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1 Introduction

Lattice gas automata (LGA) are many-body dynamical system with discrete space

and time, The microscopic state of the system is completely specified by a few inte-

ger quantities at each lattice site. An update of the system is implemented according

to the dynamics of the lattice gas automata particles, which are usually detern~ined

only by local information. The first LGA model was introduced by Frisch, ~~asslacher

and Pomeau (FIIP)~l]. It exhibits a fluid behat ior and, in the low Mach number

limit, obeys the incompressible Navier-Stokes equations. Since the creation of the

FIIP model, lattice gas research has developed rapidly, providing not only furtlier

insight into the relation between the microscopic processes and macrosc~pic proper-

ties, but also a new procedure for doing fast computations. Recently there have been

ncw models formula~ed for improving various properties of the FIIP model [’2]or for

extending it to include other physical processes [3,4,5,6]. As a result, this research

has opened up brand new fields. ~l:eady this research has had some impact on the

understanding of the macroscopic properties ~i physics, in particular, the propcri im

of multiple fluid systems, Moreover, some important potential industrial applications

[1’]arc now king explored,

Therr are several reasons for the rcccnt rapid growth in Iatticc gas restart

m~t.hd provides very high rmolution because it is vr.ry mcmcwy eff’icicnt.

simphwt algorithm, ovw 10 cells arr stored in t’ach ( ‘1{AY word, I)rol)lcl

h 000,()()0,()00 CCIIScan now t]e ru[i on a C’RAY X/hi P, ‘1’l)c algorithiil is (111
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on existing computers, In addition, an enormous gain CL.’.be made by constructing

dedicated hardware. Already, inexpensive dedicated boards are available which allow

small PCs to run lattice gas problems near CRAY speeds. Dedicated boards are

now planned for delivery in 1990 which are expected to be a thousand times more

powerful. It is possible to build with existing technology a dedicated machine which

has the complexity of existing CRAYS but which would execute lattice gas algorit]lms

many millions of tilnes faster, (One should interpret this impressive gain in computm

speed cautiously, For periodic problems on existing machines, lattice gas methods are

slower than spectral methods at least by an order of magnitude. But for complicated

boundary conditions, lattice gas methods can solve problems which are not solvable

by other methods, for example, flow through porous media. )

Other advantages of the lattice gas algorithm include their ability to conserve

energy and momentum exactly, their irlherent stability with no mesh tangling or time

step crashing, and their capability of implementing complex boundary conditions

quickly and easily,

2 The FHP Model

The basic 2-D I’IIP lattice gas modcl[l] consists of identical particles on a hexago-

nal lattice with lattice constant c = 1, All particles have the same ti,~~~ and t!)ey

reside only on the sites of the hexagonal lattice, There are six difl’mcnt particle

rlmnmntum states at each lattice sitr which can bc associated with thv dirmi ions

?,, = [W4(’2Ka/6), si?l(27rfl/6)] (a = 1, ., ., 6). An (’xcllision rllle is ilnposwl so t Ilat

110more tl~an one particle at a given site can have a given Inonwnlllnlstatr.Ifw

11s(’ ,\ ’,,(x) (,[ -= 1 , , , , , (i) I() (If’flf)lt’ 1 II(” ])it~l irir ()(”(slll~iil ion in St ill(’ (f ilt sit(’ X. I Ilf’il

Y,, = O or I , ‘1’ll(w ar[’ two l~lirr(wrt~l)ic Ill)tl;tl ing l)ro(’(’ss(w ;1(,(’ii(’11 I illlf’ St(’I): I;1{

Vcction itll(l [x)llision, 111t 11(’il(llf’(”t if)ll l)rocow, ii I)iil’t it’1(’ill Slatf ’ ~,1 IIl[)vf’s f’lolll its



present site to nearest neighbor sites in the direction c‘O; a J particles have the same

speed (= 1) and the same kinetic energy. In the collision process, particles at each

site are redistributed among the 6 momentum states at the same site in s!lch a way

that the total particle number (= ~~=1 N“) and the total rnornentum (= x~sl ~~~~~)

are conserved. Since all particles have the same mass and speed, energy conservation

is equivalent to mass conservation. The particles behave like hard spheres with zero

radii. It can be shown that at equilibrium the FHP lattice gas behaves like an ideal

gas [8,9], p = p/2, where p is the average particle density.

The microdynamical evolution of the FHP system is also completely determined by

the above two processes, which can be described exactly by the following microscopic

equation everywhere on the lattice:

~.(x+&, t+l)=~O(x, t)+&; a=l, o,.,6;

where A. represents the creation or annihilation of the particle occupation IV.(x, t )

at the momentum state t~ due to collisions, which only depends on the information

at the site x at time t. The particle and momentum conservation are satisfied by

~:=, ‘f. = O and x~ml ~aAa = O. The explicit expression of Am depends on the

detailed collision rules [8,9]. Ensemble averaging the microscopic equation we obtain

the lattice I]oltzmann miuation for large scale space and time bchavier[!)],

O(.f(l(x!t) + F(1‘Vfm(x, t) = !2,,,
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f3t(pv) +

P =

where g(p) = (p - 3)/(p -- 6),

v “[P9(P)WI= --vp + Lw(pv),

;[P- !AP)v21!

and v is the viscosity, Therefore the incompressible

Navier-Stokes equations are recovered in the low Mach. number limit by resealing the

time, siuce in the density p is a constant in this limit.

3 Realistic Equations of State

Another important development is the formulation of lattice gas models for arbitcary

equations of state, including multiphas( systems. It is known that, the eq~lation of

state for FHP system approximates an ideal gas law. TO simulate systems with

nonideai gas equation of state, the particles must have more than one speed in order

to have a realistic energy equation, Also the particle interactions must be generalized

to include potential energy, which can depend cm density and temperature, ~1 simple

model which has these minimal properties was recently proposed[ 15] and was shown

to exhibit first-order phase transitions.

In addition to the FIIP rules. this model allows at each site x another Lind of

particle ( “bound pair”), witt, occupation. No(X) (= 1, 0). A square-wll pair~;iso

potential energy is introduced between any two bou~d-pairs at distance r:



another is proportional to exp( —b’AE), where AE is the potential energy difference

between the two states. Since the evolution of the system is a Markovian process, it

can be shown that the canonical ensemble is an invariant measure for the system in

equilibrium with temperature 1/$ [16].

In this simplest model, the following transitions are allowed: 1) a pair of oppo-

sitely directed free particles may form a bound-pair with zero net momentum, and

2) a bound-pair may become two oppositely directed free particles. The mass of a

bound-pair is tlvice that of a free particle. The potential energy change associated

with a binding transition at a site is AE(x) = -cO Z~sl NO(X + ~i)” With COnStant

temperature everywhere, the updating rules are specified as follows: To avoid mul-

tiple transitions the lattice is divided into 3 independent sublattices, each of them a

hexagonal lattice but with the lattice constant tic; particles on the same sublattice

are separated by more than one lattice unit and hence not mutually interact. At each

time step, the updating of the system associated with the transition process is done

in parallel in 3 steps, each step involving only one sublattice, A binding probability

@ = Aexp(-/3AE)/(l + ezp(-/3Af?)) (J < 1) is assigned at each site of a sublatticc.

The unbinding probability j for particles is A(1- 4). A transition is not allowed if it

leads to a state which violates the exclusion constraint of no more than one particle

per microstate. For example, if NO = 1, 4 is sampled and, if successful, one of the

thrrr paired momentum (directions is chosen with qua] probability, :In Ilnl)in(ling is

allowed only if t.here are no free particles in the chow-m pair of directions. If ,$’0= 0,

(Jno of t I](*three pairmi monwntllm directions is chmwn with equal probability. If t 110

ctl(wn pair of III{*frrv particlr st,atm is occupiod, 4 is salllplr(i and, if sllccmsflll. n

I)ill(lillg ()((llrs sII(II t Iiiit ttl(’I)air of frw part, ickw forlIl a I)olltl(l-pair ;Il)(l ,Y()I)(w’olll(’s

OIIP, I;or lix(w{ ,j, A = I le;\Ils to III(B shortost t iilw W;LIOfor t tic systol]) t I) r(I:I~lI

(v~llilit)rilllll. S1rf’ntlliilg ;111(1(Ilast ic collisi(m 1)!’()(’(’!;S!’!+iilS() ~)rcllr ilt (’il(’11 t ii)l(’ ~!l$l~.



The FHP model is a special case with p = –00.

The microdynamic evolution of this simple system can be formulated as a set of

local binary microscopic equations:

lVc(x+&, f+l) = ,VO(X,t)+ A.+ll.; a=l,. ..,6,

N~(x, t + 1) = No(x, t) + no,

where ,ia represents the usual FHP contribution from pure elastic collisions for the

free particles[8,9]. 11~(a = O,..., 6) is the additional contribution from the transition

processes:

n. = Oj(l – IV.(x, t)) – f3.J’Vo(x, t) (a = O,... ,6)

where L?$ and B. (= O, or 1) are the creation and annihilation operators for ~.

(a= o,..., 6) due to the the transition processes, respectively. They are functions

ot the particle occupations at site x as well as the occupations of the bound pairs at

ne 6 nearest neighboring sites. This form of 11~ guarantees the particle occupation

at every state is either O or 1. It can be seen[15], from the explicit expressions for f3~

and13~(a =0,,.,, 6), that mass and momentum are conserved: ~~=1 Il. + ‘21_Io= O

and ~:=, iall” = 0.

(Jsing the mean fi~i~approximation, it can be shown that,

illl(j

f(l=
1

I + rJ’p(2cl– /jC)’

whrre Jm (II = 1,, ,., (i), J() represent the free particle (iistributioll im(l Iwlltl(l-lmir

(Iistril)llt iot)sq rvspwtiwly, < is tll(’ Ilwan-field potential energy I)(*r I)ollll(l-l)iiir. ‘1’llv

1111’,(1 w~ll;ltion for this IIM)(IVIis:
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where9(P) = (P2(Pf- s))f(~d~f – 6)). pj is the free particle density. The explicit

form of h(p) has not yet obtained in closed form. p is the kinetic pressure determined

from the equation of state. By a simple mapping, it can be shown that the invariant

measure of the bound pairs is equivalent to that of the Ising model on a triangular

lattice with an external magnetic field dependent on density ,mcf ;emperai ure. There-

fore the equation of state of this model contains first-order phase transitions, with

the inverse critical temperature ~. x 1.09. Dynamic properties of this simple model

have been studied both analytically and numerically.

hfany possible applications and extensions of this simple model can be made. For

example, we may be able to study multi-phase flows by extending this model to allow

moving bound-pairs. hloreover, unlike FHP and other models[2,8], this simple model

provides the important capability of simulating supersonic flows. Near the critical

point, the sound speed c, (= ~-) x 0. This is observed in computer models

which show that moderate flow velocity will be supersonic.

C)ther extensions include generalizing the particie interaction energy to be a nisotropic,

so that liquid crystal fiuids with rodlike particle structures can be simulated. Another

extension incorporates an interaction energy which includes a lattice energy; enabling

problems related to melting may be studied.

4 Hydrodynamic and Magnetohydrodynamic LGA.

Since the FIIP model [l] was introduce(l for simulating tiydrodynamics, Iatt ice gas

research has developed rapidly. hlany lattice g? 1 models have been formulated as ef-

forts to to simulate various kinds of physical processcs[3,4,5,6]. All these were realized

Ily i[ltruflllcirlg 11(’w[l)i(ros{ol)i~ (1(’grees of free(liJ1ll all(l I)v Ilmdifyillg tllr lat I i(’(’giw

IIli(.r(]-(iyrlarllif.al rlllrs, ‘1’tlcr(~arr also attcrnpts at grncralizing tllv SI)il(’(’ iill(l t i[lw

!)y intro(lllci[lg ‘L(lyilalllical I:itt icrs”[! l]. Ily a(lopting very (lil~w(v]t rlli(.r{)s[ol)it 11[)

u



dating processes such as the random walk process, it hxs shown that the 1-D Burgers

equation can be simulated[5]. Furthermore, by attaching to the lattice gas particles

additonal degrees of frmdom like color or spin, physical processes such as the evolution

of a passive scalar [l O], temperature field [2] and others can be simulated. For example,

it is possible to use these additional degrees of freedom to simulate fluids consi.;ting

multispecies such as the oil and water rnixtures[6]. The particle interactions are ‘ ble

to be generalized due to the additional degrees of freedom so that the cohesion force

and the chemical reaction can be represented [6,12], Recently, it is found that this

kind ot models have important industrial applications. However, the earliest attempt

of using lattice gas to model different fluids was due to Montgomery and Doolen for

magnetohydrodynamics ( hIHD)[3].

The incompressible LIHD fluid is usually described by the fcllowing equations:

a,v+v”vv = –Vp+ (V x El) x B + VV2V, (1)

dtB+v. VB = B. Vv+pV2J3, (~)

V. V=V. B = O, (3)

where v and B are velocity and magnetic field, respectively, p is the kinetic pressure.

The magnetic vector potential A is related to B by V x A = El. Equation ( 1)

is referred to as the momentum equation while equation ( 2) is referred to as the

magnetic induction equation. The magnetic field modifies the motion of the fluid in

the momentum equation through the Lorentz force, (V x E3) x B. In the 2-D cii~f~

onecan choose A = A;, and the induction equation can be rrplaced I)y a scalar

Oquat ion for the magnetic vector potential,

i)1,4 + v . VA = uVzil,

!)



Ir, order to represent the magnetic vector potential in the lattice gas system, an

additional scalar quantity was introduced. In addition to the FHP rules, each lattice

gas particle carries a magnetic potential ‘quantum number’ u = 1, -1, or O. Part i:les

carrying different quantum numbers are distiuguisha~]e. The vector potential .-t is

~a where ~~ is the distribution function for particlesrelated to o by PA = Z.,. o .,

with quantum number o at state Ea. Collisions exactly conserve the net value of 0 in

each site of the lattice. It has been shown that the evolution of this magnetic vector

potential obeys the scalar equation (2). Since, in 2-D case, the Lorentz force in the

MHD momentum equation can be expressed as -VAV2A, this force is included in

the model by introducing a force, whose average is constrained to equal the Lorentz

force, However, this average requires ‘supercell averaging’. Because of fluctuations,

the supercell size must be large enough to have a sufficient smooth representation

of the Lorentz force. Their implirmmtation required a finite difference procsdure for

calculating A.

An alternative lattice gas model for simulating MHD was later introduced by Chen,

\latthaeus and Klein using different concept [4,13], The advantage of their alternative

model is that the update of the system, similar to FHP, is local. This N done hy

generalizing the particle advection, utilizing the syrnmet,y structure of tl~e 111111

equations and Elsasser[14] variables z* = v + B. In the Elsasser representation, tht’

\lII13 equations have the form dfz* = – z~ , Vzx (ignoring pressure and dissipation).

Thus, instead of representing the magnetic field by the vector po!,ential A, onc t.rrats

the magntlic field on an equal footing with the velocity firld. In or(!w to g(’11(’~iiliZ(’

advcction, model introduces six ad(litional unit vwt ors relatxxl t o t hr lIliigIl(’t. i{’ fif,lfl

(]lliif]t.ii: “h (= [co,s(2Th/(;), sh~(:?Th/6)]; b = 1,.. . ,6). :\ Illicrostatr (a, h) at , ,it~’ t’illl

I)($ (1(’firl(’iliiS a S(iitrin (’:i(’tl I)articlr tlilS a !If’fille(l Illolll(’lltlltll (Illiillllllll, /,, $ illl(l a

]l)a~r)f’ti(’ !i(’]({ (l!l~.r]tlllr), ;h, ‘1’() llllil)illlizc IIwlnory r(vlllir(’lll(”llts, ()[]1~’(JI)<’l)i!l’t iclf’ at
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a site can have the same value for ~a and ~b. Using ~.b(x) to represent the particle

occupation at state (a, 6) at site x, we have ~.b(x) = 1 or 0. If the particle occupation

everywhere in the lattice is known, the system is completely determined. This model

introduces a “bidirectional random walk” process. That is, a particle at state (a, b)

will advect from one site to one of its 6 nearest neighboring sites in the direction

20 with probability 1 – 1~.b[, or tO one of these SiteS in the direction sign(r.b)~b

with ‘ robability lf.~l. The parameter P.b (1~.bl < 1) is a function of (n, b) only,

As a consequence, the evol~tion of this ?vIHD lattice gas system is described by the

following modified 1301tzmann eqlation:

8~fab(x,t) + {(1 – l~ab[)~a + f’ab~b} “ Vfab(x, ~) = %b,

where ~.bs (~rab)isthe particledistribution,~.b istk term associatedwith colli-

sions, which are chosen to conserve the total mass, momentum and rnagnctic field at

each site.

The macroscopic number deusity p and magnetic field B arc defined

11



requiring that Pab = ‘P.b+s, Qab = Q.b+s and R.b = –Rcb+s, Hence, there are only

6 independent parameters in this model after. These are selected to be Pd., POO+I,

Qcm,Qm+It Rmand ‘aa+l”

Using aChapman-Enskog, it can be shown that p, vand B approximately obey

the following equations:

8,/3 + v . (p) = o,

d,(p) = – v[c, ~(3 – ;W(P)(CN2 – C3B2)]

– v opg(p)[czw - C3BB] + vv2(pv),

~,(pB) = – (D1 - D3)V . [pg(p)Bv] + (D2 + D3)V , [pg(p)vB]

+ D3V[pg(p)v s B] + N2(PB),

where y(p) = (p – 18)/(p - 36). The coefficients Cl, C’t, C’s, 111, D2, D3, v and

p depend only the six free parameters. By selecting the values of the 6 parameters

under the conditions Cz = D1 = Da z O, D3 = O and Cl 2 0, together with the

resealing of the time by the g(p) factor, the Ml II) equations are obtained in ttw low

Mach number limit[13]. It can be argued that V . B = O can bc satisfied statistically

in the weak magnetic field ca..c[l 3].

~ln additiol~al property of this alternative MI II) I,(; A model is that it can {*milv

ho cxtencied to three (iimcnsions.

5 Discussion



lattice gas automata study not mentioned above. For example, it is crucial to have

the existing models improved so that they represent more realistic physics. One of

the central problems in this regard is to see if the incompressibility condition for FIIP

and related lattice gas models could be relaxed significantly without increasing too

much complications. There are important progresses in this attempt[2], however, it

is limited so far to the weak compressible domains.

The success of the FHP model for simulating incompressible Navier-Stokes equa-

tions has led to considerable interest in the use of lattice gas automata for the st’:dy

of fluid and fluidlike systems. There are at least two important reasons for this in-

termt, First, lattice gaa models suggest a fundamentally new way of doing numerical

computations. It has no roundoff errors and can be massively parallel. Second, by

formulating lattice gas models we may find insights into the relationship between the

microscopic and the macroscopic world. A successful lattice gas model indicates that

the relevant macroscopic behavior critically depends on only a few simple microscopic

properties, Therefore, the t}vmretical importance of l~ttia gas models may bc that

they provide simplifkd but funf!arnental pictures of the realistic physical systems.
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