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ABSTRACT

The general solution of the space independent reactor kinetics
equations formilated by Keepin tekes the form of an integral equation in
vhich the neutron density is an implicit function of the time dependent
reactivity. The equation also involves a set of tabulated constants.
In this report the problem of specifying the reactivity required to
yield a given neutron density function is solved by exhibiting an ex=
plicit solution for the reactivity in terms of the density function and
a set of constants related to those tabulated by Keepin. The only mathe
ematical restriction on the density function is that it be positive and
differentiable. The solution is suitable for numerical computation, and
methods for calculating the constants are developed. As a simple a.ppli-
cation the reactivity required to yield a constant density is shown to

be a sum of negative exponentials.
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Keep:l.n:L formilated a general solution of the space independent
reactor kinetics equations for the neutron density. Keepin's formulae
tion was particularly applicable for numerical solutions for arbitrary
time dependence of the reactivity and required only that certain con~
stants be tabulated for each fissile species.

If the direct problem of kinetics is finding the neutron density,
given the time behavior of the reactivity, then the inverse problem is
the determination of the time behavior of the reactivity necessary to
produce a given neutron densitye.

The present report presents a formulation of the inverse problem
similar to Keepin's formlation of the direct problem. The solution
given is in many cases more readily determined mumerically then the
solution to the direct problem.

The neutron density, n(t), satisfies the equation (in a source free
medium)

dmex ¢t S.(t=u)

n(t) = n(0) + = AJ fo e d n(u)d(u)au, t> o0, (1)
3=0

where the A 3 and S 3 are constants determined and given by Keepin, and

D(t) = k(t) = 1 is thetime dependent reactivity. In the inverse problem




n(t) is supposed known and, for convenience, differentiable. fThe prop=-

erties of the cons'l::a.nts:L which will be needed are

A, >0, 3J>0 and

S=o, S°>S > S58.2 eee > S °

12 Imax

Tt 1s permissible to differentiate (1) giving

dan SJt t -Sju

T = (?) AJSJe Io e n(u)D(u)an + (3:) AJn(t)D(t),
or

: t At=
n(t)p(t) = ZlAJ n*(t) - (Z) Ajsj fo eSJ( 2) n(u)p(u)au|. (2)
(4) J
Let y(t) = n(t)p(t), t> 0. For convenience, let a = zlA .
(3) 9
Then
t S, (t-u)

I (3) "3 £ e S y(u)au .

Let Y(s) = fo°°e‘5t y(t)dt.
Then

£ -
Y(s) = a ]’:)e"stnl(dt) - a(ﬁ) AJSJ fg)e-St fo eSJ(t w) y(u)au|at.

-l



By the Convolution Theorem:
© st ® st Sjb
Y(s) =a [ "e™"" n'(t)at - 2 ¥(s) = A.S. J, e e Y at
(3) Y
A.S.
=a 2™ ni(t)at - a x(s) z L4,
(3 J
or
Y(S) = -———a—'—A-E— f:)e-St n'(t)dt.
lya =
(3) =53
But
Imex [ . %]
X |A 5=
g s —p—ad 3 Ag =N N )
l-i-az-lé-ii sz--%- (3) 5™°; Jma.x(s)
() %75 () %5y I, 155
Therefore,
'jma.x 'jma.x
I (s-s.) I (s-s.)
1 = Jj=0 - j=1
s Z Aé Jm§x T (ses,) Poex (s-5. )
S s A S=S Z |A. -S.
7557 50 Pt T 0 [N gy
and




'jma.x

(s-sJ)
¥(s) _ 3= [P 78t j1(t)at.
s T (s-5,) i
8 X S=
3=0 K (ifj)

The quotient of polynomials in s may be written as a partial frac-

tion expansion:

3
H (s-s ) 3 R
gL _ ma.x 1 -,
'jma.x ( ) J= O s-S 3
s Z |A 5=
5o |9 (1¢J) 1

where the S¥'s are the roots of the denominator and the R!'s are con-
stants. Obviously, Sg = 0. A method of determining the R's and a dis=-

cussion of the signs and magnitudes of the R's and S¥*'s will be given

lster on.

Let Q be the function such that
J

max R
[Pt qt)at =z —dn
J=0 s=S
J
Then
Jma.x S;t

Q(t)= Z ReY, t>0
=0 I



Therefore,

Iéﬂ = [f:)e-St Q(t)dt] [f:’ =St n'(t)dt].

Using the Convolution Theorem again:

Xéﬁl = [Pest [f: n'(u)Q(t-u)du]dt,

and, since

t
YSsz _ 0 _=st
— = fo e [fo y(u)du] at
and since two different functions cannot have the same Leplace transform,
t t
) y(w)aa = [ n'(u)a(t-u)am, t2> o0

Differentiating both sides with respect to t ylelds

t
y(t) = n*(£)Q(0) + [, n'(u)Q’(t-u)au. (3)
Since
Imax s*¢ Imax
Q(t)= = RS% Y, Q)= = R, and y(t) = n(t)D(t),
j=0 99 5=0 9
t> 0,




substitution in equation (3) yields

J s*(t=u)
pt) = | = R n) m-,f n*(u) m?:xajs;eé a,

J_o 'j J=0

or
mx \ gy 1 e s¥t t ~s%
D(t) = f R,j m)l + E(-t')‘ Jfl stje ,L nt(u) e du, (4)

since S"o" = 0. If one includes the source term @ as defined by Keepin
[(1) p. 672], the comparable result is
J

_ ox n'(t)=0*(0
D(t) = JE:O RJ G
L Jmax . sgt t -s%u '
' - Ot
+ =% le R,jsj fo [n (u) Qo(u)]e du. (L)

There are some facts about the R's and S¥'s which are easy to obe
tain without mumerical procedures and which are of interest.

First, the sum of the R's is the reciprocal of the sum of the A's
in the original equations. To obtain this relationship set t = O in
equation (2) and in equation (4).

From (2), n(0)D(0) = —=— + n*(0), and from (),
(37

Do) = | = r. |BL2),
(J)Jmsl



Thus

1
2 A,
(3) ¢

= X R,e
() 9

Second, the S¥'s are all negative, except for S:, which is zero,
and they interlace the S's in the original equations according to the

* * * *
inequality O>S]_>Sl>82>82>83>83>....>SJ >SJ °
max max

This fact can be shown fairly easily. The S¥'s, for j > 1, are the

roots of the polynomial

8) = A |
Q(s) J>=:o As (i) (s-5,)|,

wvhich can be written as

J A

max A J
T s (20 o+ o+ oo+
J=0 1 2 Jmax

for s # Syp 1= 01200053 o o

The first factor is not zero except at the S,'s, so the second factor

i
mist be zero at the roots, S';_". A1l the A,'s are positive and all the
Si's are negative. Therefore, there are no non=negative S;.f's. From cone

timuity considerations and the fact that s-Si >0, 1=120009J .9




vhen 0> s> Sl’ it is obvious that s may be taken close enough to zero
A
so that -8-9- exactly cancels the sum of the other items. Similarly, when

Sl >8> 82, s and s-sl are negative, and 8'82’ s-S3, etc., are all pose
itive, and s may be taken close enough to (or far enough from) Sl
Ay By
0

that — +
s s-Sl

Pictorially, the situation is described below, where

exactly cancels the sum of the rest of the terms.

A
A Imax
y(s) =-S-9.+-Sgsl-+ eee + 5= .
1 'jma.x

S

ol N
4\:&.‘\55‘\

-y

I have not been able to find any simple way to relate the S*'s to
the A's and S's and presume that they have to be calculated by using a
polynomial solver on Q or by using some approximation method on the y
pictured above,

Third, the R's are given explicitly from a theorem which states
that if P and Q are polynomials, and the roots of Q are distinet, P is

P(s R
where the S,'s are the

of degree less than Q, and als (Z s-; y 1
3)

P(S )
roots of Q; then R —r-(-—-)- 1=01,2,eee0 For the present problem,



J J

max max
p (s-Si) and Q(s) =s = A, I (s-Si).

P(s) =
j=1 3=0 9 14y

The polynomial

J
Qs) m;x A, 1 (s-Si)
8 3=0 | 9 (143)

is the sum of J max 1 polynomials, each of degree 'jma.x and with lead-

ing coefficients Ao, Al’ A2, etce The sum polynomial thus has leading

Jma.x

coefficient Z A, and can be written
j=0 Y
Q 'jma.x %
_éil =[z a] 1 (s-s})
(3) i=1

by the factorization theorem.
Since sg = 0,
J

Q(s) = [(g) Aj] 332 (s-s5),

and
J

¥ = [z ) 1:;: [y -

By the theorem cited:




J

* max *
P(s}) ng (si-s j)
Ri=-Q—'-(-§j¥.)-= jmax 'y i= o,l,a,...,,jm

[(?) AJ] 30 [(19‘3) (63 Sp]

For a given i, the only product which does not drop out in the sum

of partial. products in the denominstor is the one for which J = 1.

Thus,
J
n (s SJ)
R, = =t J 1=0,1,2 (5)
1= TA TEFs%)2 * = O hBrecesdpgy 2
(J)J (371) J
me
m ISJI
Ro—-—} -J=l > 0.
max
J=1

A little analysis of the ordering of the S's and S*'s shows that Ri <0

for 1 > 0.

AN APPLICATION
Equation (4) may be applied conveniently to determine the inverse,

D, when n is specified to be the step function { i : This

1, t> of°
problem is approached most easily by treating a sequence of continuous
functions whose limit is the step function above. For each positive

integer m > 1 let



1'~when1:=o
m

1 1
ym(t)= <E+mtwheno<tga(1-—->

| 1 vhen t > (1-l>3=
n/n

(o,1)

For each positive integer m > 1,

1
doex n%(l-;) 8%(t-u)
D(t) = = RSy [, me du,
J=1
since, for t > n% (1-m), yi(t) = 0, and, for 0<t <nl1 (1=m), yﬁl(t) = me

(The break in the graph of y'! at t = %1 (1-m) may be ignored since y

is boundeds,)




_ *gd pm

Dm(t) m 321 stj e I} du

*{; \1

o[ 5P
=mJ§1RJSJe gg-gg

or

-s*
Imax -1<%-1> s¥%¢
D(t)=m = R, |L-e 2\ D™ eJ, t>é( -%).

m 3=1 J

In order to find 1lim Dm(t), it is necessary to evaluate

m -
¥
o A
l:mel_ m m
m - e ¢
Thus,
* -s¥
ffﬂ(: 1 -J(é-l) -s*mﬁ<%-%>
- m m o n
m l-e e =g
mil-ce = T = - T N
0 == 0 ==
m m

Therefore, the limit above is

Ll




=S¥*x(1-x) =S¥x(1-x)
d J J _ ¥
= ['e ]’“° = |5 Geexde =0 = 53¢
Therefore,
J A
lin _mx xS
o -»a)Dm(t) = J>=:l RJSJ ev, t>o0.

Consequently, the required reactivity is a sum of negative ex-

ponentials.
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