\) & ＋ILMCO & 5 S & DFFHEGO & \(<7 C\) & MESHMKR & 816 & Partgen & & Yokny & c & PHASEO & 34 C & YOKOU！ & \\
\hline & Farrlul & & rrasej & 42 C & phaséa & 70 C & PmASE3 & 49 C & helone & 62C & PAR!MCV & 7 C & MCRT & 16 C & REETEM & 25 C & Flush & \\
\hline & Fratus & c & Slusch & \({ }^{\text {c }}\) & WALK & \(\stackrel{\text { c }}{ }\) & ES！EP & 13 C & Listing & 2 C & GREYSA & 13 Cl & CYLSN & C & & & SNESTEP & \\
\hline & snult & 1く6 & & & & & & & & & & & & & & & & \\
\hline 1 J \({ }^{\text {a }}\) & Yuncill & t & & & & & & & & & & & & & & & & \\
\hline 1 Jo & Yuxibl & － & & & & & & & & & & & & & & & & \\
\hline 1 ULEN & htittte & 14 & & & & & & & & & & & & & & & & \\
\hline 1JUT & SNLSJEP & 3 & & & & & & & & & & & & & & & & \\
\hline ！JN & OrtaEGO & － & Slasich & 2 & WALK & 2 & & & & & & & & & & & & \\
\hline IJM & ruxdrek & \(\downarrow\) & LClut & －\({ }^{\text {c }}\) & ＋Ilnco & \(c\) & OFFKEGO & 3 C & mestmin & 126 & Partien & & rokky & C & Phaseo & 2 C & yokout & \\
\hline & rakreul & c & frasel & －\({ }^{\text {c }}\) & phasez & 236 & Phase 3 & 12 C & GEZONE & yc & parimoi & c & MCRT & c & REEFER & C & FLUSH & \({ }_{6}\) \\
\hline & Frkeb & c & Stusch & C & WALK & 6 & ES！EP & 1 C & LISTING & \({ }_{8 C}\) & ghersa & c & CYLSN & c & SWEEP & & SNESTEP． & c \\
\hline & Sivol & 6 & & & & & & & & & & & & & & & & \\
\hline 1 JMAX & GhLYSN & \(\dot{\%}\) & & & & & & & & & & & & & & & & \\
\hline IJMIN & MLKI & 3 & & & & & & & & & & & & & & & & \\
\hline 1 JMS & LuOH & 14 & & & & & & & & & & & & & & & & \\
\hline dur & Yokitek & & LCLP & & filleco & & Oftwego & 4 C & mestmik & & Patigen & & YOKку & & Phaseo & & Yokout & \\
\hline & rabliut & i & rrasel & 2＂c & Phasez & 21 C & PHASE3 & \(\rightarrow 1 \mathrm{C}\) & HELONE & 14 C & PARİMO：̈ & bc & MCHT． & 6 C & REETER & 226 & FLush & \({ }_{6}\) \\
\hline & Prheg & c & SLOSCH & 6 & Whle & c & ESIEP & 2 C & LISTING & C & Gpersi & S & C！！L．SN & \({ }^{\text {c }}\) & SWEEP & \(\dot{¢}\) & SNESTEP． & \(\bar{\delta}\) \\
\hline & snuet & 1 & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { மo } \\
& \text { on }
\end{aligned}
\] & & JP4 & yundrek prast） & \[
i
\] & ＋1LMCC Frase & \[
\begin{aligned}
& C \\
& c
\end{aligned}
\] & \[
\begin{aligned}
& \text { CHFNEGO } \\
& \text { PHASE3 }
\end{aligned}
\] & \[
\begin{aligned}
& 2 C \\
& 1 C
\end{aligned}
\] & NESく～NKR relcne & \[
\begin{aligned}
& C \\
& C
\end{aligned}
\] & partgen PARTMOV & \[
\begin{aligned}
& c \\
& c
\end{aligned}
\] & Yukky & C & Phaseu & c & yoklut & C & PARPLOT & c \\
\hline & & JRIte & ruxcul & 4 & Fakrlut & 2 & & & & & & & & & & & & & & \\
\hline & & juc & centiour & 1 C & nALK & 6 & & & & & & & & & & & & & & \\
\hline & & ¢̣SUR & Sursch & 7 & & & & & & & & & & & & & & & & \\
\hline & & jSVW & Yuncul & \({ }^{\text {c }}\) & f ILMCC & c & OFFWEGO & 34 & meshmar & 3 C & Prase \(]\) & 1 c & Re \(20 N E\) & C & & & & & & \\
\hline & & －\({ }^{\text {JSWTCH2 }}\) & YUKITER & 1 C & FILMCO & c & ORFMEGO & 16 & NESMMKR & c & Phase t & C & rhase 3 & 1 & RELONE & 1 C & & & & \\
\hline & & jswTCr3 & YLINIPEK & c & ＋ILMCO & c & OrFWEGO & \(3{ }^{\circ}\) & MESthert & C & phasej & c & helone & C & & & & & & \\
\hline & & jT & Sutt \({ }^{\text {P }}\) & 10 & 10 & 10 & UUT & 10 & & & & & & & & & & & & \\
\hline & & 6الٌ & prast． & 4 & & & & & & & & & & & & & & & & \\
\hline & & jim & Prase & 4 & & & & & & & & & & & & & & & & \\
\hline & & JTRESH & Ht くClot & \(\dot{5}\) & & & & & & & & & & & & & & & & \\
\hline & & JTup & MESHMnK & 3 & & & & & & & & & & & & & & & & \\
\hline & & Junf & URFWEGO & 0 & & & & & & & & & & & & & & & & \\
\hline & & Junf ce & Urgntul & 16 & nestamin & 3 C & HARIGEIL & c & & & & & & & & & & & & \\
\hline & & jxL & Sivout & 3 & & & & & & & & & & & & & & & & \\
\hline & & jro & SnuUl
OHI WEGO & 3 & rcnuvi & ［7 & kEEFER & \(<\) & ESTEP & 3 & IN & ＊ & OUT & 6 & SNGEN & 18 & & & & \\
\hline & & KA & Uut & 6 & & & & & & & & & & & & & & & & \\
\hline & & \(K_{\text {LE }} P\) &  & 3 & & & & & & & & & & & & & & & & \\
\hline & & KK & yokcul & 13 & & & & & & & & & & & & & & & & \\
\hline & & Kku & parimuv & 4 & & & & & & & & & & & & & & & & \\
\hline & & np & UPrmego & 5 & FarloEn & 9 & PARPLOI & 0 & PARTMOV． & & & & & & & & & & & \\
\hline & & KRG & yukcul & 3 & & & & & & & & & & & & & & & & \\
\hline & & Kん」 & yurcul & 0 & & & & & & & & & & & & & & & & \\
\hline & & KSiep & Ofrwegi & 1 & & & & & & & & & & & & & & & & \\
\hline & & KSUA & SUYSCH & 1. & & & & & & & & & & & & & & & & \\
\hline & & KTiL & Yun \(1+L\) L & \(\stackrel{\circ}{ }\) & & & & & & & & & YOKKY & \(\underline{\square}\) & Phased & C & YOKOUT & C & PARPLOT & \(\underline{C}\) \\
\hline & & K×1 & Yoniter frases & \[
\begin{array}{r}
{ }^{6} \\
26
\end{array}
\] & \[
\begin{aligned}
& \text { FILMC.C } \\
& \text { PrASE }
\end{aligned}
\] & \[
\begin{gathered}
C \\
2 C
\end{gathered}
\] & \[
\begin{aligned}
& \text { UHFWEGO } \\
& \text { PHASE3 }
\end{aligned}
\] & \[
\begin{array}{r}
3 C \\
C
\end{array}
\] & NESHMKR RELCNE & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& \text { PARTGEN } \\
& \text { PARTMOV }
\end{aligned}
\] & \[
\begin{aligned}
& C \\
& C
\end{aligned}
\] & roknr & \(\underline{\square}\) & Prases & c & & & & \\
\hline & & \(K 1\) & yuncul & 0 & & & & & & & & & & & & & & & & \\
\hline & & K2 & luncol & 0 & & & & & & & & & & & & & & & & \\
\hline & & K3 & runcul & 0 & & & & & & & & & & & & & & & & \\
\hline & & \(K_{4}\) & runcui & \(t\) & & & & & & & & & & & & & & & & \\
\hline & & L & runcui & 4 & 11 & 1 & UUT & 2 & SnGEN & 15 & & & & & & & & & & \\
\hline & & L．a & SnGEN & 4 & & & & & & & & & & & & & & & & \\
\hline & & LAM & YOKıtEK & \(\stackrel{4}{4}\) & －ILMCO & CO & OFF WEGU & 4 & NEShNKR & & & & rokKy MCRT & \[
\frac{C}{0}
\] & HEEFER & \[
{ }_{0}^{C 0}
\] & FLUSA & \[
\ddot{\tilde{0}}
\] & WALK & ¢0 \\
\hline & & & prasel & 160 & hrasel & 1 CO & prase3 & co & RE \(\angle C N E\) & CO & pahtmov & \[
\mathrm{CO}
\] & & & & & & & & \\
\hline & & & ESTEP & \(\dot{0}\) & LISIING & \(0^{\circ}\) & GKEYSN & 0 & SHESIEP & 0 & SNOUT & & & & & & & & & \\
\hline & & LAMD & －ilmeu & \(u\) & crantue & 0 & MESTMKK & 0 & Patigen & 0 & Yukky & 0 & PHASEG & 0 & Yokout & 0 & WALK &  & ESİt & \\
\hline & & & rmasec & 40 & frast 3 & Q & HELCNE & 0 & PAHINOV & 0 & mCht & 0 & KEEFER & & FLush & & & & & \\
\hline & & & Listing & 0 & gharsa & 0 & SHESTEP & 0 & Snol t & 0 & & & & & & & & & & \\
\hline & L & Lavnuek & mlet & 1 & HEEPEK & 1 & rbusit & 1 & WALK & 1 & ESTEP & J & LISTInG & 1 & & & & & & \\
\hline & & Lutil & CYLSN & 4 & & & & & & & & & & & & & & & & \\
\hline & & L6tT2 & CYLSN & 3 & & & & & & & & & & & & & & 3 & yokout & 3 \\
\hline & F & LCM & YuntFek & 3 & tup & & & j & & & & & & \[
3
\] & MCRT & \[
3
\] & REEFER & 3 & flust & 3 \\
\hline & & & Pakrlut & 3 & frasti & 3 & PMASE2 & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & PHASE3 & \[
3
\] & HESENE
LISTING & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { PARTMC. } \\
& \text { GHEYSA. }
\end{aligned}
\] & \[
3
\] & \[
\begin{aligned}
& \text { MCRT } \\
& \text { CYLSSN }
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { REERER } \\
& \text { SWEE }
\end{aligned}
\] & \[
3
\] & SNESTEP & 3 \\
\hline & & & frite SNOW & \[
3
\] & SçSch & 3 & & 3 & ESIEP & & LISTING & & & & & & & & & \\
\hline & & LE & CrLSN & 4 & & & & & & & & & & & & & & & & \\
\hline & & LengTm & Yundfte & ＊ & & & & & & & & & & & & & & & & \\
\hline & & ＇engtha & HeEfth & 4 & ESItP & 2 & GREYSN & 1 & & & & & & & & & & & & \\
\hline & F & Leat & Prase & J & Frasts & 1 & MCRT & 1 & ES！EP & 1 & GRE YSN & 1 & SNESTEP． & ） & & & & & & \\
\hline & S & LINCNT & yuktut & 7 & raktiut & 3 & & & & & & & & & & & & & & \\
\hline & & LINES & Yukcut & 0 & lisling & 6 & & & & & & & & & & & & & & \\
\hline & 5 & blsting & Lisling & 1 & ＋1LMCC & & OFFMEGU & & neshmik & c & Partgen & \(c\) & rokky & C & Phased & C & Yokout & \(c\) & PARPLOT & C \\
\hline & & & \[
\text { Phase } 1
\] & に & rrasta & c & Hhase3 & 1C & RELONE & C & pahtmov & \(c\) & & & & & & & & \\
\hline & & LL． & Yuxclil & 11 & & & & & & & & & & & & & & & & \\
\hline & S & LOLF & YOKdFEK & 5 & CrFWEGO & 3 & & & & & & & & & & & & & & \\
\hline & F & LUGUPCAL & OHPEEGO & 1 & & & & & & & & & yukout & 7 & Phasel & 2 & PHASE2 & 4 & Phases & 7 \\
\hline & & houp & Lut & 1 & \[
1 \operatorname{ILMCC}
\]
ACKI & 1 & HEEFER & 2 & \[
\begin{aligned}
& \text { MESKNK } \\
& \text { ESTEP }
\end{aligned}
\] & 1 & LISTING & 1 & GHEYSN & 1 & SAESTEP & 1 & SNOUT & 3 & & \\
\hline & S & LOUPO & Luor & ， & Cratuc & ， & ranse 3 & ， & & & & & & & & & & & & \\
\hline & & LFG & Ur＋nEGL & － & FBHlOEN & 2 & rakflol & \(\Sigma\) & PARTMOV & 0 & & & & & & & & & & \\
\hline & & LSJatus & runiteh & 3 & HEEFとK & 4 & ESTEP & \(<\) & GREYSN & 1 & & & & & & & & & & \\
\hline & & LU & LYLSA & － & & & & & & & & & & & & & & & & \\
\hline & & Lw & CYL． \(\mathrm{Sa}_{\text {a }}\) & － & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & M & \[
\begin{aligned}
& \text { PILACU } \\
& \text { HMASI } \\
& \text { LISIIN }
\end{aligned}
\] & \[
\begin{aligned}
& u \\
& u \\
& u
\end{aligned}
\] & CrFWEGO frasej gilusn & \[
\begin{array}{r}
50 \\
n \\
0
\end{array}
\] & \begin{tabular}{l}
MESTMKR \\
HELCHE \\
IN
\end{tabular} & \[
\begin{gathered}
0 \\
19
\end{gathered}
\] & PAKTGEN partaov OUT & \[
17^{0}
\] & \begin{tabular}{l}
yckey MCRT \\
sngen
\end{tabular} & \[
11^{0}
\] & Phaseg REEFEF SAESTET & \[
\begin{aligned}
& u \\
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
YOKOUT \\
flusí \\
snout
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { PARPLOT } \\
& \text { WALK }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & PHASE EStEP & ט \\
\hline & MASK & wilk & 34 & & & & & & & & & & & & & & & & \\
\hline & －MAI & Mesthinh & \(u\) & & & & & & & & & & & & & & & & \\
\hline & ＊Mall & MESPM．．．nk & \(\checkmark\) & & & & & & & & & & & & & & & & \\
\hline L． & mauve & metrek & 1 & Celatiocy & 1 & walk & 1 & HOWFAR & 1 & WHERE & 1 & & & & & & & & \\
\hline 5 & Maxil & OrraLGu & c & SCOSCR & 1 & SnEEP & J & & & & & & & & & & & & \\
\hline S & HCKT & mint & J & & & & & & & & & & & & & & & & \\
\hline 5 & me Shmikh & Ortwegu & & NESHAMR & 1 & & & & & & & & & & & & & & \\
\hline & M1 & KとER」K & 10 & walin & c & & & & & & & & & & & & & & \\
\hline S & MING & OrPmeg & 1 & Stostik & 3 & & & & & & & & & & & & & & \\
\hline & MJ & htereth & 16 & walk & C & & & & & & & & & & & & & & \\
\hline & MM & CYLSN & 7 & sutep & 3 & SNGEN & 2 & & & & & & & & & & & & \\
\hline 5 & MUいた。 & OHFWEGU & 1 & ghirsn &  & & & & & & & & & & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{MP}} & ＋blecu phasi e & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & Crrmici） PraSt： & \[
\begin{aligned}
& 4 \\
& 70
\end{aligned}
\] & MESH．TIKn he LCiNE & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & Partgen PARTMOV & \[
0
\] & Yokky MCRT & \[
\begin{aligned}
& n \\
& 0
\end{aligned}
\] & Phases kEEFER & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
rokout \\
FLuSh
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & PAKPLOT WALK & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & Phasel ES：EP & 0 \\
\hline & & Lisling & U & ontris． & 0 & LTHESTEP & 0 & sault & 0 & & & & & & & & & & \\
\hline & mo & Ketrl） & 1 c & malin & c & & & & & & & & & & & & & & \\
\hline & Mol & HeEttr & 16 & halin & c & & & & & & & & & & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{Mu}} & Yukitik & c & ＋ICMCC & CD &  & bCu & mestrikR & CO & Partgen & CD & Yokky & CO & Phaseu & CO & yokout & CL & PARPLOT & CO \\
\hline & & Phasti & 160 & Prasec & 1 CH & PHASES & cu & RELCNE & CO & PAKTMO＇d & co & MCH！ & & REEFER & & FLUSTM & & WAL̇K & \\
\hline & & Esler & \(\checkmark\) & LSIING & \(1{ }^{1}\) & GHEYSN & U & SAESTEP & 0 & snout & D & & & & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{muji}} & ＋ilmcu & \(\checkmark\) & CFFWEGO & 0 & MES & 0 & partien & 0 & yckey & 0 & phaseo & 0 & yokout & 0 & PAMPLOT & 0 & Phase 1 & 50 \\
\hline & & Praste & 34 & frases & 0 & REICNE & 0 & Paktmov & 0 & MCHT & 0 & HEEFER & 0 & Flusi & 0 & Walik & 0 & ESTEP & 0 \\
\hline & & LISTINO & 4 & chersi & 0 & StMESTET & 0 & SNOUI & 0 & & & & & & & & & & \\
\hline & MuStit & Prastec & 4 & & & & & & & & & & & & & & & & \\
\hline & M1 & Sotte & \(b\) & & & & & & & & & & & & & & & & \\
\hline & MP & Snetip & 2 & & & & & & & & & & & & & & & & \\
\hline & N & yuncui & 0 & SnGĖN & 5 & & & & & & & & & & & & & & \\
\hline S & nalu & Fmases & 1 & & & & & & & & & & & & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{Natie}} & Yuniter & Cic & LCUP & c & ＋1LNCO & C & OFFWEGO & 75 & MESHMKR & c & Pakigen & C & Yokky & c & PHASEO & & rokors & \\
\hline & & Parplell & 14 & Prasel & c & phasez & C & phasez & C & HELONE & c & Pahjmov & C & MCRT & c & REEFER & \(\stackrel{C}{C}\) & FLUST \({ }^{\text {a }}\) & \({ }^{\mathbf{E}}\) \\
\hline & & fritig SNLU & \[
i
\] & Stosth & c & watik & \(\overline{\text { c }}\) & ESIEP & \(\dot{\text { c }}\) & LISting & C & gheysa & \(\overline{\text { co }}\) & CYLSN & c & SWEEP & \(\dot{C}\) & SNESTEP & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{－hamijls}} & yunitchi & c & ＋1LMLO & c & UFFWEGU & c & Meshmikf & c & partgen & c & yokky & C & Phaseo & C & yokuet & c & PARPLOI & C \\
\hline & & Prast 1 & \(\stackrel{\square}{6}\) & frasta & C & PriASE3 & & at \(\angle \mathrm{CNE}\) & C & fartmov & c & & & & & & & & \\
\hline & Nu & MEStlint & 4 & & & & & & & & & & & & & & & & \\
\hline & Mbank & HEEREH & 10 & & & & & & & & & & & & & & & & \\
\hline & Ntr & Yuhiftr & C & CFFOtGO & 3C & MCRT & c & ReEter & \({ }_{5} \mathrm{C}\) & Flush & c & walk & C & ESTEP & c & LISIING & c & & \\
\hline & Nblf & Yundfeh & 6 & しr＋wEGO & \({ }_{2} \mathrm{C}\) & MCET & c & REEFER & c & flush & c & wal．K & \(\bigcirc \underline{\text { ch }}\) & ESTEP & 1 C & LISIING & C & & \\
\hline & NHC & NESPMAK & 3 & & & & & & & & & & & & & & & & \\
\hline & hicts & kefrtek & 16 & & & & & & & & & & & & & & & & \\
\hline & NCUL & MCH T & \(c\) & htertek & 9 C & flush & C & WALK & 2 C & ESTEP & c & LISTING & \(\underline{C}\) & & & & & & \\
\hline & NCH & ketrem & 7 & & & & & & & & & & & & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{NCYC}} & Yundteh & 6 & LCUP & C & ＋1Lrco & c & OFPWEGO & 1 C & MESMMKR & C & parigen & & rokky & c & Praseo & & YOKOUT & \\
\hline & & rasiflu！ & 16 & frasec & 4 C & Prasez & C & Prase 3 & c & hezone & c & PARIMOV & \(\overline{\mathrm{c}}\) & MCRI & 4 C & REEFER & c & FLUSH & \(\overline{\mathrm{c}}\) \\
\hline & & Prhed & i & Scusch & c & walk & c & ESTEP & c & LISTING & c & gheisi & ＜ \(\bar{C}\) & CYLSN & C & SWEEP & \(\stackrel{\text { c }}{ }\) & SNESTEP & \\
\hline & & SNult & C & & & & & & & & & & & & & & & & \\
\hline & nuall． & OrFnEUU & 3 & & & & & & & & & & & & & & & & \\
\hline & Nult & N（H） & \(\checkmark\) & metren & 9 C & r LuSh & c & WAL．K & 2 C & ESTEP & c & LISing & c & & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{noump}} & YUAIFER & 146 & LCUF & c & ＋ilinco & \(\stackrel{\square}{c}\) & CFFwEgo & c & MESHMKR & c & Parlieñ & \(\underline{\text { c }}\) & Yokky & c & Phaseo & & yokou！ & \\
\hline & & Parthut & \(\stackrel{1}{6}\) & frasel & c & rhase2 & c & Prase 3 & c & HEZONE & c & PARImOV & \(\bar{C}\) & MCRT & c & REEFER & ci & FLUSḢ． & C \\
\hline & & Pffeg & ¢ & Stosck & C & wal．k & c & ES！EP & c & LISting & c & GREYSA & \(\underline{C}\) & CYLSN & c & SWEEP & c & SNESTEP & \\
\hline & NE & ludr & \(1)\) & CFFWEGO & \％ & Partgen & 1 & PAKPLOT & 1 & PARTMOV & 4 & keEfer & 5 & centroy & 3 & Wheke & \(\checkmark\) & SWEtP & 4 \\
\hline & Nels & Yuntfer & t & Cramego & 8 & & & & & & & & & & & & & & \\
\hline & NEXP & yuncui & 1 ， & Farplot & 5 & & & & & & & & & & & & & & \\
\hline & n＋Lus）＇ & MCHT & \(\stackrel{\square}{6}\) & Hicter & 3 C & Flush & CC & walk & c & ESIEP & & LISTING & & & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{NFHG}} & Yuntrer & c & LCut & C & rilmco & \(\bar{C}\) & OFFMEGO & 56 & MESHMKR & c & rarligen & ¢ & YOKky & & Phaseo & & Yokout & \\
\hline & & Pahtlut & 6 & frasel & C & Prase2 & c & pliase 3 & c & fezone & c & PARIMOV & C & MCKT & c & REEFER & c & Flust． & \(\overline{6}\) \\
\hline & & Priteg & 16 & SLOSLK & 3 C & malk & \(\bigcirc\) & ES！EP & \(c\) & LISTING & c & greysa & ¢ & CYLSN & c & SWETP & c & SNESTEP & \\
\hline & & SNOLT & c & & & & & & & & & & & & & & & & \\
\hline & NGEN & KEEFEK & 11 & & & & & & & & & & & & & & & & \\
\hline & NL． & MESTMnt & \(\bigcirc\) & & & & & & & & & & & & & & & & \\
\hline & NL． 1 & MESIMAK & \(\dot{4}\) & & & & & & & & & & & & & & & & \\
\hline & Nr：Ove & MCh1 & c & Hetirer & 9 C & FLuSh & C & WALK & ？ 6 & EStEP & c & LISTING & \(\underline{C}\) & & & & & & \\
\hline \multicolumn{2}{|r|}{NN} & Cylsin & － & SnEEf & 50 & LTI & 20 & OUT & 20 & & & & & & & & & & \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No & & SLUPEL Snco & \begin{tabular}{l}
numt \(n^{H}\) \\
Yukifer
\end{tabular} & \({ }_{3}^{6}\) & CFFwego & 3 C & GREYSN & <¢ & CYLSN & 1100 & SWEEP & C & Sntster & C & snout & C & & & & \\
\hline & S & SAESEP & SIVESTE & 1 & & & & & & & & & & & & & & & & \\
\hline & S & SNGEN & CrLSN & 1 & SNGEM & 1 & & & & & & & & & & & & & & \\
\hline & S & SNuU- & Snoul & , & & & & & & & & & & & & & & & & \\
\hline & L & SnOwIte & GREYSN & , & CYLSN & 1 & SNOUT & 1 & & & & & & & & & & & & \\
\hline & & Sp & MCRI & \(\bigcirc\) & Gutysn & 6 & & & & & & & & & & & & & & \\
\hline & & Sptenck & Phase & \(\stackrel{L}{2}\) & & & & & & & & & & & & & & & & \\
\hline & & SPH & HEEPER & 2 & & & & & & & & & & & & & & & & \\
\hline & & Spmi & Pumbian & 4 & & & & & & & & & & & & & & & & \\
\hline & & SPTBL. & Yuniter & \(\stackrel{i}{c}\) & LCur & \({ }^{\text {c }}\) & & & & & me Shmir & & PARTGEN & & & & & & & \\
\hline & & & Panflei & C & Prasel & c & phasez "ALK & \(\stackrel{i}{c}\) & phase 3 & \[
\begin{aligned}
& \mathbf{c} \\
& \mathbf{c}
\end{aligned}
\] & RE \(\angle C N E\) & c & PARIMCV GHEYSN & \[
\frac{\bar{U}}{\mathbf{L}}
\] & MCKT CYLSN & \[
\begin{array}{r}
1 \mathrm{C} \\
\mathrm{C}
\end{array}
\] & REEF ER
SWEEP & \[
\begin{aligned}
& \overline{\mathrm{C}} \\
& \mathbf{C}
\end{aligned}
\] & FLUSH
SNES: EP & \(\stackrel{\text { Cl }}{\text { C }}\) \\
\hline & & & Prhte & \(\stackrel{C}{C}\) & StaSck & c & *ALK & C & & & & & & & & & & & & \\
\hline & & & Sinout & c & & & & & & & & & & & & & & & & \\
\hline & S & SSwTCH & Ortmegu & 3 & & & & & & & & & & & & & & & & \\
\hline & S & START & LUOP & 1 & filmco & J & OFF WEQU & 2 & MEShMKR & 5 & Phaseo & 1 & YOKOUT & \(\stackrel{8}{8}\) & Phasel & 2 & PHASE2 & 4 & PrASE 3 & 7 \\
\hline & & & RELCNE & 4 & n(H) & , & HEEFER & 1 & ESJPP & 1 & LISTINO & 1 & GREYSA & J & SAESTEP & & SNOUT & & & \\
\hline & S & STARTU & LVOP & J & Ortwego & \(!\) & Prise 3 & 1 & & & & & & & & & & & & \\
\hline & L & state & YONIPLK & , & LCLP & 1 & FILNCO & 1 & OFFWEGO &  & ME SHMKR
RE ZONE & \[
\mathfrak{l}
\] & PARIGEN
PARTMOV & \[
\begin{aligned}
& 1 \\
& i
\end{aligned}
\] & YOKKY
MCKI & & PHASEO
REEPER & & \[
\begin{aligned}
& \text { YOKOUT } \\
& \text { FLUSH }
\end{aligned}
\] & \\
\hline & & & Patricus & , & frasti & 1 & rhase 2 & 1 & Pirasez & \[
i
\] & REZONE & y & PARTMOV
GMEYSA & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & MCKI
CYLSN & \[
1
\] & REEFER & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
FLUSH \\
SNESTEP
\end{tabular} & \[
\frac{1}{1}
\] \\
\hline & & & \begin{tabular}{l}
Prheg \\
SMOUT
\end{tabular} & 1 & SLuSte & 1 & wALK & & FSTEP & & LISTING & & & & & & & & & \\
\hline & & STHT & Pumega & 11 & & & & & & & & & & & & & & & & \\
\hline & S & Subsck & 3uascr & J & WALK & J & & & & & & & & & & & & & & \\
\hline & & Sum & SWELP & b & & & & & & & & & & & & & & & & \\
\hline & S & Swtef & CYLSN & J & SWEEP & 1 & & & & & & & & & & & & & & \\
\hline & & \(\mathrm{S}_{\boldsymbol{W}} \mathrm{ICH}_{\text {cher }}\) & HEくCNE & 4 & & & & & & & & & & & & & & & & \\
\hline & & S2 & muwt AK & 2 & & & & & & & & & & & & & & & & \\
\hline & & Y & Yukireh & c & LCur & c & \(1+1 L M C O\) & c & OFFWEG0 & PC & ME SHMKR & & fartgen PARTMOV & & & & PHASEO REETER & \[
3 \underset{C}{C}
\] & \begin{tabular}{l}
YOKOUT \\
Flusi
\end{tabular} & SC \\
\hline & & & Paticlus & IC & ITASEJ & 4 C & Prasez & c & Pllase3 & C & GE2ONE & C & PARTMOV & د & \begin{tabular}{l}
MCRT \\
CYLSN
\end{tabular} & \[
\begin{array}{r}
3 \mathrm{C} \\
\mathrm{C}
\end{array}
\] & \[
\begin{aligned}
& \text { REEFER } \\
& \text { SWEEP }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& \text { FLL } \\
& \text { IN }
\end{aligned}
\] & 9 \\
\hline & & & Prheg & c & Scusclo & c & WALM & c & ESTEP & C & LISTING & C & & & & & & & & \\
\hline & & & OUI & 4 & SNuEN & 9 & SNESTEP & c & SnUut & C & & & & & & & & & & \\
\hline & & tamb & Yukjfék & c & LCUP & \({ }^{\text {c }}\) & filmco & \(c\) & OFPWEGO & 3 C & & & & & & & & & FLUSH & \(\overline{\text { c }}\) \\
\hline & & & Pahrlut & c & prasel & c & PrASE2 & C & PHASF3 & 2 C & helune & C & PaRTMCV GhEYSA & c
C & \begin{tabular}{l}
MCKI \\
CYLSN
\end{tabular} & \[
\begin{aligned}
& c \\
& c
\end{aligned}
\] & \[
\begin{aligned}
& \text { REEFER } \\
& \text { SWEEX }
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{C} \\
& \mathbf{C}
\end{aligned}
\] & snéstep & 3 C \\
\hline & & & PrREG & \(\stackrel{\text { c }}{\text { c }}\) & Slosick & C & WALK & 2 C & ESTEP & 2 C & LISTING & & & & & & & & & \\
\hline & & tavg & SNOUT & \({ }_{3}^{\text {c }}\) & SAESTEP & 3 & & & & & & & & & & & & & & \\
\hline & & icrcle & YukItLe & 5 & & & & & & & & & & & & & & & & \\
\hline & & loump & Yuniter & 7 & & & & & & & & & & & & & & & & \\
\hline & & İE & Priase & 3 & & & & & & & & & & & & & & & & \\
\hline & & IEMIT & YURIFER & C & cfrutgo & 36 & MCRT & 10 & REEFER & J & FLUSH & \({ }^{\text {c }}\) & WALM & & ESTEP & \(\stackrel{C}{C}\) & LISIING
PHASEO & \({ }_{3 C}^{C}\) & & \\
\hline & & TEMP & YUNJPER & c & LCUP & c & Filmco & c & OFTWEGSO & C & MESHMKR & 110 & Partgen & \(\stackrel{C}{C}\) & YONKY & C & PHASEO & 3 3 & & \\
\hline & & & pafplut & c & Prases & C & Phaseci & C & Prase 3 & 1 C & REZONE & C & PARIMOV & \(\stackrel{C}{C}\) & MCRI & 1 C & REEFER & 26 & flUSH & C \\
\hline & & & Prater & 4 & SLeSCH & C & walk & 16C & ESSEP & 1 C & LISTING & 1 C & GREYSA & <- & CYLSH & C & SWEEP & c & SNESTEP & \\
\hline & & & Sinjilit & \(i\) & & & & & & & & & & & & & & & & \\
\hline & & TEMPI & licstmat & 13 & & & & & & & & & & & & & & & & \\
\hline & & TEMP4 & Mrast & 2 & & & & & & & & & & & & & & & & \\
\hline & & TF. \({ }_{\text {T }}\) & wheme & 8 & & & & & & & & & & & & & & & & \\
\hline & & İgM & rates & 5 & & & & & & & & & & & & & & & & \\
\hline & & \({ }_{\top}{ }^{\text {H }}\) & KEtrek & 3 & & & & & & & & & & & & & & & & \\
\hline & & THIGH & Prasts & 7 & ESTEP & 7 & SNESTEP & 7 & & & & & & & & & & & & \\
\hline & & SMIRO & Yunifler & 6 & + ILMCO & C & OFFWEGU & 1 C & MESHMKR & C & Paktgen & c & yokky & C & PHASEO & c & YOKOUT & C & Parplot & \(\underline{ }\) \\
\hline & & & prase) & c & rrasca & c & Prasej & \(\stackrel{\square}{4}\) & RE \(\angle O N E\) & C & PARTMOV & C & & & & & & & & \\
\hline & & THY & Yoniter & c & LCuP & C & + ILMCO & C & OFFWEGO & 1 C & MLStMkK & C & Farticen & \(\stackrel{C}{C}\) & YOккY & C & PMASEO
REERER & C & YOKUSM & \({ }_{6}^{6}\) \\
\hline & & & Partlut & 6 & frasel & C & Phasez & c & PHASE3 & C & RE LONE & \(\stackrel{\square}{6}\) & Partmov & c & MCKT & c & REETEK & C & FLuSM & C \\
\hline & & & Prkeu & c & SluSCh & C & mal.K & C & ESIEP & 4 C & LISTING & c & GREYSN & & CYLSN & C & SWEEP & C & SNESTEP & \\
\hline & & & SNOLT & 6 & & & & & & & & & & & & & & & & \\
\hline & & 11 & PHASE & 8 & & & & & & & & & & & & & & & & \\
\hline & & IIAMB & Prast & \({ }^{4}\) & & & & & & & & & & & & & & & & \\
\hline & & TIC & Yuncul & 40 & Fakrlot & 20 & & & & & & & & & & & & & & \\
\hline & & time & YOK1tEH & 36 & LCUR & \({ }_{2}{ }^{\text {C }}\) & PILMCO
PHASE2 & & OFF WEGO
PHASEJ & \[
{ }_{C}^{* C}
\] & \begin{tabular}{l}
me Shmik \\
RE \(\angle O N E\)
\end{tabular} & C & PARTGEN & C & YOKKY
MCHT & \(2 C\)
\(7 C\) & PHASED
REEREH & \({ }_{2 C}\) & \[
\begin{aligned}
& \text { YOKOUT } \\
& \text { FLUSH }
\end{aligned}
\] & c \\
\hline & & & Pahplut
PfREG & 6 & rrasel
Stugck & \(\stackrel{\text { 2C }}{\text { C }}\) & - \({ }_{\text {phasez }}\) & c
\(C\) & \begin{tabular}{l}
PHASE3 \\
ESTEP
\end{tabular} & \({ }_{2} 6\) & LISTING & c & GREYSN & \(7 \underline{\text { Cr }}\) & CYLSN & C & SWEEP & C & SNESTEP- & \\
\hline & & & SHOLI & c & & & & & & & & & & & & & & & & \\
\hline & & \({ }_{\text {T1ILE }}\) & Sncul & 30 & & & & & & & & & & & & & & & & \\
\hline & & TJ & mestmat & 3 & & & & & & & & & & & & & & & & \\
\hline & & TK & phase & 8 & & & & & & & & & & & & & & & & \\
\hline & & TlGE & N(K) & 5 & Scosch & 4 & Went & \(\bigcirc\) & GREYSN & 3 & & & & & & & & & & \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline N & \(X_{H}\) & YukJfek Patimuv & \[
\mathfrak{c}
\] & \[
\begin{aligned}
& \text { FILMCO } \\
& \text { GHEYSN }
\end{aligned}
\] & \[
\underset{\mathrm{C}}{\mathrm{C}}
\] & OHFMEGC SNOUT & \[
c
\] & MESHMKR & 2 C & Partgen & c & rokout & IC & PAMPLOT & c & Phasta & \(\underline{\square}\) & RE 20NE & C \\
\hline & XRITE & fatiten & 2 & & & & & & & & & & & & & & & & \\
\hline & xHis & HEEPER & 3 & & & & & & & & & & & & & & & & \\
\hline & X \(\mathrm{KJ}_{3}\) & rease 2 & 0 & & & & & & & & & & & & & & & & \\
\hline & ¢ \(\times 24\) & praste & 6 & & & & & & & & & & & & & & & & \\
\hline & XSt & WHEME & 13 & & & & & & & & & & & & & & & & \\
\hline & XSIt & MLRI & \(\stackrel{3}{ }\) & & & & & & & & & & & & & & & & \\
\hline & XSm & WHETE & 12 & & & & & & & & & & & & & & & & \\
\hline & Xiay & Ortmegu & cu & & & & & & & & & & & & & & & & \\
\hline & メイt & Patigen & 7 & Pakimer & 4 & & & & & & & & & & & & & & \\
\hline & XT1¢ & rukcel & 16 & PamPlot & 5 & & & & & & & & & & & & & & \\
\hline & xu & Snolt & 2 & & & & & & & & & & & & & & & & \\
\hline & xus & Phasec & \(\bar{z}\) & & & & & & & & & & & & & & & & \\
\hline & XV & SNULI & 2 & & & & & & & & & & & & & & & & \\
\hline & xvo & Phaste & 2 & & & & & & & & & & & & & & & & \\
\hline & XVuL & MCHT & 2 & & & & & & & & & & & & & & & & \\
\hline & x \({ }^{\text {x }}\) & OFFWEGO & \(y\) & MESKMkr & 16 & Partgen & 」 & yokout & 19 & Phasel & 28 & Phasez & 13 & Phase 3 & 32 & RE ZONE & 2 & MCR！ & 3 \\
\hline & & Cejithily & 3 & Snestep & 3 & & & & & & & & & & & & & & \\
\hline & XxA & Prases & 4 & & & & & & & & & & & & & & & & \\
\hline & xx1 & PHASEC & 3 & & & & & & & & & & & & & & & & \\
\hline & x×2 & －Phastc & 3 & & & & & & & & & & & & & & & & \\
\hline & Xx3 & prastic & 3 & & & & & & & & & & & & & & & & \\
\hline & XX \({ }^{4}\) & Prased & 3 & & & & & & & & & & & & & & & & \\
\hline & XY & phasel & 4 & prasez & 4 & & & & & & & & & & & & & & \\
\hline & XYECS & CENIRUY & 130 & WALK & D & WhIERE & 320 & & & & & & & & & & & & \\
\hline & \(x_{1}\) & MESIONAR & 3 & prasel & 2 & YGikOUT & 16 & Phases & 2 & PHASE2 & 7 & Phase3 & 1） & RELCNE & 6 & PAKTMOV & b & SNOUT & 8 \\
\hline & \(x 12\) & prase 3 & 2 & & & & & & & & & & & & & & & & \\
\hline & X）\({ }^{\text {x }}\) & parimuv & 4 & & & & & & & & & & & & & & & & \\
\hline & \(\chi_{14}\) & yuncul & 3 & & & & & & & & & & & & & & & & \\
\hline & \(\times 2\) & MESTMKR & 3 & Prasen & 2 & YUKCUT & 10 & Prasel & 2 & Phasez & 7 & Phase3 & \(\underline{y}\) & HELONE & 6 & PARTMOV & 3 & SNOUT & 4 \\
\hline & \(\times 23\) & yunlut & 3 & Prase 3 & 2 & PARTMOV & 3 & & & & & & & & & & & & \\
\hline & \(\times 24\) & Prasel & 7 & frasez & \[
6
\] & & & & & & & & & & & & & & \\
\hline & \(\times 3\) & ME SH：NRR & 3 & frase．． & 2 & YOKCUT & 10 & Prasel & 2 & Prasez & 7 & Phase3 & 1） & kELONE & \(\stackrel{6}{6}\) & PAR（MOV & 5 & & \\
\hline & －31 & Phase） & 7 & frasec & & & & & & & & & & & & & & & \\
\hline & \(\times 34\)
\(\times 4\)
\(\times 4\) & PMPASE
MESMMK & 3 & renues & נ1 & Phasel & \(\dot{C}\) & Phase2 & 7 & Prase3 & 9 & Relune & \％ & PARTMOV & 4 & & & & \\
\hline & X41 & Phasej & 2 & renuer & & Prasel & & Prasez & & & & & & & & & & & \\
\hline & \(\times 43\) & raktmul & 3 & & & & & & & & & & & & & & & & \\
\hline & \(\times 5\) & HECUNE & 14 & & & & & & & & & & & & & & & & \\
\hline & \(Y\) & ＋1L．Cし & 20 &  & 10 & MESTHIKR & 140 & Paktgen & 0 & YCkkr & 0 & Praseg & 1＜0 & Yokout & 190 & PARPLOT & 0 & PHASE1 & 40 \\
\hline & & Phasec & OU & rrases & 100 & HEŻCNE & 230 & PARIMOV & 40 & MCRT & 47 & REEFER & 2． 2 & Flush & 0 & WALK & & & \\
\hline & & LISİING
runitek & 10 & Gricrsa & 40 & SNESTEP OHFWEGU & \({ }_{0}\) & SNOUT MESHMKR & \[
\begin{aligned}
& 0 \\
& 0 \\
& \text { C }
\end{aligned}
\] & partgen & C & roкоut & 2C & Pakplul & c & Phase 3 & C & RELONE & C \\
\hline & Y & Pahimuv & c & ghersh & \({ }_{4}\) & SAOLT & \({ }_{4} \mathrm{C}\) & & & & & & & & & & & & \\
\hline & YbASE & OrraEgu & \(5 i\) & MEStMmer & 2 C & Parigen & \(\overline{\text { c }}\) & & & & & & & & & & & & \\
\hline & YGUT & Pamtoen & 4 & & & & & & & & & & & & & & & & \\
\hline & YC & Parlgeti & 4 & & & & & & & & & & & & & & & & \\
\hline & YCu & roncut & \(40^{1}\) & & & & & & & & & & & & & Phase 3 & c & RE LONE & C \\
\hline & YCunv & Yunjter Parimov & \[
\stackrel{c}{i}
\] & \[
\begin{aligned}
& \text { HILNLC } \\
& \text { GHCYSN }
\end{aligned}
\] & \[
\underset{\text { C }}{\substack{C \\ \hline}}
\] & \[
\begin{aligned}
& \text { Of FWEGO } \\
& \text { SNOCT }
\end{aligned}
\] & \[
\underset{C}{C}
\] & MESHMKR & C & Partgen & C & YOKOUT & ＇\(\underline{\square}\) & PAKplot & c & Phase 3 & \(c\) & RELONE & \(\underline{\square}\) \\
\hline & ycunve & yoncus & \(1)\) & & & & & & & & & & & & & & & & \\
\hline & Yo & Parjuth & 7 & HCwr AK & 4 C & & & & & & & & & & & & & & \\
\hline & L．Yellow & Yukjter & 1 & ycaky & 1 & Prased & 1 & Yokout & 1 & PARPLOT & 1 & Phasel & 1 & Phasez & 1 & PHASE 3 & 1 & RELONE & 1 \\
\hline & & Pakinuv & ， & & & & & & & & & & & & & & & & \\
\hline & YJL2 & mestank & \(\overline{\text { c }}\) & & & & & & & & & & & & & & & & \\
\hline & YLb & rukcui & 15 & partlot & 5 & & & & & & & & & & & & & & \\
\hline & YLei & yuklut & ， & & & & & & & & & & & & & & & & \\
\hline & L．YLCl & YOKJfer & 1 & ccup & 1 & Filmeo & 1 & CFFWEGO & 1 & MESHMKR & 1 & Partigen & ， & YOKку & 1 & Prased & 1 & Yокоит & 1 \\
\hline & & fartlui & 1 & frasti & 1 & phasez & J & PmASE， 3. & 1 & RE \(\angle 0 N E\) & 1 & PAKİMCV & ， & MCKI & 1 & REEFER & ， & FLUSH & 1 \\
\hline & & Prate & j & SLoSch & 1 & WALK & J & ESIEP & 1 & L．IStiAg & 1 & GREYSA & 1 & CYLSN & 1 & SWEtP & 1 & SNESTEP & 1 \\
\hline & & Snol & 1 & & & & & & & & & & & & & & & & \\
\hline & L YL62 & Yunjre． & 1 & LCUP & & FILNCO & J & CFFWEGO & J & & & & & & & & & & \\
\hline & & rakrlut & J & frases & 1 & prasez & 1 & PIMASE3 & ） & RE \(\angle O N E\) & \[
1
\] & PARIMOV & 1 & \[
M C K 1
\] & 1 & REEFER & 1 & FLUSH SNESTEP & 1 \\
\hline & & Pr Hew & 1 & SLuSck & 1 & WALK & J & ESTEP & 1 & LISTING & & GHEYSN & & & 1 & SwEtP． & 1 & SNESTEP & \\
\hline & & Snual & 1 & & & & & & & & & & & & & & & & \\
\hline & YLGG & SUHSCH & c & & & & & & & & & & & & & & & & \\
\hline & YNE & WHEME & 12 & & & & & & & & & & & & & & & & \\
\hline & c YNW & WHEME & 11 & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{20}{*}{\[
\begin{aligned}
& \text { 昌 } \\
& \ddot{H} \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]} & S YOKIFER & runitek & 1 & & & & & & & & & & & & & & & & \\
\hline & 5 Yonky & yuxir & 1 & & & & & & & & & & & & & & & & \\
\hline & \(s\) yonual & runcul & J & & & & & & & & & & & & & & & & \\
\hline & YP & UrtaEgO & 2 & mestmikr & 12 & PARTMOV & 4 & POMEGA & 160 & & & & & & & & & & \\
\hline & Ypar & Filmcu & \(u\) & LF＋ひとG0 & 10 & MESHMKK & 0 & paktgen & 20 & Yokny & 0 & rhaseo & 0 & yokout & 0 & PARPLOT & 10 & Prasel & 0 \\
\hline & & Prasei & 0 & Prases & 0 & heizane & 0 & Paktmov & 40 & MCRT & 0 & REEFER & 0 & FLUSH & 0 & WALK & 0 & ESTEP & 0 \\
\hline & & LISTivg & \(u\) & Gnerss & 0 & SNESTEP & 0 & SNOUT & 0 & & & & & & & & & & \\
\hline & Ypr3 & pahtmov & 4 & & & & & & & & & & & & & & & & \\
\hline & YPI & pmases & 5 & & & & & & & & & & & & & & & & \\
\hline & YP\％ & Prastes & 9 & & & & & & & & & & & & & & & & \\
\hline & YF＇ & phases & 5 & & & & & & & & & & & & & & & & \\
\hline & Yp4 & Prases & 9 & & & & & & & & & & & & & & & & \\
\hline & YR & M．ESPMNK & c & & & & & & & & & & & & & & & & \\
\hline & L．YSCl & YURJPER & 1 & lcur & 1 & FILMCO & 1 & OFFWEGO & 1 & me Shmir & 1 & farigen & 1 & Yokky & 1 & Phaseo & 1 & rokuet & 1 \\
\hline & & Pais）lot & 1 & Prasej & ， & Phasez & 1 & Prase 3 & 1 & REZONE & 1 & PARTMOV & J & MCRT & 1 & REETER & 1 & FLUSTH & \\
\hline & & Pratit & ） & Scosch & 1 & waik & 1 & ESTEP & j & LISTING & 1 & GREYSA & J & CYLSN & 1 & SWEt？ & 1 & SNESTEP & \\
\hline & & Sinctul & 1 & & & & & & & & & & & & & & & －STE & \\
\hline & YSE & WHEHE & 13 & & & & & & & & & & & & & & & & \\
\hline & YSm & WHEKE & 12 & & & & & & & & & & & & & & & & \\
\hline & YT & runfftr & c & filmuc & 76 & OrFWEGO & c & me Shmir & C & partgen & C & Yokoul & 1 C & PARPLOT & C & Phase 3 & C & REZON． & C \\
\hline \multirow{41}{*}{\％} & & parimov & \(\underline{6}\) & Ghersi & C & SMOUT & C & & & & & & & Parplo． & & － & \(\underline{ }\) & Heron． & \(\underline{\square}\) \\
\hline & Ytat & OrtwLuO & ¢0 & & & & & & & & & & & & & & & & \\
\hline & Y16 & PAMIGEP＇ & 7 & fahimov & 3 & & & & & & & & & & & & & & \\
\hline & YIIC & runcul & 21 & fakrlut & 10 & & & & & & & & & & & & & & \\
\hline & Yop & Partiln & 4 & & & & & & & & & & & & & & & & \\
\hline & Yur & yukiol & 3 & farplut & 2 & & & & & & & & & & & & & & \\
\hline & YUPI & yuxcu） & 2 & & & & & & & & & & & & & & & & \\
\hline & YY & mestring & \(1:\) & frasel & 21 & Prasez & 10 & rezone & 4 & & & & & & & & & & \\
\hline & YYA & Prasel & 4 & & & & & & & & & & & & & & & & \\
\hline & Y & Mestrant & 3 & yckuet & in & Prasel & 5 & Phase？ & 6 & prases & 15 & hezone & 6 & Paktmor & 5 & SNOUT & 8 & & \\
\hline & Y1s & Patininov & \(\stackrel{+}{4}\) & & & & & & & & & & & & & & & & \\
\hline & Y14 & Prnsej & 2 & & & & & & & & & & & & & & & & \\
\hline & Y2 & mestman & 3 & yckout & 17 & Prasel & \(<\) & Phasez & 6 & prases & 11 & hezene & \(\bigcirc\) & PARTMOV & 3 & SNOUT & 4 & & \\
\hline & Y21 & yoncui & 3 & frase 3 & 2 & & & & & & & & & & & & & & \\
\hline & Y23 & Pahimev & 3 & & & & & & & & & & & & & & & & \\
\hline & Y24 & Prasel & \(\stackrel{0}{8}\) & rrasez & 11 & & & & & & & & & & & & & & \\
\hline & Y3 & Nestmant & 3 & renoul & 10 & Phasel & 2 & PloAse2 & 6 & phase3 & 15 & RE LONE & 0 & Partmul & 5 & & & & \\
\hline & Y31 & Phasti & \(\checkmark\) & rriste & 1） & & & & & & & & & & & & & & \\
\hline & Y36 & Prastis & 2 & & & & & & & & & & & & & & & & \\
\hline & \(Y^{4} 4\) & runcill & 3 & & & & & & & & & & & & & & & & \\
\hline & \(Y 4\). & mestrink & 3 & yenuei & \(1:\) & Prasel & 2 & Prasez & 6 & phase3 & 11 & ke lune & 16 & partmov & 4 & & & & \\
\hline & Y43 & Prasta 3 & 2 & ram！miv & 3 & & & & & & & & & & & & & & \\
\hline & Y5 & Kt＜LNE & 14 & & & & & & & & & & & & & & & & \\
\hline & \(L\) & pomega & 10 & & & & & & & & & & & & & & & & \\
\hline & \(<0\) & maln & \％ & & & & & & & & & & & & & & & & \\
\hline & L0t & Prase 3 & 3 & Esitr & 3 & SNESTEP & 3 & & & & & & & & & & & & \\
\hline & 2E & Prasej & 3 & CStep & 3 & SNESTEP & 3 & & & & & & & & & & & & \\
\hline & LEIAK & Prates & 1. & & & & & & & & & & & & & & & & \\
\hline & LETAR & Frrcl & 3 & & & & & & & & & & & & & & & & \\
\hline & ＜ElaX & Prate & \(\rightarrow\) & & & & & & & & & & & & & & & & \\
\hline & 2E1 & rhast 3 & 2 & ESTEP & 2 & SNESTET & \(\stackrel{2}{2}\) & & & & & & & & & & & & \\
\hline & LE & phases & \({ }^{2}\) & ESTEP & 2 & SNESTEF & 3 & & & & & & & & & & & & \\
\hline & 2tくて！ & prases & ＇2 & ESIEP & 2 & SIVESTEP & 2 & & & & & & & & & & & & \\
\hline & 4 P & OrPwego & 2 &  & 0 & GEEFEH & 1 C & POMEGA & 90 & CENTROY & 1 C & WALK & － & WHERE & \(\square^{\circ}\) & & & & \\
\hline & ＜F & Prases & \(\rightarrow\) & ESTEP & 4 & SNE STEP & 4 & & & & & & & & & & & & \\
\hline & LRINV & rmased & \(<\) & ESTEH & 2 & SNESTER & 2 & & & & & & & & & & & & \\
\hline & LkL． & Prast． 1 & \(\checkmark\) & ESIEP & 6 & Stiester & 2 & & & & & & & & & & & & \\
\hline & LSN & OHEPSM & ＜ & CrCSIV & 1 C & SWEEEP & 50 & SNOUT & 4 C & & & & & & & & & & \\
\hline & 2 T & Prasld & \(y\) & ESltt & 1.7 & SHESTER & 9 & & & & & & & & & & & & \\
\hline & \(\angle \mathrm{TL}\) & riasej & 4 & Esfor & 4 & SUEESIER & 2 & & & & & & & & & & & & \\
\hline & \(\angle 2\) & YUKIFER & 16 & CFFWEGO & 16 & GREYSN & \(\underline{\square}\) & CYLSN & \(c\) & SWEEP & C & SNESTET & C & SNOUT & c & & & & \\
\hline
\end{tabular}```


[^0]:    *One who reefs (naut); a short coat or jacket of thick cloth.

[^1]:    

