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2DE: A TWO-DIMENSIONAL

CONTINUOUS EULERIA,N HYDRODYNAMIC

CODE FOR COMPUTING MULTICOMPONENT

REACTIVE HYDRODYNAMIC PROBLEMS

by

James D. Kershner and Charles L. Mader

ABSTRACT

This report describes a code called 2DE that computes two-dimensional
reactive multicomponent hydrodyn~ic problems in slab or cylindrical geome -
try using continuous Eulerian equations of motion.

Realistic equation-of-state treatments for mixed cells are combined with
the donor-acceptor-cell method to calculate mixed cell fluxes.

The calculated results using the 2DE code are compared with Lagrangian
calculations for several one - and two-dime nsional problems.

1. INTRODUCTION

The finite difference analogs of the Eulerian

equations of motion have been studied at the Los

Alamos Scientific Laboratory (LASL) for’ more

than ten years. The initial work of Richl was fol-
2

lowed by that of Gentry, Martin, and Daly, which

resulted in the FLIC method. A one -component

Eulerian hydrodynamic code written by Gage and

Mader3 in STRETCH machine language used the

features of the FLIC method and the OIL method4

developed at General Atomic Division of General

Dynamics Corporation. The 2DE code was used

to solve reactive hydrodynamic problems that re -

quired high resolution of highly distorted flows.

Results of the detonation physics studies using

the code are described in Refs. 5 through 9.

The study described in this report was under-

taken to determine whether or not the continuous

Eu.lerian approach to reactive hydrodynamic

problems, where severe distortions prevent solu-

tion by Lagrangian methods, could be extended to

multicomponent problems in reactive hydrodynam-

ics. Also, because of the untimely death of

STRETCH, a FORTRAN version of the one-compo-

nent Eulerian code was needed.

Multic omponent Eulerian calculations require

equations of state for mixed cells and methods for

moving mass and its associated state values into

and out of mixed cells. The particle-in-cell (PIG)

method uses particles for this movement. We

previously had developed realistic equation-of-

state treatments for mixed cells using the PIG

method described in Ref. 10. We have extended

the mixed equation-of-state treatxnents to include

several cases not considered previously and have

used the donor-acceptor method for moving mass

and its ass ociated state values as determined by

the mixed equations of state.
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The donor-acceptor method developed by John-

son” has been used by several investigators to

solve a variety of problems. The donor-acceptor

method for determining the mass flux was chosen

wer other methods, such as those proposed by

Hirt12
13and developed by Hageman and Walsh,

only because of its ease of application. Ideally,

several methods for mass flux calculations should

be available in a general-purpose Eulerian code so

that the best method for a particular problem can

be used.
,

Because reactive hydrodynamic problems re-

quire as much numerical resolution as possible,

the 2DE code (named after its STRETCH father) was

written to make maximum use of the Iarge capacity

memory devices on the CDC 7600 data processing

sys tern.

This report describes the method in complete

detail. It ah o presents sufficient details to enable

the reader to follow and modify the code. The latter

information is not of interest to the casual reader;

therefore, the more tedious descriptions of the mix-

ture equation-of -state treatments and derivations

of the various equations are described in Appendix-

es A, B, and C.

II. THE HYDRODYNAMIC EQUATIONS

The partial differential equations for non-

viscous, nonconducting, compressible fluid flow

in cylindrical coordinates are

(
*+@&+ @=-P&#
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~+uau
p at )

~+vg =-g
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)
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P at
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‘K )

Mass,

Momentum,

The equations, written in finite-difference form

appropriate to a fixed (Eulerian) mesh, are used

to determine the dynamics of the fluid. The fluid

is moved by a continuous mass transport method.

The fir st of the above equations, that of mass

conservation, is automatically satisfied. The mo-

mentum and energy equations are treated as fol-

lows . k the first step, contributions to the time

derivatives which arise from the terms involving

pressure are calculated. Mass is not moved at

this step; thus, the transport terms are dropped.

Tentative new values of velocity and internal ener-

gy are calculated for each cell.

In the second step, the mass is moved accord-

ing to the ceLl velocity. The mass crosuing cell

boundaries carries with it into the new cells appro-

priate fractions of the mass, momentum, and ener-

gy of the cells from which it came. This second

step accomplishes the transport that was neglected

in the first step.

In the third step, the amount of chemical reac-

tion is determined, and the new cell pressure is

computed using the HOM equations of state.

The equations we shall difference are of the

form

au iwfil,p~=- aR

and
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III. THE C.ODLNG EQUATIONS AND TECHNIQUES Cell quantities:

P - CM - Cell density

Problem Boundaries I - CI - Cell interml energy

Axis

Continuum

E
P - CP - Cell pressure

T - CT - Cell temperature

W - CW1 - Cell mass fraction for unburned
explosive

Continuum U-cu - Cell r or x velocity

v-cv - Cell z velocity

; - RHOT - Tilde dens ity

q - Ql, Q2, Q3, Q4 - Viscosities
Piston (Constant Input)

Boundarv c- CUB - Cell R velocity tilde

Cell Sides

3

2❑ 4

1

The Initial Problem SetuD

or Continuum ~- CVB - Cell Z velocity tilde

AM - DMASS - Density increment for mass
movement

LIE-DE - Energy increment

AW-DW - M.ass fraction increment

APU - DPU - Momentum in R direction increment

APV - DPV - Momentum in Z direction increment

ID - CID - Cell identification word

The cell ID word contains a material identifier,

mixed cell pointers, flags for span, tensio~

and mate rial type. It also carries temporary

flags which are set when DE or DW is calculated

by the mixed cell routine.

A Phase I. Equation of State and Reaction

The pressure and temperature are calculated

from the density, internal energy, and cell mass

fractions using the subroutines HOM, HOM2S,

HOMSG, HOM 2G, or HOM2SG described in Appen-

dix A. Mtied cells carry the individual compo-

nent densities and energies as calculated from

mixture equation of state.

Lf AV’/V’ (V’= ‘), and AI/1, from the neigh-
P

boring cell and the present cell are less than

1234 5=1

Ror X

—U Velocity

O. 0005, the previous cell P and

Pij=P. and Ti, j = T.
, l-l, j l-l, j”

Knowing T, we calculate .W

henius rate law

-E*/R T
~w=-z we g ,

T are used, i. e.,

using the Arr -

where Z is the frequency factor, E* is the

activation energy, Rg is the gas constant, and
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6t is the time increment. In difference form this

is

~n+ 1 . ~n
- tit Z Wne

-E*/RgTn+l
.

1, If cell temperature is less than MINWT

(1000), reaction is not permitted.

2. If CW1 is less than GASW (O. 02), set

Cwl. o.

3. Do not react for first VCNT ( 25) cycles.

4. If CT is less than TO, CT = TO and if CP

is less than PO and tension flag is O, set CP = PO.

Phases I and II are skipped if ~~ ~< MING RHO

+ (p. - MTNGRH~ (W; j). This is for handling free

surfaces to eliminate false diffusion. MINGRHO =

O. 5. For gases at free surfaces ~j is replaced

by one.

B. Phase II. Viscosity and Velocity

1. Viscosity Equations
3

u2 GRID 4

1

c21. .=qn.
1, J l, J- *

= C23.I, j-1

except on boundary 1 when Qli ~ . 0.0
,

or on piston boundary when

Q1 . =K(p:j + MAPP) (VA.PP - < ~)1, 1 ,

if VAPP > Vn
1, 1

=0.0 if VAPP < V?
1,1 .

Q2. . = q?
~SJ l-~ j

= Q4.
I-l, j

except on axis boundary 2 when

Q2
l,j = 2Q\, j- “2,j .

Q3
n

i,j=$, j~ = K ‘~, j + Pi, j+l )(v; j- fl, j+l)

n n
if V. 2 V.

1, j 1, ji-1

=0.0 ifv?j<v?# 1, j+ I

except Q3. = O. 0 on continuative
I,JMAX

boundary 3.

Q4. . = q?
l+& j

= K (P; j + ;+l, j) (U:j - U;+l, j)
b J

ifu? >Un
lJj i+l, j

=0.0 ifun <u?
1, j 1+1, j

except on c ontinuative boundary 4 when

Q4
IMAX, j

=0.0

2. Velocity Equations

P1 = Pn
l, j-1

except on piston boundary 1, P1 = PAPP

or on continuative boundary 1, P 1 = Pn
1,1.

P2 = P?
l-l, j

except on axis boundary 2, P2 . Pn
I,j “

P3 = Pn
1, j+l

except on continuative boundary 3,

P3 = P: JM= .
,

P4 = Pn
I.i-l, j

except on continuative boundary 4,

P4 = P?
1, IMAX .

Q2, P2

Q3, P3

Cl

P.n .
1SJ
. P4, Q4
ipj

P1

Q1



‘n & (1(i-l) (P4-P2) + P4-P~ j
u .U; j-—— - ,

ipj 2i-1
P~j~ I

+ (24.
)

-Q2ij.
L j s

3. Internal Energy Calculation

For ~~ i < MINGRHO + (p. - MINGRHO)(W~, j) ~
—7 .

E:, j = I;, j and the rest of Phase III is skipped.

U1 = (Un +;? .) .
l-l, j I-l, J

.= V?.- ~bt ( ) ‘2 = (“~+l,j + ‘i+l, j)”-n
v.

12J % J G
~ -1-Q3. - Q1.

Pi, j b j hj “

V1 = (Vn + 7 ).
I, j-1 qj-1

where
V2= (Vn +.7 )0

1, j-l-l 1, j+l
i=l ,2, . . . .. IMAX

T3 = (~, j +;~j).
“=1, 2,....,J NJMAX~*JMAX (for NJMAX

core increments containing JMAX rows Tl = (V~j +?~j).

each).

P4-P2Ln slab geometry, the qu~tity in { ] . —
Exceptions:

2

Axis boundary, UI = 2(~ j + fi~ j) - U2
P 9

C. Phase III. Internal Energy and fi Calculation Continuative boundary 4,

1. ~ Calculation U2 = (Un
IU, j

+ Gn
IMAX, j)

Exceptions:

Piston boundary, V. . = VAPP
I, J-l

Axis boundary, U. .= - u.
l-~J 1+1, j

+ .2U. .
1. J

boundary 3, V. . = v.
I,J+l b j

boundary 4, U. = u.
1+1, j h j

2. Piston Energy Constraints

For the first VCNT cycles,

Piston boundary, VI = 2VAPP

Continuative boundary 1, V1 = (V: ~ + ~i, ~)

Continuative boundary 3,

1+U2+2T3+U1
2i-1 o

Q4. .

[+ &’J ‘2-
T3 +{= }1

Q2i j

[ { }]
2U 1-- uI-T 3-

@ m

7?. =

[“
l/2 (P; j + Q3i j) (V: - l/P;, j) + KE.

1, J b j
+&

[
P: j (V2 - VI) + Q3i j (V2 - Tl)

, ,

if V; 21/p? .
ISJ 1)+Qli j (Tl - Vl) .

,

J?
In slab geometry the quantities in { } are set

ifV~< l/p?. ,
i, j 1, J

(

2 2

)

equal to zero.

where KE. .= 1/2 Gn. +vn
1, J 1>J hj “
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4. Total Ener gy Calculation

En .=?n
% J [ 1i,ji-1/2 (V;j)z+(ti:j)z .

D. Phase IV. Mass Movement

Mass is not moved unless the pres sure of the cell from which it moves is greater than FREPR

(O. 0005) or if the tension flag is on.

Nomenclature for Phase lV and W

DE Change in energy

DW Change in mass fraction

DPU Change in U momentum

DPV Change in V momentum

DMASS Change in density

3

n

CELL ~
j2

SIDES

1

i

1. Mass Movement Acress Side 2

a. For axis boundary DMASS . 0, otherwise

b. If A> O the mass moves from donor dell i-l, j to cell i, j ,

Slab DMASS = (hi-l, j) (A) .

DE. . = En
1, J

,-1, j (DMAS5) DE. . = DE. ,-1, j (DMASS) .- En
1-l, J I-ljj

Mixed-cell modification of DMASS and DE occurs if required as described in mixed-cell section.

DW. ,-1, j (DMASS).=W?
1>J

(-)2i-3
Cylindrical DM. = DMASS z~

h j

DW . . = DW. ~-l,j (DMASS) .- w?
I-l, J z-l, j

DPU. . = DPU. i-l,j (DMASS) .- tin
1-l, J z-l, j

DPV. . = DPV i-l, j (DMASS) .-v
1-l, J i-l, j

DM. . = DM. - DMASS .
l-l, J l-l, j

Slab DM. . = DMASS.
Is J



c, If A C O, the mass moves from the donor cell i, j to acceptor cell i-l, j.

Cylindrical DMASS =$: j
(2i -2-A)

(2i - 1)
A, slab DMASS=~~j A.

,, j (DMASS)DE. . = E?
1>J

Mixed-cell modification of DMASS and DE

Dwi, j = w:, j (DMAS.S)

DPU. . = ti;, j (DMASS)
1, J

, j (DMASS)DPV. . = ;?
l~J ,

DM . . = DMASS
1, J

DE. . = DE. i, j (DMXS) .- En
1-l, J l-l, j

occurs if required,

DW . .=DWi ~,j - ~, j (DM.MS).
1-l, J

DPU. . = DPU. - fii, j (DMASS) .
I-l, J z-l, j

DPV . . = DPV. - Vi, j (DMASS) .
1-l, J l-l, j

(-)2i- 1
Cylindrical DM. . = DM. - DMASS ~ .

1-l, J I-ljj

Slab DM. = DMASS .
I-l$j

2. Mass Movement Acress Side 1

a. For a piston boundary

(VA-PP+w ,) (f$i%)
., J

A= 1/2 . .
(;;, j - VAPP) (&/&) + 1

For A< O, DMASS = O.

For ~> O, DMASS . (MAPP) (~, and the mass moves from the piston to cell i, j.

DE. . = DE.~, j + DMASS (EAPP) .
1>J

DW. . = DW. , + DMASS (WAPP) .
I, J 1, J

DPVi, j = DPV. + DMASS
b j

DPU. . = DPUi, j + DMASS
I,J

DM. . = DM. + DMASS .
1, J 1, j

VAPP) .

UAPP) .



b. For continuative boundary 1 cell,

DE. n DE
1Sj

,, j (DMASS) .i,j+En

Mixed-cell modifications of DMASS and DE occurs if required.

,, j (DMASS) .DWi j = DW. + W*
, b j

DPV. . = DPV ,, j (DMASS) .i,j+i.
1, J

DPU. . = DPU. ,, j (DM.ASS) .~,j+fi.
% J

otherwise

1/2 (~, j + i;j-l) (&/#)

A =
1 +(;:j - in~,j-l) (6t/6z) “

c. Lf A >0, the mass moves from donor cell i, j-l to acceptor cell i, j.

DM../lSS = (~i; j-l) (~ .

,, j-l (DMASS)DE. . = DE. + En DE. = DE. i,j-l (DMASS) .- En
1, J b j l, j-1 l, j-1

Mixed-cell modification of DMASS and DE occurs if required.

DW . . = DW. ,,j-l (DNL4SS) DWi, j-l = DWi, j-l -+ w?
1>J Igj

DPVi, j = DPV. ,, j- ~ (DMASS)+ Vn DPV . . = DPV. .
bj l, J-l I, J-l

DPU . . = DPU , j_l (DMASS)i,j+ti? DPU. . = DPU. .
1, J , %J-l l, J-~

DM. . = DM. . + DMASS DM. =DM. . -
1, J ISJ l, j-1 l, J-1

,,j-l (DMASS) ,w.

,,j-l (DMASS) .- v.

,,j-l (DMASS) .- G.

DMASS .



d. If ~ <0, the mass moves from donor cell i, j to acceptor ce~ i, j-1.

DE. .=DE .+En i, j (DMASS)
1, J i, J

DE. = DE. i j (DMASS) .- En
l, j-1 hj-1 ,

Mixed-cell modification of DMASS and DE occurs if required.

DWi, j = DWi, j + W; j (DMASS) DW. ,, j (DMASS) e=DW. . -Wn
l, j-1 I, J-l

DPV . . = DPV. + ~i, j (DMASS) DPV. = DPV.
1$J

,, j (DMASS) .- ??
h j l, j-1 l, j-1

Dpui, j = Dpu. + fii, j (DMMS) DPU. = DPU. ,, ~ (DMASS) .-E..
h j qj-1 l, j-1

DM. . = DM. + DMASS DM. = DM.
1, J h j

- DMASS .
I,j-1 l, j-1

3. Mass Movement Across Side 3

Except on continuative boundary 3, this mass movement is taken care of by the mass movement

across side 1 of the cell directIy above.

On the boundary 3,

A = (v:, j) (@fjz) .

DE. .= DE. . - Ei, j (DMASS) .
1, J 1>J

Mixed-cell modification of DMA.SS and DE occurs if required.

DW. .= DW. .-W.
I* J

, j (DMASS) .
l>J >

DPVi j = DPV. . - ;i j (DMASS) .
I>J s

DPUi, j = DPUi, j - ti.,, j (DMASS) .

DM. . = DM. - DMASS .
1, J 1Pj

9



4. Mass Movement Acress Side 4

Except on the continuative boundary 4, this

mass movement is taken care of by the mass move-

ment across side 2 of the cell on its right.

For i = lhf~

A=0.5(3 tin -in
u j

i-l, j) (at/@) .

a. A z O mass moves out of ceU i, j,

Cylindrical DMASS = (bi, j) * .

b. AS O mass moves into ce~ i,j .

Cylindrical DMASS = (2i-& (d
‘~i, j) (2i+l)

for either a. or b. Slab DMASS = (pi, j) (L!) .

DE. ,, j (DMASS) ..= DE. .-E?
Is J 1, J

Mixed-cell modification of DMASS and DE occurs

if required.

DW. = DW.
h j b j

- W?, j (DMASS) .

DPVi j = DPV. i, j (DMASS)-v
* h j

DPU = DPU.
h j

- fii, j (DMASS)
i$ j

DM. . = DM. - DMASS .
% J h j

5. Mixed Cells—

The composition of the mass to be moved

from the donor to the acceptor cell is determined

as follows. Materials common to both the donor

and acceptor cells are moved according to the

mass fractions of common materials in the accep-

tor cell. If the donor and acceptor cell have no

common materials, then mass is moved according

to the mass fractions of & donor cell. The mass

to be moved from the donor cell has the density

and energy determined for that component or com-

ponents by the mixture equation-of-state calcula-

tion in Phase I.

1. Therefore, the DMASS term is cor-

rected by dividing by cell ~ used in Phase IV and

replacing it with the ~ of the material being m~ed

from the donor cell (~).

k
DMASS = DM.ASS — .

P

If the mass of the material in the donor

cell is less than the total mass to be moved, the

remainder of the mass moved has the remaining

donor-cell composition density and energy.

2. The DE term is calculated using the

internal energy of the component being moved from

the donor cell as calculated from the mixture equa-

tion-of-state routines in Phase I.

n+ 1 n
‘E DONOR = ‘E DONOR

- (DM.&SS) (Donor

Component I + Donor K. E. ) .

DE
n+ 1
ACCEPTOR

= DEn
ACCEPTOR

+ (DMASS) (Donor

Component I + Donor K. E. ) .

The mass fraction of decomposing explosive be-

tween a mixed and unmixed cell is treated as

follows . If the donor cell is mixed and explosive

is being moved to an acceptor cell, the donor cell

CW is not changed. If the acceptor cell is mixed

and explosive is being moved into the acceptor

cell the acceptor cell W is calculated by

n+ 1
CWACCEPTOR=

b“’’’”’)(‘i!%%.}@f+%mNoR
‘iCCEPTOR

+ DMASS

EXPLOSIVE

By convention CW is set to equal 1.0 for an inert

or O. 0 for a gas if the donor or acceptor does not

contain an explosive.

10



E. Phase V. Repartition

Add on mass moved quantities.

For p; j s MINGRHO + (Po-MINGRHO) (W; j) ,
9

n+ 1
P. “=P~, j+ DMi, j”1, J

w;+;=+ ‘p~j W;, j + DWi, j).

P. .1, J

V;:l =
* ‘i~jp~j ‘Dpvi,j) “
P.-L,J

n+ 1
u.. =

ISJ
& (fi; jp?j+DPUi j).

9
P. .

,
ISJ

For p; j s IvfIIVGRHO + (PO - MINGRHO) (Wn .),
1, J

n-l-l
P. .= P:, j + DM.

l,J hj “

w
n+l
L j

= ‘n+ (P;, j ,W;j+DW. .).
l,J

Pi, j

u
n+ 1

=% (U; jp; j+ DPUi j).
i] j > ,

‘i j

IY; =o. o..

IV. TEST PROBLEMS

The 2DE code has been used to calculate one-

component, two-d irnensional problems of a shock

in nitromethane inte ratting with a rectangular or

a cylindrical void. The results agreed with those

published in Ref. 6.

The 2DE code has been used to calculate the

one-dimensional, multi component problem of an

85 kbar shock in O. 04 cm of nitromethane des-

cribed by 100 cells in the Z direction, interacting

with a O. 016-cm slab of aluminum described by 40

cells, which had as its other interface O. 016 cm of

air at 1 atm initial pressure described by 40 cells.

The equation of state for nitromethane and alumi -

num were identical to those described in Ref. 10.

The calculated pressure, energy, and particle

velocity profiles are shown in Fig. 1. The re-

sults were compared with SIN14 one-dimensional

Lagrangian calculations for the same problem. A

comparison of the average results of the calc~a -

tions is shown below. The units are mbar, cm3/ g,
3

mbar-cm /g, degrees Kelvin, and cm/@ec respec-

tively for pressure, specific volume, energy,
,,

temperature and particle velocity.

Nitr ome thane
Shock

Pressure
Specific Volume
Energy
Temperature
Particle Velocity

Reflected Shock
(Nitromethane)

Pressure
Specific Volume
Energy
Temperature
Particle Velocity

Aluminum Shock
Pressure
Specific Volume
Energy
Temperature
Particle Velocity

Aluminum Rare-
faction

Pressure
Specific Volume
Energy
Temperature
Particle Velocity

Eulerian

O. 0858
0.5455
0.0146
1146.2
0.171

0.178
0.4686
0.02248
1365.5
0.0967

0.1785
0.3071
0.0047
487.1
0.0964

0.008
0.3561
0.0007
384.0
0.1873

Lagrangian

O. 0857
0.5455
0.0146
1181.9
0.171

0.1787
0.4858
0.0225
1436.1
0.0964

0.1786
0.3070
0.0046
518.3
0.0964

0.0004
0.3603
0.0005
355.5
0.1932

The agreement between the Lagranglan and

Eulerian calculations is adequate except at the ni-

trometham -alurninurn interface. In the Eulerian

calculation, the internal energy is 1170 too high in

the nitromethane cell next to the interface and is

11



10~0 too low in the aluminum cell next to the inter-

face. Such an error is in the expected direction

because the reflected shock Hugoniot has less ener-

gy than the single shock Hugoniots used to partition

the energy between the doubly shocked nitrome -

thane and the singly shocked aluminum in the mix-

ture equation- of-state routines. This suggests that

an improved mixture equation-of-state treat.ment

could be accomplished by keeping track of whether

the component had been previously shocked and by

partitioning the energy accordingly.

Of course, it is not correct to assume that the

Lagrangian calculation treated the boundary in an

exact manner. Because of the large density differ-

ence, the Lagrangian calculation had nitromethane

energies that were 6. 6y0 too high at the interface

and &uminum energies that were 2. 4% too low.

The 2DE code has been used to calculate the

two-dimensional, mu.tticomponent problem of an

85-kbar shock in a cylinder of nitrometha.ne inter-

acting with a O. 025-cm radius aluminum sphere

and an 85-kbar sho’qk in a slab of nitromethane in-

teracting with an aluininum rod. The calculation

was performed with 100 cells in the Z direction and

50 cells in the R direction of O. 001 cm. The re-

sults compared well with those obtained previously
10

using the PIC technique in the EIC code which

were compared with PHERMEX radiographs of the

interaction of shocks in water with aluminum rods

(Ref. 15).

The is oplots for the aluminum rod being shock-

ed in nitromethane are shown at various times in

Fig. 2.

The results of these and other test problems

support our conclusion that the continuous Eule rian

approach to reactive hydrodynamic problems can be

use d to solve mul.tic omponent problems involving

r e active flow. Further improvement is possible in

the treatment of the mixture equations of state.

The mass flux treatment from mixed cells could be

improved by including more constraints on the do-

nor-acceptor method, and by including some

interface following technique such as those used

by Hageman and Walshl 3 and proposed by Hirt. 12

We plan to use the code in its present form to

study several reactive and nonreactive flow prob-

lems of current interest. We ah o plan to include

into the code the capability to describe elastic-

plastic and viscous flow similar to that used in

our two-dimensional reactive Lagrangian code

2DL. We plan to include other methods for de-

scribig the decomposition of the explosive such as

C-J volume burn, sharp-shock burn, heterogene-

ous sharp-shock partial reaction burn and Dremin

burn.

It is already apparent that a three-dimension-

al version of the 2DE code would be a useful tool

and would probably be more useful than a three-

dimensional particle Eulerian code such an the one

we studied in Ref. 16. Such a capability would

permit more realistic modeling of the reactive

fluid dynamics problems discussed in Refs. 6, 7,

and 9. It would, of course, be useful for studying

many other problems.
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APPENDIX A

EQUATIONS OF STATE

The HOM equation of state was used for a cell

containing a single comp one nt or any mixture of

condensed explosive and detonation products.

Temperature and pressure equilibrium was assum-

ed for any mixture of detonation products and con-

densed explosive in a cell.

When there are two components present in a

cell, separated by a boundary and not homogene-

ous ly mixed , it is reasonable to assume pressure

equilibrium, but the temperatures may be quite

cliff e r ent. For these systems we assumed that

the difference between the total Hugoniot energy

and the total cell energy was distributed between

the components according to the ratio of the Hu-

goniot energies of the components for two solids

or liquids, For two gases we assumed that the

difference between the total isentrope energy and

the total cell energy was distributed between the

components according to the ratio of the isen-

trope energies of the components. For a solid

and a gas we as surned that the difference between

the sum of the gas isentm~ energy and the solid

Hugoniot energy and the total cell energy was dis-

tributed behveen the components according to the

ratio of the gas isentm~ energy and the solid Hu-

goniot energy of the components.

When there are three components present in

a cell, an explosive, its detonation products, and

a third solid or liquid nonreactive component, the

equation of state is computed assuming tempera-

ture and pressure equilibrium for the detonat ion

products and condensed explosive, and pressure

equilibrium with the nonreactive component.

The equation-of -state subroutines require the

specific volume, internal energy, and mass frac-

tions of the components as input and iterate to give

the pressure, the individual densities, tempera-

tures, and energies of the components.

This treatment of the equation of state of

mixtures is attractive because if the state values

22

of the components are reasonably close to the

state value for the standard curve (the Hugoniot

for the solid or the isentrope for the gas), one can

have considerable confidence in the calculated re-

sults . For the gases it would be best to choose a

state value near those expected in the problem to

use for forming the isentr~pe.

Nomenclature:

c, s

cl, s]

‘v

c1
v

I

P

SPA

SPALL P

T

USP

u
P

u
s

v

V.

w

Xorx

Subscripts:

g

H

i

s

A

B

coefficients to a linear fit of Us

and U
P

second set of coefficients to a

linear fit of Us and U
P

heat capacity of condensed

component (cal/g/deg)

heat capacity of gaseous compo-

nent (cal/g/deg)

total internal energy (Mbar-

cm3/g)

pressure (Mbar)

spalling constant to relate span

pressure and tension rate

interface spalling pressure

temperature (°K)

ultimate spalling pressure

p article velocity

shock velocity

total volume (cm3/ g).

initial volume of condensed com-

ponent (cm3/ g)

mass fraction of undecomposed

explosive

mass fraction of solid or gaseous

component

gaseous component

Hugoniot

isentrope

condensed component

component A

c omp orient B



I. HOM

HOM is used for a single solid or gas compo-

nent and for mixtures of solid and gas components

in pressure and temperature equilibrmm.

The Method

A. Condensed Components

(The mass fraction, W, is 1; the internal ener-

gy, 1, is Is ;’ and the specific volume, V, is vs. )

For volumes less than Vo, the experimental Hu-

goniot data are expressed as a linear fit of the

shock and particle velocities. The Hugoniot tem-

peratures are computed using the Walsh and Chris-

tian technique.

u =C+ sups

C2(V - Vs)o
‘H = .

PO - s(vo-v~)]2

in TH = Fs_ + GslnVs + Hs (lnVs)2 + Is(lnVs)3

4
+ .Ts (lnVs) . (A-1)

>=+ PH(VO-VJ.

Ps = ~ (Is
()

- IH) + PH, where ys . V ~
s #v.”

(Is - IH) (23, 890)
Ts=TH+

c
v

(A- 2)

(A-3)

TWO sets of C and S coefficients may be given.

For Vs < MINV, the fit Us = Cl + S1 (Up) is used

with the corre spending changes to the above equa-

tions. Between MINV and VSW, the volume is set

equal to MINV, and U = Cl + S1 (Up) is used. For
s

volumes greater than V
..

we use the Gruneiseno’
equation of state and the P = O line as the standard

curve.

[

Cv v

( )1

Ys
P~= I-

s (3) (23890) (a) V: -1 ~ “

(Is) (23, 890)
T=

s Cv
+To .

The spilling option is not used if SPA <0.0001.

If Ps <USP, set P . SPALL P and set the spa.1.l .
s

indicator. J-fp~ s SPA ~~(~lfi is the ten-

sion rate), and Ps ~SPMIN (5 x 10-3) set Ps =

SPALL P and set the span indicator. Do not span

if neither of the above conditions is satisfied.

B. Gas Components

(Mass Fraction, W, is O; the internal energy,

I, is Ig; and the specific volume, V, is V ~.) The

pressure, volume, temperature, and energy values

of the detonation products are computed using FOR-

TRAN BKW and are fitted by a method of least

squares to Eqs. (4) through (6). A gamma-law gas

may also be fit to these equations as a special case.

lnPi = A + BlnVg + C(lnVg)2 + D(lnVg)3 + E( lnVg)4.

(A-4)

4
lnIi = K + LlnPi + M(lnPi)2 + N(lnPi)3 +O(lnPi) .

(A-5)

Ii = Ii - Z (where Z is a constant used to change the

standard state to be consistent with the solid explo-

sive standard state, and if the states are the same,

Z is used to keep I positive when making a fit).

lnTi = Q i- RlnVg + S(lnVg)2 + T(lnVg)3 -1-U(lnV
t“

(A-6)

-~= R + 2SlnVg + 3T(lnVg)2 + 4U(lnVg)3 .

()

1
‘=p~

(Ig - Ii) + Pi .

(I - Ii) (23, 890)
T=Ti+ c1

v

(A-7)

(A-8)
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C. Mixture of Condensed and Gaseous Components

(Ocw<l)

V. WV6+(1. W)V
g“

I= WI~+(l-W)Ig.

P=P .P5. -
g

T=T=T
g s“

Multiplying Eq. (3) by (W/ Cv) and Eq. (8) by

(1 - W) /Cv and adding, we get, after substituting

T for T8 and Tg and I for WIS + (1 +W)Ig ,

T=
23,890

Cvw+ C;(1 - w) \ l-[w%-li(l - ‘)1

1
+ 23,890 [ IITHCVW + TiC; (1 - W) , (A-9)

Equating Eq. (2) and (7) and substituting from Eq.

(9), we get

+ Ii (1-w)] + 23,1890 [THCVW + TiC; (1-w)]~)

1

(

‘SCVTH %Ti o
-- v )-~=”

(A-1O)
s

Knowing V, I, and W, one may use the linear feed-

back to iterate on either V~ or Vg until Eq. (10) is

satisfied.

For V < Vo, we iterate on Vs with an initial

guess of V = V. and a ratio to get the seconds
guess of O. 999. For V z V , we iterate on V

g
with an initial guess of V ~: (v -0.9 VOW)(l - w)

and a ratio to get the second guess of 1.002.

If the iteration goes out of the physical region

(Vg s O to Vs < O), that point is replaced by Vs =

Vg = V. Then knowing Vs and V , we caIculate
g

P and T.

The Calling Sequence

CALL HOM (V, S, G, IND) “

V, S, and G are dimensioned arrays of size

5, 23, and 17 numbers, respectively.

v(1)

V(2)

v(3)

v(4)

v(5)

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

S(8)

s(9)

S( 1o)

S(n)

S(12)

S(13)

S( 14)

S(15)

s(16)

specific volume V

internal energy I

mass fraction W

-.lglhpu~
pressure P output

temperature T output

c

s

Vs w

cl

SI

F

G

H

I

J

Y6

Cv
v o
a

SPA

USP

S(17)

S(18)

s{ 22)

S( 23)

G(I)

G(2)

G(3)

G(4)

G(5)

G(6)

G(7)

G(8)

G(9)

G’(IO)

G(II)

G( 12)

G(13)

G( 14)

G(15)

G(16)

G(17)

To

P.

SPALL P

MINV

A

B

c

D

E

K

L

M

N

o

Q

R

s

T

u

IND is set to O for normal exit, to -I for itera-

tion error in mixture calcdations, and to +1 for

a spalled solid.

II. HOM2-S

HOM2S is used for two solids or liquids that

are in pressure, but not for temperature equilib-

rium.

The Method

Knowing total energy I, total volume V, and

the mass fraction X of component A present, we

Aiterate for the voIume of A, V , if X is greater

than O. 5 and for the volume of B, ~, if X is less

than 0.5,

To obtain our first guess we assume that the

volumes of A and B are proportional to the initial

specific volumes of the components. So
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or

v’. - v

()v:
w— +1-W

v:

We have the following relationships.

(a) V. X(@) +(l-X)(VB)

(b) P= PA=PB . (A-n)

Knowing V
A

and VB, we calculate ~ and ~ from

Eq, (l).

()
x(#H)

(d) lA= (I-@-%) ~ ,

.
and

(e) ~ = (I:) + (I - ~)
((’-X;(lB))

H

Using the Gr”&eisen Eq. (2) and Eq. (1 1), we find

A B

(l*-+H)+P*-E
‘f) $

Hv ~ (IB-:)

-PB =0.
H

(A-12)

Knowing V, I, and X, one may use linear feedback

to iterate on eNher V

is fied. The pressure

calculate d as in HOM.

The Calling Sequence——

CALL HOM2S (V,

. . .-A B
or V until Eq. ( 12) is sat-

and temperatures may be

SA
, SB, IND) V, S*, and S

B

are dimensioned arrays of size 10, 23, and 23

numbers, respectively. S* and SB have the same

values as S described in HOM.

v(1) specific volume V Input

V(2) internal energy I Input

V(3) mass fraction X Input

V(4) P output

V(5) T* output

v(6) TB output

V(7) 1A output

V(8) ? Outp Ut

v(9) VA output

V(lo) VB output

IIVD = O for normal exit

= -2 for iteration error.

HI. HOMSG

HOMSG is used when there is one solid or

liquid and one gas in pressure but not temperature

equilibrium.

The Method

Knowing total energy I, total volume V, and

the mass fraction X of the solid present, we iter -
S

ate on the solid volume V . To obtain our first

guess we use V if it is less than V:, otherwise

s
we use O. 99 V. . We have the following relation-

ships.

(a) V= X (Vs) +(1 - X) (VG)

and

(b) P= PS= PG. (A-13)

Knowing Vs and VG, we calculate ~ from Eq. (2)

and I~from Eq. (5).

(c) 1’ = X ($ + (1 - x) (IiG),

(d) I!!= x (2) + (1 - X) (#?l) ,

(e) Is= ~ + (1 - 1:) (X(~)) /1” ,

and

(
(f) IG= I:+ (1 - 1’) (1 - x) (lI:\)) /I” o

From Eq. (13) we eqmte Eqs. (2) and (7) to ob-
.

tain

Ys CJ

(d ~ (1 -~)+ P&#IG-I;)-P~

. 0. (A-14)

Knowing V, I, and X, one may use linear feed-

back to iterate on Vs until Eq. ( 14) is satisfied.

The pressure and temperatures may be calculated

as in HOM.
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The Calling Sequence

CALL HOMSG (V, S, G, IND) V, s, and G

are dimensioned arrays of size 10, 23, and 17

numbers, respectively.

S and G have the s arne values as S and G

described in HOM.

v(1) v Input

V(2) I Input

v(3) x Input

v(4) P output

V(5) Ts output

v(6) TG output

V(7) Is output

V(8) IG output

v(9) Vs output

V( 1 o) VG output

IND = O for normal exit

= -3 for iteration error.

Iv. HOM2G

HOM2G is used for two gases that are in

pressure but not temperature equilibrium.

The Method.—

Knowing total energy I, total volume V, and

the mass fraction X of gas A present, we iterate
A

onV . To obtain our first guess we assume that

the volumes of A and B are proportional to the

initial specific volumes of the components with

the limitation that the ratio of the initial specific

vulumes is less than 10 or greater than O. 1.

*=— —.
v

v:
X+—A-(l-X)

,V
o

We have the following relationships.

(a) V= X(@) -l-(l-X)VB

and

(b) P= PA=PB . (A-15)

Knowing V
A

and VB, we calculate ~ and I! using

Eq, (5).

(c) I’ =X( 1~)+ (l-x)($ ,

(d) IY=X(II$I) +(1 - x) (1~1) s

(e) ~= ~ + (I - I’) (x(l~l))/JJ’ ,

and

(
(f) IB= ~+ (I - I’) (1 - x) (\fi ))/r’ “

using Eqs. (15) and (7), we find

(A-16)

Knowing V, I, and X, linear feedback can be
A

used to iterate on V until Eq. (16) is satisfied.

The pressure s and temperatures may be calcu-

lated as in HOM.

The Calling Sequence

CALL HOM2G (V, SA, GA, SB, GB, JND) V,

S, and G are dimensioned arrays of sise 10, 23,

and 17 numbers, respectively. S and G have the

same values as described in HOM.

v(1) v Input

V(2) I Input

v(3) x Input

v(4) P output

V(5) TA ouQmt

v(6) TB output

V(7) 1A Outp t

V(8) IB output

v(9) VA output

V(lo) VB output

INP = O for normal exit

= -5 for iteration error.

v. HOM2SG

HOM2SG is used for mixtures of an undecom-

posed explosive, detonation products, and a non-

reactive component that is in pressure; but not

thermal equilibrium with the explosive and its pro-

ducts that are assumed to be in pressure and ther-

mal equilibrium.
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the

the

the

for

TO obtain the initial guess for the volume of

U.ndeconqmsed explosive V(’), the volume of

detonation products V(2), and the volume of

nonreactive component V(3), we guess a volme

V(2) of 0.9 of V.
(1)

and then esttiate V(’) and
..

V[ 5), assuming the remaining volume is partition-

ed proportional to the initial specific volumes of

components (1) and (3). Given reas enable initial

guesses, the iteration is successful; however, un-

reas enable guesses result in iteration failure.

We have the following relationships.

(a) P = P(’)= P(2)= P(3) ,

(b) T(l) = T(2) 9

(c) V(1+2) = W(v(l)) + (l-w) (V(Z)) ,

A- 17)

A-18)

A-19)

(d) V = ~(V(3)) + (1-x) (V(i+2)) , (A-20)

(e) +1.+2) ~ W(l(l)) + ~1-w)(+2))
s

(f) $$+2) = W(#)) + (1-W) (I\2)) ,

(g) + = N&) + (1-ti(#+.2)) ,

()

(ti(f))
(h) 1(3) = (#)) + (I-%)

%’
(A-21)

(i) ~(1+2)

()

l-ti(#+2))
= (~

(1+2), + (~-~) ——

$+. ‘
(A-22)

and

(j) I = 1(3) - f)+ 1(1+2) - }+2) + IH

From Eqs. (19) and (20), one obtains

[ 1(k) V = ~V(3)) + (1-X) W(V(l)) + (1-W) (V(2)) .

From Eq. 2,

V(3) 1 - f)], (A-23)
(1) P(3) = p:) +2 ‘1(3)

and from Eqs. (17) and (21), one obtains

“)+$ba ~

(m) fl=P. PH

(A-24)

From Eq. (7),

(n) P(2) = P(2)+ --& [1(2) - 1(2)],
i i

(A-25)

and from Eqs. (23), (21), and (22), one obtains

[

v(’) p (3) V(l)p(l)w

f2 =P= I- %+
~(3)H + Y( 17

+ (1 -w) diz) pv(2) 1

(A-26)

From Eq. (3),

(1(1)
- ;)) (23,890) . .. i..

T(l) =T(l) ~
H

—,

Cv

and from Eqs. (18), (23), and(25), one obtains

f3. P.
[

T(2) - ~(l)
i H..—

23, 890
L

+

p(l) (1)Hv
—— —
~(1) p
v

[

v(l)

-1

-1
- J@ 2))

(A-27)
~(l)y(l)

v
C:) “

To keep Ii positive the energy base for all the

components is raised by Z for the iteration pro-

cedure.

Taking

F=fl -f3=o
and

G=f2 -f’=o,

one may solve for V(l) and V(2) by the ~ewton-

Raphson method. These equations were first de-

rived by W. Gage.
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The Celling Sequence

CALL HOM2SG (V, S3, S1, G2, RTD)

V, S3, S1, and G2 are dimensioned arrays of

size 14, 23, 23, and17, respectively. S3 is the non-

reactive component, S1 is the undecomposed ex-

plosive, and G2 is its detonation products. S3,

S1 have the same values as S in HOM, and G2 has

the same values as G in HOM.

v(1) v Input

V(2) I Input

V(3) X (S3 mass fraction relative to S1 + G2

+ S3)

V(4) W (S1 mass fraction relative to S1 +G2)

v(5) P output

V(6) v(3) output

v(7) v(1) output

V(8) V(2) output

V(9) I(3) output

V(lo) J.(l) output

V(n) I(2) output

V(l 2) T(3) output

V(13) T(1) output

V( 14) T(2) Output

IND = O for normal exit

= -4 for iteration error.

APPENDIX B

DERIVATIONS OF MOMENTUM, ENERGY,

AND MASS MOVEMENT EQUATIONS )

In this appendix we present the derivations of the difference approximations used to describe the

momentum and energy equations with the transport terms dropped. The method used for mass movement

is also described in detail. This is the OIL method described in Refs. 4 and 11.

1. DERNATION OF MOMENTUM EQUATIONS

w NwlLP~=- 3Z
P3, Q3

[3

F$; j

Q2, P2 ‘ P4, Q4

i$ j

.—
Pl, Q1

“n
v. vn .--=--.=

L J 1>J
[ 1(P+q)~j~-(p+q)~j-&

P:, j #

(P:. +P;’ (P:, .+P3)
P? =

12j+$ = 2 2

(P; j + Pi)
Pn

hj-$= ‘— 2

‘n
v. .=vn

[

-–~ ‘3; ‘1 +Q3
1, J l>j P. 15Z

- Qli j
i, j

I,j 1
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S= = 2n(i) @6Z
1++5 v! = 2~(i-+) 6R26Z

1

-nu @=Un -—
ilj I,j ,{[

+ (O(p~+l j - P~j) - (i-l)(Pn 1-P:j)+q;%j
P:j@ , I-l, j - ‘~+ j

‘?
/

ijt

{

(i-l )( P4-P2) + P4 - P; j
.un .-—

11J + Q4. - Q2.
p;, j m

2i-1 11j
/lvj “

II. DERIVATION OF ENERGY EQUATION

eliminating the transport terms

Add on viscosity to P.

a (P+q) auRp~.
-—F- R (P+q);

The above equation is known as the ZIP energy equation and is difference as follows.
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v! = 2~(i -+) &U26Z
1

Sz =.2~(i-*)m2
i

(U1 = u? +fin
l-l, j I-l, j )

(
U2= Un +:?

1+1, j 1+1, j )

(
V1 = v? +?.n.

l, j-1 l, J-1 )

(
V2 = v? +;. .

1, j+l 1, J+l
)

(
T3 = U? +fin

h j h j )

(
T1 = Vn

)
i,j+w .

lSJ

M.

{

Pn . C24. .
I-:, j i- I. —’~ [(i) (T3 + U2) - (i - 1) (T3 - ul)l+ ~&& [(i +*) U2 - (i-#T3]. - — 2(2i-l)@ISJ n

P.
h j

Q 2i, j

- 2(2i-l)@ ‘(i - l*)U1 - ‘i - @T3’ ‘* [
P;j(v2 11-Vl~ + Q3i, j(V2 - Tl) + Qli, j(Tl - Vl) .

30



‘n ([.I?. .-#- Zj- Uz
U2 + 2T3 + U1 Q4. .

I
is j I) J

- ul + ---—-
21-1 ][

+* U2 -’1’3+ ~+

i, j 1
(2.2.I,j-—@ [U1 1 [-T3-~ +~ P;j (V2 - Vl) + Q3

i,j ‘V2
- Tl) + Ql

82 1)i,j(T1 - Vl) .

III, DERIVATION OF MASS MOVEMENT EQUATION

The Ofi ~etiod4, 11
for velocity weighting is derived below.

i-l, j iJj

+ AR—

a

The mass to move across b is between a and b

velocity at d. Using the first two terms of the

b

where d = b - a; thus, d . 7i~t where %is the weighted

Taylor series at a distance - d from b, we expand

u. + u.
l-l, j 1$ju=——

2

Substitute A = ;At and solve for ~.

u. + u.
I-l$j 1u.

/( (

~+&
2 AR

- u.
))

i- u.. .
l-l, j 1*J

Mass moved = S A
d/2° i, j

~ At where S—— d
is surface area at iAR - $d, so for cylindrical geometry S

d/2=
,Zn (i@ - @)Az.

G@
We define A= d/AR = — for convenience; therefore,

AR

s
dJ2 = 2n(iAR -+(A) (AR))AZ

.211AR(i-&.JAz

.&(2i-&)Az.

Mass Moved . ITAR(2i - A) Az~i-l, jfiAt.

The volume of cell i-1, j is

l-l]j ‘Ni’R)2U ‘nti-l) ‘)zm
v.

=rr(2i - 1) ARzAz
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Diwf .

I.

ful

~(2i-~hZ~i-1 .~At for slab geometry ~. 1.0, which can be
Mass Moved >J
Unit Volume =

~2i - 1) AR2AZ “
shown by letting Sd,2= ARAZ and Vi-l, j = AR2AZ

0= ‘d/2 = @ and Vi-l, j = ARAZ.

DM=~-
()

ii&
(2i - 1) ‘i-ljj ~

APPENDIX C

2DE CODE

COMPUTER TIME

The time required to run a calculation is use-

in evaluating a numerical technique. Because

the compute r time will vary with the details of

the calculation, it is instructive to have the times

from several sample problems.

The problem of an 85 -kbar shock in nitrometh-

ane interacting with an aluminum rod was cal-

culated using 100 cells in the Z direction and 50

cells in the R direction. The aluminum rod had

a radius of 25-cell widths. The calculation re -

quired 9.64 min of CDC 76OO time to complete

the calculation to 446 cycles. The average time

per cycle was 1.297 see, and the average tfie

per cell per cycIe was O. 00026 sec.

The problem of an 85 -kbar shock in njtrometh-

ane inte ratting with an aluminum slab and then

the aluminum interacting with air was calculated

using 180 cells in the Z direction and 3 cells in

the R direction. The calculation required 4.916

min of CDC 76OO time to complete the calcula-

tion to 2323 cycles. The average time per cycle

was O. 127 sec and the average time per cell per

cycle was O. 000235 sec.

A reasonable estimate of the computer time

required for the 2DE code is between O. 0002 and

O. 0003 sec per cell per cycle.

IL MIXED-CELL TREATMENT

Up to 15 materials can be accommodated by

the code. However, at present, equation-of-state

DETAILS

routines allow only two materials in a ceil simul-

taneously.

Each mixed cell (cell containing more than one

material) is flagged in its cell identification word

(CID) by an index pointer, which is the FORTRAN

index of a material identification word in the mixed-

cell table (CMT or MT), A material identification

word exists in the CMT table for each material in

a mixed cell. This word contains (1) an integer

that identifies the material and (2) index values

that determine subsequent and previous material

identification words for other materials in the

mixed ceI.I. Quantities ass ociated with a given

mate rial are indexed relative to material identifi-

cation words. When mixed-cell information is

used or modified, it is first moved into smaller

processing arrays and, if modified, moved back

into the CMT tables. When a material is depleted

from a mixed cell, the space in the mixed-cell

table is made available for further use. Formats

for the cell identification word and the mixed-cell

table are documented in the code listing. Mass is

moved from the donor cell to the acceptor cell on

the basis of the fraction of material in the acceptor

cell, which is common to the donor cell. If the

acceptor and donor cells do not contain any common

materials, then mass is moved according to the

mass fra ctions of mate rids in the donor cell.

Energy and specific volumes are partitioned by

the mixed-cell equations of state. E the acceptor

cell contains only one material and the donor cell
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also contains this material, then the amount of

mass move d is done on the basis of this partition.

ing. The internal energy is similarly handled.

This calculation and storage of the re suits is

handled by the subroutine ‘1CM.XD!I which requires

the indites of the donor and acceptor cells and the

amount of mass moved per unit voliune of the donor

cell in its calling sequence. This routine deals

with abs olute mass movement and because other

routines deal with tk change in mass per unit vol-

ume, this mass is calculated using the donor cell

volume.

I.U.. DATA PROCESSJ3TG

Storage requirements for individti problems

are minimized by a preprocessing routine called

VARYDIM. This routine processes generalized

FORTRAN common, dime nsion, equivalence and

data statements, These statements have the same

format as ordinary FORTRAN statements except

that integer quantities may be replaced by either

a variable or an arithmetic statement. The restit

of an arithmetic statement being a simple left-to-

right evaluation of the operations in the statement.

The operands may be either integers or variable

names that represent integer values, The results

of this routine are output to a file of compilable

FORTRAN statements and update control cards.

The FORTRAN statements are distributed through-

out the code by CDC system update routine. II-I

general, only a small number of changes are re-

quired to completely modify the storage require-

ments for a specific problem.

Preprocessing dimensions before the code is

compiled allows flexibility in the size of arrays

that must be maintained in addressable memory.

Because the row R dimension can be set before the

code is compiled, processing of arrays that con-

tain cell and intermediate quantities are on the ba-

sis of this dimension being fixed at execution time.

The se quantities are maintained in external storage

and moved into core for processing andlor output.

The problem grid is divided into NJMAX core in-

crements for a fixed number of rows in the Z di-

rection at the discretion of the user.

The routines RDCELLS and WCELLS handle

1/O on the basis of reading or writing rows in

the Z direction for a specified core increment.

These routines are programmed for the CDC 6600

or 76OO using extended core storage or large core

memory. Disk can also be used.

Processing control for the five phases of the

code is accomplished by subroutine CONTROL.

The grid is processed from left to right, bottom

to top. Because the processing of a row often re-

quires information contained in a previous row,

reading, processing, and storing the results are

staggered.

Rows are indexed from J . 1 to JMAX in

addressable storage. Initially, the first two rows

are read into core and the first row is processed

(case 1). Then rows 3 through JMAX are read

and rows 2 through JMAX-1 are processed (case

2). The first JMAX-2 rows are written to exter-

nal storage, and two rows from the next core in-

crement are read into rows 1 and 2 of core allow-

ingprocessing of row JMAX and row 1 of the next

core increment (case 3). After rows JMAX and

JMAX-1 are written to external storage, the pro-

cess is looped back through cases 2 and 3 until

the final core increment where the last row of the

grid is processed and written as a special case

(case 4).

IV. PROCESSOR INPUT

Generalized FORTRAN statements prepared

for the preprocessing routine VARYDIM modify

storage requirements for the code 2DE. The user

must define the preprocessor variables used in

these statements. Preprocessor variables are

input to the routine VARYDIM in a format-free

fashion by the specification of the variable name,

an equal sign, and the integer value of the variable.

All 80 columns of the card are used. A $ terminates
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pr oces sing allowing the remainder of the card for

comments. Since variables are used in left-to-

right arithmetic, their values must be defined be-

fore they are used to define other variables.

The following preprocessor variables must:,

have values.

For cell storage:

IMAX Number of cells in the R direc-

tion.

.rMAx Number of ceils in the Z direc-

tion.

NJMAX Number of core increments.

For material storage:

NM Number of materials.

Number of materials requiring

HOM equation of state parameters

(usually equsl to NM).

For rectangular storage:

NRI Number of rectangular intervals

on the R axis.

NZJ Number of rectangular intervals

on the Z axis.

For mixed-cell information storage:

NTRYS Estimated total number of mater-

ials for all cells containing more

than one material, (Note that

when a material is depleted in a

cell, storage is again available

for more information. )

Example: If there are N mixed

cells and each of these contain

tsvo materials, then NTRYS = Z*N

For circular input storage:

NCIR Number of circles.

For two-dimensional plot storage:

NGRPHS

NPL@TS

NTYPES

Total number of graph types

available (default = 8).

Number of plots produced each

time cycle.

Number of graph types used by

the code. (default = 8).

NC@NL Maximum number of contour

lines allowed in a given cell

at the same time (default =

20).

For one -dimensional plot storage:

KPLlbTS Number of plots produced

each time cycle.

IXZ Number of cross-sections

parallel to the Z axis.

JXR Number of cross-sections

parallel to the R axis.

AU of the above must have a value of at least

one because they are used to form dimension and

common statements.

v. INPUT AND OUTPUT

Except for input required to define storage,

problem input is accomplished using the system

NAMELIST input.

The two NAME LIST names !iDump!! and

l!Gener~l! per~k to input required by the d~p

routine and the general input for the problem.

IIDDPI! ~put is read by routine EULER2D. “Gen-

eral!! input is read by s ubroutike INPUT.

A. General Input

The following FORTRAN variables are used

for the problem input. The integer subscript K

must be consistent for each material and must not

exceed the value of the preprocessor variable

(NM) that defines storage.

Problem identificatioru

ID Cent aim up to 70 Hollerith

characters printed on the

output listing, film listing,

and graph titles.

Material descriptions:

NAME(K) Material names, each name

consisting of up to 10 Hone-

rith characters,

KMH(K) Assigned material number.

VISC(K) Viscosity constant,

IREACT(K) . T. or . F. reaction flag for

the Arrhenius rate law.
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IJ-IE(K)

S(l, K)

G(l, K)

RH@O(K)

AC TE(K)

FREQ(K)

MTYPE(K)

DICE

. T. or . F. flag for a high

explosive.

Equation- of- state pararnete rs

for the solid.

Equation- of-state parameters

for the detonation products.

Initial density, used only for

skipping tests.

Activation energy.

Frequency factor.

3HGAS for a gas, 4HS~LID

for a solid, 2HHE for an ex-

plosive. These flags are

initialized for a solid.

. T. allows the code to elimi-

nate a component from a cell

if the component is isolated.

Problem description: Cells are processed

using either slab or cylindrical geometry. Boun-

dary types are numbered starting at the bottom of

the grid and increasing in a clockwise direction for

the four grid boundaries.

SLAB

Boundary types:

B1

B2

B3

B4

. T. indicates slab geometry.

(Default value = . F. for cy-

lindrical geometry. )

Boundary 1 (default value .

6 HPIST@N) .

Boundary 2 (default value =

4HAXIS) .

Boundary 3 (default value =

9HcbNTmuuM).

Boundary 4 (default value =

9Hc@NTINuuM) .

Piston applied values:

PAPP Applied pressure.

WAPP Applied mass fraction.

EAPP Applied energy.

VAPP Applied velocity,

MAPP Applied mass.

Miscellaneous:

MINWT Minimum cell reaction

FREPR

temperature (default

value = 1000).

MINGRH@ Constant for handling free

surfaces, eliminating false

diffusion (default value =

o. 5).

Mass is not moved unless

the pressure of the cell

from which mass moves is

greater than this variable

(defatit value = O. 0005), Or

a tensibn flag has been set.
B. Rectangular Input

The problem” grid is divided into NR rectangles

indexed from left to right, bottom to top. AU cell

quantities are initialized from this rectangular in-

put.

Rectangles are form d by dividing the R and Z

problem directions into NRI and NZJ intervals. If

M and N index these intervals, then

NR

RW(M)

ZW(N)

Ill(M)

JZ(N)

DELR(M)

DE LZ(N)

Number of rectangles.

Width of the M th interval.

Width of the N th interval.

Number of cells in the M th

interval.

Number of ceJls in the N th

interval.

Cell width in the M th

interval (currently the same

for all intervals).

Cell width in the N th inter-

val (currently the same for

all intervals).

For the L th rectangle:

KMAT(L) Material K for the rectan-

gle.

RHO(L) Initial cell density,

PO(L) Initial cell pressure.

TO(L) Initial cell temperature.

U 0( L) Initial cell velocity in the

U direction.

VO( L) Initial cell velocity in the

V direction.
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WO( L) Initial cell rnass fraction.

DELT(L) Time increment.

C. Circular Jnput

Cells can be initialized by defining NCI.R con-

centric circles. The radial difference between

circles must be at least larger than the large st

diagonal of any cells contained between the differ-

ence.

RO R coordinate for the circle

centers.

Zo Z coordinate for the circle

centers.

For the L th circle, indexed from the largest

to the smallest,

RAD(L)

RH@OC(L)

KCIR(L)

IOC(L)

UOC(L)

VOC(L)

WOC(L)

D. Output

Radius of the L th circle.

Density of the L th circle.

Material K for the L th

circle.

Energy of L th circle.

U velocity of L th circle.

V velocity of L th circle.

W of L th circle.

Output for specific cycles is directed to both

the printer and to film. This output is controlled

by the specification of an initial cycle, an incre -

ment between cycles and a terminating cycIe. In-

put information is output unless the print or film

terminating cycle is set to zero.

Pcs Starting print cycle (de-

fault value = 1).

PCI Print cycle increment (de-

fault value = 50).

PCE Terminating print cycle

(default value = 5000).

FCS Starting film cycle (default

value = 1).

FCI Film cycle increment (de-

fault value . 25) .

FCE Terminating film cycle (de -

fault value = 5000).

Plot cycles are specified by the above film

cycle specifications unless specified by the follow-

ing variables:

PLTS Plot cycle start.

PLTI Plot cycle increment.

PLTE Plot cycle end.

2DE is programmed to produce isoplots (con-

tour plots ) of values associated with each cell. At

present eight isoplots are allowed. Up to 10 indi-

vidual plots per problem time cycle can be pro-

duced by input control. Any or all of the is oplots

associated with cell quantities can be plotted on an

individual plot frame, Contour intervals, grid

maximum, and grid minimum can be modified.

Default values are documented in the code. E L

indexes the plot frame, then

IS6PL@T(L) Determines which isoplots

will be produced on the L th

plot frame.

1 = isotherm, 2 = isobar, 4 = isopycnic,

8 = energy, 16 = cell U velocity, 32 =

cell V velocity, 64 = W mass fraction.

are

To get more than one plot per frame, values

added together for LS~PL@T(L ).

If M indexes the is oplot type, then

GMM(M)

GMIN(M)

GDELTA(M)

NPL@TS

Maximum value plotted for

the M th is oplot type.

Minimum value plotted for

the M th is oplot type.

Contour interval for the

M th isoplot type.

Number of two-dimensional

plots . This variable is set

by the preprocessor; how-

ever, if it is modified here

by being set equal to zero,

all two-dimensional plots

will be eliminated from the

Outp Ut.
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NTRFCE If . T. , positions of mixed

cells are plotted with an

asterisk.

2DE produces one-dirnensional cross-section

plots of the cell quantities as a function of R or Z.

The total number of one -dimensional plots, the

number of cross sections parallel to the Z axis

(IXZ), and the number of cross sections parallel

to the R axis (JXR) are fixed by the preprocessor.

Default values that determine which cell quantities

are plotted, and the location of cross sections on

the grid are documented in the code. A cross

section parallel to an axis is specified by a cell

index on the other axis. If M indexes plots and L

indexes cross sections, then

IC~N(L)

JC@N(L)

PTYPE(M)

KPL@TS

Contains IXZ indices that

define cross sections par-

allel to the Z axis.

Cofiains JXR indices that

define cross sections par-

allel to the R axis.

Determines which cell quan-

tity is plotted.

Number of one-dimensional

plots . This variable is set

by the preprocessor; how-

ever, if it is modified here

by being set equal to zero,

all one -dimensional plots

will be eliminated from the

output .

Scaling of plotted outputi 4020 grid coordi-

nates can be used to scale graph output. Default

values are for a square grid.

IXL Grid left coordinate

(default value = 120).

IXR Grid right coordinate

(default value = 980).

IYT Grid top coordinate

(default value = 50).

IYB Grid bottom coordinate

(default value = 910).

E. Debug Features

Debug routines display the results of each

phase of the code, mixed cell processing, and the

dump routine. The following variables control the

Ou I.put.

DEBUG(L)

DBS

DBI

DBE

For the logical variables

L= 1 through 5, phases 1

through 5 are debugged,

Flags 6 ad 7 produce dump

information for the mixed-

cell and dump routine.

Cycle control star ting the

debug dump.

Cycle increment for dump-

ing.
Terminating cycle for durnp-

tire

The

%.

Unless specific cells are designated, the en-

grid calculation is printed for a debug cycle.

following variables restrict printing to par-

TAPE

DTI

SECS

titular cells.

IGS Starting radial or I index.

IGE End rng radial or I index.

JGS Starting Z or J index.

JGE Ending Z or J index.

F. Restart Features

The user has the option of dumping at speci-

fied running time increments or of dumping at

specified problem cycles. Uses the N.AMELIST

rmme ‘! Dump. ‘!

DCYCLE Initially zero. Set to the

probIem cycle for picking

Up dumps.

COMMENT Up to 70 Hollerith charac -

ters that go to the printer

and express file.

Up to 10 Hollerith charac-

ters for a dump tape label.

Dump time increment (de -

fault value = 300 see).

Tolerance that allows time

for the last dump before

I
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the problem is terminated

by a time limit.

For the optional method of dumping, the fol-

lowing variables must be specified.

DMPS Starting dump cycle. (If

DMPI . 0 the alternate

method of time increment

dumping is used. )

DMPI Dump cycle increment.

~. Time Step Modification

At specified cycles the time step (DELT) can

be modified by a multiplication factor ( TFCT). Up

to 5 modifications are allowed.

NTCY Problem cycle at which

the time step is modified.

TFCT Multiplication factor.

H. NAMELIST Types

NAMELIS T input requires that input variables

and input values agree in type. The types are

listed below.

INTEGER

MTYPE

KMAT

IR

JZ

KCIR

Pcs

PCI

PCE

FCS

FCI

F CE

PLTS

PLTI

PLTE

LS@PL@T

NPL@TS

ICON

JC@N

PTYPE

VCNT

KPL@TS

IXL

IxR

IYT

FLOATING POINT

VISC Po

s TO

G Uo
RH@O Vo

ACTE Wo

FREf2 IO

RHO DELR

IOC DE LZ
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IYB

DBS

DBI

DBE

IGS

NCYLIM

IGE

JGS

JGE

DCYCLE

DMPS

DMPI

Uoc

RG

DELT

GMAX

GMIN

GDIZLTA

DTI

SECS

DMPE

NR

NRI

NZJ

KMH

NTCY

KC’IR

NC@NL

IXL

IXR

IYT

IYB

PAPP

Voc

RW

EAPP

. WAPP

VAPP

MAPP

MINWT

MINGRHO Woc RH@OC Zo

FREPR Zw RO RAD

TFCT DTI

LOGICAL

IHE SLAB

IREACT NTRFCE

DEBUG DICE

HOLLERITH

ID B1

NAME B2

C@MMENT B3

TAPE B4

MTYPE

VI. STORAGE RECNH.RMENTS—

On the CDC 7600 computer the 512, 000 words

available in large core memory (LCM) are shared

by the user, the program file set buffers, and the

system monitors. Because the system require-

ments are subject to change, only rough estimates

can be given for the problem storage limitations.

The code can process approximately 20, 100

cells if the buffers are set to minimum vslues.

U more cells are needed, the disk can be used.
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