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GROUP INVARIANCE PROPERTIES OF THE POISSON-BOLTZMANN

AND OTHER RONLINEAR FIELD EQUATIONS

Roy Arthur Axford

ABSTRACT

Group invariance properties of ordinary, nonlinear differential
equations that occur in the elementary theory of the thermal and
submarine explosion problems are established and applied to the
development of further analytic solutions of these differential

equations.

1. INTRODUCTION

The fact that certain nonlinear field equa-
tions, which occur in the elementary analysis of
the thermal explosion and submarine explosion prob-
lems, admit various finite, continuous groups of
point transformations apparently has not been rec-
ognized previously. The precise nature of this fact
is established in this report and is applied to ob-
tain both a group theoretic interpretation of the
integrability and further integrals of the nonlinear
field equations that arise in these problems.

2. GROUP INVARIANCE PROPERTIES OF THE POISSON-
BOLTZMANN EQUATION

2.1 Introduction

In this section we establish certain group in-
variance properties that pertain to the Poisson-

Boltzmann equation, namely,

v2y +se =0, (s8> 0), (2-1)
in one-dimensional plane, cylindricel, and spherical
geometries. The fact that the Poisson-Boltzmann
equation admits various two-parameter groups is
applied to the problem of obtaining general inte-
grals of this equation in explicit form for plane
and infinite cylindrical geometries. The absence of
a two-parameter group under which Eq. (2-1) is in-

variant, as in spherical symmetric geometry,

provides an interpretation that Eq. (2-1) cannot be

integrated by quadratures in this geometry, although
it does admit a one-parameter group in this geometry.
2.2 Invariance under the Translation Group in Plane

Geometry
In plane geometry, Eq. (2-1) becomes

y" +s e =0. (2-2)
This differential equation is invariant under the
one-parameter group of translations parallel to the
x-axis of the x-y-plane because the independent
variable does not appear explicitly. Any autonomous
differential equation in two variables is invariant
under this translation group irrespective of the
order of the differential equation.

A second-order, ordinary differential equation
that is known to be invariant under a transformation
group can be reduced to one of first order. This
cen be accomplished by the introduction of a first
differential invariant of the group as a new depend-
ent variable, and of an invariant of the group as a
new independent variable. The determination of an
invariant and a first differential invariant of the
group requires the calculation of two linearly in-
dependent solutions of the linear, first-order,
partial differential equation obtained from the sym-
bol of the first extension of the infinitesimal

transformation of the group. The group of




translations under which Eq. {2-2) is invariant can
be generated from the infinitesimal transfarmation
represented by the symbol

af
ur 3%

(2-3)
Because this is also the symbol of the once-extended
group, an invariant and first differential invari-

ant are solutions of

U'f(x,y,Y') = 'g; f(x,y,Y') = 0, (2'h)
with the equivalent first-order system
dx _dy _ dy' -
o "¢ — . (2-5)
Accordingly,
u(x,y) =y (2-6)
is an invariant, and
u'(x,y,y') = y'

(2-7)
is a first differential 1nvariant of the group of ‘

translations. Upon 1ntroducing the new variables
defined by
Y = u'(x,y,y') =y' (2-8)
and
X =u(x,y) =y (2-9)
into Eq. {2-2), we obtain
Yar + s ef ax = 0, (2-10)
because
3y 3Y L,
a Ty W HT Y
[ =
ax X gy K y
X oy
so that
W gr 4Y o aY '
Y=y ax*Y¥ax * " (2-12)
Integration of Eq. (2-10) produces
Y¥=c -s2e, (2-13)
in which Cl is an arbitrary constant. With Eqs.
(2-8) and (2-9), this last relation becomes
d .
I - c,-2se, (2-14)
so that
x = C, +jay[cl -2 d1TYV2 “{2=15)

where C2 is the eecond arbitrary constant, is.the
general solution of Eq. (2-2).

The above procedure, used to find the general
solution of Eq. (2-2) as given by Eq. (2-15), com-
prises the group theoretic interpretation of the
elementary integration procedure described as

follows. If the independent variable is mi381ng

it
in a second-order, ordinary differential equation,

PN

let y' = p and y" = p dp/dy, determine the function

p = p(y), and then integrate the resulting separable

differential equation y' = p. However, the group

theoretic method can be applied to any second-order

differential equation, .
Flx,y,y'>y") = 0, (2-16)

that is known tY be Tinvariant under a one-parameter

group - of point transformations even if the inde-

pendent variable appears explicitly. The elemen-

‘tary procedure may not be so applied because it

depends upon the absence of the independent varit
able.

2.3 A Second One-Parameter Group Admitted by

y" + 8 exp(y) = 0

The invariance of Eq. (2-2) under the trans-
lation group is. apparent because of the absence of
the independent variable. A second-order, ordinary
differential equation is, at most invariant under
eight linearly independent, one-parameter groups,
although it neéed not necessarily admit any group.
The question then arises of finding any further
groups admitted by a second-order differentiel
equation, if in fact one is‘;dnitted{
the following prdposition.

Proposition 2.1.
tial equatidn, y" ¥ s exp(y) = 0, is inveriant

ﬁe'noﬁ prove
The second-order differen-
under the one-parameter group of po;nt transforma-

tions that is generated by the infinitesimal trans-
formation with the symbol

R AR
af f
e . U =xg--290. (2-17)
Proof: The symbol of the once-extended group
generated by Eq. (2-17) is
u af _,3f _ ., 3L _
U'f = x 3% 2 = 3y - 3;7 y (2-18)

and the first-order partial differential equation
that corresponds to y" + s exp(y) = 0 is
af , of

ax Y oy

The commutator constructed from_the operators that

exp(y) %f;.— = 0. (2-19)

appear in Eqs. (2-18) and (2-19) assumes the value
o _ ot
Yy 3¥

S + 8 exp(y) ——— = - Af. (2-20)
Therefore, Eq. (2-19) is invariant under the group

(UA)E = -
generated by .Eq. (2-17) because the invariance
condition, (U'A)f = A(x,y,¥') Af, is satisfied with
A= =1,
equation in question glso admits the group gener-
ated by Eq. (2-17) because it is equivalent to the
partial differential equation in Eq. (2-19).

Accordingly, the second-order differential ¢



-~

Although y" + s exp(y) = 0 is invariant under
the one-parameter group generated by Eq. (2-17), it
is not the most general form of a second-order, or-
dinary differential equation that admits this group.
This form is contained in the following result.

Proposition 2.2. The general form of a second-
order, ordinary differential equation that admits
the one~parameter group generated by the infinites-

imal transformation,

af _ ,af -
Uf = x o 2ay’ (2-21)

is contained in the relation,

£(x%y", xy', y + 1n x°) = 0, (2-22)
in which f is an arbitrary function of the three
indicated arguments.

Proof: The symbol of the second extension of the
group generated by Eq. (2-21) is

"e = 31_ _ai_ ,af_ w 3f _
Uf = x 55 2ay Al 2y P (2-23)

The first-order system that corresponds to U"f = 0
is

dy' U]

i‘ﬁ=-%¥=-;¥---9—2§w. (2-24)
Accordingly, an invariant of the group under ques-
tion comes out of

& _ _dy
x -~ 3 (2-25)
in the form
u{x,y) =y + 1n x2 : (2-26)
a first differential invariant out of
ax _ _dy'
x = yv (2-27)
in the form
u'(x,y,y') = xy' (2-28)
and a second differential invariant out of
dx d "
- o (2-29)
in the form
u"(x,¥,y",y") = Xy . (2-30)

The arbitrary function of this invariant and first
and second differential invariants given in Eq.

(2-22) is, then, the general form of a second-order,

ordinary differential equation that admits the one-

parameter group of point transformations generated
by the infinitesimal transformation with the symbol
of Eq. (2-21).

2.4 A Two-Parameter Group Admitted by

y"' + s exply) =0

A second-order, ordinary differential equation

that admits a two-parameter group of point trans-
formations is integrable by quadratures. Accord-
ingly, the following result is of interest.

Proposition 2.3. The second-order differential
equation, y" 4 s exp(y) = 0, is invariant under the
two-parameter group of point transformations gener-
ated by the two basis transformations,

af

ur=3-, (2-31)
and
af 3t
Uf = x5--2 5y (2-32)

Proof: The invariance of the differential equation
under each of these transformations has already
been shown. Therefore, it is sufficient to show
that Ulf and U2f canprise the basis of a two-
parameter group, which will be the case if their
commutator is e linear combination of the basis
transformations, that is, if

(Uluz)f = e, U f + e Uf (2-33)

in which ey and e, are constants. The proposition
is established by evaluating the commutator:

(uluz)f = U f. (2-3k)

The two-parameter group generated by the in-
finitesimal transformations that appear in Egs.
(2-31) and (2-32) is of the third type in the sense
of Lie's definition of the four basic types of two-
parameter groups. The most general form of second-
order, ordinary differential equation, which is in-
variant under this two-parameter group, is not
¥" + s exp(y) = 0, but that contained in the fol-
lowing result.

Proposition 2.4. The general form of a
second-order, ordinary differential equation that
is invariant under the two-parameter group gener-
ated by the basis,

of
Ulf ik v (2-35)
and
T S 14 -
Upf = x50 - 257 (2-36)
is giyen by the relation
"
t|{L—,y-2my']|=o0, (2-37)

(y)2
in which f is an arbitrary function of the two
indicated arguments.
Proof: The second extensions of the two basis

transformations given in Eqs. (2-35) and (2-36) are



ulf = 5=, (2-38)
and
. af _ 3, 3t w 3L _
Uéf =xoo-2 ay - Y Ay 2y et (2-39)

Each of these last two operators annihilates the
relation of Eq. (2-37), a fact that establishes the
proposition.
A further result relative to the group invari-
ance properties of y" = s exp(y) = O follows.
Proposition 2.5. The second-order differential,
y" + s exp(y) = 0, is invariant under r-parameter
groups of point transformations for the cases of
r =1 and r = 2, but not for the case of r > 3.
The proof that establishes this result is too space-
consuming to be included here.
2.5 Integration of y" + s exp(y) = 0 by the Utili-
zation of the Two-Parameter Group It Admits

The invariance result stated in Proposition
2.3 may be exploited to obtain the general solution
of y" + 8 exp(y) = 0 in analytic form. The canon-
ical variables of the two-parameter group generated
by the basis of Egs. (2-35) and (2-36) are

X = exp(-y/2) (2-10)
and
Y = x + exp(-y/2). (2-11)
Introduction of these new variables into
y" + s exp(y) = O produces
2
- Hese- D] e

The general solution of this equation is

,201 5
Y=X#+q{3=1n [x + Vx -C ]+ C, s (2-43)

in which C
choice of the sign depends upon the boundary condi-

1 and 02 are arbitrary constants, and the

tions.
By reverting to the original variables, we
find that

foc
x=Cy* -;l 1n [eXP(-y/2) + Jexp(-y) - C, |,(2-b4)

the general solution of y" + s exp(y) = O.

If this solution is now subjected to the
boundary conditions, y'(0) = O and y(1) = 0, we
find that the positive sign in Eq. (2-43) is to be
taken and that

C, = exp(-y.), (2-45)

where yo is the value of the solution at x = 0, and

C,=1- *% exp(-yo) ln[l + /1 - expz-yoil. (2-46)

It follows that

x =1+ #% exp(-yo)
exp(-y/2) + Yexp(-y) - exp(-y,)
1+ A= expl-y,)

for the above boundary conditions.

1n

(2-47)

Resolving this
last relation with respect to y produces

y = 2 1n cosh V% exp(yo)
- 2 1n cosh (x V%-exp(yo)) . {(2-48)

The value of the solution at x = 0 is a root of the

transcendental relation,

exp(y /2) = cosh('f% exp(y ) ), (2-19)
so that Eq. (2-48) may also be written as
y=y,-21 cosh(x v—;— exp(y,) ) . (2-50)

This last relation is the solution of y" + s exp(y)
= 0 subject to the boundary conditions, y'(0) = 0
and y(1) = 0, provided that a root of Eq. (2-49)
There ere two roots of Eq. (2-49) if

0 < s < 0.88, and none if s > 0.88.l The result

exists.

contained in Eq. (2-50) agrees with that given by
Carslaw and Jaeger,l who obtained it by a different
method. The general solution of y" + s exp(y) = 0
contained in Eq. (2-44), and obtained by methods
based upon invariance properties, leads to Eq.
{2-50) as a special case for particular boundary
conditions.

2.6 A One-Parameter Group under Which V2y + 8 exply)

= ) is Invariant in One-Dimensional Plane,
Cylindrical, or Spherical Geometry
The differential equation, V2y + 8 exp(y) = 0,

possesses the rather remarkable property of being
invariant under the same group of poini transforma-
tions in one-dimensional plane, cylindrical, and
spherical geometries. This property is embodied in
the following result.
Proposition 2.6.
differential equation,

x2y" + N xy'+s exp(y + 1n x2) =0,

The second-order, ordinary

(2-51)
is invariant under the one-parameter group of point

transformations generated by the infinitesimal



transformation,

uf = x af _ 2 L

ax oy
for all values of the constant, N.

’ (2'52)

It N = 0, then
Eq. {2-51) is V2y + 8 exp(y) = 0 for plane geometry.
The case of N = 1 corresponds to infinite cylindri-
cal geometry, and N = 2 is the case of spherical
geometry with spherical symmetry.

Proof:
Proposition 2.2 when the arbitrary function indi-

This proposition is a direct consequence of

~ated in Eq. (2-22) is taken so as to give Eq.
(2-51).

Section 2.4 shows that V2y + s exp(y) = 0 is
invariant under a two-parameter group in the case
of plane geometry. In spherical geometry with
spherical symmetry this differential equation edmits
only a single one-parameter group.

Proposition 2.7.
differential equation,

x2y" +2xy'+s8 x2 exp(y) = 0,

The second-order, ordinary

(2-53)
is invariant only under the one-parameter group
generated by the infinitesimal transformation

of of

Uf = x i 2 i (2-5%)

Because of its length, the proof of this result will
be omitted here.

A practical consequence of Proposition 2.7 is
that it provides a group theory argument for the
fact that we should not expect the Poisson-Boltzmann
equation in spherically symmetric geometry to be
integrable by quadratures alone.

In the case of infinite cylindrical geometry,
Eq. (2-51) admits further groups beyond that gener-
ated by the symbol of Eq. {2-52).

2.7 Further Groups Admitted by Voy + s exp(y) = 0

in Infinite Cylindrical Geometry
An additional one-parameter group and a two-

parameter group of point transformations are ad-
mitted by V2 + s exp(y) = O in the case of infinite
c¢ylindrical geometry.

Proposition 2.8.
differential equation,

The nonlinear, second-order

x2y" +xy' 45 X0 exp(y) = 0,
is invariant under the one-parameter group of point
transformations generated by the infinitesimal
transformation represented by the symbol

Uf = x 1n x r 2 (1 4+ 1n x) %§ .

™ (2-56)

(2-55)

Proof: The symbol of the once-extended group repre-
sented by Eq. (2-56) is
3f 3f
] —_— —
U'f =x1lnx5--2 (1 + 1n x) oy
2 ] 3L _
-[x +{(1L+1lnx)y " (2-57)

and the linear, first-order partial differential
equation that is equivalent to Eq. (2-55) is

_a£+y'_a_

= £
Af = x Yy

- [%L + 8 exp(y)]%%r = 0. (2-58)
Because the commutator that comes out of the
operators appearing in Eqs. {2-57) and (2-58)
agsumes the value
(u'a)t = - (1 + 1n x) Af, (2-59)

the proposition is established because the invari-
ance condition, (U'A)f = A(x,y,y')Af, is satisfied
with A = = (1 + 1n x).

The invariance property stated in Proposition
2.8 is a special case of the result that follows.

Proposition 2.9.
differential equation contained in the relation, in

The second-order, ordinary

which £ denotes an arbitrary function of the three
given arguments,
f[y +21n (x 1n x), (xy' + 2) 1n x,

(%" + xy') (1 x)2] = o, (2-60)
is the general form of such an equation that admits
the one-parameter group of point transformations
with the infinitesimal transformation,

af af
Uf = x1nx 5-- 2 (1 +1n x)

This proposition can be established by

(2-61)

Proof:
determining an invariant and first and second dif-
ferential invariants of the group in question by
computing three functionally independent integrals
of the linear, first-order partial differential
equation obtained with the symbol of the second
extension of the group. This partial differential

equation is

e = _31 - _31 [} ] ig_
Ue = x 1o x 5-- 2 (14 1o x) 50+ n'ly.y') 5
" ' wy of
+ 0" (x,y,y',Y ) 'ayn = 0, (2-62)
in which
n'(x,y,y') = - %-- (1 +1nx)y', (2-63)

and

n"(x,y,y',y") = 25 - il -2y" (1 +1n x). (2-64)
X

The first-order system equivalent to Eq. (2-62) is



dx dy - dy'
x 1ln x - 2(1"'1!1?; n'(x,y,Y')

d" ( 6)
- —“T———I———ﬂry . 2-
n x,y,}",y ’
From the first and second members, we have

dx - dy
x1lnx -2(1+1lnx)°?

(2-66)

and the solution of this gives a group invariant in

the form
u({x,y) =y + 2 1n (x 1n x). (2-67)
The first and third members of Eq. (2-65) give
ax - dy'
x1ln x ’ (2-€8)

% + {1+ 1nx)y

the solution of which produces the first differen-
tial invariant

u'(x,y,y') = (xy' + 2) 1n x. (2-69)
The first and fourth members of Eq. (2-65) yield
dx dy" (
= N 2-70
x 1ln x 32--1'—-2(1+1nx)y" 70)
x
x

and the second differential invariant that comes out
of this relation is

Wy’ y") = (1n x)2 (" + xy'). (2-71)
Since Eq. (2-60) is an arbitrary function of the
group invariant and first and second differential
invariants Just obtained, the proposition is estab-
lished.

Equation (2-55) is obtained as a special case
of Eq. (2-60) when the arbitrary function in Eq.
(2-60) is taken so that

u"(x,¥,y',y") + s explu(x,y)} = 0. (2-12)

Equation (2-55) also admits a two-parameter
group.

Proposition 2.10. Equation (2-55) is invariant

under the two-parameter group of point transforma-
tions with the basis transformations
af _ , 3t

Upf = x 50- 25 (2-73)
and
af af
U2f = x 1n x o " 2 (1 + 1n x) 3y (2-74)

Proof: The invariance of Eq. (2-55) under each of
the groups of the basis transformations has already
been shown above. Since the commutator of the
basis operators assumes the form (Uluz)f = Ulf, and
also since U,f ¥ plx,y) U, f, the above basis trans-
formations generate a two-parameter Lie group of

the third type.

Equation (2-55) is a special case of Eq. {2-60).
It is also a special case of the general form of a
gsecond-order differential equation that admits the
two-parameter group generated by the basis trans-
formations of Eqs. (2-T73) and (2-Tk).

Proposition 2.11. The second-order, ordinary
differential equation

x2 ] x2y" + xy']

L] = 0, (2-75)
(2 +xy2] (2 + xy")?

in which ¢ is an arbitrary function of the two

d{y + ln[

indicated arguments, comprises the general form of
such an equation that is invariant under the two-
parameter group of point transformations generated

by the basis transformations

(2-76)
and

of
U2f = x 1ln x 3%

Proof: This proposition is a direct consequence of

2 (1 +1n x) %§ . (2-77)

the fact that the two operators of the second ex-
tensions of the two basis transformations of Egs.
{2-76) and (2-77) annihilate the relation of Eq.
(2-75).

As an example of Eq. (2-75), in which a
specific form is chosen for the arbitrary function,
¢, we may take

x2 "o+ ' 12

ZY Py g exp |y + In|—F—— |} = 0,(2-78)
(2 + xy') (2 + xy")

which simplifies down to the Poisson-Boltzmann equa-
tion in infinite cylindrical geometry.

2.8 General Integrals of the Poisson-Boltzmann

Equation in Infinite Cylindrical Geometry
Proposition 2.10 shows that the Poisson-

Boltzmann equation in infinite cylindrical geometry
admits the two-parameter Lie group with the basis
transformations of Egs. (2-73) and (2-T4k). This
fact may be exploited to effect the integration of
Eq. (2-55) in closed form.

The canonical variables of the two-parameter
group generated by the basis transformations con-
tained in Eqs. (2-73) and (2-Tk) are

X = x 1 exp(-y/2) (2-79)
and

Y = 1n x + x-l exp(-y/2). (2-80)
The introduction of these last two relations into

Eq. (2-55) produces its canonical form




2 2
ayY _ (1 -4 8 _ & -
xd.x2-(l dx)[l+2( dx) ] (2-81)
If we let

u=1- %% (2-82)

in Eq. (2-81), it becomes

du aX

= % - (2-83)

g __ . _85
NP
Consequently, a first integral of Eq. (2-81) is

1 -

= s (2-8k)

flx

in which Cl is an arbitrary constant. A second
quadrature yields the general solution of Eq.

(2-81),

Y=cz+xTF§m[x+{x2-cl],

in which 02 is the second arbitrary constant. Sub-
stituting Eqs. (2-79) and (2-80) into Eq. (2-85)

produces the relation

¢
Inx=C, +]/—;4- 1n [Sﬂ%ﬂﬁ)—

+1555 'cl]’
X

which is the general solution of Eq. (2-55), the

Poisson-Boltzmann equation in infinite cylindrical

(2-85)

(2-86)

geometry. The arbitrary constants and choice of
sign implied in Eq. (2-86) depend upon the boundary
conditions.

If the homogeneous Dirichlet boundary condition,

y(1) = 0, is imposed, we take the plus sign in the
second term on the right-hand side of Eq. (2-86)
and find that

2c)
C,=- ——1n(1+/1-c >
2 s 1

It follows that

2C] x Lexp(-y/2) + fx Pexp(-y) - ¢,

ln x = —S—-ln
1+ Y1l - Cl

(2-871)

(2-88)

which can be written in the alternative form,

2Cy xL exp(-y/2
1n x = y—= { arccosh
s JEI

- arccosh L .

€1

(2-89)

The resolution of Eq. (2-89) for the dependent
variable, y, produces, first of all, the quadratic

equation,

x2 -2 cosh<],20 1n x> X+ 1
1
2 8
+ C, sinh ——1n x) = 0, (2-90)
1 2Cl
and, finally,

exp(-y/2) = x cosh<~|’§g—— 1in x>
1
+ x vl - Cl sinh<~|,2c 1n x> N (2-91)
1

which comprises the two solutions of Eq. (2-90).
If we impose the homogeneous Neumann boundary con-
dition, y'(0) = 0, it follows from Eq. (2-91) that
we must take C, = 8/2, so that

1
exp(-y/2) = x cosh (1n x)

+x Y1 - 8/2 sinh (1ln x). (2-92)
This result simplifies to the form
=2 ln[ S . (2-93)
(L+/1-38/2) xX“+ 1%+ /1-5s/2

It is a consequence of the relation of Eg.
{2-93) that the inequality,

8 <8 = 2,
— “max

(2-9L)
must be satisfied if Eq. (2-93) is to predict real
values for the solution of the Poisson-Boltzmann
equation in infinite cylindrical geometry. If

s = s, then Eq. (2-93) becomes

2
y=2n{—5), (2-95)
1l +x
which has the maximum value
Ypax = 10 b, (2-96)

at x = 0. If g < 8ax’ the two solutions of Eq.
(2-93) are
ylnlnh-zlnll--’l-sk
+(1+ - sz 2] (2-97)
and
Yo 1nh-21n[1+/1-s/2
+(1- Y gyl 2] (2-98)
The maximum value of the solution in Eq. (2-97) at
=0 is
¥y pax S lm 4 -21n (1 - T -s/2), (2-99)



and that of Eq. (2-98) is

*1n 4 -21n (1 + /1 - s/2). (2-100)

y2,max
Note that yl,max > Ymax
higher center temperature for a smaller source term

is predicted by the solution of Eq. (2-9T7), which

even though s < smax' A

may not, therefore, be a stable and observable so-
lution. However, it is noted that y2,max < Yoax
for the solution of Eq. (2-98).

The preceding discussion of the Poisson-
Boltzmann equation in infinite cylindrical geometry
may be compared with that given by Chambre,2 who
also obtained the results contained in Eqs. (2-94)
through (2-96), but from a rather different point
of view. The general solution of Eq. (2-55) as
obtained in Eq. (2-86) does not appear to have been
established previously.

3. OCCURRENCE OF LIE GROUPS IN THE ANALYSIS OF
SPHERICALLY SYMMETRIC, IRROTATIONAL FLOWS OF
AN INVISCID, INCOMPRESSIBLE FLUID

3.1 Introduction
The cognate problems of analyzing the collapse

of a spherical bubble and the expansion of a spher-
ical cavity in an infinite expanse of fluid have

been treated by Rayleigh3 and Lamb.

The invariance
properties of certain nonlinear, ordinary differen-
tial equations under groups of point transformations
are established in this section for these problems.

3.2 Formulation of the Problem

The spherical cavity collapse and expansion
3 and Lambh
regarded as special cases of a common formulation
to display the underlying physical limitations in-
herent in the discussion.

If we let p = density, ¥ = velocity field, p =

problems considered by Rayleigh can be

pressure, and : = body force per unit mass, then

the equation of continuity is

at 2 4 ¥. -grad p + p div ¥ = 0, (3-1)

and the equation of motion for an inviscid fluid is
X
p[%g + (v'grad) V] = p 3 - grad p. (3-2)

If the body force is derivable from a potential, 9,
gso that

% = - grad 0, (3-3)
and if it is noted that
gradjglﬂ %—grad P> (3-4)

the equation of motion becomes

aV + (Vograd) ¥ = - grad (n +J%2). (3-5)
With the vector identity
(F-graa) ¥ = graa (LX) - ¥ xcun ¥, (3-6)
Eq. (3-5) reduces to
aii VXcuerB-Grad(ﬂ*-vv I—E (3-1)

The assumption of an irrotational flow, that is,
curl ¥ = 0, so that V=- grad P, wherein P =
velocity potential, produces from Eq. (3-7) the

form
-ngradP-grad (n+i§-+J‘%2). (3-8)
Integration of this last relation produces
O PP AN (3-9)

in which C(t) is an arbitrary function of the time.
We now apply Eqs. (3-1) and (3-9) to spheri-
cally symmetric flows around a spherical cavity
surrounded by an infinite extent of a fluid already
If the further assumption
is made that the fluid is also incompressible, the
continuity equation is simply div ¥ = 0, and, con-

assumed to be inviscid.

sequently, the velocity potential satisfies Laplace's
equation, div grad P = 0, which for a spherically
symmetric flow is
1l d
LE(EEE)-o (3-10)
This integrates to
c

P=- ;l +e,, (3-11)

in which we take e,

potential at infinity.
between the spherical cavity and the surrounding

= 0 for & vaenishing velocity
Let R = speed of the surface

fluid. Then
. c
R=V(R)'-‘az .__l_ (3_12)
r r 2
r=R

With the value of the constant e,
(3-12), the velocity potential is

Raa

P = —=

as given by Eq.

(3-13)

Now assume that body forces are negligible, so N1 =
0, and evaluate the time dependent Bernoulli equa-
tion, Eq. (3-9), at infinity to get

P
c(t) = ik (3-14)

wherein p = fluid pressure at infinity. At any



radial position, r, we have

P,
= ¥ .1 2 -
T c-xt3 v2 +o (3-15)
Because
2-
P R°R
Yeroar Tz (3-16)
r
Eq. (3-15) becomes
p 2: L2
o _3 R R R'R 2 _
= a2 (B, 2 P2, (3-17)
which in turn simplifies to
Leo
1 23 22 R R 1
= (R R + 2R R ) EPe (p-p,). (3-18)

Evaluation of Eq. (3-18) at the cavity-fluid inter-
face yields the relation

w+ 38 =2 o) - p, (3-29)

as the nonlinear differential equation that governs
the time dependence of the radius of the cavity.
In this equation, p(R) is interpreted as the pres-
sure of the gas in the cavity.

If we assume that p_ >>> p(R) for all values
of the cavity radius, R, then Eq. (3-19) becomes

. ) P
RR+2R%=--2=,
2 P

This equation underlies Rayleigh's discussion3 of

(3-20)

the bubble collapse problem.

However, if we assume that p{R) »>>> p_ for all
values of the cavity radius, then Eq. (3-19) is
approximated by

RR + % 7?2 = RE)

p
When the gas expansion is adiabatic,

R \3Y
B(R) = p, (R—°)

specific heat ratio of the gas and pgo
is the initial gas pressure that corresponds to the
initial cavity radius, R . Combining Eqgs. (3-21)

and (3-22) produces

. (3-21)

(3-22)

in which y =

3y

p R

P _3_'2= 0_0.)
e 352 - 2o (To)

This nonlinear differential equation is the basis

(3-23)

of Lamb's discussion of the early stages of a sub-

marine explosion. The physical limitations inher-
ent in its formulation have been delineated above.
Lamb" was of the opinion that Eg. (3-23)'13
integrable by quadratures only in the case for
which vy = 4/3. We now establish the fact that Eq.

(3-23) is invariant under certain groups of point
transformations and to exploit this fact to obtain
further closed form, analytic solutions of Eq.
(3-23) by quadratures.
3.3 Lie Groups Applicable to the Submarine Explo-
sion Problem
In Eq. (3-23), let y =R, t = x, and K =
P R3Y/p, 80 that we may write

go o
3y =xy (3-24)

w" + =
This nonlinear differential equation is invariant
under the group of translations parallel to the x-
axis because it is autonomous. We also find the
following result.

Proposition 3.1. The one-parameter group of
point transformations generated by the infinitesimal
transformation represented by the symbol

af 1l 3f
Uf = x 2=+ TY 5 3y (3-25)
in which
az1l+ %1 , (3-26)

is admitted by Eq. (3-2L).
Proof: The linear, first-order partial differen-
tial equation equivalent to Eq. (3-24) is

af ' gg -3y-1
Af = ax +y 3y [K Yy

-1 2| af
T

The symbol of the once-extended group generated by
Eq. (3-25) is

' 3 Ly af (l._) v 3L
u'f = x 3% + x 3y + 3 Yy 3y’

The value of the commutator that comes out of the
symbols of Egs. {3-27) and (3-28) is
(U'A)L = - af,
which establishes the proposition.
A further result follows.

(3-27)

(3-28)

(3-29)

Proposition 3.2. The nonlinear, second-order
differential equation,

w"+ 2 (y 12 =xy 3, (3-30)

is invariant under the two-parameter group of point
transformations whose basis transformations are

represented by the symbols

ut= gi (3-31)
and
U.r = x2L L3 (3-32)

2 ax o dy
Proof: The symbols of Eqs. (3-31) and (3-32)



generate a two-parameter group because they are in-
dependent and because their commutator assumes the
form (U,U,)f = U,f. The invariance of Eq. (3-30)
under the transformations generated by Eqs. (3-31)
and (3-32) has already been established.

The two-parameter group generated by the basis
transformations included in Eqs. (3-31) and (3-32)
is of the third type in the sense of Lie's defini-
tion because they are unconnected and because their
commutator takes the form previously indicated.

3.4 Reduction to Canonical Form and Integration of
the Cavity-Radius Differential Equation

Because of the invariance property of Eq.
(3-30) established in Proposition 3.2, this differ-

ential equation may be reduced to its canonical

form which is integrable by quadratures. The appro-
priate canonical variables are
Y = x (3-33)
and
x=y*, (3-34)
In terms of these canonical variables we have
l-a
-1
x_ ® say
] ——— | — -
v =i — (%) (3-35)
and
2
LI ___l-u' X ;(l-u)(g‘l)-z
v 2 ax
a
2
BTt (3-36)
a \dX dX2 ‘

The substitution of Eqs. (3-34) through (3-36) into
Eq. (3-30) produces
2 3

S SHCEE SO
which is the canonical form of Eq. (3-30).

8ince the solution of Eq. (3-30) is to satisfy
the initial conditions, y(0) = ¥, and y'(0) = 0, it
follows that Eq. (3-37) is to be solved subject to
the conditions

(3-37)

Y = 0 when X = y: (3-38)
and
%-» ® when X = y: . (3-39)
In Eq. (3-37), let
ay
u = o (3-40)
and

10

r2 - & -22/2 : (3_]‘1)
a K
it then becomes
0 a

Yo .

—F g =-ex | &, G
u (u€ + 1) ,
u X ’

which integrates out to provide
a | r

. (3-43)

It follows that

(3-41)

Y
x =T . (3-&5)
a
Yo
This last relation may also be written as
o
()
o
x=T y: —dr (3-46)
3
-;(Y-l)
1 T -1 |
The preceding discussion has established the follow-

ing result.

Proposition 3.3.
differential equation

The solution of the nonlinear

W'+ =xy, (3-47)

subject to the two initial conditions, y(0) = Yo
and y'(0) = 0, is given by the integral representa-

tion, a
&)
o v
x=Ty5 —er (3-18)
%(Y-l)
1 T -1



wherein

a=1+ %1 (3-19)
and
r = —3-(1'—1)——2 . (3-50)
3
2k (1 +3 ) h

A solution of Eq. (3-U47) was obtained by Lamb
for the special case in which the specific heat
ratio is assigned the value y = 4/3. This solution
also comes out of Eq. (3-48), that reduces to
Gl
Yo

dt

x=Ty; (3-51)
T1/3 -1
1
vwhen vy = 4/3. Because in this case
1
[ = —— (3-52)
3/3K

2
= b )
1

(3-53)
it follows that Eq. (3-51) simplifies to

2y3 2
sl > PO ] o

vhich is equivalent to that obtained by Lambh by

X =

another method. However, the integral representa-
tion of Eq. (3-48) also provides further analytic
solutions of Eq. (3-U47) for additional values of
the specific heat ratio.
For example, let

2= 3t (3-55)

in Eq. (3-48). Then with 1 = t°%, it becomes
a_

N
Yo

2q-1
x =T y: 2q g&.ﬁ;__._.

t2 -1

(3-56)

If we set q = 3 in this last relation, it can be re-
duced to the result already given in Eq. (3-5k).
Further reductions follow.

(1) If q = 5/2, we have y = 17/12 and

y25/8 15/8 5/8] [= 57
(e e e -
5/8 5
+3ln[(nytg) +]/(§;); -1] :

(2) 1f q = 2, we have y = 14/9 and

s/3 132 573
R e e VR I TV

o o

(3-57)

(3-58)
(3) If q = 3/2, we have y = 11/6 and
yi5/t 5/4 573 5/k
e (A A 1,,[(5;)
v 572 i ] i
+ }/(yo) (1. (3-59)

Equations (3-5T) through (3-59) are the analytic
solutions of Eq. (3-LT) that are valid for the
indicated values of the specific heat ratio, Y.

Further integrals of Eq. (3-47) may be con-
structed from Eq. (3-48).
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