
I
LA-4864

Group Invariance Properties of the

Poisson-Bohzmann and Other

Nonlinear Field Equations

)alamos
scientific laboratory

1 of the University of California
LOS ALAMOS, NEW MEXICO 87544

i.
<

ib

For Reference

Not to be taken from this room

UNITED STATES
ATOMIC ENERGY COMMISSION

CONTRACT W-7406 -ENG, 36



This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States Atomic
Energy Commission, nor any of their employees, nor any of their contrac-

tors, subcontractors, or their employees, makes any warranty, express or im-
plied, or assumes any legal liability or reqxmsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus, product or process dis-
closed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America. Available from
National Technical Information Service .

U. S. Department of Commerce
5285 Port Royal Road

Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.95

.

?



10

(‘
LA-4864
UC-34

ISSUED: February 1972

Iamos
scientific laboratory

of the University of California
LOS ALAMOS, NEW MEXICO 87544

/\

Group Invariance Properties of the

Poisson-Bokzmann and Other

Nonlinear Field Equations

I

.—

- by

Roy Arthur Axford*

●ConsuItant. Permanent address: 206 Nuclear Engineering Laboratory,
University of Illinois, Urbana, Illinois 61801

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov




CONTENTS

Abstract

1. Introduction

2. Group InvarianceProperties of the Poisson-BoltrmannEquation

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Introduction

Invarianceunder the Translation Group In Plane Geometry

A Second One-ParameterGroup Admitted by y“ + s exp(y) = O

A Two-ParameterGroup Admitted by y“ + s exp(y) = O

Integrationof y“ + s exp(y) = O by the Utilization of the
Two-ParameterGroup It Admits

A One-P=ameter Group under Which V2Y + s exp(y) = O is
Invariant in One-DimensionalPlane, Cylindrical,orSpherical
Geometry

Further Groups Admitted by V2Y + s exp(y) = O in Infinite
CylindricalGecmetry

Genersl Integralsof the Pofsson-BoltzmannEquation in
Infinite CylindricalGeometry

3. Occurrence of Lie Groups in the Analysis of Spherically
Synmetric, IrrotationslFlows of an Inviacid, Incaupresslble
Fluid

3.1 Introduction

3.2 Formulation of the Problem

3.3 Lie Groups Applicable to the Sulxuarine?lxploslonProblem

3.4 Reduction to Cenonlcel Form and Integrationof the Cavity-
Radius Differential.Equation

1

1

1

1

1

2

3

4

4

5

6

8

8

8

9

10



.
/

GROUP INVARIANCEPROPERTIES OF TRE POISSON-BOLTW

AND ~SER NONLINEAR FIELD EQUATIONS

by

Roy Arthur Axford

ABSTRACT

Group invariance properties of ordinary, nonlinear differential
equationsthat occur in the elementarytheory of the thermal and
submarine explosion problems are establishedand applied to the
developmentof further analytic solutions of these differential
equations.

1. INTRODUCTION

The fact that certain nonlinear field equa-

tions, which occur in the elementary analysis of

the thermal explosion and submarine explosion prob-

lems, admit various finite, continuousgroups of

point transformationsapparently has not been rec-

ognized previously. The precise nature of this fact

is establishedin this report and is applied to ob-

tain both a group theoretic interpretationof the

integrabllityand further integrals of the nonlinear

field equations that arise in these problems.

2. GROUP INVARIANCEPROPEIVL’IESOF TSE POISSON-

BOL’SZMANNEQUATION

2.1 Introduction

In this section we establish certain group in-

variance propertiesthat pertain to the Poisson-

Boltsmam equation,namely,

v2y + s ey =0, (s> o), ( 2-1)

in one-dimensionalplane, cylindrical,and spherical

geometries. The fact that the Poisson-Boltsmann

equation admits various two-parametergroups is

applied to the problem of obtaining general inte-

grals of this equation in explicit form for plane

and infinite cylindricalgeometries. The absence of

a two-parametergroup under which Eq. (2-1) is in-

variant, as in spherical symmetric geometry,

provides an interpretationthat Eq. (2-1) cannot be

integratedby quadrature in this geometry, although

it does admit a one-parametergroup in this geometry.

2.2 Invarianceunder the Translation Group In Plane

Geomet~

In plane geometry, Eq. (2-1) becomes

y?!+,S eY= 0. (2-2)

This differential.equation is invariant under the

one-parametergroup of translationsparallel to the

x-axis of the x-y-plane because the independent

variable does not appear explicitly. Any autonomous

differential equation in two variables is invariant

under this translation group irrespectiveof the

order of the differentialequation.

A second-order,ordinary differential equation

that is known to be invariant under a transformation

group can be reduced to one of first order. This

can be accomplishedby the introductionof a first

differential invariantof the group as a new depend-

ent variable, and of an invariant of the group as a

new independentvariable. The determinationof an

invariant and a first differential invariant of the

group requires the calculation of two linearly in-

dependent solutions of the linear, first-order,

partial differential equation obtained from the sym-

bol of the first extension of the infinitesimal

transformationof the group. The group of

1 I



translationsunder which Eq. (2-2) is invariant can let y’ = p and y“ = p dpidy, determine the function

be generated from the infinitesimaltransformation P = P(Y), ad then integrate the resfiting SeParable

representedby the symbol differentialequation y’ = p. However, the grouP

uf=~. ( 2-3)
theoretic method can be applied to any second-order

differentialequation,
Because this is also the symbol of the once-extended

F(x,y,y’,y”)= O, (2-16)
group, an invariant and first differe,ntLs3invari-

“’~hat is knoti k%~e%rsriant under a one-parameter
ant are solutionsof

,r,groupof point transformationseven if the inde-

U’f(x,y,y’) =& f(x,Y,Y’) = 0, (2-4)

with the equivalent first-order system

dx= dJ=dJ.
00 1 (2-5)

Accordingly,

U(x,y) = y (2-6)

is an invariant,and

U’(x,y,y’) = Y’ (2-7)

is a first differential.invariant of the grodp.of’

translations. Upon introducing”the new variabl;i
..!,

defined by

Y = U’(x,y,y’) = y’ (2-8)

and

x = U(x,y) = y (2-9)

into Eq. (2-2), we obtain

YdY+sexdX=O, (2-lo)

because

SO that

dY
Y“=Y’~=Yg. ., (2-12)

Integration of Eq. (2-10) produces
,..

Y2 = c1
x-iz2e, (2-13)

in which C, is an arbitrary constant. With Eqs.

(2-8) and ;2-9), this last relation becomes

(2-14)

so that

X*C+
2 J*[cl-2 s ey]-1/2 , (=15)

,,

where C2 ia the second arbitrary constant, ia the

general solution’ofEq. (2-2).

The above procedure, used to find the general

solution of Eq. (2-2) as given by Eq. (2-15), comp-

rises the group theoretic interpretationof the

elementary integrationprocedure described as

follows. If the independentvariable is missing
,1,

in a second-order,ordinary differential equation,

pendent variable appears explicitly. The eknen-

:tary procedure may not be so applied because it

depends upon the absence of the independentvari~

able.

2.3 A Second One-ParameterGroup Admitted by

y“ + s exD(y = o

The invarianceof Eq. (2-2) under the trans-
7. .,s ... . .fi. . ..
lation ~,ouP is apparent because of the absence of

the independent&riable. ,A second-order,ordinary
;.-s ,,
differential equation is, at ~ost, invariant under

eight linearly independent,one-parametergroups,

&though it need not necessarily admit any group.

The question then arises of finding any further

groups dmitted by a second-orderdifferential

equation, if in fact one is[&itted~ tienow prove

the following proposition.

Proposition 2.1. The second-orderdifferen-

titi equation, y“ + a exp(y) = O, is invariant

under the one-parametergroup of point transforma-
.,
tions that is generated by the infinitesimaltrans-

formation with the symb&l
.r,.;,

..,. uf=x*-2$$. (?-l-r)

Proof: The symbol of the once-extendedgkup

generated by Eq. (2-ii’)is

u’f=xg- 2*-Y’*, (2-18)

and the first-orderpartial differentialequation

that correspondsto y“ + s exp(y) = O is

,xAfE~+y ay-
af

s exp(y) ~ = O. (2-19)

The commutator constructed from the operators that

appear in Eqs. (2-M) arid(2-19] assumes the v~ue

(U’A)f’=-~-y; *+S exp(y)&=-Af. (2-20)
..’ .’

Therefore, Eq. (2-19) is invarisnt under the grouP

generated by.Eq. (2-17) because the invariance

condition,.(U!A)f= X(X,Y,Y’.)AF,.is satisfiedwith

i =,;l. Accordiqgly~ the second-orderdifferential

equ@iQq in queqtion @so admits the group gener-

ated by Eq. (2-L7) begause.Lit.\s equivalent to the

partial differential equation in Eq. (2-19).

.

,

.

●
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Although y“ + s exp(y) = O is invariantunder

the one-parametergroup generated by Eq. (2-17), it

is not the most general form of a second-order,or-

dinary differential equation that admits this group.

This form is contained in the following result.

Proposition 2.2. The general form of a aecond-

order, ordinary differentialequation that admits

the one-parametergroup generated by the infinites-

imal transformation,

uf=xg- 2:, (2-21)

is contained in the relation,

f(x2y”, xy’, y + in X2) = O, (2-22)

in which f is an arbitrary function of the three

indicated arguments.

Proof: The symbol of the second extension of the

group generatedby Eq. (2-21) is

u“f=x~-2g- ‘~-Y ~y, 2Y”+. (2-23)

The first-orderayatem that correspmds to U“f = O

is

dx—=- ~=-~=-~
x 2 Y’ *“ “

(2-24)

Accordingly,an invariantof the group under ques-

tion comes out of

dx—.- d#
x

in the form

U(X,Y) = y + in X2 ;

a first differential invariant out of

in the form

U’(x,y,y’) = Xy’ ;

and a second differentialinvariant out of

&i I&’—.-
% *“

in the form
2

U“(x,y,yt,y”) = x y“. .

(2-25)

(2-26)

(2-27)

(2-28)

(2-29)

(2-30)

The arbitrary function of this invariant and first

and second differential Invarlantsgiven in Eq.

(2-22) is, then, the general form of a second-order,

ordinary differentialequation that admits the one-

parameter group of point transformationsgenerated

by the infinitesimaltransformationwith the symbol

of Eq. (2-21).

2.4 A Two-ParameterGroup Admitted by

y“ + s exp(y) = O

A second-order,ordinary differential equation

that admits a two-parametergroup of point trans-

foxaations is integrableby quadrature. Accord-

ingly, the following result is of interest.

Proposition 2.3. The second-orderdifferential

equation, y“ + s exp(y) = O, is invariant under the

two-parametergroup of point transformationsgener-

ated by the two basis transformations,

u,f=~, (2-31)

,and

af af
u2f=xx-2F”

(2-32)

Proof: The invarianceof the differentialequation

under each of these transformationshas alreedy

been shown. Therefore, it is sufficient to show

that Ulf and U2f canprise the basia of a two-

parameter group, which will be the case if their

commutator is a linear combination of the basis

transformations,that is, if

(U1U2)f = elU1f+ e2U2f (2-33)

in which el and e2 are constants. The proposition

is establishedby evaluating the ccensutator:

(u1u2)f = Ulf. (2-34)

The two-parametergroup generated by the in-

finitesimaltransformationsthat appear in Eqs.

(2-31) and (2-32) is Of the third type in the sense

of Lieta definition of the four basic types of two-

parameter groups. The most general form of second-

order, ordinary differential equation, which is in-

variant under this two-parameter group, is not

y“ + s exp(y) = 0, but that contained in the fol-

lowing result.

Proposition 2.4. The general form of a

second-order,ordinary differential equation that

is invariant under the two-parametergroup gener-

ated by the basis,

U,f=g,

and

af p=

‘2f=xlK - ay

(2-35)

(2-36)

is given by the relation

[
fJL,y-

1
21ny1 =0, ( 2-37)

(Y’ )

in which f is an arbitrary function of the two

indicated arguments.

Proof: The second extensions of the two basis

transformationsgiven in Eqs. (2-35) and (2-36) are

3



u;f=~,

and

af af ,x
‘lf”x Z-2 G-y ay*-

Each of these last two operators

(2-38)

2y”~. (2-39)

annihilates the

relation of Eq. (2-37), a fact that establishesthe

proposition.

A further result relative to the group invari-

ance properties of y“ = s exp(y) = O follows.

Proposition 2.5-. The second-orderdifferential.,

y“ + s exp(y) = O, is invariant under r-parameter

groups of point transformationsfor the cases of

r = 1 and r = 2, but not for the case of r 23.

The proof that establishesthis result is too space-

consuming to be included here.

2.5 Integrationof Y“ + s exdy) = O by the Utili-

zation of the Two-ParameterGroup It Admits

The invarianceresult stated in Proposition

2.3 may be exploited to obtain the general solution

Of y’t+ s exp(y) = O in analytic form. The canon-

ical variablea of the two-parametergroup generated

by the basis ofEqs. (2-35) and (2-36) are

X = exp(-y/2) (2-4o)

and

Y = x + exp(-y12). (2-41)

Introductionof these new variables into

y“ + s exp(y) = O produces

The general solution of this equation is

in which Cl end C2 are arbitrary constants, and the

choice of the sign depends upon the boundary condi-

tions.

By reverting to the original variables, we

find that

h
2C

X=c
2:

~ln exp(-y/2) + +exp(-y)
1-cl’ (2-44)

the general solution of y“ + s exp(y) = O.

If this solution is now subjected to the

boundary conditions,y’(0) = O and y(1) = O, we

find that the positive sign in Eq. (2-43) Is to be

taken and that

where y. is the

L

Cl = exp(-ye), (2-45)

value of the solution at x = O, end

It follows that

‘=’+-

[

exP(-Y/2) + iexp(-y) - exp(-yo
in

h ‘1(2-47)
1+ - exp(-yo)

for the above boundary conditions. Resolving this

last relation with respect to y produces

y = 2 in cosh
i
: =P(YO)

-2 h cosh (x~--). (2-,8)

The value of the solution at x = O is a root of the

transcendentalrelation,

exP(Yo/2) = cosh({-jj,

so that Eq. (2-48)may also be written as

Y=YO -2 ~n co,h(x{-).

This last relation is the solution of y“ +

= O subJect to the boundary conditions,y’I

and y(1) = O, provided that a root of Eq.

exists. There ere two roots ofEq. (2-49)

(2-49)

(2-50)

s exp(y)

0)=0

2-49)

if

O < s < 0.88, end none if s > 0.88.L The result

contained in Eq. (2-50) agrees with that given by

Carslaw and Jaeger,l who obtained It by a different

method. The general.solution of y“ + s exp(y) = O

contained in Eq. (2-44), and obtained by methods

based upon invariance properties, leads to Eq.

(2-50) as a special case for particfiarbounasry

conditions.

2.6 A One-ParameterGroup under Which V2Y + s exp(y~

= O Is Invariant in One-DimensionalPlane,

Cylindrical.,or SDheriCd Geometry

The differential equation, V2Y + s exp(y) = O,

possesses the rather remarkable property of being

invariant under the same group of point transforma-

tions in one-dimensionalplane, cylindrical, end

spherical geometries. This property is embadied in

the following result.

pro~sition 2.6. The second-order,ordinary

differential equation,

x2y” + N xyf + s exp(y + in x2) = O, (2-51)

is invariant under the one-parametergroup of point

transformationsgenerated by the infinitesimal

.

,



transformation,

uf=x~. 2$, (2-52)

for all values of the constant, N. If N = O, then

Eq. (2-51) is V2Y + s exp(y) = O for plane geometry.

The case of N = 1 correspondsto infinite cylindri-

cal geometry, and N = 2 is the case of spherical

geometry with spherical symmetry.

Proof: This proposition is a direct consequenceof

Proposition 2.2 when the arbitrary function indi-

cated in Eq. (2-22) is taken so as to give Eq.

(2-51).

Section 2.4 shows that V2y + s exp(y) M O is

invariantunder a two-parametergroup in the case

of plane geometry. In sphericalgeometry with

spherical symmetry this differentialequation admits

only a single one-parametergroup.

~. The second-order,ordinary

differentialequation,

2 “ + 2 xy~ + s x2Xy exp(y) = O, (2-53)

is invariant&under the one-pazxunetergroup

generated by the infinitesimaltransformation

af af
uf=xx-z~” (2-5b)

Because of its length, the proof of this result will

be omitted here.

A practical consequenceof Proposition 2.7 is

that it provides a group theory argument for the

fact that we should not expect the Poisson-Boltmnann

equation in sphericallysymmetric geometry to be

integrableby quadrature alone.

In the case of infinite cylindrical geometry,

Eq. (2-51) admits further groups beyond that gener-

ated by the .9y-mbolof Eq. (2-52).

2.7 Purther Groups Admitted by V2y + s exp(y) = o

in Infinite CylindricalGeometq

An additional one-parametergroup and a tvo-

paremeter group of point transformationsare ad-

mitted by V*Y + s exp(y) = O in the case of infinite

cylindricalgeometry.

Proposition 2.8. The nonlinear, second-order

differential equation,

2 1’+Xyl + s xXY 2 exp(y) = o, (2-55)

is invariant under the one-parametergroup of point

transformationsgenerated by the i.nfinlteaima.l

transformationrepresentedby the symbol

af

uf=xlnxK-
2(l+lnx)&. (2-56)

Proof: The symbol of the once-extendedgroup repre-

sented by Eq. (2-56) 5.s

UOf=xln x*-2 (l+lnx)$$

[
~ (l+lnx)y’]& ,--+ (2-57)

and the linear, first-order partial differential

equation that is equivalent to Eq. (2-55) is

Af
af

I~+ s exP(Y)]~~g+Y’—- xay
= o. (2-58)

Because the commutator that canes out of the

operators appearing in Eqs. (2-57) and (2-58)

assumes the value

(U’A)f=- (l+lnX) Af, (2-59)

the proposition is establishedbecause the invari-

ance condition, (U’A)f = A(x,y,yl)Af, is satisfied

with A = - (l+lnx).

The invariance property stated in Proposition

2.8 is a special case of the result that follows.

Promsition 2.9. The second-order,ordinary

differentialequation contained in the relation, in

which f denotes an arbitrary function of the three

given arguments,

[
fy+21n(xlnx), (xy’ +2)lnx,

1(x2y’’+xy’)(ln x)2 =0, (2-6o)

is the general form of such an equation that admits

the one-parametergroup of point transformations

with the infinitesimaltransformation,

af

‘f=xlnxG-
2(l+lnx)*. (2-61)

Proof: This proposition can be establishedby

detenaining an invariant and first and second dif-

ferential invarlants of the group in question by

computing three functionally independent integrals

of the linear, first-order partial differential

equation obtained with the symbol of the second

extension of the group. This partial differential

equation is

U“f s xlnx*- 2(l+lnx)ay
af

=+ n’(x,Y,Y’)~

af+ ?f’(x,y,yl,y”)~ = o> (2-62)

h which

ll~(x,y,y’)= - ~-(l+lnx) y’, (2-63)

and

2 C-2YII (l+ln x). (2-64)?l’’(x,y,y’,y”) = —- x
X2

The first-order system equivalent to Eq. (2-62) is



*=*= .’(.’IW
‘&”

From the first end second members, we have

*=
xlnx

and the solution of

the form

U(x,y) = y

The first and third

(2-65)

(2-66)

this gives a group invariant in

+21n(xlnx). (2-67)

members of Eq. (2-65) give

d. - dy’—=2
xlnx s (2-68)

~+(l+lnx)y’

the solution of which produces the first differen-

tial invariant

u’(x,Y,Y’) = (y’ + 2) in x. (2-6sI )

The first and fourth members of Eq. (2-65) yield

dx II
— .
xlnx2

(2-70)
‘i- 2(1 + lnx) y“

,

7-X

and the second differential invariant that comes out

of this relation is

u“(x,y,y’,y”) = (ln X)2 (x2y” + xy’). (2-71)

Since Eq. (2-60) is an arbitrary function of the

group invariant and first and second differential

invariant Just obtained, the proposition is estab-

lished.

Equation (2-55) is obtained as a special case

of Eq. (2-60) when the arbitrary function in Eq.

(2-60) is taken so that

U“(x,y,y’,y”) + s exp[u(x,y)l= 0. (2-72)

Equation (2-55) also admits a two-parameter

group.

Pronoaition 2.10. Equation (2-55) is invariant

under the two-parametergroup of pint transforma-

tions With the basis transformations

u,f=xj$.-2g ( 2-73)

and

U2f=xlnx ~-2(l+lnx)~. (2-74)

Proof: The invariance of Eq. (2-55) under each of

the groups of the basis transformationshas already

been shown above. Since the commutatorof the

basis operators assumes the form (U1U2)f = U1f, end

also since U2f # p(x,y) Ulf, the above basis trans-

formationsgenerate a two-parameterLie group of

the third type.

Equation (2-55) is a special case of Eq. [2-60).

It is also a special case of the general form of a

second-orderdifferential equation that admits the

two-parametergroup generated by the basis trans-

formations of Eqs. (2-73) end (2-74).

Proposition 2.11. The second-order,ordinary

differential equation

in which O is an arbitrary function of the tvo

indicated arguments, comprises the general form of

such an equation that is invariant under the two-

parameter group of point transformationsgenerated

by the basis transformations

(2-76)

and

af
—-2(l+lnx)*.

‘2f=x1nxax (2-77)

Proof: This proposition is a direct consequence of

the fact that the two operators of the second ex-

tensions of the two basis transformationsof Eqa.

(2-76) and (2-77) annihilate the relation ofEq.

(2-75).

As an example of Eq. (2-75), in which a

specific form is chosen for the arbitrary function,

4, we may take

which simplifies down to the Poisson-Boltnnannequa-

tion in infinite cylindrical geometry.

2.8 Oeneral.Integrals of the Poisson-Boltzmann

Equation in Infinite CylindricalGeometr~

Proposition 2.10 shows that the Poisson-

Boltzmann equation in infinite cylindrical geometry

admits the two-parameterLie group with the basis

transformation of Eqs. (2-73) and (2-74). l’hls

fact may be exploited to effect the integrationof

Eq. (2-55) in closed form.

The canonical variables of the tvo-parameter

group generated by the basis transformationscon-

tained in Eqs. (2-73) and (2-74) are

x=x ‘1 =d-y/2) (2-79)

and

Y=lnx+x ‘1 exp(-y/2). (2-8o)

The introductionof these last two relations into

Eq. (2-55) produces its canonical form

.

..
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‘fj=(’-%)~+w-%r]”(2-81)

If we let

in Eq. (2-81), It becomes

Sdx.-— —.+du)2 +: 2x

(2-82)

(2-83)

consequently,a-first integral of Eq. (2-81) is

dY
r

pz=t+

2’ r

(2-84)

X21- c1 ‘

in which Cl is an arbitrary constant. A second

quadratureyields the general solution of Eq.

(2-81),

Y .c,+x.~h[x+pq, (2-85)

in which C2 is the second arbitrary constant. Sub-

stitutingEqs. (2-79) and (2-80) intoEq. (2-85)

produces the relation

‘fT-]’ ( 2-86)

which is the general solution of Eq. (2-55), the

Poisson-Boltsmannequation in infinite cylindrical

geometry. The arbitrary constants and choice of

sign implied in Eq. (2-86) depend upon the boundary

conditions.

If the homogeneous Dirichlet boundary condition,

y(1) = O, is imposed,we take the plus sign in the

second term on the right-hand side of Eq. (2-86)

and find that

IT2’‘2=-+
)

lnl+~.

It follows that

(2-87)

/-[

2’1 ~x-lexp(-y/2)+ x exp(-y)
lnx= ~ in 1,l+m

L J.

which can be written in the alternative

rl [

2cl
lnx=

X-l exp(-y/2
~ arccosh

q ‘1
I-arccosh ~ .

~

(2-88)

form,

(2-89)

The resolution of Eq. (2-89) for the

variable, y, produces, first of all,

equation,

2-2c0sh(&nx)x+’

dependent

the quadratic

and, finally,

2-90

‘q(-y’2)‘Xcosh(bi’nx)

which comprises the two solutions of Eq. (2-90).—

If we impose the homogeneousNeumann boundary con-

dition, y’(0) = O, it follows from Eq. (2-91) that

we must take Cl = 8/2, so that

exp(-y/2) = x cosh (ln x)

~x~sinh (lnx).

This result simplifiesto the form

[

2
y=21n

I(12~)x2+lTJm “

It is a consequence of the relation of

(2-93) that the inequality,

S<s = 2,
- max

(2-92)

(2-93)

Eq.

(2-94)

must be satisfied if Eq. (2-93) is to predict red

values for the solution of the Poisson-Boltsmann

equation in infinite cylindrical geometry. If

m=, then fiq.(2-93) becomes9=s

()2y=21n—,
1+X2

(2-95)

( 2-97)

which has the maximum value

Y= = in 4, ( 2-96)

at x = O. If S < Smax, the two solutions of Eq.

(2-93) are

Yl
I

= in 4 - 21n 1 - ~

( )]+ 1+ ~ X2

and

y2=ln4-
[

21nl+~

(
+ l-~)xz]. (2-98)

The maximum value of the solution in Eq. (2-97) at

X=ois

‘1,max
= in 4 - 21n (1 - ~), (2-99)
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and that of Eq. (2-98) is

Y2,lnax
=ln4- 21n (1 + ~). (2-loo)

Note that yl mm > yn= even though s < Sna. A

higher cente~ temperaturefor a smaller source term

is predicted by the solution of Eq. (2-97),which

may not, therefore,be a stable end observable ao-

lution. However, it is noted that y2 ~= < ynax

for the solution of Eq. (2-98). ‘

The preceding discussion of the Poisson-

Boltzmam equation in infinite cylindricalgeometry
2

may be compared with that given by Chambre, who

also obtained the results contained in Eqs. (2-94)

through (2-96), but from a rather different point

of view. The general solution of Eq. (2-55) aa

obtained in Eq. (2-86) does not appear to have been

establishedpreviously.

3. OCCURRENCE OF LIE GROUPS IN TKE ANALYSIS OF

SPHERICALLY SYMMETRIC, IRROTATIONALFLOWS OF

AN INVISCID, INCOMPRESSIBLEFLUID

3.1 Introduction

The cognate problems of analyzing the collapse

of a spherical bubble end the expansion of a spher-

ical cavity in an infinite expanse of fluid have

been treated by Rayleigh3 and Lamb.
4

The invariance

properties of certain nonlinear,ordinary differen-

tial equationsunder groups of point transformations

are established in this section for these problems.

3.2 Formulationof the Problem

The spherical cavity collapse and expansion

problems consideredby Rayleigh3 and Lemb4 can be

regarded as special cases of a connnonformulation

to display the underlying physical limitations in-

herent in the dlacussion.

If we let p z density, $ E velocity field, p E

pressure, and $ z body force per unit mass, then

the equation of continuity is

~+ ?.grad p + p div
at

t=o, (3-1)

and the equation of motion for an inviscid fluid is

p[#+(~.@8d]?]=&~adp. (3-2)

If the body force is derivable from a pctentlal, ~,

so that

$ =-gradn, (3-3)

and if it is noted that

J
~=~grad p p grad p, (3-4)

the equation of motion becomes

#+($”srad)t=- (grad n

Wfth the vector identity

(f.grad)t=gred (q) - t

Eq. (3-5) reduces to

x curl $, (3-6)

The assumption of an irrotatfonalflow, that ia,

curl ~ = O, so that ~ = - grad P, wherein P Z

velocity potential, produces from Eq. (3-7) the

form

*+~+&.
~grsd P=gred

( 2 J)P
(3-8)

Integrationof this last relation produces

c(t) = - t“? (Q~+n+—+
2 J P’

(3-9)

in which C(t) ia an arbitrary function of the time.

We now apply Eqa. (3-1) and (3-9) to apheri-

celly symnetric flows around a spherical cavity

surroundedby an infinite extent of a fluid already

assumed to be inviscid. If the further assumption

is made that the fluid is also incanpreasible,the

continuity equation is simply div ~ = O, and, con-

sequently,the velocity potential satisfies Laplace’s

equation, div grad P = O, which for a spherically

symmetric flow is

This integratesto

P=-
C1y+c

2

in which we take C2 = O for a

ptentiel at infinity. Let ~

between the spherical

fluid. Then

i = Vr(R) = -

With the value of the

o. ( 3-lo)

9 ( 3-11)

vanishing velocity

s speed of the surface

cavity and the surrounding

(3-12)

constant c. aa given by Eq.

(3-12), the velocity potential i:

~=R%
y. (3-13)

Now assume that body forces are negligible, so ~ =

O, and evaluate the time dependent Bernoulli equa-

tion, Eq. (3-9), at infinitY to Set

c(t) =: , (3-14)

wherein pm = fluid preaaure at infinity. At any

,

t
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radial position, r, we have

Pa
—=-~+*f+?
P P

(3-15)

Because

~2~
Vr=-=. —,

ar ~2 (3-16)

Eq. (3-15) becomes

Pm

()
_=-@+ #$+:, (3-17)
P r

which in turn simplifiesto

~(R2R+2Rh2) -~=; (P - P-). (3-18)
2r

Evaluation of Eq. (3-18) at the cavity-fluidinter-

face yields the relation

I&+; ~2=~[p(R) -P=] (3-19)

as the nonlinear differential e~ation that governe

the time dependence of the radius of the cavity.

In this equation, P(R) is interpretedas the pree-

sure of the gas in the cavity.

If we assume that p= >>> p(R) for all values

of the cavity radiue, R, then Eq. (3-19) becomes

~+3.2_ pm
~R--~. (3-20)

This equation underlieeRayleigh’s discuesion3of

the bubble collapse problem.

However, if we assume that P(R) >>> pm for all

values of the cavity radius, then Eq. (3-19) is

approximatedby

RH+; i’.*. (3-21)

When the gas expansion is ediabatic,

()

3y

P(R)
~

= ‘go R (3-22)

in which y s specific heat ratio of the gae and p
go

is the initial gas pressure that correepondeto the

initial cavity radius, Ro. Combining Eqs. (3-21)

and (3-22) produces

()
3y

Rii+$iz=+$ . ( 3-23)

This nonlinear differentialequation is the basis
4

of Lambrs discussion of the esrly stages of a sub-”

marine exploeion. The physical limitations inher-

ent in its formulationhave been delineated above.

Lambk was of the opinion that Eq. (3-23) is

integrableby quedratureeonly in the case for

which y = b/3. We now establish the fact that Eq.

(3-23) is inv=imt under certain SrOUPS of Point

transfonmstioneand to exploit this fact to obtain

further closed form, anal~ic solutions of Eq.

(3-23) by quedratures.

. Lie Grouus Applicable to the Submarine Explo-

sion Problem

In Eq. (3-23), let y = R, t = x, andK =

pgoR~/p, so that we may write

-3y (3-24)yy’’+~(yt)2=Ky .

~is nonlinear differentialequation is invariant

under the group of translationsparallel to the x-

exfs becauee it ie autonomous. liealso find the

following result.

Proposition 3.1. The one-parameter group of

point transformation generated by the infinitesimal

transformationrepresentedby the symbol

(3-25)

in which

as l+&, (3-26)

is admittedly Eq. (3-24).

Proof: The linear, first-orderpartial differen-

tial equation equivalent to Eq. (3-24) is

,=Af++y ~y
[

+ K Y-3Y-’

-+Y 1-1 (Y’)2 # = 0. ( 3-27

The symbol of the once-extended group generated by

Eq. (3-25) iS

u’f=x*+~=+(*-1) y’~.
a ay ay’

(3-28)

The value of the consnutatorthat comes out of the

smboh of Eqs. (3-2?) end (3-28) iS

(U’A)f = - Af, (3-29)

which establishes the proposition.

A further result follows.

Proposition 3.2. The nonlinear, second-order

differential equation,

# +;(YI)2 = K y-3y, (3-30)

is invariant under the two-parametergroup of point

transformationewhose baeis transformationsare

represented by the symbols

Ulf =+ (3-31)

and

u2f. x~+:$. (3-32)

Proof: The symbols ofEqs. (3-31) and (3-32)



generate a two-parametergroup because they are in-

dependent and because their commutator assumes the

form (ulu2)f = Ulf. The invariance of Eq. (3-30)

under the transformationsgenerated by Eqs. (3-31)

and (3-32) has already been established.

The two-parametergroup generated by the basia

transformationsincluded in Eqs. (3-31) and (3-32)

is of the third type in the sense of Lie’s defini-

tion because they are unconnected and because their

commutator takes the form previously indicated.

3.4 Reduction to Canonical Form and Integrationof

the Cavity-RadiusDifferentialEquation

Because of the invarianceproperty of Eq.

(3-30) established in Proposition 3.2, this differ-

ential equation may be reduced to its canonical

form which is integrableby quadrature. The appro-

priate canonical variables are

Y=x (3-33)

and

X=ya. (3-34)

In terms of these canonical variables we have

r2 - q;

aK
(3-41)

it then becomes

,

1I
.

I
Y:

du dx=-aK
u (U2 + r2)

Y’

u x

(3-42)

which integratesout to provide

QJ=-_L-----

r -1

Xa-l—

Y:

(3-43)

It follows that

x

Y=r

Ir

dX
*

=

()

x a _l—

Y:

Y:

(3-44)

and reverting to the original variables produces

l-a—

Xa dY-l
()

yl.——
a dx (3-35)

<1-a) dy-2.~xa
YY” a2 ()E

-~~
()

% l-a)‘3d%xa
a dX

d“
(3-36)

substitutionof Eqs. (3-34) through (3-36) Into

(3-30) produces

Ya

lr-
dX

x=r
3 -1 “

()

x a -1—

Y:

Y:

(3-45)

and

This last relation may also be written as

The

Eq.

l/--
dr

x=ry~ .

3 y-1)
a

lT
-1

(3-46)

xd%=~ ~-a dY() ‘-a %r’ ( 3-37)
d@a2

dX

which is the canonical form of Eq. (3-30).

8ince the solution of Eq. (3-30) IS to satisti

the initial conditions,y(0) = y. and y’(0) = O, it

follows that Eq. (3-37) is to be solved subject to

the conditions

Y=OwhenX=y~ (3-38)

and

The preceding discussionhas establishedthe follow-

ing result.

Proposition 3.3. The solution of the nonlinear

differential equation

& +;(YI)2 = K y-3y, (3-4?)

subject to the two initial conditions,y(0) = y.

and y’(0) = O, is given by the integral representa-
1

~+ . when x . ya
dX o“ ( 3-39)

In Eq. (3-37), let
L

d

‘“r<J%=’(3-40) (3-48)

and
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wherein

and

If ve set q = 3 in this last relation, it can be re-

duced to the result already given in Eq. (3-54).

Further reductions follow.
a . 1+* ( 3-49)

(1)

x=

(2)

x=

(3)

If q = 5/2, we have y = 17/12 and

1[% ‘t~j’”
+ 3(#8] {Qz

+3q(#8+ /ii]/.
(3-57)

r=m (3-50)

A solution of Eq. (3-47) was obtained by Lemb4

for the special case in which the specific heat

ratio is assigned the value y = 4/3. This solution

also comes out of Eq. (3-48), that reduces to

1
()
E3
Y.

Ifq=2, ve have y = 14/9 and

;[(#3-1]3’2+pz].F6 10/3
5K ‘O

I‘=’y: i’5- (3-51)

1

(3’-58)

If q = 3/2, we have y = 11/6 and-1

casewhen y = 4/3. Because in this

r=~,
3%

x=

(3-52)

and
(3-59)

Equations (3-57) through (3-59) are the analytic

solutions of Eq. (3-47) that are valid for the

indicated values of the specific heat ratio, y.

Further integrals of Eq. (3-47) may be con-

structed from Eq. (3-48).
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I
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{G
1
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