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1. DERIVATION

●✎

I.

DESCRIPTION OF COLLISIONLESS PEASMAS BY

CLASSICAL FIELD EQUATIONS

by

Gary S. Fraley

—.

ASSTRACT

Claaaical field equations are derived from quantum
fields to obtain a different and possibly simpler de-
scription of acollisionleaa plasma. The method is to
take the simultaneous limit, h, e, m + O, of charged
scalar fields and the electromagnetic field. Laplace
transforms for perturbations in a uniform relativistic

plasma are compared with corresponding results from the
Msxwell-Vlasov equations. For the nonlinear case, a
distribution function defined on the classical fielda is
shown to satisfy the Vlasov equation.

....

We are interested in finding a different de-

scription of a collisionless plaama, in parti-

cular, one with about the acme physical content aa

the standard description but which may, in some

cases, have a simpler mathematical structure. It

is useful. to examine a derivation of the standard

description the Vlasov equation. An ensemble

average over classical ionized particlea gives the

BBGKY hierarchy of equations.
1

When second order

correlations are neglected, the first equation of

the hierarchy reduces to the Vlasov equation. It

is generally .assumed that in the limit e, m + O,

both efm and nem remeiningconstant, where ne, e,

and m are the particle density, charge, and maas,

respectively, second order correlations disappear.

We may then write

(1)

where S represents the equations for classical
c

particles, Scp the equations for a collisionleas

plaama, and X an ensemble average. Because the

claasical system itself is a limiting caae (h + O)

of a quantum system S
Q’

s=
Cp ““ x

e,m + O

Here we investigate the

1im
4+(J % “

caae where some

limits are exchanged. The initial limit is

s’ = lim
CP e,m, h + O ‘Q ‘

(2)

of the

(3)

where the ratioa of e, m, and h remain constant.

Other derivationa of plasma phenomena from
2-4

quantum aystema have corresponded to the limit

h+l). Because these limits are singular, their

exchange may not give the same results. The re-

sults must be investigated in each case. We

neglect spin effects; S
Q

is represented by charged

scalar fields ($q) for each charge species (q)

and the electromagnetic field (A). The equations

are

1



(4)

[
. aq $: (dv+ iaqAv)$- oq(av - 1iaqAv) t$~ ,q

where aq = eqjhc and p = m cih. The Lorentz
qq

gauge iJpAp = O is used. We use Gaussian units.

The fields are quantized by commutation rules such

as

[r 1aooq X,t),oqo,t) = - i CfI 5(Z-J)
(5)

[ 1ao@st),@,t) ==- i4ncfl&(;-;)g
w

where goo = 1 = -gll - - g22 = - 93..

The fields differ from their standard repre-

sentation (+a) in that $ = h~s. The fields, $,

have the same dimensionality as the electromagnetic

field; the square of their derivatives gives an

energy density.

The field equations are invariant under the

limit; the commutators disappear. We may then

interpret the fields “classically” as complex

number functions. The new system 1s deterministic

although it has finite de Broglie wavelengths. We

are interested in the case where the de Broglie

wavelength ia small compared to any other scale

length. It may be considered an infinitesimal;

its precise value Is not important if it is small

enough. It appears reasonable that these equations

correspond to a collisionless plasma. The colli-

sionless approximation smooths over particle

effects. Conversely, the quantization adds part-

icle-like or discrete effects to the fields.

In the abaence of an electromagnetic field,

the charge density due to positive energy plane

wave solgtions is

.
P(~, t)=a y exp[l~sl

u
!2

where ak and Uk are the amplitude and

+ C.’c. ,

frequency of

the plane wave with wave number k. For a uniform

plasma the coefficients for 9.# O should disappear.

This will be true over an ensemble average if the

different Fourier coefficients (ak) are uncorre-

lated. In an individual plasma, the number of

terms in the sum over k = O (1/h3). Then, for

uncorrelated ak, the density coefficient for 1 #

O ia O@
3/2, . In a second limit (h + O, i.e. , a

and u tend to infinity), the density (averaged over

any finite volume) becomes uniform in an individual

plasma for uncorrelated ~. In general, if the

plasma changes over a scale length !l, there should

be correlations between wave numbers for

lAkl =O(l/ll).

II. COMPARISON WITH THE MAXWELL-VLASOV EQUATIONS

A. Linear Perturbations

We will compare solutions for the initial

value problem in a uniform relativistic plasma

with no zero order electromagnetic field. Long-

itudinal and transverse wavea are done separately

with the coupling between them ignored. The

charged particle fields are separated into zero

order and first order parts. Calculations for

each charged particle species are done separately.

40- z ~exp [i(z.:-klkt)l ,

k

(6)

●
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where IAk > 0. For longitudinal wavea,A has a time-

like part

k

end a space-like part

Aa =
z ‘%
k

where ~ ia a

Lorentz gauge

~(t) ew[iz”zl, a=l, 2, 3

unit vector parallel to k. The

gives

(7)
where

The transform of Eq. (9) for V = O is

& ()$’k’‘:(s)=fi(’Ako+Ak’o)

For traneveree waves there is only a apace-like +I&

c z ak+g b;
part with each polarization perpendicular to k.,

Q

The linearized equatione are

:-t? Av604; +c.c. , (9)

I

Pa.+”)#,+2 iaAvap40-o . (lo)

(12)

2
-a

z
A:(s + io *

2,J
3 - “’’g+]-k) aja~+j-k + C.C. .

For longitudinal caae the Lapl.ace transform of Eq. The substitution of Eq. (11) into Eq. (12) couplee

(10) gives the Fourier modes of AO. The coupling between
4

and A: is of the type a a*

~$+k2+u2) b,(s)= $ (’bko+b~~ ~

j j+k-k”
For a uniform

plasma the coupling = 0@3 2, since the different

aj are Incoherent. The coupling disappears in the

l-tith + O, and we ~ve

A@ = S/D(k,s) , (13)

where S, the source

ditione, end D(k,s)

persion relation.”

term, depends on initial con-

ia the Laplace tranaform “d%s-



where

2
D(k,s) =~ + k2k &ra2~. ~ lajl’

(18)

~_iij# -~z+c’kz)f,ujl
x ,s

(14)

[ ( )1*2
4 u: (s+iZ:)*/c! - 2

T+,

(~”:k)2(S2C2+ k2c4)

where e, is the polarization vector.

d3pf (p)

Y

D(k,s)
where u is the velocity corresponding to j. With

,the substitution

(19)

I*Jl* Uj + nofo(~) fIC2/2, ~ = k~ (15)

where n is the particle density, p ia momentum,
o

and f ia the momentum distribution function,
o Transverse wavea in a relativistic plasma have

been investigated by Lerche5 and Felderhof,
6

among othera. Apparently, however, there is m

explicit axpreasion for the Laplace transform.

Comparison can be made only for special cases. If

the denominator in the laat integral is not too

small, the laat term i.aa relativistic correction,

and in the nonrelativistic limit we obtain the

standard

()2lim D(k, s) = a+ k’
?I+D

~2

1
d3pfo(p)

1+U2

~ -&~k2]

P y(s+iz=:)’
~. (16)

!

expreaaion

u2=k2+u; . (20)

. .

where w is the plasma frequency.
P

The square brackets are identical to the

equivalent Vlasov equation dispersion relationl term of Eq. (19), for smell velocities

to ~, produces the Weibel instability.
7

The laat

parallel

j /d’,(-:)).Dv(k, s) - 1 - ti~ m —
B. Nonlinear Case

Here we attempt to find a functional of each

particle field which correspond. to a distribution

function, and which satisfies the Maxwell-Vlaaov

equations in a self-consistent way. One diffi-

culty is that a continuous charge distribution

does not, in general, satisfy the Vlasov equation,

(17)

L
same

wavea.

This ia shown by

procedure may be

We obtain

integration by parta. The

carried out for transverse
,!

.

e.g.,

S/D(k,s) ,
f(;,;,t) = g(;,t) Is[:-;(zt)] ,



*

i

where

+(i+:xi)]t+o(t2), (21)

and v is the particle velocity. The delta functiOn

factor satisfies the Vlasov equation, but g, the

charge density, does not.

?!2 +t. [:(;,t)g]=o.
at

A point particle distribution,

(22)

f(;,:,t) =
z

6[; - :i(t)l 6[; - ;i(t)l , (23)

i

does formally satiafy the Vlasov equation.

We look for solutions of the field equations

which correspond more closely to “particlea” than

to a continuous fluid. Consider uncorrelated

wave packeta with radius = O{rl), where r + O
1

in the limit h + O. The wave number spread

Akl = O (l/rl), which gives a velocity dispersion

= Aklh = O(h/rl). To maintain a radius = O(rl)

requirea that h = 0(r12). The charge of the wave

packet, el, is 0(r13), therefore self forces do

not expand the wave packet to a radiua greater

than O(rl).

We define

f(;,;,t) =
~

d3k, W2(I,-ZO) [9,92 + C.c.l , (24)

where

and

and

&;/h+cJ.

W,(l-Z,) = const$ 1%~11 < r3 ,

-0, 12Z,I >r3+r2 .

W*(z-z,)= const, l~-~,1< k3 ,

-O, It-tll >k3+k2.

2 2
r ,hk ,hkr , r k +0 .

33 33 33

WI and W2 have continuous first order derivatives.

We aasume $ has only positive energy solutions. A

more complicated definition is necessary if there

are alao negative energy solutions. The distri-

bution function is ensemble averaged becauae the

number of wave packeta in the suPPort of WI x W2

goes to zero in a single system. In the region

where WI x W2 is constant, the function acts as a

counter of wave packets because it reduces (by

Parseval’s formula) to an integral over charge

density. Only the asymptotic overlap of these wave

packetsin the boundary region of WI x W2 contri-

bute to the derivativea of f. Derivatives of $ of

O(1) of these wave packets may then be neglected.

Since the volume of the boundary region over the

total volume goes to zero, we may neglect deriva-

tive of @ of O(1) in general. This is important

since derivatives of 0(1/h) reflect the d~~ca

of charged particles, but derivative of O(l),

which are necessary for charge conaemation, are

not directly connected with the particle dynamics.

We need local solutions for $. Let

5
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We assume that A changes slowly over distances of

O(rl). Wavelengths of this size come from

collisions between wave packets, and the collieion

[at + Vaaa + e(? + GxE)a ~pa]f

(29)

strength vanishes in

an asymptotic series

m

the limit. We expand u in

in orders of h,
.

(atf)k + (Vaaaf)k - avBAua aka f .
a o 0

For gl, the thrae derivatives In Eq. (29) give

(inside the Fourier integral of $), respectively,

where u =
.i

O(hj-l) , (26)

(a) - i[uo(k) +avp(k) ABa(xl-x)a]

and

()
a

()‘-i[~(~,)+ &k(ki-$)a+ ~a(k-k, )a

n h
(A (I, t) =
J ~+1‘j n

(x tn .

n=”~

+ avv(k) ABa(x1-x)a] ,

Then (IJ.maybe solved explicitly. When only those

terms necessary for the first order derivativea
(30)(b) - iva(kl-k)a ,

of f(~,~,t) are kept, and u is expanded about

(X,t) ,

and

(c) iavBAuax,a
k

E iavl’A (x -x)a + iavBAUaxa
pa 1 9}

(wo+avBApa(xl-x)a)] , (27)

where wo, v, and A are defined at (~,t). (Double

Greek indexes indicate a summation over all index=;

double Latin indexes indicate a summation over

space-like indexes.)

where

()au a
?xk

= v(ko)a ~ Va .

0

pa = h(ka-aAa) .

The underscored terms are cancelled by tha same

terms for g2. After cancellation wa have

(
112

PO =

)

m2c4 + c2papa .

J = p~lpo.

‘o
=po/h+aAo.

(28)

- i~a(x-xi)ah(kO)-v(k)]B . (31)

This cancels to the first approximation, but the

remaindar is greater than O(l). From g2 we obtain

the negative of term (31). The action of

(-iat+o) on $* produces a coefficient which

multiplies aach Fourier component of $*.
Application of the Vlasov operator to f gives

6



{
dko) I ‘{-CAo(:,t) + u(k) - ti!~)

- a[~ (X,,:)
1

- Ao(;, t)] + avVAua(x, -x)a . (32)

2. W. Wyld and D. Pines, “Kinetic Equation for

Plasma,” Phys. Rev. ~, 1851 (1962).

3.

4.
Term (31) and its negative from g2 cancel the first

braces { } of term (32). This leaves terms of

O(r~k3), O(hk&3) = c.(l). The (logarithmic) de-
5.

rivatives of term (32) itself are of O(1) and may

be neglected. Then Eq. (29) is o(1) for h + O.

6.
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