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A13smcT

Using an equation of state of air in completely tabular form,

a one dimensional, spherically symmetric blast wave calculation has

been numerically carried out. An IBM 704 computer was utilized for

the calculation. The Rankine-Hugoniot conditions at the shock front and

the isentropic changes of the shocked fluid were determined by iterative

methods. The numerical methods employed are discussed h some detail,

as are the details of the equation of state. The initial starting con-

ditions for this numerical integration were those of Problem M. The

numerical results are presented in graphical form. Comparison to Problem

M is also displayed graphically. The comparison to Problem M is good,

the small differences being attributed to that of equation of state and

finite differencing methods.
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1. INTRODUCTION

This work was undertaken in order to develop a sharp shock

blast wave code. As a means of checking the present coding, Problem M,l

a blast wave calculation for an energy release of 13.5 I(!Ccarried out

at Ios Alamos around 1945, was chosen as the comparison problem. The

initisl conditions of Problem M were used as the starting data for this

code, thereby permitting each calculation cycle to be compared to those

of Problem M. Such a comparison serves as a guide to determine M the

present code is functioning properly, and if it is,serves also as a

check on Problem M, for since the results of that problem have been used

extensively, an independent comparative blast calculation is destrable.

The results frcnnthis problem differ somewhat from those of Problem M,

since the calculations for the latter were carried out on slow, semi-

automatic equipment, with a substantial portion of M done by hand on

desk calculators. Thus approximations consistent with realistic calcu-

lation times were necessary. In addition, a new equation of state for

air2)3>4 was used. Iiuprovementsin the numerical methods of Problem M

were possible using the present day high speed, completely automatic

computing machines.

The new e~ation of state data were in tabular form. Several

exploratory attempts to find an analytic fit to these data indicated that

a complex system of fits would undoubtedly be necessary. In general,

since most analytic fits to equation of state data are poor except in
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limited regions, and since the range of thermodynamic variables in blast

problems is quite extreme, it was thought that if this new equation of

state were used completely in tabular form, it would be more useful

and accurate than an extremely complex system of fits. Given the rela-

tive specific volume and the specific internsl energy, this tabular

equation of state determines the pressure by a double interpolation of

the tabular entries, or symbolically, P = P(V}VO,E). The details of

the eqyation of state are discussed in Section 9.

The method used to determine the isentropic changes within

the fluid of the shocked sphere is given in Sections 2 and 3.

The Rankine-Hugoniot conditions at the shock boundary are

determined by an iterative method which is discussed in Section 4.

The addition of new fluid elements to the calculation is re-

quired as the shock discontinuity progresses further into the undis-

turbed fluid. This addition is considerably complicated by utilization

1>5’6rather than a “smeared shock” cslcu-of a “sharp shock” calculation

lation.7)8)9 The addition procedure is explained in Section 5, and

other fluid element adding schemes which were tried are described in

~ction 6.

The initial conditions chosen for this numerical.integration

represent the hydrodynamic state of an energy release of 13.2 KT at a

time 12 milliseconds sfter detonation. There is a difference in total

energy between this problem and that of Problem M because of the new

equation of state used. Comparison values from the present problem ad

from Problem M sre displayed graphically in Section 11.
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2. THE BASIC EQUATIONS AND BOUNDARY CONDITIONS

We consider the region of a fluid bounded by a shock front.

Within this bounded region the hydrodynamical state of the fluid is

described by four equations: the equation of”continuity, the equation

of motion, the conservation of energy in the form of the first law of

thermodynamics, snd the equation of state. Spherical symmetry is assumed,

and the Lagrangian form of the equation of motion is used. In the Lagran-

gian formulation we are concerned with the properties of fluid elements,

which are tagged or identified by their initial positions, and we follow

these elements along in space and time observing the changes of their

fluid properties. Thus, the radius, pressure, density, velocity, in-

ternal energy, and acceleration of each fluid element are functions of

the element’s initial position and the time, or R(r,t), P(r,t), p(r,t),

v(r,t), E(r,t), and a(r,t). R is referred to as the Eulerisn radius

and r as the Lagrangian radius, that is, R is the physical position of

a fluid element at time t, and r is that element’s initial position.

The equation of continuity or conservation of mass states

that the initial mass of a specific fluid element remains in that

element and there is no transport of mass from one element to another,

or

f’o v ~R3
—=—
P

(2.1)
vo=z’

where V is the s~cific volume or the reciprocal of the density.
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FroIuNewton’s second law the volume force is given by

Fv =
zp= . -grad P

and for spherical symmetry,

(2.2)

Combining this with (2.1), we have

(2.2’)

We require the changes of the fluid within the bounded volume to be

isentropic, or

dE = -PdV. (2.3)

The equation of state is in tabular form. The table is srranged so

that for a given relative specific volume and specific internal energy

the pressure is detemnined by a double interpolation scheme or, symboli-

cally,

P = P[v/vo,E). (2.4)

See Section 9 for a more detailed discussion of the equation of state.

The above equations are valid behind the shock. At the shock,

however, the equations of Rankine and Hugoniot are to be used. They are

as follows:
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. .
p(u - E) = POE , (2.5)

+- “P. = POEU , (2.6)

‘E- ‘o
- l/P5).‘ +(V + po)(l/Po (2.7)

The materisl velocity of the unshoclsedregion, Uo, is assumed to be zero.
.
~ is the shock velocity, u, the material.velocity of the medium behind

the sho+and $, the shock pressure.

There are

turbance, the other

R(O,t)

two boundary conditions, one at the center of the dis-

at the shock. They are as follows:

=0 (for ant) (2.8)

and

R(~,t) = ~ (for all t), (2.9)

where 5 is the Lagrangian radius of the shock front snd is a function

of time or E = E(t). Equations (2.5), (2.6), (2.7), and (2.9) are not

independent,as can be readily verified.

3= INTEGRATION Cl!?THE BASIC EQUATIONS

The integration of the basic equations is carried out numeri-

cally in a stepwise manner. The differential equations are approximated

by finite difference equations. In order to set up these difference
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equations the bounded region is divided into finite regions or fluid ele-

ments of concentric spherical shells each of equal Lagrangian radial width.

The radii bounding the elements are numbered consecutively outwards from

the center, O, 1, 2, 3, 4, . . . . i-1, i, i+l,”””. The Pressure, densityj

and internal energy of the entire element are considered to be that of the

centroid of each fluid element but the acceleration and velocity are asso-

ciated with the bounding radii. Id us consider the equations for a typical

fluid element bounded by radii ri and ri-l at time t = n-1 and integrate

these equations over a time interval At. We let the subscripts indicate

the Lagrangian radii where the quantity is assumed located and the super-

script, the the. Equation (2.2’) then becomes

LL2
6 R;-l 2 P& P;-* Vn-+j_ vn-3/2

n-1 =
ai ‘- p. ~3 3 At J (3.1)

i++ + ‘i-+

where &3 1 = (r~+l -
i+=

r~), and where an average of the two bounding

Ar3ts is utilized for computational convenience. Solving for the velocity,

we have

n-1
n-* . ~n-3/2 + an-l ‘; - ‘i
v.

i i
At = At

1 J

and for the radius,

‘: =R;-l + vn-+At .

(3.2)

(3*3)

Now, having the new outer radius of the element at t = n snd assuming

that we have previously, in a stiilar manner, determined the inner radius

at t = n, we are in a position to determine the volume of the element at

1.2



time t = n.

1=—
&r3 1i-~

(‘;-’; l
#+ R:-; ~rl+’rl

- )[( ) ( i i-l)1
Equations (2.3) and (2.4) in difference form become

and

p= ‘hy ‘) ●

Assuming that we know sJJ the above qusmtities except

and have determined the volume of this element at time t=n-l, we can

solve Equations (3.5) and (3.6) simultaneouslyby iteration.

We have demonstrated how a typical element is integrated

from time t = n-1 to t = n; this process is carried out for each element

starting from the center and working toward the shock front. The last

element, however, needs to be treated differently, as there is no & 3

conveniently available. The acceleration is formed as follows:

n-1 2
aI =

-z
(’j’($n-l- ‘;:;) ~.

(r: 2~ - rl - rl-l
(3.7)

13
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The subscript I indicates the element adjacent to the shock. After

csm@ng out the above scheme we have all the information required within

the bounded region.

4. DETERMINATION

The method

We now determine the shock quantities.

OF THE SHOCK QUANTITIES, OR

used to determine the shock

in IA-1148 (Ref. 5) and is an iterative scheme.

here as follows: One guesses a shock volume
J[

THE SHOCKFTI’TING

conditions is discussed

We briefly outline it

= V~/Vo (the recipro-
,

cal of the shock compression). From the simultaneous solution of

Equations (2.4) and (2.7) (an iterative process), the values of v, E~,

d~
‘d m

= -S of the Hugoniot are determined. The shock velocity is
E

in =@. e, (4.1)

~lr_ D
‘owhere (~)2 =+ . The position of the shock is determined at time

t=nby

Using the relation

terms of the above

for the total time derivative of

determined quantities, we have

(4.2)

the shock volume in

and in difference form,

14



dV( n

()F
=~= l+~n

3 (lr)2 + Sn
1-

@J’-%),
f?

(wn)’(1-vQ+P. “ p;-+

2~n-ri-ril “(4.3’)

.
From the above ~ and the value at n-1 we can determine an average change

in the shock volume in the time interval At. Adding this to ~-1, we

have a calculated volume ~~, or

Comparison of g< and

pleted. IY it is not, a

When the “shock fitting”

c~ determines whether

new guess is carried out

(4.4)

(4.5)

the iteration is com-

based on previous guesses.

is completed, the integration of sll the equations

from the t = n-1 to time t = n has been completed. Integration from

time t = n to time t = n+l, etc., is carried out by repeating the steps

of Sections 3 md 4. However, when the shock position ~ becomes greater

thsn rl + & = rl+l, a new fluid element must be added to the calculation.

5. ADDING A NEW FLUID ELEMENT

In order to add a fluid element, or mass point, one needs to

obtain values of the pressure, volume, internal energy, velocity, and

the radius at the

Pnl W 1 If 11+# I+& I+=’

appropriate Lagrangian radii and times, i.e., we need

1
v:;:, and R“1+1“ Since the shock fitting is dependent

15



upon the pressure and volume

the new fluid element vslues

gradients behind the shock front [cf. (4.3)],

and the shock quantities are determined

simultaneouslyby an iteration scheme. Thus during the course of a shock

fitting when the results of Equation (4.2) indicate that ~na rl + & s rl+l,

the normal shock fitting scheme is interrupted and the above mentioned

values of the new fluid element me created in a method consistent with

~Vg. (This method is discussed in more detail later in this section.)

‘Theshock fitting is then continued at (4.3), using now, however, the

pressure snd volume just created. IX the comparison of
gvk ad c% ‘s

not satisfactory, a new ~V~ is made snd the mass petit adding, shock

fitting iteration is continued. The creation of the new element values is

csrried out on each of these iteration cycles. This iteration scheme is

continued until V and
gE

cV~ agree to the desired accuracy. The inter-

ruption of the shock fitting scheme is made only on the integration

cycle when En> rl +Ar s rl+l. After the new fluid element is added,

the interruption of the shock fitting scheme stops and the calculation

continues in its normal manner, except that there is one more mass point,

until it is again determined by (4.2) that another element needs to be

added.

The quantities

created by the following

position equsls
‘I+&

of interest for the new fluid element are

method. First, the time at which the shock

= ‘1+1 is determined.

16



Let

n-1
rl+l - ~ En - rl+l

‘1 =
.
n-1

and
E

‘2= *n”
e

In general, since tl + t2 ~ At, a weighted average of tl and t2 is used “

n-1
to describe the ttie of crossing. This time becomes t* = t + T,, where.

‘1
‘1 .=(2At-tl-t2).

We also designate ‘2
such that T2 = At - T1.

cate by I the fluid element being added. The

(5.1)

For convenience we indi-

qusntities of interest

for the new mass point at the time t = t* are now determined. The radius

is

R? ~=~*o=r (5.2)

The shock volume at this time, t = t*, is determined by

(5.3)

Using Vu we next solve Equations (2.7) and (2.4) for E$ and $!. The

inner bounding radius is determined at time t = t*by

1

‘:-l = ‘;-l
- v;-; T2, (5.4)

and the volume at time t = t* is

1 ( )[2v~-+ . — - R*
‘I I-1 ‘I ( )1+‘f-l‘?-1+‘I “ (5.!3)

Z# 1I-T
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The internal energy at time t = t* is obtained by a three point interpola-

tion, or

E*l=
I-z

0.533E$+ 0.667 E*
1-3/2

- 0.200 E*1-5/2’ (5.6)

whera E*
I-3/2 ‘d ‘?-5/2

are determined by interpolation from values at

times t =nandt=n-1. P;+ is obtained through the

(2.4) since V~-~ and E~_~ are now known. The velocity

point at t = t* is the material velocity of the shock,

We now know

however, in

‘~=[V4*-‘J(1-‘W ●

equation of state

of the new mass

or

(5*7)

sll the necessary quantities of the new mass point at t = t*;

order that they will fit into the general.dtfferencing scheme

it is necessary to advance them to their proper times. First we determine

R; = R:-l + V;-* At,

where

snd

n-1
‘I

=r
I
- v~l + ha

$ 1’

n-~
a*

‘I
=v*+~(T~T),~

1221

(5.8)

(5.9)

(5.10)

(5.11)

18



The volume of the new element is then at t = tn

Since we have

(3.6) for the

v~+> and ‘iI-~>~ cm solve Equations (3.5) and‘f-+’ ‘$-+} -

values of # 1 and En 1, that is, we require the newly
I-z I-T

formed element to change isentropically from t = t*to t = tn. We now

have all the necessary quantities for the new point.

6. OTHERELEMENTAllDllJG SCHEMES

Several other schemes were tried in order to add the new fluid

element; however, that of Section 5 proved to be the most satisfactory in

regards to smoothness of the P, V, E, v, and R profiles at the time of

adding, and particularly in regards to the conservation of total energy.

The other methods are now briefly

of t* is the ssme for all the methods tried

Equation (5.1).

a. Use of the Shock Quantites at

discussed. The determination

and is that described by

Times t* and t*l

Equations (5.8) - (5.12) were used to determine R:, v:-+, arid

~-~ with, however, the exception that a~~~ was used for a?. Having the

*1
shock quantities at the present * time t* and at the previous * time t ,

the as~ption is made that the internal energy of the new element at time

t = tn is the average of these shock internal energies. Then P~-~ is

determined by the equation of state (2.k).

19



This method produced relatively smooth profiles at the time of

adding; however, the conservation of the total energy of the problem was

not so good as that of the method of Section 5.

b. Original pint on the Hugoniot

-1
Using the scheme of 6a to determine R?, VIn 2, and V~-~~ a

point on the

sentative of

pand the new

we determine

t = tn. The

Hugoniot between time t* and time t*-l is chosen as repre-

the entire new element. We follow along the adiabat or ex-

element isentropically to the volume V: ,. In this manner
1-~

the pressure @ ~ and the internal energy
I-T

representative point chosen was the pint

the shock quantities as the shock crossed the centroid

‘a at time

corresponding to

of the new element.

The results proved to be poor, and changing the representative point

brought little improvement. This scheme, though physically real, is not

consistent with the differencing scheme. This is clear if one considers

the region between the shock and the last mass point. This region is not

carried (in this problem) in the regular advancing scheme until the new

point is added, i.e., the differencing scheme of this small region con-

siders that only the region possesses mass. The energy, pressure, etc.,

are “ignoreduntil the new mass point is added, and only then are the

isentropic changes carried. Thus this method is not appropriate for our

present differencing scheme.

Carrying the region between the shock and the last mass point

as a regular mass point, that is, considering isentropic changes, would

be advantageous; however, the special calculations involved make it cum-

bersome to handle such a calculation for the numerical integration.

20



c. v? variation

Since it can be argued that one really needs an average velocity

for the differencing scheme and not the bounding value, v~was vaied in

schemes a and b by utilizing various space weighting factors. Although

this method was effective in changing the newjy added values to adjust

smoothly in specific cases, it was not possible to find a weighting

scheme which

d.

In

would be satisfactory for all cases.

Gradient as Three Point Fits
.

the shock fitting scheme of Section 4, V5 depends on
()2E

difference as

was carried out

and ~
()

(see 4.3). Equation (4.3’) uses a two point
E

the approximation to the derivative. A three point fit

for both V(r) endP(r)

These values were then
.

used this vslue of V .
E

and the derivative evaluated at r = ~ determined.

substituted in (4.3) and the shock fitting scheme

This scheme functioned nicely on regular cycles;

however, on the add mass point cycles the values of V and
GE

agree to only about 5 per cent. The pressure gradient used

mass point acceleration term was also determined by a t@ree

P(r); i.e.,
()
aP
~ from the fit was used in Equation (3.7).

I
no appreciable effect and did not help the poor convergence

above.

e. No Coupling in the Point Add Scheme

CV5 would

in the last

point fit of

This too had

described

In this scheme the shock properties and the new point quantities

were not determined simultaneously. The new point quantities were deter-

mined titer the shock fitting; however, the same methods outlined in

21



Section 5 for the point adding were still used. This method though good

was not so good as that of the simultaneously determined method of

Section 5.

f. Variation of the Time Interval At

It was found that even though the stability conditions were

good, the new mass point data could be improved U the the interval At

was reduced.

g* Combinations of the Above Schemep

Several combinations of the above schemes were tried. For

exsxnple,schemes a and e were tried, also schemes a, c, and e; or the

scheme of Section 5 with those of e and/or c, etc.

After trying a number of these combinations, the method of

Section 5 proved to be the best.

7* STABILITY CHECKS

The Courant stability condition was employed in order to en-

sure a stable differencing scheme. A stability number was calculated

for each mass point every integration cycle. If the stability number

exceeded a particular vslue, At of the next calculating cycles was

reduced by a factor of 2. Similarly, 5f the stability number remained

below another particular value for several calculation cycles, the At

of the next calculation cycles could be increased by a factor of 2. The

problem was automatically monitored for the stability time halving, but

that for the time doubling was carried out visually by the operator. The

22



approximate difference form of the stability relation used was

(7.1)

In (7.1), the sound velocity was approximated by that of an ideal gas

with 7 = 1.4. The maximum stability number and its corresponding mass

point number were stored each integration cycle and printed as so desired.

8. ENERGYCALCULATIONS

The total energy of the problem was csd.culatidevery integration

cycle; however, the energy calculated on cycle n was the ener~ for cycle

n-1, the reason being that the velocity is centered in time at n-~.

The kinetic energy of each mass point was computed as follows:

()
n-l

()

2
K.E. 1 n-1

i-~ = ‘i-~ ‘i--$ ‘

where Mi-~ = 4/31tp Ar3 I (the mass of the element) and where
o i-~

(8.1)

with

n-1
vi-+ =

n-1
v. =
1

,[(vpy+(f,$] ,

n+
v ● vn-3/2
i i

2
.

The internal energy of a mass point was calculated simply as

~~~ = E;~~ M
i-~” (8.2)

23



The energy within the small region between the shock and the last mass

point is obtained by interpolation. The kinetic energy is

where
2

(

- 2
2

()

n-1 in-l- 1-$-1

‘E-4 = 2

and

n-~ ~ Vn-3/2
n-1 ‘I I
‘I = 2 9

and where

(n-l= 4/3fipo ~n-l - rl
‘e-%

)[~n-1)2 + rl( ~n-l + rl)].

The internal energy is

where

‘-1 = )$-1 +
‘E-* (’

En-1 . q

n-1 n-1
n-1 ‘I
E-2

+ ‘I-1‘) (n-1E-

(8.3)

(8.4)

k
n-l n-l+R

1
2

)

.

The total kinetic energy is then the sum of sJ-1these elemental

kinetic ener@es, or

(8.5)
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Summing over all the elemental internal energies also gives the total in-

ternal energy; however, the smbient internal energy of the medium must

first be subtracted.

The total energy of the problem is then

n-1

& =(K.E.)n-l + (u)n-l IQt-r\. {V. ()

Fiwres 13, 14, and 15 show

energy, and the total kinetic energy,

of the time.

the total ener&y, the total internal

respectively, plotted as functions

9. THE EQUATION OF STATE OF AIR

of state is in tabular form. The pressure isThe equation

determined as a function of the specific energy and the relative spectiic

volume through the table searching, double-quadratic, interpolating sub-

routine 1-B and a table of thermodynamic values. This table is composed

for specific values of loglo(V/Vo) and corresponding

values of PV end E. There are 15 loglo(V/Vo) values

VaJS from -1.2 to +1.6. For each loglo(V/Vo) there

E values. Each set of PV, E corresponds to a specific temperature, thus

61 temperatures are represented. These temperatures range in value from

200°K tO 2,512,0000K.

to each is a set of

ranging in 0.2 inter-

are 61 sets of PV,
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and 10.

mediate,

The basic data sources for the table

The temperature range is divided into

and high. Reference 2 was the source

were References 2, 3, 4,

three parts: low, inter-

for values in the low

temperature range (200°K

dtfferent form from that

data and rearrange it to

- 1900°K). As these data were in quite a

desired, it was necessary to interpolate the

conform with the above chosen tabular form.

Reference 3 was the source for the intermediate range values (20000K -

15,000°K). Values in the high temperature range (15,950°K - 2,51-2,000°K)

were taken from Reference 4. Here again, the data were not in the de-

sired form and interpolation was required. The contribution of radiant

energy to these thermodynamic values was added using the relation

8 5 K4 T4 aT4
Er=~JC—-=—

(hc)3 p p ‘

where a is the radiation density constant

(9.1)

(Pv)r = l/3Ero (9.2)

After these processes were carried out for the high temperature range,

Reference 10 became available. Comparison of

with the above interpolated ones proved quite

ture range values were therefore not changed.

the values in Reference 10

good, and the high tempera-

As each of these references

assumes somewhat dtiferent models for the basic constituents of the air

gas, it is not surprising to find that in the regions of overlapping

there

their

was some disagreement. Although the disagreements were small,

mantiestations in the iterative schemes were acute. The thermo-
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dynsmic functions in the region of overlapping were then

adjusted as to form a continuous fit. The final tabular

values are based on the ground state of the molecule.

plotted and so

internal energy

The loglO(V/VO) values ip the table are normalized to the air

model of Reference 3 at standard conditions. By changing the initial

density constant in sub-routine IB, the normalization of the table is

effectively changed to that of any initial density within the limits of

the tabular data.

The sub-routine functions as follows (see Figure 1): Given

a value of V/VO (normalized to the table) and E, the sub-routine searches

the table values of

effectively locates

W310(v/Vo) or, let

ing curves, it then

curve for the three

loglO(V/VO) and finds the three nearest ones. ‘l!his

the three bracketing sets of PV, E values of constant

us say, curves 1, 2, and 3. Having found these bracket-

searches the sets of PV, E vslues of each bracketing

PV, E sets nearest the given value of E. It then

quadratically interpolates, for each curve, the three PV, E values for

the value of PV corresponding to the given E. Finally, it quadratically

interpolates the three above determined PV values and their corresponding

loglO(V/VO) values for the PV corresponding to the given V/VO. The

pressure is then obtained from this PV value,since V is known.

10. 13rrTm coNDrrIoNs (START~G IYiTA)

The initial conditions for this integration were chosen to be

those of Problem M (see LA-2000, Chapter 6, Section 6.2). These condi-

tions were prepared by J. Hirschfelder snd J. Magee and represent the
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Lw(v/vo)l

@N@@2

Qdv/v+

Lw(v/Vo)4

@dv/vo)5

E
+
Given E

Fig. 1. Schematic diagram of double quadratic interpolation
X nearest points on bracketing curves

O interpolated PV values corresponding to given E
for each bracketing curve

~ interpolated value corresponding to given E and
givenV/VO
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hydrodynamic state of a

Radiation transport was

13.5 KT explosion

considered in the

12 milliseconds titer detonation.

determination of the fire ball

developmental stages. The pressures, velocities, radii, and volumes of

Problem M were used directly; however, the internal energies were de-

termined from the present equation of state using the given pressures smd.

volumes. This was necessary in order to maintain a pressure, a volume,

and an internal energy consistent with this equation of state. similarly

the shock pressure of Problem M was used directly and, from the Hugoniot

conditions, using this shock pressure, the shock volume and energy were

determined.

These initial data sre:

Undisturbed Medium

PO = 1.1613 x 10-3 gm/cm3

Shock Quantities

y = 7.7246 x 107 dynes/cm2

5 = 7.9879 x lometers

.
V~ = 2.7253 x 10-3/sec

Regular Mass Points

‘o = 1 x 106 dynes/cm2 E. = 2.1421 x 109
ergs/gin

Vg = 1.MO E = 3.u62 x 1010 ergsigm

.
E = 2.7608 meters/millisec

Initially there were 16 mass points. The isothezmil sphere

is contained between the center and mass point 1.

At’= 3.994 meters At = 6.25 x 10-2millisec
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These

the change to a

13.2 m; also,

data are identical to Problem M starting data except for

new equation of state~ which changes the.total energY “to

At is one-fourth that of Problem M, and there are cor-

responding changes in the,velocity at n-~.

11. RESULTSANDCOMPARISONTO PROBLEMM

The results of this integration are presented in graphical form

in Figures 2-16. Comparison to Problem M is also shown. The integration oj?

the present problem was carried out to a shock overpressure of about 3

atmospheres, corresponding approximately to a shock radius of 350 meters

and an elapsed calculation time of ~0 milliseconds or 312 milliseconds

after detonation. The calculation was not carried further, however, as

the large amount of machine time required indicated a need for a logis-

tical change in this problem. The time difficulty arose not through the

use of the tabular equation of state, but through the

number of mass

It is believed

were employed,

points added to the calculation as the

that if the methods of H. H. Goldstine

this difficulty would be alleviated.

ever increasing

shock progressed.

6
and J. von Neumann

The comparison to Problem M is quite good, as the comparative

figures indicate. The small differences in the comparative plots are

due primarily to the differences in the

the method of adding new fluid elements

difference (see Figure 16). The number

equations of state used. Also,

contributes to some of this

heading each adiabat in Figure 16

refers to the fluid element followed. ~itially, since there’are 16 fluid
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elements, the pressure-volume point heading the adiabats are identical;

however, the pressure-wlume points of the newly added points (17, etc.)

do not agree because of the difference in the adding schemes.

Since it would be extremely tedious to compute the energy of

Problem M for each integration cycle, no comparative plot is made in

Figures 13, 14, and 15. The initial nonsmoothness of the internal energy

curve can be attributed to the two point interpolation scheme used for the

energy calculation in the region between the shock and the last mass point.

Although the starting data of Problem Mhad an energy content of 13.5 KT,

that of the present problem contained 13.2 ~. Again this difference is

due to the equation of state differences. The positive change in the

total energy from the first integration cycle to the last, representing

about 1400 integration cycles, was 0.66 per cent. The total energy of

Problem M, with the shock front located at 2000 meters, is 13.1 KT,

representing a 3 per cent loss.
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P/P~

8
R (meters)

Fig. ~. Pressure as a function of the Eulerian radius at t = 30 milli-
seconds; ● Problem M, 0 Problem Herman
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