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A GENERATING OPERATOR FOR SOLUTIONS OF

CERTAIN PARTIAL DIFFERENCE AND DIFFERENTIAL EQUATIONS

by

Joan R, Hundhausen

ABSTRACT

Let M be a partial difference operator of the form
M= a.nmeYn » Where a = are complex constants and X and Y
are %ﬁg fundamental translation operators. A related operator
ZM is shown to commte with M and may be used to generate
a sequence of solutions of the equation Mf = O from a known

solution. A parallel theory is deve]i{)ped for the partial

differential operator M =

9
n—SayS

. Examples are

§=0 S dx
presented for both the discrete a.ng continuous cases.

I. INTRODUCTION

This report concerns an algebraic method for
generating a sequence of solutions of certain types
of partial difference or differential equations from
a known solution. In the discrete case, the theory
is.applied to complex-valued lattice functions
(those functions f(x 5 ¥) defined at discrete points
of the complex plane) that satisfy the difference
equation Mf(x,y) = Y a.nmeYn f(x,y) = 0, where
a'mn are complex consrir;lé.nnts and m and n range over
a finite set of integers. The generating operator
ZM is defined in terms of certain "derived" opera-
tors associated with M,

Algebraic generating processes for harmonic and
polyharmonic operators have been studied by Duffin
and Shell‘\,r.:L Other types of generating processes
(as intended here) have been devised for various

special forms of discrete operators; these include

methods of differentiation, integra.tion,2 and convo-

lution of solutions.i’ The process described in
this report has quite general applicability in both
the discrete and the continuous versions.

The approximation relationship between M and

M is discussed in Sec. III and provides a transi-
tion between the treatments of the discrete and the
contimious cases. In the contimuous case, the dif-
ferential equation has completely linear homogeneous
form, namely,

c e

s=0

with as complex constants, Again a generating
operator ?772 is introduced., Although the more
orthodox approach is to derive discrete analogs
from the better-known contimious theorems, this
case exemplifies a statement appearing iﬁ the Edi-
tors' Foreword to the text by Mj.ller.5 "It is pos-
sible to derive theorems sbout differentia.l equa-~
tions from theorems on difference operators, and
the methods might be more transparent in the latter

case,"

Therefore, the discussion of the discrete
case precedes that of the continuous case in this
report. -

Several applications of the generating process
are presented in Sec. V. In the continuous case,

the effect of 77" upon one form of the general




solution of the pertinent differential equation is
shown., A particularly interesting application in
the discrete case lies in the context of the theory
of discrete analytic functions. Here a modification
of the generating operator coincides with an opera-
tor introduced by Dui‘fin,l which is useful to gener-
ate a sequence of discrete analytic- polynomials, -

II, THE GENERATING OPERATCOR IN THE CONTEXT OF
DIFFERENCE EQUATIONS

A, Partial Difference Operators and Their Derived
Operators N
In preparation for development of the theory in

a

the discrete case, we place a square grid of width
h upon the complex plane, and designate as lattice
functions @(x,y) those complex-valued functions
defined at the points (x,y) where x = kh,
Yy = 1h, k, 1 integers. The equivalent expression
of ¢(x,y) as a function of the single complex
varisble z (where z = x + iy) is also often con-
venient, _ ] . . B
The fundamental translation oﬁera.tors x* a.nd
Y are defined by

X'9(x ,¥) = ®(x + nh,y) ;Y9(x,¥) = o(x,y + nn) ,
or equivalently,

X"9(2z) = @(z + nh)

Y%(z) = o(z + inh), n ='0‘,_=i'l,_ 2, oeo o
The translation operators are clearly linear and
commutative, and Xo(p = ~Yoq> =Ip=0e,

Let M represent a linear difference operator
of the form

n .
M= z & Yyt (1)
m,n :
where the coefi‘icients amn are complex constants
and the indices m a.nd n range over a finite set of
integers, We'are concerned with the’ family of solu-

tions of the homogenecus d.lfi‘erence equa.tion )

Mq)(x ’ y) =0,
Anticipating a form of Taylor series expa.nsion

A

for the operator M, we introduce the associated or

derived operators

r s
xy

M ‘Zamnmnmen,r,s=0,l,2,.... .

m,n

Noting that M _ (1) =, anm n®, and recalling
X m
the standard fofm for the 1'&.‘aa,rlor series expansion

of a function of two varisbles, we may exhibit the
relationship between M and its derived operators

M r s 88 follows.

Xy

R S h(méa_*“aa_)
MeGxy) = ) ame o gx,)

z & i X k(my’r nf) £(x,¥)

m,n k=0
- M) £(x,y) + e (1) &
N (x:y)
+ %(1) + =1p°N 2(1) ae L
%) 2 2 (x,y)
R h M (1)37
‘(x ¥)
+ En2M (1) + oees e (2
27 Y 2 ‘(x,y)

'lfhis.». is a .cg.rre.sgonding expansion for the derived
operators themselves,

Moy s T Y) =My (1) £0x,)
Xy Xy

.+ bM xr+l s(l) 3_ (x,y)

of
+ hM (1)
xrys+l Fy (x,y)

[T -‘:% 25()82|(
) : xr+y ax X,¥)

2
2 o°f
+hMr+ls+lW M

s (x, Y) (3
The a.bove representa.tions clé.rii‘y the esséﬁtia.l
role played by the derived opera.tors in the det.er-
mna.tlon of the differentia.l form which M a.pproxi-
mates, This rela.tionship will be discussed further
in Sec. III.
B. The Generating Operé.t»or Zﬁ

The simple relatjions
B (xg) = xXt Yo + eX"y o

a.nd fnYn(yq>) '= ymen(p + nmen(p

at




may be used to derive the general formmula

P a
e s (Fviote,v) - Z Z (3) (5) =0 Moy oy [ 200w ()
y i=0 j=0 xy

Given a partial difference operator M of the form
used in Eq., (1), we define a related partial dif-
ference operator ZM in terms of certain derived
operators of M as

ZM!Iny—xMy .

The following theorem shows that the operator ZM
is useful in generating additional solutions of the
difference equation Mf = O when a solution is
known, Our proof is based upon the condition that
the relation Mf(x,y) = O holds in a suitably ex-
tensive region of the complex plane; to simplify,
wve will assume that it holds in a sufficiently ex~
tensive region,

If Mf(x,y) =0 in a sufficiently exten-
sive region of the discrete plane, then

M(ZM £{x, y)) = 0 also.

Proof:

Theorem:?

Using the formula of Eq, (4), we have

M(ZMf )

M(y M- xMy)f

yMfo + Mnyf - xMMyf - MxMyf

(ny - xMy)Mf

ZMMf
=0 .

The latter conclusion is drawn on the assumption
that Mf = O in a region containing at least each
point (x + mh,y + nh) where the pair (m,n)
appears in the surmation formula [Eq, (1)) for M.
Corollary: If Mf(x,y) =0 ina sufficiently ex-
tensive region of the discrete plane, then
m(zkf(x,y)) =0, k=234 ... .
The proof, again depending upon an extension of the
assumption mentioned above, follows easily by induc-
tion. Indeed, this assumption is clearly sufficient
in all cases, although it may not be necessary in
certain special cases,

The powers of the operator ZM may be devel-
oped with the aid of the formula in Bq. (4), For

example,

2

(v = 0 (v, - L)

2 2 2 2
=x (My) - Z)QerMy +y (Mx) + yM)qer
+ M M yM M xMy2 Moo

Likewise, the notation M indicates that the opera-

tor M is to be applied p times in succession; for

example, M2 = Z g:s &n %%s xm+kYn+S )

myn
vhere m and k,n and s have the same ranges, re-
spectively. The theorem above generalizes easily
to the

Theorem: If MPf(x,y) = O in a sufficiently ex-
tensive region of the discrete plane, then
MP(sz(x , y)) =0 also.

Finally, we display the Taylor series expansion
for ZM , wherein the role played by the derived
operators of M is again emphasized,

(x5 ¥) = (¥ (1) - xM (1)) £0x,¥)

of
+ h(nye(l) xMxy(l)) & )

+ n(yi (1) - 2(:L)) &

(x:Y)

+ guo{v () - 2 0)5F

+ he(yM 5 (1) - xM 2(1) ?TB'

L »¥)
<y ‘xs')

+ %he(yMwe(l) - xMy)(l)) :?‘

+ ooe . (5)

(x,¥)

III. DIFFERENCE AND DIFFERENTIAL OPERATORS
A, The Nature of the Approximation

Let | represent a completely linear homoge-
neous partial differential operator of order n;
that is,

m = ZSan-sas' (6)



In this context, the word "homogeneous" refers to
the fact that all terms contain derivatives of the
The expansion given in Eq. (2) illus-
trates the fact that a difference operator M is

same order,

always an approximation to a differentla.l operator
M 1in the following Eense. T T " ’

’f—'—ﬂqiﬂ- = M + o(h)
h

2

so that 1im ——’ﬁ—l)—

h-0 n¢

. (N

Here the exa.ct value of q and the exa.ct. form of M
are uniquely determined by the values M (v,
r,s=1, 2, . , again emphasizing the essential
role played by the derived operators of M. The
uniqueness follows from the stipulation that the
mesh width be the same in both directions; if the
mesh length were permitted to vary as some other
function of the mesh width, the differential form
approximated by M would not necessarily have the-
homogeneous character of 7M. T

Conversely, a given differential form M may
always be approximated by a difference operator M,
which may be accomplished in a straightforward man-
ner by simply approximating each term of M by re-
peated differencing of the function and finally
forming a linear combination of these results. In-
deed, the great variety of difference expressions
(and transletions thereof) that may be used to
approximate derivatives mekes possible the approx-
imation of M by many different forms of M,
B, Example of the Approximation

The approximation of 1 by M using the expan-
sion of Eq. (2) has both analytic and synthetic
aspects,

1. 'I* M is given in the form of Eq. (1) or
in the equivalent form of a stencil «= a diagram

depicting the points at which functional values are
to be computed together with appropriate coeffi-

s(1) = a.mnmr n® may

be easily computed and_"ir%erted ir;tp Eq.. (2) to as-
certain which differential form 7 is' approximated,

2. If a form M and the set of points (m, n)

or the set of points comprising a stencil are given,
Eq. (2) may be used constructively to determine the
coefficients &

cients —= the values M ”

Of course, success in the lat-

ter case is not always assured and depends upon a

judicious choice of the set of points (m,n). This
constructive a.spect is pa.rticula.rly well trea.ted by
Colla.tz.'{. Many examples depicting stencils to ap-
proximaté operators of ‘the form .M are also pre-
sentéd by‘ Hidaka.

An example featuring.the use of M as aéx ap-,
pro:dma.tion to the Laplacian operator A = -6—2-+-§3
will be instructive, From Eg. (2) we see gﬁat %Y
approximates A [in the sense of Eq. (7)] if, and
only if, M(1) = Mx(l) = My(l) = _Mxy(l) = 0, whereas
M 2(1) =M (1) # 0 . In particular, consider the
ca.se whereyM is a standard five-point a.pproxi.ma.tion

to A, ! "
M= .?XY+X-1~Y-1+XY'1A+ x'lY_-hI 3

D
b, =Xy - Xyt i
D

, =xy - xh oot xly
Dy=D,=xt+ Xyt axy
Yy X
Dw=xy+x'ly'l-xy'l-x'ly .

Note that the conditions mentioned above are satis-

fied, and specifica.uy, 2(1) =D 2(1) 2’4, Maore-
over, Df(x,y) = h? Af(x S Y) + O(hl*)

Note also that

D(xgp) = xDo + D o

and Dx(y'f) - Dy(xf) = nyf - nyf )
of which the contimuous analogs are

A(xQ) = XAQ + 2 g—"i
of af

T
respectively. Ind%ad it may be readily verified
from Eq. (3) that ?x is truly an approximation to
3% 28 h + O and may thus be regarded as a discrete
analog of this partial derivative,

Finally, it is interesting to examine the form

of 2 using Eq. {5).

a.nd a— (yf) - & (xf) =

ZDf =' (yD. - X.Dy)f
- unfy 3 - Sv) o(r?)

Zp of of
so that lim — (y - X ) .
nao B 3x Sy




IV. THE GENERATING OPERATOR IN THE CONTEXT OF
DIFFERENTIAL EQUATIONS

From the preceding discussion about approxima-
tion, it is strongly suspected that the theory of

the generating operator Z,, in the discrete case has

M
a parallel in the continuous case. Given a partial
differential operator of the form in Eq., (6), we in-

troduce the related partial differential operator

n-1
1 an-t
77" B ;Zo[yar(n -r)- xaml(r + l)] m; .

Note that ?77l is homogeneous but has variable coef-
ficients, The main feature of ?772 is that it com-

mutes with 7 and is useful in generating a related
sequence of additional solutions of the differential
equation Mf = O from a known solution., The proof
in the continuous case is sufficiently interesting
to warrant at least the presentation of an outline
in this section.

assume that feC

In the following discussion we
2-1{R], where R is some region of

the plane.

M (3 2, 3) = Bp(mecx, )

Lemma:

The lengthy expression in parenthesis is easily
seen to vanish,

Theorem: If f(x,y)e ¢ MR] and M =0 in R s
then m(%,(f) =0 in R. The above lemma readily
establishes the proof of this theorem, and the cor-
ollary follows by induction on k.

If £(x,y)e ¢ i(n-1) (] ang m =0
in R, then 7/((7,7}(‘ f)

over the natural integers,

=0 in R, where k may vary

The operator 77; remeins linear with order
k(n - 1), but is no longer homogenecus. The expli-
cit form of k may be established with the aid of
Leibnitz's rule; for example,

n-1 n-1

27'l2f = %z z [yar(n -r) - xar+l(r + l)jl .
n

r=0 s=0

{ [Yas(n -5) - xas+l(s + 1):' .

8211—2 - aZn-h
ax2n-2-r-sayr+s * ax2n--5--r--sayr+s-l

(as(n - s)r gﬁ - s+l(s +1Yn -1 =-1) %)}.

Proof':
n n-1

i oty
M) = ) % S |5 2 [P0 -0 e 0] B

r=0

n n-1

n-1

r=0

1 -+
n z (ar(n - 1)y axn-l-rayr - r+l(r + L)x

1 3 £ 3* " Le
n z & Zo ar(n - T) axn—says (y axn--l—rayr) - r+1(r + 1) axn.--says (x axn—l—rayr

n-1 n n
al ) z @ na sf s
axn-- -rayr L s ax"S3y

o 322, y2n-2
* ; & Sar(n - ) ax2n—r-s-layr+s-l = (n-s) r+l(r + 1) ax2n-s-r-28yr+s
1 = < 3%-2¢
= 77”(7/&‘). *a z z @a.8(n - r) 2n-r-s—18yr+s-1 O %, (0 = 8)(r + 1) 2n-s-r—28yr+s
r=0 s=0
n-1 n-1 a2n—2
. 1 f
= Qm(/ilf) *n z z Fsr1™ r(s *+ D -1) 2n-r-s-28yr+s |
r=0 s=0
n-1 n-1 aan_ef
z z s r+1(n - s)(r+ 1) Sx=S-T=2y T+5 .
r=0 5=0 v




Repeated application of the lemma yields the
slightly more general
Theorem: If f(x,y) ec(P*l)“'l[Rl and mpf =0 in
R, then mp(ﬂmf) = 0 in R, where p may vary over
the natural integers,
V. EXAMPLES AND APPLICATIONS

A, The Continuous Case

Because the form of the general solution of the
n n

partial differential equation m=év%asa_x%§a? =0
is known,9 it is a strajghtforward matter to examine
the result of applying the corresponding 77" to the
general solution. Having done this, we focus atten-
tion again upon the special case | =4,

The general solution of the equation Mf = O is

obtained by examining the roots of the auxiliary al-
gebraic equation P(t) = i o t5 = 0. The form of
the general solution va.rise=so accordingly as the n

roots of P(t) = O are real, distinct, repeated,

complex, or some combination of these, For the sake
of brevity, we consider only the situation in which
the roots of P(t) = O, namely, My My evey M

n 2
are real and distinct, Then the general solution is

fo(x,¥) = A (y + mx) + Ay(y + myx)
4+ eee 4 An(y + mnx) s

where the Ai are arbitrary but sufficiently differ-
entiable functions of the variables indicated.
Now

x Q. n-1
1
pmf'(yao' n )an—{
ox
. (y‘i:_l_’ (L) e
n n axn—eby
ye n-1
e (S xe) T
dy

and application to the general solution yields,
after some algebraic menipulation,

Infc = %{P’(ml) (v + myx) Aén'l) (y + mx)
+ P'(m,) (v + myx) Aén-'l) (v + mzx)

+eeo+ Pm )y + mx) A,(ln'l)(y + mnX)} .

Consider now the special case
2 2
3¢ J7f )
S+t T3 = 03 A=Y - X
d oy ce 3

X

9
g?

m AL =

fG(x,y) =Alx + 1y) + B{x - 1y)

= A(z) + B(z) .

In particular, 2AA(z) = -izA’(z) . An interesting
result is elicited by choosing A(z) = X - u.k(x s Y)
+ ivk(x,y) , where w_ and v, are real harmonic
polynomials., Then, because 2, is a real lipear

k. :
operator, from 3A(z ) = ~ikz = kv, - ikwy , we
may conclude that

?Auk'kvk and 2Avk=—kuk .

7, operating upon either member of the pair w , v,
yields k times the ha.rn_xonic conjugate of that
member,
B, The Discrete Case

To illustrate the discrete case, we discuss
the application of ZM first to the simple example
of Pascalts triangle, and second in the context of
the theory of discrete analytic functiona.

The difference equation governing the numbers
in Pascalts triangle is'

Plx + 1,y +1) - f{x+1,y) - f(x,y) =0 ,

or Ml = (XY ~X ~-I)f=0 .

10

A standard operator technique™ for solution of

such equations yields

' x
fx,m) - (phy) o) -

The initial conditions f{x,0) =0 for x £ O
while £(0,0) = 1 determine that @(y) = £f(0,¥y) =1,
yielding

f{x,y) = (Y - 9 B

Here, (Y - I) "L is to be interpreted as indefinite
summation with respect to the discrete varisble y.
It is the inverse operation of differencing and may
be regarded as the discrete analog of indefinite
integration, The standard rules of repeated in-
definite summation, together with the initial con-

ditions, yield the particular solution

s, = () -



-

Finally, 2y = y(XY - X) - xXY, and application of
ZM to the particular solution (i) yields (x i’ l) »
which may be interpreted as a horizontal translation
of the solution.

An interesting application of ZM lies in the
context of discrete analytic function theory. The
complex form of the Cauchy-Riemann equations is
g%. = %(g; + 1%1;) = 0 , and a complex function f is
termed analytic in the continuous theory when
g—; = 0. By analogy, a discrete analytic function
f satisfies Lf = O in some region of the discrete
plane, vhere L is termed a discrete analytic oper-
ator. For detailed treatment of the properties of
such operators, see Duffinl and Hundhausen;ll the
property pertinent here is that L is a discrete
approximation to aa_i .

From the expansion of Eq. (5), we find that
necessary and sufficient conditions for a discrete
operator L - L{1)I to simulate aa_a in the sense of
Eq. (7) are

Ly(l) =1iL.(1) o . (8)

If these conditions are used to characterize a fam-
ily of discrete operators, it is found that the
family thus characterized is identical with that for
which the corresponding family of generating oper-
= ZL-L( l)I) simlates multiplication by
2. Briefly, the expansions of Eqs, (2) and (5)

ators ZL

become

hL (1) = + o(n) H

[L - L(1) I]f g:

2. f =

L ZL-L(l)If = =i Lx(l) 2f + O(h)

For the family of operators satisfying Ea. (8), the
notation used throughout this report becomes partic-
ularly descriptive of the analogy between the dis-
crete and continuous cases. The theorems of Secs.

I and IV may be concisely phrased, respectively, as

If=0 = L(ZLf) =0 ,
and

or 3

a_f =0 = a_E(Zf) =0 .

Therefore, the theory presented in this report be-
comes useful in generating a sequence of discrete
analytic functions. We conclude with an important
example of the generating process as developed by
Duffinl for the case of the discrete analytic
operator L = I + iX - XY - iY ., Duffin introduces

the operator
z=%—[z(1+x+xy+y) - 1%(T —X+XY-Y)}

and shows that if f is discrete analytic, then Zf
is also discrete analytic, Algebraic simplifica-
tion and use of the relation Lf = O show that 2f
is a variation of Z_f as treated in this report;
indeed, 2f = (% - %) ZLf, where 2, =yL - xLy .
To achieve greater symmetry relative to the point
of application, Duffin forms a new operator Z from
the average of Z applied at the four points
z,%2~-1,2-1i, and 2z - 1 - i, and finally estab-

lishes the interesting relation

z(M ) (9)

Here z(n)

crete analytic polynomials, which were originally

defined by a process of r(ec)ursive indefinite dis-
0

is the nth member of the sequence of dis-

crete integration with z = 13 Eq. (9) provides

an alternate (and simpler) method of generating
this particular sequence of functions, It also may
be considered a simlation of multiplication in the
continuous case,
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