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A GENERATING OPERATOR FOR SOLUTIONS Ol?

CERTAIN PARTIAL DIFFERENCEAND DIFFERENTIALEQUATIONS

by

Joan R. Hundhausen

ASSTRACT

Let M be a partiel difference op&ator of the form

M = ~ amX%n , where am are complex constants and X end Y

exe ?I# fundamentaltranslationoperators. A related operator

$ isshown kocommutewith M andmaybe usedto generate

a sequence of solutions of the equation Mf . 0 from a known

solution. A parallel theory is devel#ed for the partis2

differentialoperator 77/. e~s a Examples are
pn-s$s “presented for both the disc%e an con lnuous cases.

.

I. INTRODUCTION

This report concerns an algebraicmethod for

generatinga sequence of solutionsof certain types

of partial difference or differentialequations from

a known solution. In the discrete case, the theory

is.appliedto complex-valuedlattice functions

(those functions f(x,y) definedat discrete points

of the complex plane) that satis~ the difference

eqUd.iotI Mf(x,y) . ~ am~f(x, y) . 0, where

a are complex cons?&s and m and n range over

a finite set of integers. The generating operator

Zifiis defined in terms of certain ‘Iderived!!opera.

tors associatedwith M.

Algebraic gen~.stingprocesses for harmonic and

polyharmonic operatorshave been studiedby Duffin
1

and Shelly. Other types of generatingprocesses

(as intendedhere) have been devised for various

special forms of discrete operators;these include
2

methods of differentiation,integration, and convo-

3>4” The process described in“ lution of solutions.

this report has quite general applicabilityin both

the discrete and the continuousversions.

The approximationrelationshipbetween M and

~ is discussed in Sec. III end provides atransi-

tion between the treatments of the discrete and the

continuouscases. In the continuous case, the dif-

ferential equation has completelylinear homogeneous

form, namely,

n

I c1 anf =0 ,

S=O saxY#

tith as complex constants. Again a generating

operator
4?/

is introduced. Although the more

orthodox approach is to derive discrete analogs

from the better-known continuoustheorems, this

case exemplifiesa statement appearing in the Edi-

tors! Foreword to the text by Miller.5 ‘Wt is pos-

sible to derive theorems about differential equa-

tions from theorems on difference operators, and

the methods might be more transparent in the latter

case.” Therefore, the discussion of the discrete

case precedes that of the continuous case in this

report.

Several applicationsof the generatingprocess

exe presented in Sec. V. In the continuous case,

the effect of ~ upon one form of the general

1



solution of the pertinent differentialequation is

8h0Wn. A particularly interestingapplicationin

the discrete case lies in the context of the theory

of discrete anelytic functions. Here a modification

of the generating operator coincideswith an opera-
1

tor introducedby Duffin, which is useful to gener-

ate a sequence of discrete exrdytic-polynomials.

II. THE GENERATING OPESATOR IN THE CONI!EXTOF , .,
DD?FERENCE IQUATIONS

A. Partiel Difference Operators @ Their Derived
Operators

In preparation for developmentof the theory in

the discrete case, we place a square grid of width

h upon the complax plane, and designate as lattice

functions q(x,y) those complex-valuedfunctions

defined at the points (x,y) where x = kh,

y . lh, k, 1 integers. The equivalent expression

of rp(x,y) as a function of the single complex

variable z (where z = x + iy),is @so often con-.,.,
venient. ,.

The fundamentaltranslation operators Xn and

~ are defined by ,.

xhp(x,y). (p(x+nh,Y); Y%(x,Y) =Q(X,Y+*) ,

or equivalently,

x%(z) = Q(2 + nh) ;

Yncp(z)= Q(z ,+inh),n = O, =, M?,, . . . .. . .

The translationoperators are clesr3y linear and

c~tative, and XOT =.YOP = IV =9.

Let M represent a linear difference operator.

of the form

M= E amX’”Yn ,
mJn

(1)

where the coefficient’s& are cOi@ex ~onst~ta

and the indices m“snd n range over a finite set of

integeis. We’are c“bncerned”withthe”f~ly of sk~u-

tions of the homo~eneous’differencee@tion “ ‘

M$I(x,”y)=0. ‘ .,

Anticipating a form of Teylor series expansion

for the operator M, we intro&ce the’a&ociat”edor

derived operators

M s x“a~mrnsP@, r, s =0, 1, 2, . ..””.
Xrys

mjn

. .“

.

Noting that IIr ~(1) =x ammrns, andrecalJdng

the standard l%% for ti?d&lor series expansion

of a function of two variables, we w exhibit the

relationshipbetween M end ita derived operators

M as follows.
Xrys

. ..
.’ .!-. . . .

E
h(m.&+ %$) f(x, y)

Mf(xY) =, ame
..

m,n

=M(l)f(x, y) +hMx(l)~
\ (X,Y)

‘ af
2

+ ~h2M 2(1)2
I

+hM#w.. (x,y) x,.
X)Y)

..

,.. “-4 h2Mq(l)&
.J.L.= , J .. (X,Y)

+ ;h2M2(l)fi + ... . (2)

Y aY2 (X,Y)

This is a correspondingexpansion for the derived...- . ..- .—
operatorsthemselves.

M f(x, y) =Mrs(l)f(x, Y) .
krys XY

+

. +

+
. .

hM r+l s(l)~(x,y)
x Y

bM r S+l(l)% ~x,y)

XY

a2f
~Mr+2”s(l)~

x Y ax \xjY)

h2 M
a2f

Xr+lys+l ~
(% Y)””” ;3)

,.
The shove representationscl~ify the essential. .
role plwed by the”derived operators in the deter-. .

mination of the,differentialfok..
mates. This relationshipwill’be

in Sec. 111.

B. The Generating Operator ZM

The simple relbt~ons

which M approxi-

discussed further

YSF(xqI) =xPYnfp+mXpYnq
. . ., .

and X“’Yn(YCP)=y~~q+n~~q

2 I



may be used to derive the general formula

[ 1

M (&qq)(X,Y))= ~$(:)(;) @-iYq-dMxr+is+jdx,Y) . (4)
Xrys

i.O j-4 Y

Given a partial.difference operator M of the form

used in Eq. (1), we define a related pqial dif-

ference operator ~ intemof certain derived

operators of M as

~~yMx-xMy .

The followingtheorem shows that the operator
%

is useful in generating additional solutions of the

difference equation Mf . 0 when a solution is

known. Our proof is based upon the condition that

the relation Mf(x,y) = O holds in a suitably ex-

tensive region of the complexplane; to simpli~,

lie will assume that it holds in a sufficientlyex-

tensive region.

Theorem: If Nf(x,y) = O in a sufficientlyexten-

sive region of the discrete plane, then

M(zh*f(x,Y))
= o also.

Proof: Using the formula of Eq. (k), we have

M(Z# = M(YMX - XMy)f

= yMMxf + MyMxf -

= (YMx-x My)Mf

= ‘MMf

=0 .

The latter conclusionis drawn

x MMyf - Mxl.iyf

on the assumption

that Mf . 0 in a region containing at least each

point (x + mh,y + nh) where the pair (m,n)

appears in the aunnnationformula [Eq. (1)1 for M.

Corollary: If Mf(x,y) = O in a sufficientlyex-

tensive region of the discrete plane, then

bl(zkf(x,y)) =0, k=2, 3, 4, . . . .

The proof, again dependingupon,em extension of the

assumptionmentioned above, follows easily by induc-

tion. Indeed, this assumption is clearly sufficient

in all cases, although it may not be necessary in

certain special cases.

The powers of the operator ZM maybe devel-

oped with the aid of the formula in Bq. (k). For

exsmple,

%2= (@fx - XMy)(YMx- XMy)

= X2(MY)2 - 2xyMxMy + y2(Mx)2 + yM M
Xyx

wy-@fx2%
+XM14 - fiy2Mx “

Likewise, the notation $ indicates that the opera-

tor M is to be applied p times in succession;for

where m and k,-n &d s have the same ranges, re-

spectively. The theorem above generalizes easily

to the

Theorem: If # f(x ,y) = O in a sufficientlyex-

tensive region of the discrete plane, then

Mp(zMf(x,y)) =0 also.

Finally, we display the Taylor series expansion

for $, wherein the role plcqfedby the derived

operators of M is again emphasized.

z~(x,y) = (YMX(l) - fly(l))f(x,Y)

(+ hyM .#) - XMW(l)) g
x (X,Y)

(
+ h yMW(l) -

W 2(1))F$ ~x,y)
Y

+~h2(yM 3(l) -xM2 (1))~
x XY 1X,Y)

a2f- x14 2W)=Y (X,Y)+ h2(yM p (1) ~

XY

+ &h2
2 (

YM p(l) - XM (1))%
w P a I(X,Y)

+ ● ☛☛ ✎ (5)

111. DIFFERENCEAND D1l’FERENTIALOPERATORS

A. The Nature of the Approximation

Let ~ represent a completely linear homoge-

neous partial differentisl operator of order n ;

that is,

(6)>

3



In this context, the word ‘homogeneous”refers to

the fact that &U. $erms contain derivatives of the

same order. The expansion given in I& (2) illus-

trates the fact that a difference operator M is ‘

always an approximationto a differentialoperator

judicious choice of the set of points (m,n) . This
... .

constructiveaspect “~sp&t&l.srly well.tre’atedby

Collatz.7 @examples depicting stencils to ap-

proximat~ operato;s of’the form-~ are also pre-
. .

sented by Hidslca.

~ in”tiiefollowing Eense. - “-
— — .-—

An example featuring.theuse of M as<~ ap-2 ,
.

M - M(l)I
=~+ O(h) ,

hq

sothat k&w=?/ ‘. (7)
h+O

,.
Here the ~act value of q and-the exact form pf.~

are uniquely determinedby the values M##(l) ,

r, s =1, 2; ... , again emihasizi~ the essential

roie played by the derived operators of ‘M. The

uniqueness follows from the sti~ation that the

mesh width be the same in both directions; if the

mesh length were permitted to vary as some other

tiction of the mesh width, the differentialform

approximatedby M would not necessarilyhave the

homogeneous character of ?/.
6 .,,

COIWWBe~, a given’iifferefitialfoiin’~ nw

als?ws be approximatedby a difference operator M,

which may be accomplishedin a straightforwardmsn-

ner by simply approximatingeach term of M by re-

peated differencing o? the ~ction and finelly

forming a linesx combinationof these results. In-

deed, the great variety of difference expressions

(and translationsthereof) that may be usedto

approximatederivativesmakes possible the a~rox-

imation of ?l by many different forms of M.

B. ExsmPle of the Approximation

The approximationof ?7/by M using the expan-

sion of Eq. (2) has both analytic and synthetic

aspects.

1. “I? M is given in the form ofEq. (1) or

in the equivalent form of a stencil - a diagram

depicting the points at which functionalvalues are

to be computed together with a~ropriate c~effi-

cients - the values M ~ s(1) =2 ammrns w

be ~asily computed aqd.~~se~edl&o E&. (2) to &-

certainwhich differentialform ~ is approximated.

2. If a form ~ and the set of points (m)n)

or the set of points comprising a stencil are given,

Eq. (2) mwbe used constructive~ to determine the

coefficients
%“

Of course, success in the lat-

ter case is not alwws assured and depends upon a

proximati~n to the kpl~ian operatorA * ~t~..

will be instructive. From Eq. (2) we see $Kat *

approximates A [in the sense of Eq. (7)1 if, ~d

only if, M(l) =Mx(l),:l$(l) =Mw(l) =0, whereas

M (l)=M2(l) #0.
X2

In particular, consider the

case whereyM is a standard five-poink approximation

to A. , .

M=D =XY+X-$-l+X Y-l+X-%-41 ;,.: . . .

Dx . Xy - ~-1y-1 + & - ~-~

.DV = Xy -@y-l-xy-l+#y
.7

D =XY+x++i+ +Y2 = DX2

D=
XY

XY + X-%!-l -X-Y-l -x-%!

Note that the conditionsmentioned above

;

;

X-5 ;

.

are satis-

fied, and specifically,D 2(1) = DY2(1) =’4. More-

over, Df(x ,y) = h2 Af(xx,y) + 0{h4) .

Note also that

D(xq))=xDQ

and Dx(yf) -

+ Dxcp.

Dy(xf) = yDxf - xDyf ,

of which the continuous analogs exe

respectively. Ind~ed, it mwbe readily verifi~

fromEq. (3) that ~ is truly an approximation to

& as h + O and may thus be regarded as a discrete

analog of this partial derivative.

Finally, it is interestin~to examine the form

of ZD using ?%. ‘(5).

‘( )ZDf= yD -xDyf
x

.( af=khy~-xG
)().
+Oh 3

‘D

(

af

)
so that lim~=by~-x~ .

h+O

,



Iv. THE G-TING OPRRATOR IN TRE CON’IYSCIOF
DIFFERRNIIALRQJATIONS

The lengthy expression in parenthesis is easily

seen to vanish.

..

From the preceding discussion about approxima.

tion, it is strongly suspectedthat the theory of

the generatingoperator ZM in the discrete case has

a parallel in the continuous case. Given apsxtial.

differentialoperator of the form in llq.(6), we in-

troduce the related partial differentialoperator

n-1

~ ‘ *Z [Yar(n - r) - xar+l

n-1
(r+ 1)]~xn~l-rbyr “

r=o

Note that ~ is honxweneousbut has variable coef-

ficients. The main feature of ~ is that it com-

mutes with ?/ smd is useful.in generating a related

sequence of additional solutionsof the differential.

equation ~f = O from a known solution. The proof

in the continuous case is sufficientlyinteresting

to warrant at least the presentation of an outline

in this section. In the followingdiscussionwe

~-l[R] , where R is some region ofassume that feC

the plane.

Lemma:

( ) %(n/+f(x,Y) = )mf(x,y) .

‘-l[R] and ?/f= o in R,Theorem: If f(x, y)~C

then ~(~) = O in R. The above lemma readily

establishesthe proof of this theorem, and the cor-

ollary follows by induction on k .

If f(x,y)~C
n+k(n-l)[R] ~d ~ = OCorollary:

in R, then ?il(~kf)= O in R, where kmsy vary

over the natural integers.

The operator $ remtins linear with order

k(n - 1), but is no ionger homogeneous. The expli-

cit form of $ maybe establishedwith the aid of

Leibnitz~s rule; for example,

n-1 n-1

if= $x ~ [yar(n - r) - xar+l(r + 1]] .

r=o S=O

~[
yas(n - s) - xa~l (s + 1)] .

a
2n-2f a2nJt

+ ●

ax&-2-r-sayr+s
ax2n-3-r-sayr+s-l

(as(n - s)r ~ - as+Js + l)(n - 1 -
)]

r)% .

Proof:
n

I n
n-1

EW@ = Czs an * yar(n - r) - xar+l an-if

axn-says ‘r + 1)] axn-l-rayr
S=o rA I

n n-1

z qla.- ar(n - r)
n s
r=o r=o ,x:~aystax~T~:yr)-ar+l(r

n-1
1

x 1(

a
n-1 n-1

.- ar(n - r)y
n -ar+l(r+ 1)x a

r=o axn-l-rayr axn-~-rayr)

+

= $(Z’/f)+

.Jm(iilf)+

n

Nas sar(n - r)

S.o

+ 1) an(xax;:;:~yr)axn:says

n

z a anf

S=o
saxn-shs

a211-2f 2n-2

ax2n-r-s-l r+s-1 - (n - s)ar+l(r+ 1) a
ay

ax2n-s-r-2 r+s
ay )[

a
2n-2f

ax2n-s-r-2 r+s
ay 1

n-l n
&

q

a2n-2f
a~ars(n - r)

n ax2n-r-s-l&r+s-1 -asar+l(n - s)(r+ 1)

r=o s.O

(

n-l n-l
1

m

a
2n-2f

E
a s+lar(s + l)(n - r)

r=o .54 ax&-r-s-2ayr+s

n-1 n-1

-11
2n-2f

asar+l(n - s)(r+ 1) a

)

ax2u-s-r-2 r+s “
ayr.O s=o

5



Repeated applicationof the lemna yields the

slightlymore general

Theorem: If f(x, y) CC(W1)n-l[R] end @f . 0 in

R , then $(~f) = O in R , where p m~ vary over

the natural.integers.

v. EXAMPLES AND APPLICATIONS

A. The ContinuousCase

Beczuse the form of the gener~ solution of the

p=’ti~ diff=’ent~~ ewtionW=&s* =o
is known,g it is a straightforwardmatter to examine

the result of applying the corresponding ~ to the

general solution. Having done this, we focws atten-

tion sgsin upon the special case m .A.

The general solution of the equation ?/f= O is

obtainedby examining the roots of the auxiliary al-

gebraic equation P(t) ~ ~ CZ5ts= O. The form of

the general solutionvsri~~accordingl.yas the n

roots of P(t) . 0 are reel, distinct, repeated,

complex, or some combinationof these. For the sake

of brevity, we consider only the situation in which

the roots of P(t) .0, ntunely,~,m29 ...jnn~

are reel end distinct. Then the general solution is

fG(x, y) =A1(Y+ %X) +A2(Y+ II&)

+ ● *O +An(y+ mnx) ,

where the Ai are arbitrarybut sufficientlydiffer-

ent-ieblefunctions of the varlehles indicated.

Now

~f = (Yao -?) -

(
-1) xa2

)

yal(n - _
+

~n-lf

n n ~xn-2h

( )–
Yan-~ Xa r-%+ ● *” + — -n n w-~ ‘

end applicationto the generel solutionyields,

after some algebraicmanipulation,

$//fG= * {P’(lQ(Y + %x)

+ p’(IL@(Y + m2x)

+.**+ P’(mn)(y+

p) (Y +yx)”

A$~)(y+m@

~ x) A~-l)(y + mnx)} .
n

Consider now the special case

fG(x,y) =A(x+ iY) +B(x - iY)

. A(z) +B(~ .

~ p~itim, ;AA(z) . -iz A’(z) . An ~erestlne

result is elicitedby choosing A(z) = z = %(x, Y)

+ ivk(x, y) , where ~ and Vk are reel h~nic

polynomial. Then, because ~ is a real.lipe8J’
!$

operator, from ?A(zk) . -ikz =kvk- ik~, we

may concludethat

&~=kvkMd~Avk=-k~ .

& operatingupon either member of thepair~, vk

yields k times the harmonic conjugate of that

member.

B. The Diecrete Case

To illustratethe discrete case, we discuss

the applicationof ~ first to the s~le exwle

of Pascelts triangle, end second in the contefi of

the theory of discrete analytic functions.

The difference equation governing the numbers

in Pascelts triangle is”

f(x+l,y+ l)-f(x+l,Y) -f(x$Y)=o ,

or Mf=(XY-X-I)f=O .

A standard operator technique
10

for solution of

such equationsyields

()lxf’(x)Y) = ~ P(Y) ●

The initial conditions f(x ,0) = O for x k O

while f(O ,O) = 1 determine t-t g(Y) = f(o ~Y) = 1 ~

yielding

f(x, y) =(Y-I)-xl .

Here, (Y - I)‘1 is tobe interpretedas indefinite

summationwith respect to the discrete variable y.

It is the inverse operation of differencingend myf

be regarded as the discrete analog of indefinite

integration. The standard rules of repeated in-

definite sumation, togethtm with the initial con-

ditions, yield the ptii~= solution

()fp(x)Y) = ; .

&

.

6
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3

Finally, ZM = Y(XY - X) - xXY , and applicationof

ZM to the particular solution (~) yields (x ~ ~),

which may be interpretedas a horizontal translation

of the solution.

An interestingapplicationof ZM lies in the

context of discrete analytic fhnctiontheory. The

complex form of the Cauchy-Riemannequations is

%=*(g+i*)’o , and a complex function f is

termed analytic in the continuoustheory when
af
z

=0. By analogy, a discrete analytic function

f satisfies Lf . 0 in some region of the discrete

plane, where L is termed a discrete armlytic oper-

ator. For detailed treatment of the properties of

such operators, 1 l-lsee Duffin and Hundhausen; the

property pertinent here is that L is a discrete

approximationto a
%“

From the expansion of Eq. (5), we find that

necessary and sufficient conditions for a discrete

L(l)I to simulate aoperator L -

Eq. (7) are
= ‘nthe ‘ense ‘f

Ly(l) = iLx(l) +0 . (8)

If these conditions are used to characterizea fsm-

ily of discrete operators, it is found that the

femily thus characterizedis identicalwith that for

which the correspondingfamily of generating oper-

ators Z
(= ‘L-L(l)I)

simulatesmultiplicationby

z. Bri~fly, the expansionsofEqs. (2) and (5)

become

[ 1L -L(l)I f= hLx(l) ~ + 0(h2) ;

‘Lf = ‘L-L(l)If = -iLx(l)zf +~(h) .

For the family of operators satis&ing Rq. (8), the

notation used throughoutthis report becomes partic-

ularly descriptiveof the analogy between the dis-

crete and continuous cases. The theorems of Sees.

II and IV may be conciselyphrased, respectively,as

Lf=O =L(ZLf)=O ,

and
af
~ =0* $(zf)=o .

Therefore, the theory presented in this report be-

comes useful in generating a sequence of discrete

aalytic functions. We concludewith am important

ex-le of the generatingprocess as developedby

Duffinl for the case of the discrete ansly-tic

operator L= I+ iX -XY -iY . Duffin introduces

the operator

[z=+ z(I+X+XY+ Y)-i~(I-X+XY -Y)1
and shows that if f Is discrete analytic, then Zf

is also discrete analytic. Algebraic simplifica-

tion and use of the relation Lf = O show that Zf

is a variation of Z-f as treated in this report;
111

indeed, )
Zf=(*-~i ZLf, where ZL=yL -xL

x Y“
To achieve gre’atersy&e~ry relativ~to the point

of application,Duffin forms a new operator z from

the average of Z applied at the four peints

z, z -l,Z - i, smd z - 1 - i , and finally estab-

lishes the interestingrelation

Zz(d =Z(n+l) . (9)

Here z(n) is the nth member of the sequence of dis-

crete analytic polynomials,which were originaMy

defined by a process of recursive indefinite dis-

crete integrationwith z
(o)=l;Eq

. (9) provides

an alternate (and simpler)method of generating

this particular sequence of functions. It also may

be considered a simulationof multiplication in the

continuous case.
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