

In the interest of prompt distribution, this report was not edited by the Technical Information staff.

Printed in the United Staten of America. Available trom National Technical Information Service
repreaents that its use would not infriate privately owned
rikhts.

NORMAL TARGET AND WEAPON LOCATIONS:
MEAN AND OTHER MOMENTS
by

Abstract

If target location and weapon impact point have independent circular normal probability distributions, the probability density function of the distance between target and weapon impact can be determined. If a damage function is introduced as a measure of the probability of damage to a target, the expected probability of damage can then be computed. This report shows how to compute and use mean and higher moments of the probability of damage for a lognormal damage function. Moments for other damage functions can be similarly computed.

I. INTRODUCTION

If the distance, R, between a target and ground zero (GZ) of a weapon is subject to random uncertainties as to location of both the target and $G Z$, the probability density function, $f_{R}(r)$, of R can sometimes be found explicitly. In these cases the probability that the weapon impacts within a distance d of the target is given by

$$
P(R \leq d)=\int_{0}^{d} f_{R}(r) d r .
$$

Commonly, damage to a target at a distance r from GZ is also subject to uncertainties, that is, the destruction of a target at distance r from $G Z$ is measured by a damage function $G(r)$ which gives the probability of a target at this distance being damaged. Then the uncertainties due to $10-$ cation and damage can be combined as follows:

$$
\text { Expected } P(\text { damage })=\int_{0}^{\infty} f_{R}(r) G(r) d r
$$

This report will consider the case in which both the target and weapon ground zero have circular normal distributions about possible different locations and the damage function is the lognormal damage function. The computer routine developed allows easy substitution of other damage functions.

II. CIRCULAR NORMAL CASE

If the location of a target is not known exactly it is sometimes assumed that its true location has a circular normal probability distribution about some point in a plane. Letting that point be the origin of a superimposed coordinate system, then

$$
P_{T}(x, y)=\frac{1}{2 \pi \sigma_{T}}{ }^{2} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma_{T}^{2}}\right)
$$

gives the probability density function of the target's location. σ_{T} is the standard deviation in both the x and y directions. The probability that the target lies in some region A of the plane is then given by
$P($ target lies in $A)=\iint_{A} p_{T}(x, y) d x d y$. Then, if the weapon ground zero (GZ) has a circular normal distribution about a desired ground zero (DGZ), say (a,b), with standard deviation σ_{w}, the probability density of $G Z$ is

$$
\mathrm{P}_{\mathrm{w}}(x, y)=\frac{1}{2 \pi \sigma_{\mathrm{w}}^{2}} \exp \left(-\frac{1}{2 \sigma_{w}^{2}}\left[(x-a)^{2}+(y-b)^{2}\right]\right) .
$$

The distance, R, between the actual target location and $G Z$ is a random variable, $R=\sqrt{\left(x_{W}-x_{T}\right)^{2}+\left(y_{w}-y_{T}\right)^{2}}$. It can be shown that the probability density function of R has the form

$$
f_{R}(r)=\frac{2 r}{\sigma^{2}} \quad f_{R^{2} / \sigma^{2}}\left(\frac{r^{2}}{\sigma^{2}}\right) \quad \text { for } r>0
$$

where $\sigma^{2}=\sigma_{T}^{2}+\sigma_{W}^{2}$ and $f_{R^{2} \sigma^{2}}$ is the density of a noncentral x^{2} distribution with two degrees of freedom and noncentrality parameter $\tau^{2}=\left(a^{2}+b^{2}\right) / \sigma^{2}$. If the weapon is aimed at the origin (the mean target location) of our system, the noncentrality parameter disappears (Appendix A) and $f_{R}(r)$ is simply a function of the x^{2} distribution.

III. THE LOGNORMAL DAMAGE FUNCTION

The damage to a target from a particular weapon depends not only on R, the distance between the target and the GZ, and the weapon radius, WR, but also on a random factor. This random factor will be incorporated by using a lognormal damage function. The probability of damage to a target at distance r is given by

$$
G(r)=\int_{-\infty}^{z(r)} n(y) d y
$$

where

$$
\begin{aligned}
& \mathrm{n}(\mathrm{y}) \text { is the standardized normal density } \\
& \mathrm{z}(\mathrm{r})=\frac{1}{\beta} \ln \left(\frac{W R e^{-\beta^{2}}}{r}\right)=-\beta+\frac{1}{\beta} \ln \left(\frac{W R}{r}\right) \\
& \beta^{2}=-\ln \left(1-\sigma_{d}^{2}\right)
\end{aligned}
$$

$W R \cdot \sigma_{d}=$ the standard deviation of the lognormal distribution.

A more complete discussion of the lognormal damage function is contained in Appendix B.

IV. THE PROBABILITY OF DAMAGE

Combining the results of the previous sections, the expected (mean) probability of damage, M, is given by

$$
\begin{aligned}
M & =\int_{0}^{\infty} f_{R}(r) G(r) d r \\
& =e^{-\tau^{2} / 2} \int_{0}^{\infty} e^{-\mu} I_{o}(\tau \sqrt{2 \mu}) G(\sqrt{2 \mu \sigma}) d \mu
\end{aligned}
$$

where

$$
I_{0}(\tau \sqrt{2 \mu})=\sum_{j=0}^{\infty} \frac{\left(\frac{1}{2} \tau^{2} \mu\right)^{j}}{(j 1)^{2}}
$$

is a modified Bessel function of order zero and $\mu=0.5(r / \sigma)^{2}$.

To find the standard deviation of the probability of damage, compute the variance using the formula VAR $=E\left(G(R)^{2}\right)-M^{2}$. The term $E\left(G(R)^{2}\right)$ is found by replacing $G(r)$ with $G(r)^{2}$ in the preceding formulas. Then $S T D=V A R^{1 / 2}$. A discussion of the use of the STD and other moments is contained in Appendix C.

It is easy to show that the value of M and STD calculated from a particular set of values of σ, WR, and DIST $\left(=a^{2}+b^{2}\right)$ remains unchanged if these values are replaced by $K \cdot \sigma$, K•WR, and K•DIST where K is any positive constant.

V. RESULTS

The expected probability of damage, M, and the standard deviation of the damage, STD, were computed using a computer program run on a Control Data Corporation 6600 under the KRONOS time-sharing system. A program listing with notes is contained in Appendix D. Figure 1 presents graphs of M vs DIST/WR for values of SIG/WR equal to $0,0.5,1$, and 2 where DIST is the distance between the mean target location and the weapon aim point, WR is the weapon radius, and SIG is
the combined target-weapon standard deviation, σ.

To use these graphs, compute SIG/WR and DIST/WR and read (interpolate) M from
the appropriate curve(s). Table I contains some values of $M=$ MFAN and STD along with the coefficient of variation, $\operatorname{COEF}=\mathrm{STD} / \mathrm{MF} A \mathrm{AN}$, for $W R=1000$.

Figure 1. For values of offset distance/WR less than 1 , the expected probability of damage decreases as SIGD increases.

TABLE I

MOMENTS OF THE PROBABILITY OF DAMAGE TO A TARGET

SIG	DIST	SIGD	HEAN	E (G**2)	VAR	STD	cosf

500.0	0.0	. 3	. 777	. 682	. 078	. 280	. 360
500.0	0.0	.7	. 470	. 278	. 057	. 239	. 508
500.0	500.0	. 3	. 651	. 537	. 113	. 336	. 517
500.0	500.0	. 7	. 334	. 203	. 055	. 235	. 611
500.0	1000.0	. 3	. 369	. 251	. 115	. 340	. 922
500.0	1000.0	. 7	. 225	. 033	. 032	. 179	. 734
500.0	2000.0	. 3	. 030	. 009	. 008	. 038	2.704
500.0	2000.0	. 7	. 057	. 005	. 002	. 046	. 815
1000.0	0.0	. 3	. 365	. 272	. 139	. 373	1.024
1000.0	0.0	. 7	. 230	. 039	. 045	. 215	. 931
1000.0	500.0	. 3	. 333	. 246	. 135	. 368	1.103
1000.0	500.0	.7	. 214	. 089	. 014	. 209	. 979
1000.0	1000.0	. 3	. 254	. 181	. 117	. 342	1.345
1000.0	1000.0	.7	. 171	. 066	. 036	. 191	1.115
1000.0	2000.0	. 3	. 085	. 053	. 046	. 214	2.517
1000.0	2000.0	. 7	. 076	. 013	. 014	. 117	1.543
2000.0	0.0	. 3	. 115	. 079	. 066	. 256	2.238
2000.0	0.0	.7	. 087	. 029	. 021	. 145	1.661
2000.0	500.0	. 3	. 111	. 076	. 064	. 253	2.275
2000.0	500.0	.7	. 085	. 028	. 021	. 144	1.631
2000.0	1000.0	. 3	. 102	. 070	. 0630	. 244	2.387
2000.0	1000.0	.7	. 079	. 026	. 019	. 139	1.748
2000.0	2000.0	. 3	. 073	. $04 ?$. 044	. 209	2.886
2000.0	2000.0	. 7	. 060	. 018	. 014	. 120	2.021

$$
\text { Let } R=\sqrt{\left(X_{W}-X_{T}\right)^{2}+\left(Y_{W}-Y_{T}\right)^{2}} \text { where }
$$ $\left(X_{W}, Y_{W}\right)$ has a circular normal probability distribution about the point (a, b) and standard deviation σ_{W}, and $\left(X_{T}, Y_{T}\right)$ has a circular normal probability distribution about the origin with standard deviation σ_{T}. Then the probability density function of $R, f_{R}(r)$, can be shown to be

$$
f_{R}(r)=\frac{2 r}{\sigma^{2}}\left\{\frac{e^{-\frac{1}{2}\left(\tau^{2}+\frac{r^{2}}{\sigma^{2}}\right)}}{2} \sum_{j=0}^{\infty}\left(\frac{\tau r}{2 \sigma}\right)^{2 j} \frac{1}{(j l)^{2}}\right\}
$$

where $\sigma^{2}=\sigma_{T}^{2}+\sigma_{w}^{2}$. The term in the brackets is the probability density function of a noncentral χ^{2} distribution with noncentrality parameter $\tau^{2}=\left(a^{2}+b^{2}\right) / \sigma^{2}$ evaluated at r^{2} / σ^{2}. If $(a, b)=(0,0)$ (i.e., there is no offset) then $\tau=0$ and

$$
f_{R}(r)=\frac{2 r}{\sigma^{2}} \cdot f_{x_{2}^{2}}\left(\frac{r^{2}}{\sigma^{2}}\right) \quad r>0
$$

where $X_{2}{ }^{2}$ is a chi-square distribution with two degrees of freedom.

Since $\mathrm{R}^{2} / \sigma^{2}$ has the above noncentral X^{2} distribution, the mean and variance of R^{2} are $\sigma^{2}\left(2+\tau^{2}\right)$ and $4 \sigma^{4}\left(1+\tau^{2}\right)$ respectively. Letting $R=K\left(R^{2}\right)=\sqrt{R^{2}}$, it can be shown from the Taylor series expansion of $K\left(R^{2}\right)$ that

$$
\begin{aligned}
& E(R) \approx K\left(\mu_{1}\right)+\frac{K^{\prime \prime}\left(\mu_{1}\right)}{2} \sigma_{1}^{2} \\
& V(R) \approx\left(K^{\prime}\left(\mu_{1}\right)\right)^{2} \sigma_{1}^{2}
\end{aligned}
$$

where μ_{1}, σ_{1} are the mean and standard deviation of R^{2} respectively. Letting $D^{2}=a^{2}+b^{2}$,
$E(R) \approx \sqrt{2 \sigma^{2}+D^{2}}-.5\left(\sigma^{4}+\sigma^{2} \sigma D^{2}\right) /\left(2 \sigma^{2}+D^{2}\right)^{3 / 2}$ $V(R) \approx\left(\sigma^{4}+\sigma^{2} D^{2}\right) /\left(2 \sigma^{2}+D^{2}\right)$.

If there is no offset, $E(R) \approx 1.2370$ and $V(R) \approx .5 \sigma^{2}$.

APPENDIX B

A random variable Y has a lognormal distribution $i f$, and only $i f$, the random variable $X=\ell n Y$ is normally distributed. Then, if a, b are the mean and standard deviation respectively of X

$$
\begin{aligned}
& f_{y}(y)=\frac{1}{y} \frac{1}{\sqrt{2 \pi} b} \quad \exp \left[-\frac{(\ln y-a)^{2}}{2 b^{2}}\right], \quad y>0 \\
& u_{y}=\exp \left[a+b^{2} / 2\right] \\
& \sigma_{y}^{2}=\left(\exp \left[b^{2}+2 a\right]\right)\left(\exp \left[b^{2}\right]-1\right) .
\end{aligned}
$$

It can be shown that the lognormal damage function has the form
$G(r)=\frac{1}{\sqrt{2 \pi} \beta} \int_{r}^{\infty} \frac{1}{y} \exp \left[-\frac{\left(\ln y-\left(\ln W R-\beta^{2}\right)\right)^{2}}{2 \beta^{2}}\right] d y$ where $\beta^{2}=-\ln \left(1-\sigma_{d}^{2}\right)$.

Hence, the mean and standard deviation of this lognormal distribution are

$$
\begin{aligned}
& \text { MEAN }=W R \sqrt{\left(1-\sigma_{d}^{2}\right.} \\
& S T D=(W R) \cdot \sigma_{d}
\end{aligned}
$$

Note that as σ_{d} approaches zero, the damage function approaches the "cookie cutter" damage function of radius WR.

The variance of a random variable R having mean, $E_{R}(R)=m$, is VAR $=E_{R}(R-m)^{2}$. This can be shown to be equivalent to $V A R=$ $E_{R}\left(R^{2}\right)-m^{2}$. If $Z=G(R)$ is a function of R, then $\operatorname{VAR}(Z)=E_{R}\left(Z^{2}\right)-E_{R}(Z)^{2}$. If the mean and variance of Z exist, Chebyshev's Inequality holds:

$$
\begin{equation*}
P(|Z-E(Z)|<\varepsilon) \geqslant 1-\operatorname{VAR}(Z) / \varepsilon^{2} . \tag{C-1}
\end{equation*}
$$

If Z assumes values in the interval $[0,1]$ only, it can be shown (M. Loeve, Probability Theory (D. Van Nostrand, 1963), p. 158) that for $s>0$,

$$
\begin{equation*}
E\left(Z^{s}\right)-a^{S}<P(Z \geqslant a)<E\left(Z^{s}\right) / a^{s} \tag{C-2}
\end{equation*}
$$

When $Z=G(R)$ is a damage function the above inequalities hold. The higher order moments may be computed using the included program.
Example: If $W R=1000$, SIG=5000, SIGD $=0.3$ and $D=0, E(Z)=0.777, E Z^{2}=0.682, \operatorname{VAR}(Z)=0.078$ and $E Z^{5}=0.561$. Inequality $(C-1)$ gives $P(G(R) \geqslant 0.25) \geqslant 0.72$ while ($C-2$) does not do as well (for integer s). However, when computing $P(G(R) \geqslant 0,5)$, inequality $(C-1)$ is useless while ($C-2$) for $s=5$ yields $P(G(R) \geqslant 0.5)$ $\geqslant 0.53$. Hence, if 100 targets were independently attacked by 100 weapons with the given characteristics the probability of damaging at least 50 targets would be at least 0.53 .

WR = WEAPON RADIUS.
SIGD = STANDARD DEVIATION OF THE LOGNORIALL DISTRIBUTION/WR. SIG = COMRINED STANDARD DEVIATION OF THE TARGFT LOCATION AND THE WEAPON DELTVERY.
DIST $=$ TIAE DISTANCE BETUESN THE IMEAN TARGET LOCATION AND THE WEAPON AIH POINT. $P=T: I E$ FXPECTED PROBABILITY OE DAIAAGING THE TARGET. ITH $=$ THE HOMENT OF THC DAHAGE FUNCTION,G(R), TO BE CALCULATF. . IF THE VARIANCE IS DESIRED CALL MOMEHTS HITH IPOWER $=1$ AND 2. THEN USE THE FORIMULA VARIAHCE = SECOND MOHENT MINUS TII FIRST MOMENT SQUARED.

THIS ROUTINE COHPUTES THE I TH HOMENT OF TIIE. PROBABILITY OF DAMAGE
TO A TAMGET FROHI A WEAPOIS WHERE THE DAIAAGE FUNCTION I.S $G(R)$. THE TARGET LOCATIOH AHD DELIVERY ERROR ARE ASSIJMED TO HAVE INDEPENDFINT CIRCULAR NORIIAL PROBABILITY DISTRI:3UTIOMS.

TO CHANGE THE: DAMAGE FUNCTION SIMPLY CHANGE THE APPROPIATE CARDS (INDICATED BY A * IV COLINMN 75) IN SUBROUTINES FUNCTION F AND DECIDE.

```
    COM!MON /ADAM1/ S,SD,RAD,D,IPOWER
    EXTERNAL F
    DIMENSION WK(121),IW(5)
    S=SIG
    SD=SIGD
    RAD=WR
    D=DIST
    IPOWER=ITH
    CALL DECIDE(S,SD,RAD,D,IPOWER,INDEX,XLO,XHI,P)
    XLO = THE LOWER LIMIT OF INTEGRATION
    FOR CONSERVATISM,SET XLO=0.
    XHI = THE UPPER LIMIT OF INTEGRATION
    INDEX CONTROLS WHETHER INTEGRATION IS NESESSARY OR NOT.
    IF(INDEX.EQ.1) RETURN
    P=0.
    XLO=0.
    THE FOLLOWING, tHROUGH STATEMENT 10, DOES THE
    ACTUAL INTEGRATION. RE AND AE CONTROL THE
    ACCURACY. THE INTERVAL OF INTEGRATION IS
    DIVIDED INTO 10 SUBINTERVALS. HENCE EACH IS
    ABOUT A STANDARD DEVIATION IN LENGTH.
    T=XLO
    RE=1.E-04
    AE=RE
    IFLAG=1
    NEQ=1
    TOUT=XLO
    NINTV=10
    TINCR=(XHI-XLO)/NINTV
    DO 10 I=1,NINTV
    TOUT=TOUT+TINCR
    CALL ODE(F,NEQ,P,T,TOUT, RE,AE,IFLAG,WK,IN)
    OUTPUT,TOUT,P,IFLAG
10 CONTINUE
    RETURN
    END
    SUBROUTINE DECIDE(S,SD,RAD,D,IPOWER,INDEX,ULO,UHI,P)
    THIS ROUTINE DECIDES WHETHER INTEGRATION IS HECESSARY
    OR NOT. IF SO IT DETERHINES THE LIMITS OF INTEGRATION,ULO
    AND UHI.IT FIRST COMPUTES THE IIEAN AND STANDARD DEVIATION
    OF THE VARIABLE K AND TIIEN COMPUTES THE MEAN PLUS AND
    MINUS 5 STANDARD DEVIATIONS. ULO AIJD UHI REPRESENT
    THE FINAL LIHITS OF INTEGRATION.
    INTEGRATION IS REQUIRED IF INDEX = 0.
    D I.S THE DESIRED OFFSET
    IF THE OFFSET IS ZERO AND SIN IS ZERO, P=1.
    IF THE OFFSET IS ZERO AND SII; > O., INTEGRATE.
    IF THE OFFSET>O,AND S IS SHALL IN COHPARISON :O D,
        TREAT THE PROBLFM DETERMIVISTICALLY. SET P=G(D).
ZZ(R)=31*(-B2+NLOG(RAD/R))
AB(R)=ABS(2Z(R))
G(R)=(.5*(1.+2Z(R)/AB(R) * ERF(AB(R)/SQRT(2.))))**IPOWER
B2=-nLOG(1.-SD**2)
B1=1./SQRT(B2)
C
IINDEX=1
P=1.
IF(D.EQ.O.) GO TO 30
IF(S/D.LE..01) GO TO 20
```

```
๑○○
C COHPUTE RMEAN, SIGR, MEAN PLIJS/MINUS 5*SIGR
C
    F1=SQRT(2.*S*S+D*D)
    F2=S**4+D*D*S*S
    RMEAN=F1-.5*F2/(F1**3)
    SIGR=SQRT(F2)/F1
    RLO=AMAX1(0., RNEAN-5.*SIGR)
    RHI=RHEAN+5.*SIGR
C
C
    CHECK TO SEE IF G IS ESSENTIALLY COMSTANm OVER THE
    RANGE RLO TO RHI. IF IT IS DO NOT INTEGRATE AND SET
    P=G(RMEAN). IF INTEGRATION IS NESESSARY, MODIFY
    LIMITS OF INTEGRATION TO CORRESPOND TO TRANSFORHATIONS
    MADE IN TiEE INTEGRAL - U=(1/2)*(R/S)**2.
    GHI=G(RHI)
    IF(RLO.EQ.O.) GO TO 10
    GLO=G(RLO)
    GDIF=GLO-GHI
    GO TO 15
    10 GDIF=1.-GHI
    15 IF(GDIF.GE.1.E-04) INDEX=0
        P=G(RHEAN)
        ULO=.5*(RLO/S)**2
        UHI=.5*(RHI/S)**2
        RETURN
    30 IF(S.GT.O.) INDEX = 0
    IF D=0., RMEAN=1.24*S AND SIGR=.71*S
    HENCE, UHI=RMEAN+5*SIGR=5.*S(APPROX)
    ULO=0.
    UHI=5.*S
    RETURN
    20 P=G(D)
        RETURN
        END
        SUBROUTINE F(U,Y,YP)
        THIS ROUMINE COMPUTES THE VALUE DF THE INTEGRAND.
        U IS THE varIable of InTEGration
    CONHON /ADAM1/ S,SD,RAD,D,IPOWER
    ZZ(R)=B1*(-B2+\LambdaLOG(RAD/R))
    AB(R)=ABS(27(R))
    G(R)=(.5*(1.+22(R)/AB(R) * ERF(AB(R)/SQRT(2.))))**IPONER *
    FF(X)=H(TAU2,X)*G(SQRT(2.*X)*S)
    B2= -ALOG(1.-SD**2)
    B1=1./SORT(B2)
    TAU2=(D/S)**2
    YP=1.
    IF(U.LE.O.)RETURN
    IF THE OFFSET DISTANCE, D, IS ZERO, THE INTEGRAND SIMPLIFIES.
    IF(D.EQ.O.) GO TO 9
    YP = FF(U)
    RETIJRN
    9 YP=G(SQRT(2.*U)*S)*EXP(-U)
    RETJJRN
    EHD
```

FUNCTION H(TAUZ, U)

```
C
C THIS ROUTINES COMPUTES THE VALUE OF THE PROBABILITY C DEISSITY FUNCTION OF R. IT FIRST COMPUTES
```

C THE VALUE OF A HODIFIED BESSEL FUNCTION OF

```LESS THAN 1.E-07. THE RESULT IS THEN MULTIPLIED BY
```

EXP (-TAU2/2 - U) TO FORM THE DENSITY.
$\mathrm{X}=\mathrm{SQRT}\left(2\right.$. *U*TAU2) $^{\text {U }}$
$T=X / 3.75$
IF (X.GT.3.75) GO TO 10

```
\[
S=T * * 2
\]
BESL1=1.+S*(3.5156229+S*(3.0899424+S*(1.2067492+S*(.2659732+
\[
\left.\left.\left.\left.1 S^{*}\left(.0360768+S^{*} .0045813\right)\right)\right)\right)\right)
\]
\[
\mathrm{H}=\mathrm{EXP}(-\mathrm{TA} 1 / 2 / 2 .-U) * \text { BESL } 1
\]RETURN
```

$10 \mathrm{~S}=1 / \mathrm{T}$
BESL $1=.39894228+S^{*}\left(.01328592+S^{*}\left(.00225319+S^{*}(-.00157565+\right.\right.$

```\(1 S^{*}\left(.00916281+S^{*}\left(-.02057706+S^{*}\left(.02635537+S^{*}(-.01647633+\right.\right.\right.\)\(\left.\left.2 S^{*} .00392377\right)\right)\) )) ) )
```

$\mathrm{H}=\mathrm{EXP}(-\mathrm{TAU} 2 / 2 .-\mathrm{U}+\mathrm{X}) /$ SQRT (X) BESL 1
RETURN
END

