

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W-7405-ENG. 36

Printed in the United States of America. Available from National Technical Information Service U S Department of Commerce 5285 Port Royal Road Springfield, VA 22151 Price: Printed Copy \$4.00 Microfiche \$2.25

.

.

.

.

,

٧

*

This report was prepared as an account of work sponsored by the United States Geverancent. Neither the United States nor the United States Energy Research and Development Administration, nor raw of their employees, nor any of their contractors, subcontractors, or their employees, makes any worrantly, express or implicit, or assumes any legel liability or responsibility for the accuracy, completeness, or usefulness of only information, apparatus, preduct, se process disclosed, se reported that the use would not infringe privately owned rights.

ACCURATE DETERMINATION OF IMPURITY CONCENTRATIONS IN PLUTONIUM METALS BY STATISTICAL EVALUATION OF ANALYTICAL DATA

by

C. J. Martell, G. L. Tietjen, and M. M. Horita

ABSTRACT

Analytical data from a plutonium-metal exchange program conducted by six ERDA laboratories are statistically evaluated. The objective is an accurate determination of five metal impurities (aluminum, chromium, iron, nickel, silicon) in each of three plutonium metals by using data from four analytical methods. The statistical evaluation yields the weighted mean and its standard deviation for each method, plutonium metal, and impurity, using a procedure that minimizes the effect of outliers by assigning zero weights to the most extreme values and variable weights to the remaining data. Where possible, weighted means from the various analytical methods are pooled.

I. INTRODUCTION

Well-characterized standard materials are invaluable for making accurate analytical measurements in any field, and in the nuclear field well-characterized plutonium metals have not been available. Data are presented here for three standard plutonium metals accurately characterized according to content of five impurities: aluminum, chromium, iron, nickel, and silicon.

Data from a plutonium-metal exchange program conducted by six ERDA laboratories have been analyzed, and three plutonium metals, identified as H, R, and P, have been carefully characterized. These well-characterized plutonium metals should be useful in resolving measurement differences among laboratories, improving current analytical methods, developing new measurement capabilities, and providing data with which to resolve shipperreceiver differences.

By using these standard plutonium metals, a laboratory can evaluate its analytical performance and take corrective action if its analytical results are in error. Also, work is under way using these three plutonium metals in evaluating several types of PuO_2 emission spectroscopy standards.

Data from the plutonium-metal exchange program, recorded quarterly from December 1971 to December 1974, will be considered here. Unfortunately, different reporting procedures were used during this period, and the same procedure was not used by all the laboratories at any given time. The effect of these differing procedures will be discussed later.

Four methods of analysis were used: emission spectroscopy; chemical method; spark source mass spectroscopy; and atomic absorption. Of the four, only emission spectroscopy can be used to determine all five impurity elements in all three plutonium metals. The chemical method determines only iron. Emission spectroscopy and the chemical method have been used in the exchange program longer than the other methods and so have contributed the largest number of values to this report.

Spark source mass spectroscopy has been used only at the Rocky Flats laboratory. For calibration purposes, spark source spectroscopy uses the iron value determined by atomic absorption for a given sample and gives values for aluminum, chromium, nickel, and silicon.

Atomic absorption has been used in the exchange program for only a short time. The impurities determined by atomic absorption include aluminum, chromium, nickel, and iron. Rocky Flats has also reported a small number of values for silicon.

A secondary purpose of this report is to suggest a statistical treatment for future plutonium-metal exchange data that may lead to a consensus on impurity concentrations while a supply of a particular batch of plutonium metal still exists. These wellcharacterized metals could be considered "certified" plutonium metals. Additional determinations, such as those for carbon, gallium, plutonium, and uranium, could also be so treated.

II. STATISTICAL METHODOLOGY

For each impurity, plutonium metal, and analytical method, the data from the six participating laboratories are combined, and from 8 to 127 data values are given in the initial evaluation. Pmetal iron data taken before December 1972 by emission spectroscopy at two of the laboratories showed a high bias and were deleted. The two laboratories had been using PuO₂ obtained from the direct ignition of plutonium metal. However, a study¹ made during 1972 showed that high iron values are obtained from P-metal when the particle size of the PuO₂ is not controlled. When the laboratories began to control PuO₂ particle size, the high bias for iron was no longer observed.

Because the data come from several laboratories, analytical methods, and reporting procedures, outliers are likely to be present. It is difficult to determine an underlying distribution for the data. Certainly the assumption of normality is not appropriate. How, then, does one best estimate the mean under these circumstances? An estimator that is not very sensitive to the underlying distribution is said to be "robust." We believe that the method described in this report is the best method of robust estimation² to date. It makes use of weighted means and prescribes how the weights are to be assigned. Standard deviations of the weighted means are also calculated, but their properties are not yet well known.

If x_i , i = 1, ..., n, denotes the i-th observation and w_i a weighting factor for the i-th observation, the weighted mean is defined as

$$\overline{X}_{w} = \frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}$$

Let $r_i = |x_i - \bar{X}_w|$ denote the absolute value of the i-th residual and define S to be the median residual. The weights themselves are defined iteratively as $w_i = 1/r_i \sin(r_i/cS)$, where c is an arbitrary scaling factor (c = 1 in this report). Ten iterations are made starting with unit weights. This method assigns zero weights to observations when $r_i > \pi S$, large weights to observations with small residuals, and small weights to observations with large residuals.

The standard deviation of the weighted mean, $S_{\bar{X}_{w}}$, is then calculated for each impurity in each plutonium metal and for each analytical procedure by

$$S_{\overline{X}_{W}} = \left[\frac{\sum_{i=1}^{n'} \sum_{i=1}^{2} w_{i}}{(n'-1) \sum_{i=1}^{n'} w_{i}} \right]^{1/2}$$

where n is the number of observations receiving nonzero weights.

The computer program, data, residuals, weights, and various means and standard deviations are given in Appendixes I and II.

III. RESULTS

The weighted mean and the standard deviation of the weighted mean for each impurity, plutonium metal, and analytical procedure are summarized in Table I.

A weighted mean and its standard deviation, both pooled from the analytical methods, are shown in Table II. These are computed as follows:

$$\overline{X}_{W}(\text{pooled}) = \frac{n_{1}' \overline{X}_{w_{1}} + n_{2}' \overline{X}_{w_{2}} + n_{3}' \overline{X}_{w_{3}}}{n_{1}' + n_{2}' + n_{3}'}$$

TABLE I

Impurity	Plutonium Metal	Emission Spectroscopy	Spark Source Mass Spectroscopy	Atomic Absorption	Chemical Method
	н	174.6 ± 2.9	177.5 ± 10.5	183.5 ± 2.5	
Aluminum	R	22.5 ± 0.5	16.2 ± 0.4	34.6 ± 2.4	
	Р	55.5 ± 1.3	53.7 ± 1.8		
	н	196.7 ± 2.8	217.5 ± 3.7	171.5 ± 1.1	
Chromium	R	45.0 ± 0.9	38.0 ± 1.5	48.9 ± 1.0	
	Р	48.6 ± 0.9	43.9 ± 2.7		
	н	441.0 ± 5.2	449.1 ± 3.6	437.5 ± 3.1	
Nickel	R	101.3 ± 1.2	94.2 ± 2.4	108.1 ± 1.6	
	Р	137.2 ± 1.5	135.4 ± 5.4		
	н	180.8 ± 3.9	222.4 ± 20.2	129.7 ± 3.6	
Silicon	R	34.6 ± 1.0	35.8 ± 1.1	32.6 ± 0.9	
	Р	24.4 ± 0.8	36.2 ± 2.2		
	н	962.8 ± 10.5		915.7 ± 11.4	947.0 ± 4.3
Iron	R	111.4 ± 2.2		112.9 ± 2.1	114.4 ± 2.3
	Р	318.1 ± 5.5			326.4 ± 2.1

WEIGHTED MEAN AND ITS STANDARD DEVIATION FOR EACH IMPURITY FROM EACH ANALYTICAL METHOD (micrograms per gram of plutonium metal)

TABLE II

WEIGHTED MEAN AND ITS STANDARD DEVIATION FOR EACH IMPURITY POOLED FROM SEVERAL ANALYTICAL METHODS^a (micrograms per gram of plutonium metal)

	Plutonium Metals										
Impurity	н	R	P								
Aluminum Chromium Nickel Silicon Iron	$176.3 \pm 4.2 \\ 196.7 \pm 2.8^{b} \\ 440.9 \pm 4.7 \\ 185.8 \pm 7.7^{d} \\ 949.2 \pm 8.8$	22.5 ± 0.5^{b} 46.1 ± 0.9^{c} 102.5 ± 1.4 34.5 ± 1.0 112.7 ± 2.2	$55.3 \pm 1.3 \\ 48.2 \pm 1.1 \\ 137.0 \pm 2.1 \\ 24.4 \pm 0.8^{b} \\ 322.0 \pm 4.2$								

^aData from all analytical methods are combined to compute the pooled weighted means and pooled standard deviations of the weighted means unless indicated by superscripts.

^bBased on emission spectroscopy.

Based on emission spectroscopy and atomic absorption.

^dBased on emission spectroscopy and spark source mass spectroscopy.

and

$$S_{\overline{X}_{w}} (pooled) = \begin{bmatrix} \frac{df_{1} S_{\overline{X}}^{2} + df_{2} S_{\overline{X}}^{2} + df_{3} S_{\overline{Y}_{w}}^{2}}{W_{1} & W_{2} & W_{3}} \\ \frac{df_{1} + df_{2} + df_{3}}{df_{1} + df_{2} + df_{3}} \end{bmatrix}^{1/2}$$

where subscripts 1, 2, 3 refer to the various analytical methods, n_i is the number of observations in the i-th mean with nonzero weight, and $df_i = n'_i - 1$.

In three instances, values come only from emission spectroscopy. This method has produced the largest amount of data, and the weighted mean of the emission spectroscopy results is between the weighted means reported from the other two analytical procedures. In two other cases the weighted means are pooled from two analytical procedures reporting values for an impurity. The weighted means not pooled in these cases are from analytical methods that have apparent biases for these impurity elements in these plutonium metals.

An approximate t-test, where

$$t = \frac{\overline{X}_{w_1} - \overline{X}_{w_2}}{\left(S_{\overline{X}}^2 + S_{\overline{X}}^2\right)^{1/2}}$$

is used to check for significant differences at the 0.05 level among any two of the analytical methods. With judgment based on analytical experience, one can arrive at the same conclusion as the t-test in 80% of the cases. Because of the variety of reporting procedures and the rounding and averaging of results, the estimates of precision calculated for this report, while correct for the data as used, are not entirely satisfactory.

In 20% of the comparisons, the t-test gives a tvalue marginally significant at the 0.05 level. The differences, while statistically significant, are not practically significant. In these few cases, analytical judgment indicates that the weighted means of the pertinent analytical methods can be pooled.

IV. SUMMARY AND RECOMMENDATIONS

Differences between the weighted means for some impurities (Table I) may indicate that biases exist. If there are such biases, they are not consistent among the several impurities; i.e., one analytical procedure does not always yield higher results than another. Because the methods are supposed to measure the same quantity and because there seems to be no consistent bias between methods, the weighted means are pooled from the methods, except for those cases noted.

The values given in Tables I and II should be used with judgment. Where there are apparent differences among weighted means, further experimental work is recommended. To resolve these differences, individual laboratories should use the values of Table II in a conscientious effort to examine their analytical methods, especially where large discrepancies occur between their measurements and the ones reported here. In this way, and with consistent reporting practices, the accumulation of future data will be helpful in determining impurity concentrations in plutonium metals even more accurately than shown here.

ACKNOWLEDGMENTS

We gratefully acknowledge the efforts and cooperation of the many people at the participating laboratories who contributed the data discussed in this report. The participating laboratories are: Atlantic Richfield Hanford Company, Hanford, WA; Savannah River Plant, Aiken, SC; Rocky Flats, Golden, CO; Mound Laboratories, Miamisburg, OH; Argonne National Laboratory, Chicago, IL; and Los Alamos Scientific Laboratory, Los Alamos, NM.

REFERENCES

1. C. J. Martell, "The Effect of Particle Size on the Carrier-Distillation Analysis of PuO_2 ," Los Alamos Scientific Laboratory report LA-5454 (February 1974).

2. D. F. Andrews, "A Robust Method for Multiple Linear Regression," Technometrics 16, 523-531 (November 1974).

APPENDIX I

۰

.

4

COMPUTER PROGRAM USED FOR STATISTICAL EVALUATION OF THE ANALYTICAL DATA

PROGRAM MAIN (INP,OUT) OIMENSION X(250), W(250), R(250), T(SUD), O(250), Y(250) OIHENSION TITLE(5) С READ TITLE, DATA C JEØ 00 128 HH=1,40 READ 130, (TITLE(K), K=1, 5) J=J+1 PRINT 140, J PRINT 150, (TITLE(K),K=1,5) NCT=0 READ 160, N READ 170, (X(I), I=1,N) C CALCULATE MEANS, STANOARD OEVIATIONS, AND RESIDUALS OF ORIGINAL DATA SUMX=0.0 SUSX=0.0 XAZU.0 XAT=0.6 XNEN DO 18 7=1,N SUMX=SUMX+X(I) 18 CONTINUE DU 20 I=1,N R(I)=ABS(X(I)=SUMX/N) 20 SUSX=SUSX+R(I)**2 SUSX=SGRT(SUSX/(N=1.)) XAB=SUSX/SQRT(XN) CALL SORT1 (N,Ø,R,T) NM#HOD(N,2) NXEN/2 NY=NX+1 STO=(R(NX)+R(NY))/2. IF (NH.EQ.)) STD=R(NY) XMM=SUMX/N PRINT 180, XMM, XAB C C CALCULATE WEIGHTS USING ANOREWS METHOD 00 90 Ma4,4 C=(.25*FLOAT(M)+0,0)*STO DO 80 ICNT=1/10 00 50 I=1,N IF (ICNT.EQ.1) GO TO 40 IF (ABS(R(1)/C).GT.3.1415926) GD TO 30 H(I)=SIN(R(I)/C)/R(I) GO TO 56 30 W(I)=0.0 IF (ICNT.EQ.18) NCT=NCT+1 XNCTENCT

.

.

6

.

```
GO TO 50
   40 N(I)=1.0
   50 CONTINUE
C
С
      CALCULATE WEIGHTED MEANS, STANOARO DEVIATIONS, AND RESIDUALS OF
C
      WEIGHTED DATA
      SUM1=0.0
      SUM2=0.0
      00 60 I=1,N
      SUM1=SUM1+W(I)*X(I)
   60 SUM2=SUM2+W(I)
      XBAR=SUM1/SUM2
      SUMR#0.0
      00 70 I=1,N
      R(I)=X(1)-XBAR
   78 SUMR=SUMR+R(I)*R(I)*W(I)
      SUMR=SGRT(SUMA/((N=NCT=1)*(SUM2)))
   80 CONTINUE
   90 CONTINUE
C
C
      CALCULATE MEANS, STANDARD DEVIATIONS OF DATA RECEIVING NON-ZERD
č
      WEIGHTS
      00 100 1=1,N
      Y(I)=X(1)
      IF (W(I).EQ.0.) Y(I)=0.
      XAEXA+Y(I)
  108 CONTINUE
      XAM=XA/(N=NCT)
      DO 110 1=1,N
      D(1)=Y(1)=XAH
      IF (W(I).EQ.0.) D(I)=0.
      XAT=XAT+D(1)*+2
  110 CONTINUE
      XAT=SQRT(XAT/(N=NCT=1.))
      XAS=XAT/SURTLXN=XNCT)
      IF (ICNT.EQ.10) PRINT 190, XAM, XAS
      IF (ICNT.EQ.10) PRINT 200, XBAR, SUMR
      IF (ICNT_10.10) PRINT 210
      IF (ICN1.EQ.18) PRINT 220, (K,X(K),R(K),W(K),K=1,N)
      PRINT 230
      PR1NT 240
      PRINT 250
      PRINT 260
      PRINT 278
  128 CONTINUE
C
  130 FORMAT (5A10)
  140 FORMAT (1H),///,55X,13)
  150 FURMAT (//, 35X, 5A10)
  168 FORMAT (113)
  178 FORMAT (14F5.8)
  188 FORMAT (///* HEAN AND ST DEV DF MEAN (N VALUES)
     1 *,2F15.4)
  198 FORMAT (* HEAN AND ST DEV OF HEAN (N' VALUES)
                                                                        *,
     12F15.4)
  298 FORMAT (* WEIGHTED HEAN AND STO DEV OF WEIGHTED HEAN (N' VALUES)*,
     12F15.4)
                                                             X(I)
                                                                      R(I)
                          X(I)
                                   R(1)
                                           H(I)
                                                        I
  210 FORMAT (//*
                     I
```

.

1	W(I)	I	X(I)	R(I)	W(I)	1	X(I)	R(
21)	W(1)*//)		• - •.		•		· · ·	:
220 FUR	MAT (15, F8.0	. F8.0.	F8.3.3(1)	10,F8.0.	F8.0,F3.3)	2		
230 FOR	MAT (///39%)	#X(1)	IS THE I.	TH OSSE	RVATIONA)	•		
240 FOR	MAT (39%. +R	1) 15	THE TOTH	RESIDUA	L FROM THE	WEIGHTE	O MEAN+	
250 FOR	MAT (39%. +H)	1) 15	THE WETCH	HT GIVEN	THE TOTH	OBSERVAT	ton+1	•
268 FOR	HAT (SOX. AN	TS THE	NUMBER I	DE ONTGT	NAL DASERV	AT I DNS+3		
278 508	NAT COT AN	18 14		DE DREE	BVATIONS W	114 ND47		LUTE
	ani tasutua	19 100		0, 0095	UANI 40140	ATH NUNE	fun urti	nie
1 77								
END								

· · ·

۰ ،

·• •

.

APPENDIX II

DATA, RESIDUALS, WEIGHTS, AND VARIOUS MEANS AND STANDARD DEVIATIONS FOR EACH IMPURITY, PLUTONIUM METAL, AND ANALYTICAL PROCEDURE

Analytical Method	Impurity	Page		
Emission Spectroscopy				
Metal H	Al	9		
	Cr	10		
	Fe	11		
	Ni	12		
	Si	13		
Metal P	A1	14		
Wietari	Cr	15		
	Fo	16		
	re N:	10		
	IN1 O'	10		
	51	10		
Metal R	Al	19		
	Cr	20		
	Fe	21		
	Ni	22		
	Si	23		
Chemical Method				
Metal H	Fe	24		
Metal P	Fe	25		
Metal R	Fe	26		
Spark Source Mass				
Spectroscopy				
Motal H	A1	27		
Mictarii	Cr	28		
	N;	20		
	S;	30		
M-4-1D	A1	21		
Metal P	AI C-	20		
	Or N:	ა <u>ა</u> ეე		
		00 04		
	51	34 -		
Metal R	Al	35		
	Cr	36		
	Ni	37		
	Si	38		
Atomic Absorption				
Metal H	Al	3 9		
	Cr	40		
	Fe	41		
	Ni	42		
	Si	43		
Metal R	Al	44		
	Cr	45		
	Fe	46		
	Ni	47		
	S;	48		
	DI DI	40		

ALUMINUM METAL H EMISSION

MEAN AND ST DEV OF MEAN	(N VALUES)	173.8760	4 • 0 7 <u>87</u>
MEAN AND ST DEV OF MEAN WEIGHTED MEAN AND STD D	(N' VALUES)	172 2308	3 8895
	EV OF WEIGHTED MEAN (N' VALUES)	174 6091	2 8896

.

٠

.

•

I	¥(I)	R(I)	W(I)	I	X(I)	Ř(Î)	WII)	· I	X(I)	R(Ī)	W(I)	· 1	X(I)	R(I)	4(I)
1	93	-82	- 004	2	141	-34	. 027	3	116	-59	.015	4	125	-50	. 120
Ē	117	-58		6	179		-034	7	241	66	+011	8	256	91	0.000
ő	155		.032	10	iii	-64	.013	11	221	46	.022	12	257	82	.003
11	91	-84	+ 003	· 14	130	-45	.022	15	218	43	• 023	16	163	-12	+034
17	95		-005	18	99	-76	•007	19	163	-12	+034	20	173	-2	• 035
21	166	-9	-034	22	102	-73	.008	23	155	-20	• 0 3 2	24	137	-38	+ 026
26	180	ŝ	* A 3 A	26	169	=6	+034	27	96	-79	•005	28	105	-70	•010
29	220	45	• 022	30	223	٨Å	•021	31	160	- 15	+033	32	153	-22	+031
33	155	-20	.032	34	113	-62	+014	35	221	4 6	• 022	-36	257	82	•003
37	150	-25	+031	38	196	21	+032	39	193	<u>18</u>	•032	40	214	39	• 125
41	190	15	. 033	42	186	īi	.034	43	191	Ī6	.033	44	140	- 35	•027
45	275	100	0 0 0 0	46	155	_ŽŌ	032	47	137		,026	48	200	25	030
49	255	81	2004	50	210	35	027	51	1A5	10	.034	-52	163	-12	.034
53	347	-28	030	. 54	184	9	034	55	246	71	.009	56	150	-25	_031
57	126	-49	020	58	208	33	027	59	263	ŔŔ	.001	-ê 0	184	9	_034
61	166	_9	034	62	112	_63	013	63	171	_4	035	64	131 ·	_44	.023
65	17.1	-4	035	66	200	25	030	67	214	39	025	-68	220	45	.022
60	100	15	033	70	144	_31	029	71	107	-68	011	.72	104	-71	្វី00-្
73	128	-47	021	74	148	-27	030	75	181	6	034	76	167	-8	034
77	215	40	024	78	200	25	030	79	125	=5 0	020	80	115	-60	_015
a 1	210	35	027	A2	2)6	A 1	024	83	197	22	.031	84	198	23	_031
85	174	-1	.035	86	167	_6	.034	87	146	-29	.029	88	148	-27	.030
ÂQ	168	_7	034	90	231	56	016	91	178	3	035	92	195	20	.032
03	145	-30		94	212	37	026	95	181	Ă	.034	96	200	25	.030
97	118	-57	.016	98	106	-69	.010	99	79	96	0.000	100	105	-70	.010
101	168	-7	034	102	162	_13	034	103	212	37	. 026	104	188	13	0.33
105	186	ĩi	034	106	224	49	020	107	240	65	.012	108	268	93	0.000
109	185	10	034	110	200	25	030	111	175	. 0	035	112	185	10	_034
113	245	70	.000	114	200	25	030	115	210	35	.027	116	225	50	02 0
117	170	_=	034	11.	190	ĩĸ	033	110	168		.034	120	195	20	, 132
121	145	-30	020		- * -	• 2			- 40	-1		-			

.

•

X(I) IS THE Ī-TH ORSERVATION R(I) IS THE T-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH DBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

v

MEAN AND ST DEV OF MEAN (N MEAN AND ST DEV OF MEAN (N' WEIGHTED MEAN AND STD DEV OF				(N VALUES) N' VALUES) / OF WEIGHTED MEAN (N')			185.6535 194.7768 Values) 196.7264			522 180 195					
I	X(I)	R(I)	W(I)	I	X(I)	R(J)	. W(I)	I	X(I)	R(İi	W(I)	· I	X(I)	R(I)	W(I)
1	89	-108	0.000	2	176	-21	.029	3	214	17	.029	4	267	70	.01
5	172	-25	+028	6	167	-30	•027	7	225	28	•027	8	219	22	• 025
9	155	· - 42	• 0 5 3	10	200	3	•031	11	260	A3	+015	12	253	56	+01
13	81	-115	6+000	14	90	- 107	0.00	15	190	-7	•031	16	236	39	• 02
17	194	-3	•ñ31	18	149	-48	•021	19	209	ï2	•030	20	218	21	• 0 5,
21	151	-46	•055.	22	126	-71	.012	23	145	-52	+019	24	111	-86	+00
25	221	24	.028	26	236	39	.024	27	72	-125	0.000	28	75	-119	0.06
29	234	37	. 525	30	209	12	.030	31	148	-49	•020	-32	130 -	-67	•01
33	77	-120	0.000	34	155	~ 4 ?	.023	35	198	. 1	•031	36	234	37	- 02
37	2+7	50	•020	38	289	92	.003	39	225	28	•027	40	246	49	•0S
41	180	=17	• 030	· 42	218	21	• 029	43	56	-141	0+000	44	203	6	•03
45	148	-49	- 020	46	- 191	-6	•031	47	235	38	+024	43	93	-104	0+00
49	186	-11	• 030	50	189	-A	•031	51	270	73	+010	52	225	28	105
53	58	-139	0+000	54	203	6	. +031	55	240	43	•022	56	242	45	• 022
57	233	36	.025	58	169	-28	.027	59	167	-30	• 027	-60	175	-22	• 0 2
61	218	21	•920	62	229	32	.026	63	163	-14	•030	-64	202	5	•03
65	209	12	.030	66	183	-ï4	.030	67	196	-1	•031	68	157	-40	• 15
69	141	=56	.018	70	139	-5A	.017	71	78	-119	0.000	72	76	-121	0.00
73	162	-35	. ñ25	74	154	-43	.023	75	160	-37	.025	76	140	-57	.01
77	232	55	.025	78	208	īı	.030	79	146	-51	•020	80	150	-47	• 02
81	220	23	•028	82	230	33	.026	83	214	i7	• 029	84	194	-3	•03
85	216	19	• 029	86	186	-11	•030	87	151	-46	• 022	88	154	-43	• 0 23
89	177	-20	• 029	90	191	-6	•031	91	212	15	•030	92	210	13	• 031
93	188	-9	•ô31	94	195	-2	•031	95	208	11	•030	96	210	13	• 0.3(
97	74	-123	0.000	98	118	-79	.008	99	68	-129	0.000	100	102	-95	.00
101	142	-55	+018	102	155	-42	.023	103	178	- 19	• 0 2 9	104	170	-27	• 0 28
105	224	27	• n27	106	226	29	.027	107	198	1	+031	108	192	-5	• 03)
109	220	23	.028	110	215	វីគ	.029	111.	190	∞ 7	•031	115	215	18	• 020
113	230	33	. 126	114	220	23	.028	115	235	38	+024	116	217	20	.029
117	210	13	.030	118	185	-12	.030	119	190	-7	.031	120	185	-12	.03
121	204	7	.031	122	191	-6	.031	123	198	i	.031	124	193		. 03
125	360	163	0,000	126	413	216	0,000	127	164	-33	.026				-

X(I) IS THE I-TH ORSERVATION R(I) IS THE T-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE MUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

٠

MEAN A MEAN A Weight	ND ST DE ND ST DE ED MEAN	EV OF ME EV OF ME ANO STD	AN (N VALU AN (N' VALU DEV OF WE	JES) JES) Ighteo Me	AN (N' 1	VALIES)	944.5 965.4 962.8	982 466 054	16.83 12 1 10.49	11 152 142
I	X(I)	RIÌ	W(I)	I	X(I)	R(İ)	W(I)	I	X(I)	R(Ì)
1 5	413 1075	-550 112	0.000 .000	2 6	815 1063	-148 100	•007 •008	3 7	797 880	-166 -83
9	669	-294	, 001	10	1084	121	008	11	1058	125
13	438	-525	0,000	14	575	-385	0,000	15	1056	93
17	1150	187	005	18	113 ₈	175	006	19	869	-04

1	413		0.000	2	815	=14A	.007	3	797	-166	.006	4	795	-168	.006
5	1075	112	•00A	6	1063	100	, 008	7	880	-83	.009	8	877	-86	008
	669	-294	.001	10	1084	121	.008	11	1098	125	.007	12	863	_100	830
13	438	-525	0,000	14	575	-388	0,000	15	1096	93	.008	16	1111	148	007
17	1150	187	005	18	1138	175	2006	19	869	-94	008	20	988	25	009
21	808	-155	•006	22	780	_183	005	23	1538	۳75	0,000	24	1203	240	003
25	1156	193	,005	26	1185	222	004	27	1150	187	005	28	113A	175	006
29	1065	102	•00 ⁶	30	969	6	010	31	888	-75	.009	-32	810	-153	007
33	535	-428	0.000	34	515	-448	0.000	35	1176	213	.004	36	1338	375	0.000
37	1125	162	•006	38	1175	215	+004	39	1117	154	+006	-40	997	34	-009
41	935	-28	•009	42	905	= <u>5</u> 8	.009	43	880	-83	• 0 0 9		783	-180	- 006
45	1150	187	•005	46	-882	-8)	.009	47	1165	202	+005	-48	1023	60	.009
49	1010	47.	•009	50	991	ŹA	.009	51	1075	112	• 008	52	1004	A 1	- 009
53	880	-83	•009	54	1059	96	.008	55	1051	88	.008	86	817	-144	- 007
57	840	·=123	•007	58	816	-147	.007	59	912	-51	+009	60	1142	179	-006
61	848	· = 115	• ñ n 8	62	960		•010	63	887	-76	+009	64	994	31	.009
65	933	-30	• • • • • • •	66	945	-เีล้	•009	67	861	− 1 ô 2	+008	68	1013	50	• • • • •
69	955	-8	+010	70	932	-31	+009	71	526	-437	0 • 0 0 0	72	476	-487	0.000
73	974	11	•010	74	909	-54	• 009	75	920	-43	•009	76	876	-87	+008
77	1025	62	•009	78	888	-75	.009	79	1140	177	.006	80	920	-43	- 009
81	1030	67	•009	82	1010	_47	•009	83	910	-53	•009	84	1101	138	.007
85	845	-118	• 008	86	.1102	<u>1</u> 39.	•007	87	868	-95	.008	88	820	-143	.007
89	1025	62	-009	90	691	-272	•002	91	848	-115	•008	92	868	-95	.008
93	942	-21	• 009	94	1066	103	•008	95	1050.	Å7	+008	96	1080	117	.008
	995	32	•009	98	795	-168	•006	99	870	-93	•008	100	1035	72	.009
101	925	-38	•009	102	775	-j8A	•005	103	875	-88	+00B	104	975	12	+ 11 3
105	945	-18	•009	106	1118	<u>155</u>	.006	107	1088	125	+007	108	773	-190	.005
109	938	-25	•009	110	913	=5ô	•009	111 -	930	-33	•009	112	875	-88	•008

.

WITT

.

X(I)

795 877

I

.

R(I)

W(I)

X(I) IS THE I.TH ORSERVATION R(I) IS THE T-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

11

.

.

.

.

.

٠

-

MEAN A MEAN A ¥EIGHT	ND ST OE ND ST OE ED MEAN	EV OF ME EV OF ME And Sto	AN (N VAL AN (N' VAL DEV OF WE	VALUES) ' VALUES) OF WEIGHTED MEAN (N' VALUES)			444.9339 449.0727 440.9885		8.93R0 6.9790 5.1914						
I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	1	X(I)	R(I)	W(I)	I	X{I)	R(I)	W(I)
1	256	-185	0.000	2	639	196	0.000	3	422	-j9	.018	4	486	45	.016
5	450	9	.018	6	587	<u>146</u>	.003	7	417	-24	.018	. 8	474	33	.017
9	390	-51	•016	10	585	144	.003	11	413	-28	+018	12	432	-9	+018
13	148	-293	0.000	14	623	182	0.000	15	425	-14	2018	16	431	-10	-018
17	186	-255	0.000	18	191	-250	0.000	19	590	149	•003	20	438	-3	-018
21	418	-23	•01A	22	190	-251	0.000	23	613	172	0.000	24	429	-12	.015
25	475	34	•017	26	408	-33	.017	27	463	22	•018	28	422	=19	.018
29	475	34	.017	30	340	=101	•009	31	355	=86	•01Z	32	514	73	.413
33	463	52	•018	34	480	39	.017	35	360	-A1	•012	36	340	-101	•004
37	594	153	+ 002 °	38	434	-7	+018	39	558	117	•007	40	450	- 9	• 1) 8
41	420	-51	+01A	42	486	45	•016	43	379	-62	+015	44	410	=31	+017
45	528	81	+011	46	T35	294	0+000	47	556	- 115	• 00 /	48	395	-+0	016
49	528	87	• 011	50	560	119	•007	51	530	89	+011	52	540	99	+010
53	394	-47	+016	54	528	87	+011	55	523	85	+012	20	405		•017
57	521	Rộ	•012	58	384	-57	.015	59	388	-53	+016	60	478	37	+017
61	465	24	+01B	62	546	105	•009	63	339	-102	+009	64	437	-4	+018
65	412	-53	• 01 8	66	420	-21	.019	67	581	140	+004	68	399	-42	+017
69	440	-1	•01R	70	462	21	•018	71	354	-97	•011	72	346	-95	.010
73	605	164	.001	74	499	58	.015	75	318	-123	+006	76	308	=133	.005
77	535	94	.010	78	470	29	.018	79	405	-36	•017	80 .	375	-66	+014
81	474	33	.017	82	446	5	.016	83	5.36	95	.010	84	478	37	•017
85	618	177	0.000	86	549	108	.008	87	367	-74	.013	. 88	350	=91	+011
89	475	34	.017	90	432	-9	.018	91	388	-53	.01a	92	378	-63	_015
93	374	-67	_014	94	406	. 35	.017	95	397	-44	.017	96	418	-23	.018
. 97	542	101	.009	. 98	560	119	.007	. 99	53 <u>8</u>	. 97	.010	100	570	129	.005
101	324	=117	• 007	102	240	-201	0,000	103	295	-146	.003	104	284	-157	.002
105	430	-11	.018	106	430	-11	.018	107	390	-51	.016	108	445		-018
109	440	-1	.018	110	450	_ 9	.018	111	430	-11	018	112	9-3U 4-35	-11	*010
113	403	-38	•017	114	588	147	.003	115	428	-13	.018	115	435	-0	+019
117	446	5	.018	118	450	9	.018	119	440	-1	.018	160	€ 20	- 21	*n18
121	495	54	.016												

X(I) IS THE I=TH ORSERVATION R(I) IS THE J=TH RESIOUAL FROM THE WETGHTEO MEAN W(I) IS THE WETGHT GIVEN THE I=TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

٠

12

•

. - .

SILICON EMISSION HETAL H

MEAN AND	ST OEV OF MEAN (N VALUES)	185.7236	5.5650
MEAN AND	ST DEV OF MEAN (N' VALUES)	179.4407	5.0148
WEIGHTED	MEAN AND STD DEV OF WEIGHTED MEAN (N' VALUES)	180,8253	3.9006

.

I	X(I)	R(I)	W(1)	I	X(I)	R(I)	W(I)	I	X (1)	R(Ì)	W(I)	I	X(I)	R(I)	W(I)
1	56	-125	•00ī	2	334	ī 53	0.000	3	· 169	-12	.024	۲	275	94	.008
, s	107	-74	.013	6	268	87	.010	7	168	-i3	.024	8	271	90	.009
ŏ	92	-89	.009	10	193	12	024	11	139	-42	.020	12	250	69	.014
13	88	-93	008	14	168	_13	024	15	137	-44	020	16	217	36	.021
17	03	-88	000	18	121	-60	.017	19	186	5	.024	20	120	-61	.016
21	220	19	• 621	22	81	#1 00	• 0 0 6	23	176	-5	+024	24	275	94	.008
25	141	-	• 021	26	213	12	+022	27	116	-65	+015	28	189	8	+024
29	217	36	+021	30	319	ïäÄ	0 • 0 0 0	31	208	27	• 073	·32	- 99	-82	+011
33	178	-3	• 025	34	213	32	.022	35	326	145	0+000	.36	193	12	• 024
37	146	-35	.022	38	153	=2A	.023	39	229	48	+019	40	306	125	•001
41	209	28	.023	42	159	-22	.023	43	108	-73	•013	44	249	68	•015
45	204	23	+023	46	249	6A	.015	47	196	ī5	+ 024	48	203	22	• 0 2 3
49	185		+025	50	24I	60	+017	51	311	130	0+000	52	185	. 4	• 025
53	153	=28	•023	54	229	48	.019	55	223	42	•020	-56	252	71	+014
57	190	_9	+024	58	145	-36	•022	59	140	-41	•021	60	177	-4	• 0 2 5
61	238	57	•017	62	201	20	+024	63	175	-6	•024	64	148	-33	• 022
65	140	-41	+021	66	238	57	+017	67	182	1	•025	68	135	-46	•020
69	180	-1	+ 025	70	180	=1	• 025	71	94	-A7	•010	72	99	-82	+011
73	130	= 51	+019	74	118	-63	+016	75	164	- ī7	• 024	76	165	-16	• 024
ŻŽ	25ő	69	•014	78	232	51	+019	79	Ž08	Ž7	•023	80	212	31	• 055
81	119	=62	• ò 1 6	82	132	-49	•019	83	104	- 77	•012	84	98	-83	+011
85	195	14	.024	86	116	-65	•015	87	223	42	•020	88	204	23	•023
89	238	57	.017	90	225	44	.020	91	212	31	•022	92	228	47	•019
91	86	-95	-008	94	76	-105	.005	95	94	-87	•010	96	92	-89	+009
97	192	iī	.024	98	165	-14	.024	99	145	-36	.022	100	145	-36	.022
101	178	-3	.025	102	289	108	.004	103	380	199	0.000 .	104	307	126	+000
105	185		.025	106	185	4	.025	107	195	ī4	+024	108	175	-6	• 124
109	270	89	. 0.09	110	225	44	. 020	- <u>111</u>	220	39	.021 ·	112	245	64	.016
113	220	19	• • • • •	114	149	-12	• 022	115	168	- ī3	• 024	116	134	-47	+019
117	132	-49	• 019	118	223	42	• 020	119	161	-20	+ 024	120	210	29	• 023
121	172	-9	• 024	122	185	4	• 025	123	200	Ï9	• 024				

.

X(I) IS THE Ĭ-ŤH ORSERVAŤÎON R(I) IS THE Ĭ-ŤH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

MEAN AI MEAN AI WEIGHTI	ND ST DE ND ST OE Ed Mean	V OF MEA V OF MEA And Sto	AN (N VAL An (N' VAL Dev of We	UES) UES) Ighted Me	AN (N' V	ALUES)	55.3 55.1 55.4	069 563 685	1.74 1.53 1.27	58 46 70			
I	X(I)	R(I)	WED	I	X(I)	RÍÌ)	W(I)	I	- X(I)	R(İ)	W(I)	I	X(I)
-	,			•	65	īn	076	3	39	-16	.060	▲	53
1	Ð	-49	0.000	e e	81	10	.072	ž	39	-16	+060	8	45
5	50	*5	+082		10	20	•032			-11	+ 072	12	35
9	59		+084	10	07	14	+U/2	11	20	-14	.040	16	52
13	5	-50	0.00	14	/5	20	•071	15	37	~10		20	52
17	50	-5	•082	1B	94	39	0.000	19	35	-20	• () • 0	24	¥3
21	72	17	•060	22	54	-1	.085	23	42	-13	+ U () () 0 () E	28	73
25	67	12	.072	26	82	27	.029	27	41	-1-	+ U 0 3	20	49
29	50	-5	.082	30	54	-1	.085	31	74	19	• 054	36	40
33	28	- 27	.026	34	63	_8	.080	35	59		• U8•	-30 A 0	46
37	46	-9	.076	38	68	13	.070	39	93	38	0.000		30
41	51	-4	.083	42	58	.3	.085	43	30	-25	.032		10
45	36	-19	151	46	. B 3	28	. 026	47	46	- Ç	• 976	68	38
ÅQ	67	īź	072	5Ö	34	-21	045	51	61	- 6	.0A2	-52	45
53	33	-22	042	Š4	73	18	057	55	45	-10	.075	-26	4.1
57	50	-5	280	58	67	ī2	.072	59	50		.082	-60	01
61	69	14	. 168	62	35	-20	04R	63	73	18	• 057	-04	03
45	47	_8	078	66	70	ī5	.065	67	59	4	• 084	68	36
69	57	2	085	70	38	- 17	057	71	78	23	.042	72	63
73	33	-22	. 042	74	70	ĩ5	065	75.	57	2	.085	76	04
77	62	7	. 681	78	62	7	081	79	74	j9	.054	80	- 44
61	50		0.01	82	20	-35	.003	83	47	-8	.078	84	23
01	07			86	35	=20	+04B	87	57	2	• 085	Έ3	45
85	73	30	0.000	80	60	~ <u>ç</u> u 1▲	680	91	50	-5	\$80 ·	92	44
64	83	30	• 0 2 0	70	61	17	- 082	95	70	ĩŝ	• 065	96	68
43	00	11	+0/4	74	• • • • • • • • • • • • • • • • • • •	_ 	- 043	99	73	1	+057	100	46
97	-58	3	• 785	98	•0	-15	•003	••	7.3	10	v		
101	64	9	• 778										

R(I)

-2

-10

-20 -3 -6 18 -7 1) 10 23 -17 -10

-6 6

28

8 14

-19

-11 -32

-10

-11

13 -9

٠

٠

W(I) .085

• 075

+048 +084 +084 .0A1 .057 180 074 .076 042 057 075 081

n**g2**

. 026

.051 080

.063 .172

.011

• 075

•072

• 070 •076

٠

X(I) IS THE I-TH ORSERVATION R(I) IS THE I-TH RESIDUAL FROM THE WEIGHYED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

٠

EMISSION CHROMIUM METAL P

MEAN A MEAN A WEIGHT	MEAN AND ST DEV OF MEAN (N VALUES) MEAN AND S ^T DE ^V of MEAN (N' ^{Valu} es) Weighted Mean and std oev of weighted mean (N' values)							'526 1655 1506	2.11 1.08 .90	.89 184 164					
I	X(I)	R(İ)	WED	I	X(I)	Ŕ(Ĭ)	W(I)	I	X(I)	R(Ì)	W(I)	I	X(I)	R(I)	W(I)
1	20	-29	0.000	2	42	-7	.109	3	41	-8	.105	♦ ¹	56	7	.105
ŝ	100	51	0.000	. –	56	7	.105	7	38	·=i1	•091	8	42	-7	.109
ě	34	=15	.067	10	47	# 2	.121	11	53	- 4	•115	12	_10	-39	0.000
13	43	-6	112	ĪĀ	39	_10	096	15	52	3	,118	16	200	151	0,000
17	52	3	118	18	32	<u> </u>	055	19	47	" 2	,121	-20	44	-5	,115
21	46	-3	119.	22	51	_5	119	23	38	-11	0 91	24	58	9	.796
25	42	-7	100	26	60	11	086	27	44	-5	,115	-28	41	-8	.105
29	54	5	,113	30	63	14	068	31	21	-78	0,000	-32	* 6	- 3	-114
33	38	-11	.091	34	39	-10	.096	35	47	-5	.121	-36	62	13	+074
37	76	27	0,000	38	45	-4	, 118	39	55	6	.109	4 0	56	7	,105
41	32	-17	•055	42	54	5	,113	43	45	-4	.118	**	71	22	.018
45	49	0	.)21	46	14	-35	0.000	47	35	-14	.074	48	28	-21	.029
49	66	17	_049	50	45		. 118	51	44	-5	,115	-52	75	26	0.000
53	50	1	.121	54	20	-29	0.000	55	49	0	•121	50	33	-10	.001
57	59	10	+091	58	40	-9	+101	59	58	9	•096	00	60	11	•080
61	33	-16	•Å61	62	62	<u>ī</u> 3	+074	63	64	15	• 062	04	31	-10	• 0 4 0
65	56	7	+105	66	48	-1	+121	67	61	12	+0R0	-08	31	-18	*040
69	59	10	•091	70	45	· = 4	+118	71	64	15	•062	72	58		•046
73	41	-8	+105	74	61	1 ?	•080	75	55	6	•109	78	31	-18	*040
77	55	6	•109	78	45	21	+121	79	52	3	•110	84	2U 53	~ 2 4	115
B1	26	-23	•018	82	38	-11	•091	83	33	-19	+001	88	54	5	113
85	54	13	• 27 •	86	57	-9	• 1 0 1	01	40 66	-J	.109	.92	48	-1	. 121
89	54	2	•113 • • • •	90	57		.101	91	35	-10	048	96	A7		.121
93	23	-	•115	74	34	5	•113	73	31	-10	•040	- 5		-6	
			A 1 1 W												

٠

X(I) IS THE INTH OBSERVATION R(I) IS THE INTH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE INTH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

MEAN AND ST DEV OF MEAN (N VALUES) MEAN AND ST DEV OF MEAN (N' VALUES) WEIGHTED MEAN AND STO DEV OF WEIGHTED MEAN (N' VALUES)						323.1 323.1 318.1	791 791 077	7•78 7•78 5•48	23 23 102						
I	X(I)	R(I)	with	I	X(I)	R(Ī)	WII)	I	X(I)	R(Ī)	W(I)	I	X(I)	R(I)	W(I)
1	317	-1	.022	2	325	7	.022	3	306	- 12	• 022	4	281	-37	•020
5	385	67	.015	6	393	75	.013	7	384	66	.015	8	350	32	.020
9	323	5	072	10	303	-15	021	11	425	107	.007	12	354	36	.050
13	324	6	022	14	408	90	,010	15	175	-143	.000	16	308	- 10	•02Z
17	336	18	021	18	285	-33	.020	19	335	ī7	.021	20	326	8	• 022
21	291	-27	. 021	22	317	_1	022	23	276	-42	.019	24	372	54	.017
25	377	59	.016	26	274	-44	019	27	289	-29	.020	28	263	. =55	.017
29	295	-23	.021	30	388	70	014	31	227	-91	.010	.32	328	10	.022
33	387	69	.014	34	219	-99	800	35	387	69	.014	36	270	-48	.018
37	369	51	.018	38	263	-55	.017	39	302	-16	.021	40	456	138	.001
Ă1	460	142	.000	42	353	35	020	43	285	-33	.020	44	310	-8	.022
45	462	144		46	300	-1A	•021	47	383	65	+015	48	231	-87	+011
Å	341	27	.021	50	414	ÂŔ	.009	5)	291	-27	+021	52	327	9	•022
53	375	57	.017	54	312	-6	.022	55	452	134	+002	-56	236	-82	.012
57	266	-52	017	58	234	_84	.011	59	328	Ĩn	.022	-60	366	. 48	.018
41	191	-127	• • • • •	62	245	_73	.014	63	258	=60	.016	64	341	23	.021
45	320	-121	.022	66	270	-48	.018	67	309	-9	.022	-	-		• • • • •
00	JEU	6		00				• ·	U	•					

٠

-

X(I) IS THE Ī-ŤH ORSERVAŤĪON R(I) IS THE Ī-ŤH RESIDUAL FROM THE WEŤGHTED MEAN W(I) IS THE WEÌGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEÌGHTS

.

•

NICKEL METAL P EMISSION

MEAN AND ST DEV OF MEAN (N. VALUES)	130-2673	3•1946
MEAN AND ST DEV OF MEAN (N. VALUES)	137,4778	2•1224
WEIGHTED MEAN ANO STO DEV OF WEIGHTED MEAN (N. VALUES)	137,1913	1•5273
WEIGHTED MEAN AND STO DEV OF WEIGHTED MEAN (N' VALUES)	137,1913	1,5273

•

I	X(I)	RIÌ	W(I)	I	X(I)	RÍĬ)	W(I)	I	X(I)	R(İ)	W(I)	I	X(I)	R(I)	W(I)
1	63	-74	0.000	2	127	- 10	.063	3	· 117	-20	.049	۰. ا	153	16	. 056
5	100	-37	.016	6	171	34	.022	7	121	-16	.055	8	126	-11	.062
9	40	-97	0.00	10	142	5	.067	11	132	-5	+066	12	139	2	.068
13	43		0+000	14	153	Ĩ6	•056	15	116	-21	+047	16	145	8	.065
17	175	38	+014	18	171	34	• 0 2 2	19	124	-13	+059	20	146	ġ	.064
21	18	-119	0.000	22	139	2	.068	23	123	-1¥	.058	24	149	12	- 061
25	123	1 <u>4</u>	058	26	149	ĪŻ	061	27	127	_ 10	063	28	157	20	049
29	96	-41	008	30	126	_ 11	062	31	120	-17	054	32	158	21	047
33	63	-74	0,000	34	157	21	.049	35	114	-23	.043	36	143	6	066
37	123	-14	_05A	38	162	25	040	39	203	66	0.000	40	142	5	067
41	114	-23	.043	42	134	_3	067	43	90	-47	0.000	44	144	7	065
45	140	3	.067	46	177	≜ 0	.011	47	44	-93	0.000	48	135	-2	1068
49	127	-=10	063	50	156	Ī٩	051	51	117	-2Ò	.049	52	137	=0	068
53	172	35	•020	54	50	-87	0,000	55	181	44	.004	56	126	-11	062
57	130	_7	065	58	140	3	067	59	132	5	066	-60	145	8	065
61	148	. 11	.062	62	126	- 11	.062	63	161	24	.042	64	100	-37	.016
65	139	2	+ô6B	66	85	-52	0+000	67	142	5	+067	68	162	25	+040
69	⁻ 95	-42	+007	70	149	ïż	+061	71	95	-42	+007	. 72	144	- 7	+065
73	170	33	• 024	74	85	-52	0+000	75	140	1	+067	76	165	28	
77	143	6	+066	78	145	Â.	+065	79	127	- īŏ	• 063	80	162	25	+040
81	150	13	•060	82	120	-17	• 054	83	138		• 068	. 84	111	-26	.037
85	139	2	• 168	86	122	-15	.056	87	120	- īź	+054	88	154	17	.054
89	- 94	-43	.005	90	129	-A	-064	91	128	-3	.064	92	131	-6	.066
93	139	2	•06R	94	125	-12	• 060	95	ຳ້ອ້າ		•004	96	135	-2	660
97	123	·=1 Ā	.058	98	145	Â	.065	99	155	ĨĂ	-052	100	108	-29	.031
101	140	3	.067				•••								

• • •

.

1

X(I) IS THE I-TH OBSERVATION R(I) IS THE I-TH RESIOUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

17

.

MEAN A MEAN A Weight	ND ST OI NO ST OI ED MEAN	EV OF ME EV OF ME AND STD	AN (N VAL An (N' VAL Dev of We	UES) VES) Ighted Me	AN (N')	ALUES)	27.4 24.7 24.4	756 763 003	1.41 .96 .78	22 ?2 95					
I	X(I)	R(I)	WÌIÌ	I	X(I)	RII	W(I)	I	X(I)	R(Ī)	W(I)	I	X(I)	R(I)	W(I)
1	27	3	.131	2	15	_9	.101	3	. 27	3	.131	4	50	26	0.00
5	31	7	•117	6	23	·=1	•133	7	22	-2	•131	8	35	11	• 0.93
9	15	-9	.101	10	39	īŠ	.064	11	24	- 0	+134	12	20	-4	.120
13	24	-0	•134	14	5	= <u>1</u> 9	• 027	15	30	6	•122	16	18	-6	•116
17	15	-9	•101	18	26	2	•133	19	20	-4	•126	20	31	7	•117
21	10	-14	-065-	22	33	9	.106	23	16	-3	•107	24	20	-4	•120
25	12	-12	<u>,</u> 680	26	35	ĩı	.093	27	21	-3	.129	28	28	4	.129
29	11	-13	.073	30	29	5	125	31	9	- 15	.057	32	40	16	.050
33	22	-2	.131	34	23	-1	133	35	20	-4	.126	-36	26	2	.133
37	18	-6	118	38	23	-1	,133	39	13	-ī1	•088	40	27	3	.13
41	17	-7	.113	42	27	3	.131	43	35	īı	.093	44	37	13	.079
45	63	39	0.000	46	26	2	.133	47	38	14	•071	48	41	17	+048
49	26	2	.133	50	37	13	.079	51	66	42	0.000	52	30	6	.122
53	28	4	129	54	22	-5	.131	55	17	-7	.113	-56	31	7	.117
57	31	7	<u>,</u> 117	58	27	3	,131	59	20		.126	-60	31	7	.11
61	28	4	,129	62	23	-1	,133	63	56	72	0,000	-64	26	2	, 13
65	15	-9	.101	66	59	35	0.000	67	18	-6	.118	68	31	7	.11
69	14	-10		70	20	-4	,176	71	43	19	.033	· 72	26	2	.13
73	37	13	.079	74	18	-6	,118	75	24	-0	.134.	76	76	52	0.00
77	25	1	.] 34	78	24	_0	,134	79	44	20	.025	80	20	-4	.120
81	17	-7	<u>,</u> 113	82	26	2	.133					•			

٠

•

X(I) IS THE I-TH ORSERVATION R(I) IS THE I-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

•

ALUMINUM METAL R EMISSION

MEAN A MEAN A Weight	NO ST DE ND ST DE EO MEAN	EV OF MEA EV OF MEA ANO STD	N (N VALU N (N' VALU DEV OF WEI	JES) JES) Ighted Me	AN (N' \	AL(IES)	24.9 23:1 22:5	878 251	•82 •60 •48	54 77 86	
I	X(1)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I;	R(İ)	W(I)
1	32	9	.100	2	22	=1	.200	3	45	22	0.000
5	34	11	• 165	6	27	Å	.175	7	23		•200
9	29	6	-149	10	27	Å	.175	11	32	å	.100
13	25	2	1.92	14	24	i	198	i5	Å 1	ĩá	0.000
17	20	-3	192	1e	24	i	108	10	26	3	105
21	44	21	0 0 0 0	22	2.	÷.	163	23	20	5	141
					-0		••••		-0		

1	32	9	.100	2	22	-1	.200	3	45	22	0.000	▲ 1	40	17	0.000
5	34	11	• 165	6	27	4	.175	7	23	0	•200	8	38	15	+003
9	29	6	.149	10	27	4	.175	11	32	ġ	.100	12	39	16	0.000
13	25	2	_142	14	24	1	198	15	41	Īá	0,000	16	42	19	0,000
17	20	-3	192	18	24	i	198	19	26	3	185	20	19	-4	184
21	44	21	0_000	22	28	5	163	23	28	5	163	54	24	1	198
25	44	21	0,000	26	53	Ô	200	27	31	A	117	28	21	-2	. 197
29	20	-3	-14S	30	26	3	.185	31	31	8	117	32	27	4	175
33	20	-3	.165	34	21	-2	.197	35	31	8	.117	36	21	-2	197
37	30	7	. i33	38	19	-4	184	39	37	j 4	.016	40	25	2	192
+1	30	7	. 133	42	25	_2	192	43	15	-8	.133	44	18	-5	.174
45	29	6	.149	46	39	16	0,000	47	20	-3	.192	48	21	-2	197
49	28	5	.163	50	16	-7	.148	51	16	-7	.148	52	15	-3	133
53	20	-3	.į92	54	17	= 6	.162	55	22	-1	.200	56	24	1	198
57	19	-4	•184	58	14	-9	•116	59	18	-5	+174	60	16	-7	-148
61	19	-4	+j84	62	21	-2	•197	63	23	0	•200	64	19	-4	+184
65	22	-1	•200	66	23	Ô	•200	67	25	2	•192	68	26	3	+185
69	17	-6	+ <u>1</u> 62	70	21	-2	•197	71	20	-3	•192	72	18	-5	-174
73	20	-3	•192	74	22	-1	•200	75 [.]	24	1	•198	76	24	1	•198
77	24	1	•19A	78	22	-1	-200	79	20	-3	•192	80	20	-3	•192
81	22	-1	•200	82	15	-A	•133								

• •

R(I)

W(I)

I X(I)

X(I) IS THE 1-TH ORSERVATION R(I) IS THE 1-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

• •

KEAN A Mean A Weight	ND ST OI ND ST DI ED MEAN	EV OF MEA EV OF MEA And Std	AN IN VAL AN IN' VAL Dev of We	UES) UES) Ighted Me	AN (N' 1	ALUES) .	44.5 44.8 45.0	057 1415 1048	1.25 1.04 .88	06 25 06					
I	X(I)	RIÌ	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(Ī)	W(I)	I	X(I)	9(I)	W(I)
_				3	22	-12	. 083	3	52	7	.115	4	28	-17	.045
1	55	10	-097	<i>E</i>		-15	.120	7	56	11	•090	8	28	-17	• 0 + 5
5	63	18	•03/		37		.127	11	30	-15	•061	12	54	9	=104
9	15	-30	0+000	10	52	;	.115	15	34	-11	• 0 9 0	16	61	16	1053
13	39		•120	14	51	Å	.120	19	A 0	-5	+124	20	57	12	+083
17	42	-0	•1.3.3	10	51	TE	061	21	19	-6	.120	-24	50	5	•124
21	26	=14	.030	<i></i>	53	1.0	115	27	38	-7	.115	28	51	6	•150
25	25	-19	•030	20	52	'	.115	31	50	6	•120	-32	46	1	•133
29	46	1	•133	30	52	1	127	35	34	- ïĭ	.090	.36	74	29	0.010
33	-53	8	+110	34	15		0 0 0 0 0	30	36	-9	.104	40	36	-9	.104
37		-1	.133	38	13	= 30	107	Å.7	30	-15	-061	44	31	-14	• 0 6 8
41	76	31	0.000	42	49	•	+121	43	50	÷	+076	48	52	T	•115
45	40	-5	•124	40	39	-0	•120	E1	30	13	+115	52	38	-7	•115
49 -	39	=6	•120	-50	38	-7	+115	21	36		•104	.56	45	-0	•133
53	66	21	+016	54	34	¥	•10+	55	50	1.	. 000	60	52	7	.115
57	59	14	• 268	58	52	?	.115	57	20	11	115	64	42	-3	.130
61	46	1	.133	62	49	•	.121	63	30	_=;;(68	35	-10	.097
65	36	-9	.104	66	45	~ 0	,133	67	34	-11	124	.72	51	â	119
69	44	-1	.133	70	48	_3	,130	71	50	2	124	.74	A0	-8	.126
73	51	6	,120	74	59	14	06 8	75	40 	-5	.124	70	40		120
77	55	10	. <u>0</u> 97	78	55	10	.097	79	50	2	•124	00	70	-10	007
81	50	5	124	82 ·	47	<u>.</u> 2	1 32	83	38	=7	.115	04	35	-10	• • • • •
85	35	-10	097	86	35	-10	.097	87	15	-70	0.000	·			

X(I) IS THE Ĭ-ŤH ORSERVAŤÌON R(I) IS THE Ť-ŤH RESIDUAL FROM THE WEÌGHTEO MEAN W(I) IS THE WEÌGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEÌGHTS

.

MEAN AND ST DEV OF MEAN (N VALUES)	115-3218	3.5962
MEAN AND ST DEV OF MEAN (N' VALUES) WEIGHTED MEAN AND STD DEV OF WEIGHTED MEAN (N' VALUES)	111,3788	2,2247

•

.

I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	A(I)
1	60	- 5ī	.009	2	100	- ī1	.049	3	.107	4 -4	.051	4	206	95	0.000
· È	68		.018	6	51	-60	.000	7	102	=9	•050	8	124	13	.048
ğ	143	32	•032	10	93	-18	-044	11	80	-31	• 032	12	124	13	•048
13	65	-46	.015	14	124	13	.048	15	114	3	.052	16	142	31	.033
17	104	-7	.051	18	85	-26	037	19	150	39	.024	20	130	19	.044
21	70	-41	+020	22	134	23	+041	23	79	-32	•031	24	137	26	•038
25	165	54	+007	26	59	-52	+008	27	142	31	•033	28	92	-19	• 043
29	129	18	+ 945	30	139	28	+036	31	96	-15	• 046	32	100	-11	+049
33	125	14	=048	34	127	16	• 046	35	271	160	0 • 0 0 0	-36	101	-10	• 049
37	114	3	.052	38	147	36	•027	39	118	7	• 051	-40	148	37	•026
- 4 1	97	-14	+047	42	103	-8	• 05 0	43	74	-37	• 0 2 5	44	71	-+0	•021
45	90	-21	-042	46	. 90	-21	• 042	47	88	-23	• 0 4 0	48	104	-7	+051
49	122	11	• 049	50	125	14	• 048	51	125	14	• 048	52	179	68	0.000
53	144	33	•030	54	108	-3	• 051	55	107	-4	•051	56	90	-21	+04Z
57	113	2	. 152	58	138	27	.037	59	113	2	.052	60	135	24	•040
61	14Ŏ	29	035	62	Ĩ20	_9	050	63	100	-11	.049	64	99	-12	. 048
65	00	_ 21	042	66	96	_ 15	046	67	100	-11	.049	68	130	19	• 044
69	102	-0	050	70	162	51	_010	71	145	34	• ⁰²⁹	· 72	134	23	• 041
73	1a5	74	0,000	74	112	- 1	052	75	108	_3	051	76	100	" 11	" ⁿ 49
77	100	-11	049	78	93	-ī8	044	79	82	-29	.034	80	98	-13	.048
81	151	40	• 022	82	125	ī.	048	83	125	Ĩ4	• 048	84	90	-21	• 042
85	128	17	.046	86	151	40	.022	87	86	-25	•038				

.

.

.

.

.

X(I) IS THE I-TH ORSERVATION R(I) IS THE I-TH ORSERVATION W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

MEAN AND ST DEV OF MEAN	(N VALUES)	97.5253	1.6758
MEAN AND ST DEV OF MEAN	(N' VALUES)	99.1895	1.5206
WEIGHTED MEAN AND STO O	EV OF WEIGHTED MEAN (N' VALUES)	101.3036	1.1630

I	X(I)	R(I)	W(I)	I	X(I)	#(Î)	W(I)	I	X(I)	R(Ī)	W(I)	I	X(I)	R(I)	W(I)
1	61	-40	0.000	2	104	3	.086	3	96	-5	.084	•	98	-3	.086
5	54	-47	0.000	6	53	-48	0.000	7	98	-3	+ 086	8	93	-8	• 179
9	106	5	+084	10	73	-24	• 022	11	. 78	-23	•039	12	104	3	• 086
13	86	-15	.063	14	100	-1	.087)5	128	27	.028	16	90	-11	.074
17	109	8	.080	18	84	-17	058	19	117	Ĩ6	.062	20	116	15	.065
21	78	-23	039	22	114	13	070	23	102	1	.087	24	112	11	.075
25	117	16	.062	26	68	-33	007	27	112	<u>ī</u> 1	.075	28	119	18	.056
29	111	10	.077	30	101	 9	.087	31	126	25	.034	·32	109	8	.080
33	106	5	084	34	84	-17	058	35	105	4	.085	36	123	22	_044
37	109	8	° 080	38	113	ī2	073	39	103	2	.086	40	114	13	.070
41	98	-3	.086	42	110	9	079	43	117	16	.062	44	93	-8	• 179
45	102	1	.087	46	92	-9	078	47	99	-2	• 086	48	123	22	<u>_</u> ^_AA
49	. 90	-11	.074	50	, 92	-9	.078	51	98	-3	• ⁰ 86	52	107	6	.083
53	108	7	082	.54	105	4	085	55	98	-3	• 0R6	56	92	-9	.078
57	73	-28	.022	58	66	-35	.002	59	105	_+	. 085	60	98	-3	* 086
61	85	-16	•061	62	88	-13	.069	63	115	14	•068	64	112	11	.075
65	99	-2	+ñ86	66	93		•079	67	85	-16	•061	68	72	-29	+019
69	86	=15	•063	70	114	<u>ī</u> 3	-070	71	100	<u>-</u> 1	•087	72	112	11	+075
73	110	9	•079	74	116	15	• 065	75	114	13	•070	76	102	1	+0.97
77	100	-1	•087	78	86	-15	.063	79	88	-13	• 069	80	88	-13	• 069
81	85	-16	.061	82	70	-31	.013	83	64	-37	0.000	84	82	-19	•052
85	86	=15	+063	86	106	5	+084	87	105	4	•085	88	130	29	•021
89	112	11	+075	90	105	_4	•085	91	78	-53	•039	92	71	-30	+016
93	66	-35	• 0́02	94	88	~ ī3	• 169	95	R2	- 19	• 052	96	108	7	• 082
97	108	7	+082	98	104	3	•086	99	100	-1	•087			•	

•

• •

X(I) IS THE I-TH ORSERVATION R(I) IS THE T-TH RESIOUAL FROM THE WEIGHTEO MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

.

22

.

MEAN A Mean A Weight	NO ST OE ND 3T OE ED MEAN	V OF MEA V OF MEA AND STD	IN (N' VALI N (N' VALI DEV OF WE	UES) JES) Ighted Me	AN' (N' -	VALUES)	35.8 34.7 34.6	1736 1262 1070	}•26	05 38 96	
I	X(I)	R(])	WID	I	X(I)	P(I)	W(I)	I	×(I)	R(I)	W(I)
1	43	8	. ó97	2	26	_ 9	.096	3	38	3	.110
ŝ	44	9	+093	6	28	-7	-103	7	40	5	+106
9	39	4	.10A	10	36	1	.112	11	38	3	•110
13	28	-7	•103	14	68	33	0+000	15	28	-7	+103
17	53	18	+048	18	24	-11	• 088	19	45	10	+089
21	26	-9	• 096.	22	49	14	+069	23	36	i	•112
25	32	-3	•111	26	21	-14	• 073	27	49	14	+ 069
29	50	15	+064	30	36	-i	•112	31	32	-3	•111
		• •				•				-	

.

-5 20 24 30 ·108 35 0 +113 28 5 -106 40 41 32 6 -103 36 22 -13 • 178 33 20 -15 .068 34 55 20 -15 .037 35 33 -2 •112 44 9 . 193 37 48 13 +075 38 20 +068 39 26 -9 +096 40 22 36 -i 5 28 .099 44 -13 • 078 42 =7 +103 43 27 -8 41 34 •j13 37 47 39 +108 **8** e •112 45 40 46 2 -111 4 1 •106 37 49 22 .078 51 38 •110 52 2 •111 21 -14 .073 50 3 -13 -9 53 57 *13 *2 55 59 26 25 36 1 -15 -13 56 • 096 22 -078 54 -10 • 0 9 5 +112 9 44 • 693 43 60 33 •115 59 Â .097 50 +064 21 -14 .073 63 •078 61 33 -2 62 39 4 •103 22 64 •112 15 37 13 65 25 -10 24 • 088 67 72 0.000 ō8 50 +064 • 192 66 -11 64 71 48 72 45 10 +089 69 50 15 + 664 70 29 0 • 0 0 0 +075 35 35 75 76 40 5 •106 73 77 5 74 +113 48 13 -17 +075 40 +106 0 78 79 80 20 -15 .058 36 .112 18 .058 0 .113 1 •<u>17</u> 11 94 26 -9 + 096 81 85 12 26 83 38 18 82 -23 • 025 3 •110 • 058 46 86 87 57 22 • 026 • 096 • ñ84

٠

X(1)

28

43

46

33

1

8

12

16

.

.

R(I)

-7

8

11

-2

.

W(I)

.103 •097

.084

•112

X(I) IS THE TATH ORSERVATION

R(I) IS THE T-TH RESIDUAL FROM THE WEIGHTED MEAN

W(I) IS THE WEIGHT GIVEN THE I-TH OBSFRVATION

N IS THE NUMBER OF ORIGINAL OBSERVATIONS

N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

1

MEAN AND ST DEV OF MEAN (N	VALUES)	945.4118	8.8625
MEAN AND ST DEV OF MEAN (N'	Values)	940.4659	5.6430
WEIG:"O MEAN AND STO DEV O	F Weighted Mean (n' Val(ies)	946.9627	4.3418

I	X(I)	R(I)	WIII	I	X(I)	Ŕ(Ĭ)	W(I)	I	X(I)	R(Ì)	W(I)	I	X(I)	R(I)	W(I)
1	1125	178	0.000	2	898	-49	.019	3	. 989	42	•020	•	825	-122	.003
5	945	-2	.023	6	873	-74	.013	7	952	5	.023	8	820	-127	.003
9	1170	223	0.000	10	969	22	.022	11	990	43	•020	12	925	-22	• 022
13	1175	223	0+000	14	991	44	•019	15	984	37	• 0 2 0	16	92R	-19	• 0 2 2
17	926	-21	· 022	18	1150	Żó3	0.000	19	1007	60	•016	20	992	45	+019
21	913	=34	.021	22	917	-30	.021	23	\$50	3	•023	24	950	3	•023
25	988	41	.020	26	970	23	.022	27	925	-72	•072	28	968	21	• 022
29	1098	151	0.000	30	1018	71	.014	31	968	21	.022	.32	985	38	• 120
33	971	24	.022	34	969	22	.022	35	1033	86	•011	-36	930	-17	•023
37	962	15	•073	38	1020	73	+014	39	944	-3	•023	40	997	50	•018
41	953	6	· 023	42	970	23	• 022	43	893	-54	+01A	44	910	-37	• • 20
45	883	-64	.016	46	905	-42	.020	47	1065	118	•003	48	933	-14	.023
49	896	-51	.01A	50	968	21	022	51	899	-48	.019	52	941	=6	. ^23
53	923	-24	022	54	935	-Ī?	023	55	1010	63	.016	-56	952	5	.623
57	786	-161	0,000	58	908	-39	020	59	910	-37	.020	-60	966	}9	025
61	982	35	.021	62	940	- 7	.023	63	1004	57	017	64	1001	54	.018
65	805	-142	0.000	66	826	-121	.003	67	942	-5	.023	68	862	-85	.011
69	a34	-13	023	70	927	-20	022	71	968	21	.022	. 72	952	5	.023
73	1004	57	.017	74	1311	364	0.000	75	1158	2i1	0.000	76	1013	65	.015
77	883	-64	.016	78	862	-85	.011	79	881	-66	.015	80	882	-65	.015
à1	910	-37	020	82	920	-27	022	83	890	-57	.017	84	880	-67	015
85	791	-156	0.000	86	797	-150	0.000	87	1022	75	.013	. 88	850	-97	600
AQ	683	36	. 021	90	993	A.R.	.019	91	931	-16	.023	92	955	8	.023
03	A34	-113	.004	04	a24	-123	002	95	A 07	-1.0	0.000	96	740	-20 ⁷	0,000
97	758	-100	0,000	94	965	1.	023	99	935	-12	023	10ō	845	_10ź	007
101	960	Ĩĵ	023	102	987	4 0	020				•				

•

.

•

.

•

•

X(I) IS THE 1-TH ORSERVATION R(I) IS THE I-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

IRON METAL P CHEMICAL

MEAN AND ST	OEV OF MEAN (N	VALUES)	N' VALUES)	341.5077	11+13)5
MEAN AND ST	OEV OF MEAN (N'	VALUES)		328.3571	2,5729
WEIGHTED ME	An and sto dev of	WEIGHTEO MEAN (1		326.3540	2,0635

•

•

I	X(I)	R(I)	W(I)	I	X(I)	RII	W(I)	I	X(I)	R(I)	W(I)	I	×(I)	R(I)	W(I)
1	300	-26	.037	. 2	340	ī+	.047	3	330	•	.051	4	293	-33	.030
5	725	399	0.000	6	342	16	.046	7	327	1	+051	A	323	-1	-051
9	55	-271	0.000	10	332	6	.051	11	308	-īÅ	• 0 4 4	12	320	-6	- 050
13	312	~1 Å	+047	14	363	37	.026	15	338	Îΰ	• 048	16	303	-23	.0.4.0
17	384	58	+003	18	351	25	•039	19	329		+051	20	298	-28	+035
21	39	-287	0+000	22	328	2	+051	21	310	-14	1045	24	310	-16	1035
25	391	65	0+000	26	334	Ä	•050	27	326	10	+051	28	315	-11	-048
29	494	16A	0.000	30	345	19	.044	31	312	- 1 Å	- 047	32	333	• • •	. 050
33	506	180	0,000	34	339	13	048	35	379	53	008	36	315	_1i	048
37	322	-4	051	38	300	-26	037	39	504	178	0.000	4 0	331	5	051
41	317	-9	049	42	330		051	43	536	210	0 000		347	21	042
45	316	-10	049	46	325	_i	051	47	360	34	.029	48	343	17	045
49	326	-0	. 051	50	314	-12	048	51	345	10	044	52	322		451
53	319	_7	050	54	330		051	55	340	33	040	.56	320	12	+ 051 • 048
57	346	20	043	58	312	74	047	50	330	r. 3	051	60	337	13	
61	560	234	0 000	42	301	-1-	030	63	314	12	040	.00	320	• 3	+051
65	360	34	020	0-	•••	er. 9	• • • • •	00	514	01C	• • • •	04	JEO	£	•

٠

.

X(I) IS THE I-TH ORSERVATION R(I) IS THE I-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

•

.

MEAN A MEAN A WEIGHT	NO ST OE NO ST DE ED MEAN	V OF ME V OF ME An ⁰ Std	AN (N VA AN (N' VA DEV OF W	LUES) LUES) EIGHTED HE	AN (N'	VALUES)	143. 113. 114.	3553 3030 3650	9.48 2.54 2.32	31 47 24				
I	X(I)	R(I)	WID	I	X(I)	RÍĪ	W(I)	I	X(I)	R(I)	W(I) -	I	X(I)	R(I)
1	105	-9	.ñ29	2	105	_9	.029	3	92	-72	.027	4	84	-30
5	140	26	•026	6	120	6	•029	7	139	25	•027	8	140	26
9	119	_59	• 029	10	271 58	157 -56	0.000	11	101	-13	• 028 • 025	12	100	-14 31
17	120	-57	620	10	114		020	10	120	i s	0.26	20	104	-10
21	85	-20	-024	22	100	_14	.028	23	126	12	.029	24	136	22
25	102	-12	028	26	93	-21	.027	27	110	-4	.029	28	151	7
29	328	214	0.000	30	291	177	0.000	31	112	-2	.029	.32	111	-3
33	105	-9	029	34	103	_ 1i	029	35	113	-1	029	36	130	16
37	149	35	024	38	121	7	029	39	101	-13	028	40	100	-14
41	150	36	1024	42	153	39	023	43	57	-57	017	44	224	110
45	110	-4	020	46	.112	-2	029	47	125	. 1)	029	48	130	16
49	120	6	029	50	120	6	029	51	30.,	195	0,000	52	354	240
53	103	-11	.029	54	106	_8	029	55	110	-4	.029	56	111	-3
57	150	35	. <u>0</u> 24	58	135	ĪA	028	59	457	343	0.000	-60	441	327
61	371	257	0,000	62	338	224	0,000	63	104	-10	.029	64	102	-12
65	108	-6	.029	66	106	-8	.029	67	120	_6	.029	-68	115	1
69	140	26	. 026	70	120	6	.029	71	99	-15	• 028	72	104	-10
73	108	-6	.029	74	104	- 10	.029	75	129	ī5	.028	.76	127	13

W(I) .025 .126 .028 .025 .029 .027 .029

0.000 0.000 .029 .029 .028

.

- .

X(I) IS THE T-TH ORSERVATION

. .

R(1) IS THE TOTH ONSERVATION R(1) IS THE TOTH RESIDUAL FROM THE WETGHTED MEAN W(1) IS THE WEIGHT GIVEN THE IOTH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERN WEIGHTS

ALUMĮNUM	METAL H	SPARK	SOURCE
----------	---------	-------	--------

· .

•

•

.

MEAN AN MEAN AN WEIGHTE	ID ST DE	EV OF MEA EV OF MEA ANO STO	IN IN VALU	UES) UES) Ighted Me	AN (N'	VALUES	199.0 189.0 177.5	000 000 094	13.90 24.0 _A 10,52	44 32 57					
I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)
1	103	-75	.Ö12	2	146	-32	.024	3	156	-22	.026	4	260	82	.009
5	128	* 50	•020	6	253	75	+011	7	290	112	•000	8	156	-22	•026
9	225	47	.020	10	160	- 18	+027	11	173	-5	•028	12	211	33	+024
13	216	38	• 023	14	145	-33	•024	15	213	35	• 0 2 4				

.

٠

X(I) IS THE I-TH ORSERVATION R(I) IS THE T-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

MEAN AN Mean an Weighte	MEAN AND ST OEV OF MEAN (N VALUES) MEAN AND ST OEV OF MEAN (N' VALUES) Weighted mean and std dev of weighted mean (N' Values)					VALUES	221.0 2 <u>1</u> 4.0 2 <u>1</u> 7.0	8125 8667 8941	8.15 4.57 3.66	i69 20 33					
I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)
1 5 9 13	181 233 215 220	-36 16 -2 3	.013 .058 .073 .073	2 6 10 14	326 213 205 230	109 -4 -12 13	0.000 •072 .063 .063	3 7 11 15	227 205 220 188	10 -12 3 -29	•067 •063 •073 •028	* 8 12 16	238 240 213 195	21 23 -4 -22	.049 •044 .072 .044

.

-

.

X(I) IS THE I-TH ORSERVATION R(I) IS THE J-TH RESIDUAL FROM THE WETCHTED MEAN W(I) IS THE WEICHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEICHTS

.

.

NIÇKEL HETAL H SPARK SOURCE

MEAN AN MEAN AN WEIGHTE	ND ST D ND ST D ID MEAN	EV OF ME EV OF ME AND STD	AN (N V AN (N V Dev of	ALUES) Alues) Weighted ME	AN (N'	VALUES	450.5 450.5 449.1	5000 167 192	11.51 4 2 3,5	109 127 160				-	
I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(1)	W(I)	I	X(I)	R(I)	#(I)
1 5 9 13	348 450 445 449	-101 1 -4 -0	0.000 .071 .970 .071	2 6 10 14	461 430 455 445	12 -19 6 -4	.06 3 .051 .069 .070	3 7 11 15	506 478 435 385	57 29 -14 -64	0.000 .031 .060 0.000	4 8 12 16	558 475 450 438	109 26 1 -11	0.000 .037 .071 .054

.. : •

-

.

.

X(I) IS THE I-TH OBSERVATION R(I) IS THE I-TH OBSERVATION W(I) IS THE I-TH RESIDUAL FROM THE WETGHTED MEAN W(I) IS THE WETGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

•

.

.

•

•

MEAN AI MEAN AI WEIGHTE	NO ST DE ND ST DE EO MEAN	EV GF ME EV OF ME And Std	AN (N VA AN (N' VA DEV OF V	ALUES) ALUES) WEIGHTED ME	AN (N'	VALUES)	218.8 218.8 272.4	125 125 366	22.81 26.33 20.18	107 395 367					
I	X(I)	R(1)	W(I)	I	X(I)	R(])	W(I)	I	X(I)	R(1)	W(I)	I	X.(1)	R(I)	w(I)
1 5 9 13	83 143 325 231	-139 -79 103 9	.007 .011 .010 .013	2 6 10 14	116 345 245 225	-106 123 23 3	.009 .008 .013 .013	3 7 11 15	· 69 355 170 205	-153 133 -52 -17	•006 •007 •012 •013	4 8 12 16	145 310 261 273	-77 88 39 51	.011 .011 .013 .012

X(I) IS THE I-TH ORSERVATION R(I) IS THE I-TH RESTOUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

.

.

- .

.

ALUMINUM METAL P SPARK SOURCE

MEAN A Mean A Weight	ND ST DI ND ST DI ED MEAN	EV OF ME EV GF Me AND STO	AN (N VALU AN (N' VALU OEV OF WEI	ES) ES) Ghted Me	AN (N' 1	VALUESI	53.55 53.55 53.70	556 556)43	1.96 2.63 1.82	58 173 1 ₈ 2					
I	X(I)	R(1)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)
1 5 9	48 60 47	-6 6 -7	•150 •144 •139	2 6	45 53	-9 -1	.115 .180	3 7	57 56	3 2	•170 •175	₿	62 54	8	.120 .180

٠

•

X(I) IS THE I-TH ORSERVATION R(I) IS THE I-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

· •

•

•

.

MEAN A MEAN A WEIGHT	ND ST OE NO ST OE Eo mean	EV OF ME EV OF ME AND STD	AN IN VALU AN IN' VALU OEV OF WEI	JES) JES) (Ghted Me	AN (Nº	VALUES	46.8 43.8 43.8	889 75 ₀ 916	3.89 2.80 2.69	996 58 137					
I	X(I)	RIÍ	WII)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)
1 5 9	55 50 35	11 6 9	.088 .112 .100	2 6	71 51	27 7	0.000	3 7	43 37	-1 -7	123	4 8	46 34	-1 ⁸	•122 •095

-

.

•

٠

X(I) IS THE I-TH OBSERVATION R(I) IS THE T-TH OBSERVATION W(I) IS THE T-TH RESIDUAL FROM THE WETGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

٠

NICKEL METAL P SPARK SOURCE

· • •

.

.

.

M M W	EAN AN EAN An Eighte	D ST OE O ST OE D MEAN	EV OF ME EV OF Mej And Stö	AN (N VAL) AN (N' VAL) OEV OF WE	JEŠ) JES) Ighted Me	AN (N'	VALIES	139.1 139.1 135.3	111 111 798	6.6] 7.0] 5.39	A8 912					
	I	X (I)	R(I)	W(I)	I	X (I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)
	1 5 9	155 143 125	20 8 =10	•048 •061 •059	2 6	118 155	-17 20	.051 .048	3 7	· 136 118	-17	•063 •051	▲ 8	176 126	41 -9	•014 •059

•

_

.

.

. -

X(I) IS THE Ĭ-ŤH ORSERVAŤÌON R(I) IS THE Ì-ŤH ORSERVAŤÌON W(I) IS THE Ì-TH RESIQUAL FROM THE WEÌGHTED MEAN W(I) IS THE WEÌGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEÌGHTS

MEAN A MEAN A Weight	NO ST DI ND ST OI ED MEAN	EV OF ME EV OF ME An ⁰ Std	AN (N VALU An (N' VALU OEV OF WEI	ES) ES) Ghteo Me	AN (N'	VALUES)	32.5 35.1 36.2	000 429 028	3.46 2.58 2.18	41 59 190					
I	X(I)	R(I)	W(I)	I	X(I)	R(1)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)
1 5	14 37	-22 1	0.000 •153	2 6	23 43	~Ĩ3 7	.068 .127	3 7	29 39	-7 3	.124 •149	4 8	39 36	3 -0	.149 •154

......

.

.

٠

.

•-- • •

.

•

X(I) IS THE I-TH ORSERVATION R(I) IS THE I-TH ORSERVATION W(I) IS THE T-TH RFSIOUAL FROM THE WETGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

ALUMINUM METAL R SPARK SOURCE

MEAN A Mean A Weight	NO ST DI ND ST DI ED MEAN	EV OF MEA EV OF MEA AND STD	AN (N VALU AN (N' VALU OEV OF WE	JES) JES) Ignteo Me	AN (N'	VALUES)	17.1	000 556 176	• 69 • 47 • 38	104 147 128					
I	X(I)	RIÌ	WIII	I	X(I)	R(I)	W(I)	I	X(I)	R(])	W(I)	I	X(I)	R(I)	WII)
1 5 9	16 18 18	-0 2 2	•903 •561 •561	2 6 10	15 22 16	-1 6 -0	.734 0.000 .903	3 7	19 16	3 -0	•207 •90 3	↓ 8	15 16	-1 -0	.734

•

•

X(I) IS THE I-TH ORSERVATION R(I) IS THE T-TH RESTDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

.

•

.

.

MËAN AI MEAN AI WEIGHT	ND ST OE ND ST DE ED MEAN	EV OF MEA EV OF MEA AND STD	AN (N VAL An (N' VAL OEV OF WE	UES) UES) (Ighted Me	AN (N'	VALUESI	38170 38.70 38.01	000 000 121	1.89 1.99 1.53	918 941 967					
I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)
1 5 9	32 -38 46	-6 -0	•123	2 6 10	30 43 49	-8 5 11	.122 .179 .059	3 7	· 34 39	-4	•194 •220	▲ 8	38 38	-0 -0	•222 •722

X(I) IS THE I-TH OBSERVATION R(I) IS THE T-TH OBSERVATION W(I) IS THE T-TH RESIDUAL FROM THE WETGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

.

.

•

•

.

•

.

NICKEL METAL R SPARK SOURCE

•

• •

MEAN A MEAN A WEIGHT	ND ST OI ND ST DI ED MEAN	EV OF ME EV OF ME AND STD	AN (N VALU An (N' VALU Dev of Wei	JES) JES) Ighted Me	AN (N'	VALUES)	94.8 94.8 94.1	000 000 744	2.57 2.71 2.47	68 62 90					
I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	X(I)	R(I)	W(I)	I	XII)	R(I)	W(I)
1 5 9	105 106 86	11 12 -8	.091 .084 .106	2 6 10	90 105 88	-4 11 ~6	.122 .091 .115	3 7	92 93	-2 -1	.127 .128	4 8	98 85	4 -9	•123 •101

. .

X(I) IS THE I-TH ORSERVATION R(I) IS THE I-TH RESTDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERD WEIGHTS

MEAN AI MEAN AI WEIGHTI	ND ST O ND ST D ED MEAN	EV OF ME EV OF ME And Std	ĀN (N VAL An (N° VAL Oev of We	UES) UES) Ighted Me	AN (N'	VALUES)	36.5 34.1 35.8	000 111 063	2.73 1.48 1.09	335 355 906					
I	X(I)	RIÍ	W(I)	I	X(I)	Ř(Î)	W(I)	I	X(I)	R(Ī)	W(I)	I	X(I)	R(I)	¥(I)
1 5 9	58 37 37	22 1 1	0.000 •325 •325	2 6 10	29 39 33	-7 3 -3	.112 .274 .287	3 7	27 38	-9 2	.023 •305	4 ⁻ 8	30 37	-6 1	.161 •325

X(I) IS THE Ĭ-TH OBSERVATION R(I) IS THE Ì-TH RESIOUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

.

.

•

.

.

.

-

ALUMINUM METAL H ATOMIC ABSORPTION

MEAN A MEAN A Weight	ND ST O ND ST D ED MEAN	EV OF ME EV OF ME AND STO	ĂN (N ĂN (N' DEV OF	VALUES) VALUES) WEIGHTED ME	AN (N'	VALÜES)	189•1 184•0 183•7	471 000 951	14.55 2.85 2.47	586 527 743					
I	X(I)	R(İ)	WII)	I	X(I)	P(Ī)	W(I)	I	X(I)	R(Ť)	W(I)	I	X(I)	R(I)	W(I)
1 5	553 132	369 -52	0.000	2	451 122	267	0.000	37	. 174 169	-10 -15	• 058 • 054	♦ 8	168 178	=16 =6	.053
9 13	220 167	36 -17	022 051	10 14	183 172	_12	062	11 15	127 122	=57 =62	0.000	12 16	126 118	=58 =66	0,000
17 21	183 194	-1 10	062 058	18 . 22	189 194	10	061 058	19 23	131 198	-53 14	0 000	20 24	133 196	-51 12	0 000
25 29 33	197 188 158	13 4 -26	055 061 039	26 30 34	192 185 161	A 1 _23	059 062 043	27 31	186 188	2	.062 .061	28 32	182 194	-2 10	042 058

•

٠

.

X(I) IS THE I-TH ORSERVATION R(I) IS THE T-TH RESIDUAL FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

39

.

•

ATOMIC ABSORPT	ION	N	
----------------	-----	---	--

.

•

MEAN AN MEAN AN WEIGHTE	ND ST OI ID ST DI ID MEAN	EV OF ME EV OF ME AND STD	AN (N V AN (N V OEV OF	ALUES) Alues) Weighted Me	AN (N'	VALUESI	171. 172. 171.	3824 4000 4908	4.31 1.96 1.12	37 47 88					
I	X(I)	R(İ)	WII	I	X(I)	RÍÌ)	W(I)	I	X(I)	R(İ)	W(I)	I	X(I)	R(I)	W(I)
15	174 120	3 -51	.140 0+000	2	169 117	-2 -54	.140 0+000	3 7	172 181	1 10	.143 •103	4	173 178	27	.142 •123
9 13	251 196	80 25	0+000	10 14	218 172	47	0.000	11 15	153 142	-18 -29	+026 0+000	12 16	151 166	-20	•010 •129
17 21	164 172	-7	•117	18 22	168	-3 -0	•137 •143	19 23	132 166	-39	0.000	20 24	144 169	-27 -2	0.000 .140
25 29	171 187	-0 16	.143 .052	26 30	170	=1 16	•142 •052	27 31	173 192	2 21	•142 •010	28 32	170 191	-1 20	•142 •018

.

.

.

٠

X(I) IS THE Ī-ÌH OBSERVAŢĪON R(I) IS THE Ī-ÌH RESIOUAL FROM THE WEÌGHTED MEAN W(I) IS THE WEÌGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEÌGHT**S**

METAL H IRON

,

ATOMIC ABSORPTION

MEAN A Meàn A Weight	ND ST OE ND ST OE ED MEAN	V OF MEA V OF MEA And Std	N (N VAL N (N' VAL Dev of We	UES) UES) Ignteo Me	AN (N')	VALUES	928.7 928.7 915.7	778 778 068	13.95 16,10 11,38	iñ4)86 198		ł				
I	X(I)	R(I)	W(I)	I	X(I)	RÍÌ	W(I)	I	X(I)	R(Î)	W(I)	1	I	X(I)	R(I)	W(I)
15	890 824	-26 -92	.014 ·	2	834 1120	-82 204	.011 .001	3 7	847 915	-69 -1	•012 •014		4	1044 894	128 - 22	.008 .014
9 13	850 1028	-66 112	•012 •009	10 14	931 1110	15 194	014	11 15	840 794	-76 -122	•012 •008		12 16	882 827	-34 -89	•014 •011
17 21	895 1000	-21 84	014 011	18 22	935 858	19 3 58	014	19 23	999 991	R3 75	.011 .012		·20 24	910 997	-6 81	014
25 29 3 3	1021 1026 853	105 110 -63	009 009 012	26 30 34	1028 909 897	112 -7 -19	.000 014 .014	27 31 35	1004 899 909	-17 -7	.011 .014 .014	-	28 32 36	9 ⁰ 8 825 942	-91 26	014 011 014

X(I) IS THE Ī-ŤH ORSERVATION R(I) IS THE Ī-ŤH RESIOUAĽ FROM THE WEĬGHTED MEAN W(I) IS THE WEÏGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

i

1

ı.

NIČKEL METAL H ATOMIC ABSORPTION

MEAN ANI MEAN ANI WEIGHTEI	D ST 0 D ST 0 D MEAN	EV OF MEA Ev of Mea And Std	N (N VAL N (N' VAL OEV of We	UES) UES) Ighted me	AN (N'	VALUESI	431.8056 437.6061 437.4692		5.0307 4.1531 3.1393						
I	X(I)	R(İ)	WII)	I	X(I)	Ř(Ī)	W(I)	I	X(I)	R(Ī)	W(I)	I	X(I)	R(I)	M(I)
1 5	408 425	-29 -12	•034 •050	2	373 420	-64	0.000	37	458 425	21 -12	• 043	4	496	59	•000
9	414	-23	.041	10	414	-23	.041	11	412	-25	.038	12	412	-25	. 036
13	427	-10	<u>.</u> 051	14	450	13	050	15	380	-57	.001	16	378	-59	0.000
17	424	-13	.049	18	440	_3	.053	19	434	-3	.053	20	460	23	.041
21	461	24	•040	22	423	-14	•048	23	457	20	+044	24	445	8	.052
25	440	9	• 052	26	404	-33	•029	27	442	5	• 053	28	451	14	-049
59	461	24	+040	30	423	-14	.048	31	439	2	• 053	32	353	-84	0.000
33	4/3	36	•027	34	445	8	•052	35	445	8	• 052	-36	471	34	.029

.

٠

.

X(I) IS THE Ī-ŢH OBSERVAŢĪON R(I) IS THE Ī-TH RESTOUAL FROM THE WEĬGHTEO MEAN W(I) IS THE WEĪGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEĪGHŢS

.

•

SILICON METAL H ATOMIC ABSORPTION

.

.

•

MEAN AND ST DEV OF MEAN (N VALUES) Mean and St dev of Mean (N' Values) Weighted Mean and Std dev of Weighted Mean (N' Values)						144.8 130.7 129.7	333 800 360 -	10.1211 3.9329 3.6409							
I	X(I)	R(İ)	WII)	I	X(I)	R(Î)	W(I)	I	X(I)	R(Ī)	W(I)	I	X(I)	P(I)	A(I)
- 1 5 9	156 132 127	26 2 -3	.037 .052 .052	2 6 10	150 122 125	20 -8 -5	.043 .050 .051	3 7 11	117 125 224	=13 =5 94	•048 •051 0≠000	4 8 12	126 127 207	-4 -3 77	•051 •052 0•000

٠

.

٠

X(I) IS THE Ĭ-ŤH DASERVAŤÌON R(I) IS THE Ĭ-ŤH RESIDUAL FROM THE ¥EŤGHTED MEAN ¥(I) IS THE WEĨGHT GIVEN ŤHE I-TH OBSFRVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEÌGHŤS

MEAN A MEAN A WEIGHT	ND ST DE ND ST OE ED MEAN	EV OF ME EV OF ME AND STD	ĂN (N) AN (N') OEV OF	VALUES) VALUES) WEIGHTED M	EAN (N'	VALUES	56.81 34.73 34.57	25 33 27	15.80 2.45 2.43)15 156 159					
I	X(I)	R(I)	W(I)	I	X(I)	R(Ī)	w(I)	I	X(I)	R(İ)	W(I)	I	X(I)	R(I)	W(T)
1	21	-14	.034	2	19	-16	.034	3	28	-7	•035	4	25	-10	.035
5	23	-12	•034	6	21	-14	•034	7	51	16	•033	8	52	17	•033
9	51	16	•033	10	53	18	•033	11	49	14	•034	12	51	16	•033
13	49	14	•034	14	53	18	•033	15	29	~6	•035	16	32	-3	+035
17	35	0	•035	18	31	_4	•035	19	28	=7	•035	20	23	-12	+034
21	24	-=11	•035	22	22	_13	•034	23	21	-14	•034	24	23	-12	+034
25	453	10	035	· 26	38	3	035	27	21	-14	.034	28	17	-12	.033
29		418	0000	30	323	288	0,000	31	56	21	.032	32	51	16	.033

· · -----

•

.

...

.

.

.

X(I) IS THE Ĭ-ŤH OASERVAŤĬON R(I) IS THE Ť-ŤH RESIOUAĽ FROM ŤHE WEŤGHTED MEAN W(I) IS THE WEÍGHT GIVEN THE I-TH OBŠERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEÌGHŤS

•

•

CHROMIUM METAL R ATOMIC ABSORPTION

.

٠

MEAN AND ST DEV OF MEAN (N. VALUES) Mean and St Dev of Mean (N. Values) Weighted mean and sto dev of weighted mean (N' Values) 49.6765 1.2984 49.6765 1.3383 48.8868 1+0449 I X(I) R(İ) WID I X(I) RIT W(I) 1 X(1) R(Î) W(I) 1 X(I) R(I) W(I) 41 37 1 -8 •124 2 41 .124 •**•**A 3 50 1 •171 4 54 5 .150 5 .075 -12 40 .112 .158 6 ì -9 7 50 .171 51 .168 .171 8 2 9 53 53 4 .158 10 4 11 52 3 .164 12 50 ī 13 59 10 .098 14 59 10 098 15 50 1 .171 16 42 -7 .134 17 51 172 2 . 16A 18 49 ٥ 19 56 7 14 .132 20 49 0 ,172 21 50 ,142 1 <u>, 1</u>71 22 55 6 23 63 .047 24 65 16 023 25 29 33 46 61 13 12 165 072 26 30 43 144 047 112 27 31 2a 32 -6 14 42 :7 134 124 165 41 -8 63 46 48 39 .100 -10 34 40 -9

• ·

X(I) IS THE I-TH ORSERVATION R(I) IS THE I-TH RESIDUAL FROM THE WETGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSERVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N° IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEIGHTS

•

.

£

MEAN AN MEAN An Weighte	ND ST OI NO ST DI EO MEAN	EV OF ME EV OF ME And Std	ĂN (N VAL An (N° VAL Oev of We	UES) UES) Ighted Me	AN (N'	VALUES	123.5 114.0 112.6	556 312 587	5.60 2.47 2.13)42 763 336					
I	X(I)	R(I)	W(I)	I	X(I)	Ř(Ī)	W(I)	I	X(I)	R(İ)	W(I)	I	X(I)	R(I)	M(I)
1 5 9	106 136 111	-7 23 -2	.062 .043	2 6 10	98 122 111	-15 9	• 055 • 061	3 7	122 92	-21	•061 •047	4 8	138	-13	• 052 • 057
13	111	-2	.064	14	126	13	057	15	127	ī	•056	16	123	10	.040
21	104	-9	.061	18	115	-2 -5	064 063	19 23	94 108	=19 =5	.050 .063	20 24	94 108	-19 -5	.050 .063
25 29	269 150	156 37	0.000 .018	26 30	202 143	89 30	0.000	27 31	105	- 8	.062	28	98	-15	.055
33	122	9	•061	34	121	8	.061	35	105	-8	•062	36	106	-7	•062

.

.

•

٠

X(I) IS THE Ĭ-ŤH ORSERVAŤION R(I) IS THE I-TH RESIOUAĽ FROM THE WEŤGHTEO MEAN W(I) IS THE WEĨGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMBER OF ORIGINAL OBSERVATIONS N' IS THE NUMBER OF OBSERVATIONS WITH NONZERO WEÌGHTS

.

٠

ATOMIC ABSORPTION METAL R NICKEL

MEAN A MEAN A WEIGHT	ND ST OE ND ST DE ED MEAN	V OF ME	ĂN ÎN VALU ĂN IN' VALU Dev of Wei	E\$) ES) GNTED ME	AN (N' 1	ALUES >	106.0833 104.0571 108.0791		2.4137 2.1393 1.5994						
I	X(I)	RIT	W(I)	I	X(I)	Ř(Ī)	W(I)	I	X(I)	R(Ī)	W(I)	I	X(I)	R(I)	M(I)
,	80	-28		2	80	-28	.011	3	110	2	.100	4	104	-4	.098
5	90	-18	.054	6	90	_1A	054	7	106	-2	.100	8	109	1	.101
	117	-10	0AA	10	117	9	088	11	117	9	088	12	116	8	, 090
13	115	ź	.093	14	115	7	093	15	116	8	0.00	16	116	8	.090
17	121	13	075	18	125	17	059	19	114	6	095	20	110	2	,100
21	104		008	22	116	8	0.00	23	104	-4	098	24	98	-10	• <u>^</u> 84
25	149	Ĩ.	0,000	26	116	A	0,0	27	82	-76	019	28	82	-26	.019
29	103	-5	196	30	102	-6	095	31	112	4	098	-32	102	-6	095
33	91	-17	.058	34	88	_ 20	045	35	103	-5	.096	-36	99	-9	_0 <u>6</u> 7

.•

.

.

.

X(I) IS THE Ī-ŤH ORSERVAŤĪON R(I) IS THF Ī-ŤH RESIOUAL FROM THE WEŢGHTEO MEAN W(I) IS THE WEĪGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMRFR OF ORIGINAL OBSERVATIONS N°.IS THE NUMRER OF OBSERVATIONS WITH NONZERO WEĪGHTS

.

47

۰.

*

MEAN AND ST OEV OF HEAN (N VALUES) MEAN AND ST OEV OF MEAN (N' VALUES) Weighted mean and std dev of weighted mean (N' values)							32.5000 32.5000 32.5833		1•2225 1•28A6 •9216						
I	X(I)	R(Î)	WIT	I	X(I)	Ř(Î)	W(I)	I	X(I)	R(Ī)	W(I)	I	X(I)	R(I)	W(I)
1 5 9	26 29 38	-7 -4 5	•074 •276 •153	2 6 10	34 33 34	1 0 1	.379 .398 .379	3 7	38 33	5 0	•153 •398	4 8	31 29	-2 -4	•374 •276

,

a.

.

X(I) IS THE Ĭ-ŤH ORSERVAŤĪON R(I) IS THE Ť-ŤH RESIDUAĽ FROM THE WEIGHTED MEAN W(I) IS THE WEIGHT GIVEN THE I-TH OBSFRVATION N IS THE NUMRER OF ORIGINAL OBSERVATIONS N' IS THE NUMRER OF OBSERVATIONS WITH NONZERO WEIGHTS

,