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ABSTRACT

A generalization of the one-dimensional Peaceman and Rachford method

is derived. In this generalization simultaneous equations are set up and

solved once for all values of the temperature over the entire two-

dimensional mesh. This method is extended to treat nonlinear heat flow

and it is unconditionally stable, both for linear and nonlinear problems.

In the nonlinear case an iterative scheme is employed to solve the simul-

taneous equations which provides second”order convergence. This method

differs from the well-known alternating-directionmethod in that the

alternating-directionmethod does not solve the complete set of simultan-

eous equations at each time step, but only a one-dimensional facsimile of

them, and its range of applicability is more restricted.

-3-





CONTENTS

Abstract

1. Introduction

2. The Linear Case

3. Generalization to the Nonlinear Case

4. Stability

5. Extension to Nonrectangukr Regions and Three-
Dimensional Problems with an Axis of Symmetry

6. Numerical examples

References

-5-

Page

3

7

8

16

19

26

30

33





1. INTRODUCTION

We develop an implicit scheme for the numerical solution of the two-

dimensional heat-flow problem. In the linear case we are able to solve

exactly the frilltwo-dimensional set of implicit equations. This solu-

tion is possible because we choose a difference scheme for which the equa-

tions are factorable into two one-dimensional.sets. This factorability

is basic to the method.

We extend this method to nonlinear equations and nonrectangular re-

gions by the use of an iterative scheme to solve the implicit equations

obtained. This scheme provides second-order convergence, and in the cases

we have tested only a veqy few iterations per time step were required.

The method is proved to be unconditionally stable both in the linear

and nonlinear cases. (We consider only a special set of nonlinear prob-

lems in the stability analysis.) We prove stability in the linear case by

the usual type of Fourier analysis and superposition of solutions. In the

nonlinear case ,weshow that the norms of the solutions of the difference

equation with homogeneous boundary conditions tend to zero as time tends

to infinity. This method is limited in mesh size and time-step length

only by the requirements of accuracy and not stability.

By way of illustration we include a discussion of two numerical

examples.
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2. THE LINEAR CASE

The basic partial differential equation which we wish to consider is

a%+&= a-2a0

ax2 &2 x (2.1)

where x and y are space coordinates, t is time, and C%is a constant.

wish to approximate this differential equation by a finite difference

scheme to allow the approximate numerical calculation of the function

If we denote spatial points by either the pair of indices (ij) or the

pair (kX), and time by n, then we may write, using the Einstein summation

convention, a general, linear difference scheme as

We

e.

(2.2)

where the U~1 depend on Wmtities with time earlier than n. We wish to

choose a particular

easy calculation of

differencing scheme

both these properties; however, such a scheme is well known to have the

disadvantage of being only conditionally stable. Implicit schemes are

usually unconditionally stable. One such implicit scheme

peaceman alternating-directionmethod [1]. It represents

is the Douglas-

the application

~ij
kl

which will both represent (2.1) and allow for

L1
‘kl

for successive values no Clearly, an explicit

(B~~ Cfb~~, where by is the Kronecker delta) has

-8-



of the one-dimensional Bruce, Peaceman, Rachford$ and Rice [2] method to

two dimensions. It has the disadvantage that only one direction is

treated exactly at each advance in time. We feel it desirable to choose

a differencing scheme which will permit an exact treatment over the en-

tire two-dimensional mesh. With this view in mind we note that if we may

factor B# as

(2.3)

then we may triangularly resolve ~ and B~ separately as was done in one

dimension by Bruce, Peaceman, Rachford, and Rice and obtain a method for

the direct calculation of the ‘6kl from mekl with m< n. We shall now re-

strict ourselves to g-point difference schemes, i.e.,

B~~=Oifli-kl>l, or lj-~1>~ (2.4)

It will be shown later that ‘j-pointdifference schemes are unfactorable.

Thus let # andB~ be triple-diagonal matrices,

(2.5)

In order to represent Eq. (2.1), B$~ must be a numerical representation

of the Iaplacian plus whatever part of the

rivative involves ~ at the advanced time.

script n),

representation of

Thus (suppressing

the time de-

the super-

Bij *
represents 13@kl+

+%kl ij
(2.6)

-9-



From the symmetry properties of the Laplacian, we may restrict the values

of B: (allowing a different mesh-spacing in the xand y directions) to

Bk+l,1 Bk-l,f =
kl = kl T

Bk,l+l = ~k,l-l = ~
kf kf

~k+l,l+l = k+l,1-1 = ~k-l,f+l = ~k-l,l-l =
kl ‘kl kf kl B

Bkf =
kl E

Expanding (2.3) by use of (2.5) we get from (2.7)

7 ‘ ‘3Y2 = ‘1Y2

A = Y1X2 = Y3X2

P = ‘Iyl = ‘3% = ‘IY3 = ‘3Y3

E = ‘2Y2

These nine equations in six unknowns imply the restrictions*

(2.7)

(2.8)

VA= vg

=x‘1 3 Y, = Y3

It should be noted that if v is

*
More generally it can be shown

mn ijB~~ = Wkl bm

zero, as for a

that if we let

(2.9)

(2.10)

five-point scheme, then

with ~ =Owhenk-m>l, k-m< 0, l-n>l, orl-n<()

. .
and b: = Owheni-m>l, i-m< O,j-n>l, orj-n< O,

then either (2.9) or E = 4V must hold.

-1o-



by (2.9) either A or q must also be zero so that no factorable five-point

scheme is possible.

To obtain a proper representation of the Laplacian, we consider the

Taylor series expansion of f3,

e(x+Ax,y+&) = 6(x,Y) + bh + @y + d(Ax)2 + e(zlx)(+) + f(Ay)2

(2.11)
+ g(&)3+ h(&)2@+ i(&)(dy)2+ j(@)3

Applying the difference scheme (2.7) to (2.11) we obtain

+ (4w + 2v) d(Ax)2 + (41J+ 27) f(Ly)2

As

&+ a2e
—=2(d+f)

ax2 ay2

we must have, by (2.6),

(2W + ~)(&%)2 = 1

Solving (2.9) and (2.14) we obtain

(2.12)

(2.13)

(2.14a)

(2.14b)

(2.14c)

(2.15a)

(2.15b)

(2.15c)
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We may now solve (2.8) and (2.1’j) for xi and yi. Thus,

~i+l
k + [P(AX)2 -2] 5: + 5:-’

}

[ }

(2.16)

x b~’ + [P(QY)2
j-1

-2] ?lj+ 51

Or,

[ 1-1+J =
kl

19(&)2(Ly)2 (2.17)

where, letting

u = p(&)2 - 2

v = (X%)2 -2

we define

(2.18)

u

1

0

0

0

.

.

.

100

Ulo

lU1

Olu

001

o“”

o

0

1

u

.

.

.

●

and
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where

‘o =0 sk=(u”skl)-l

and

B~=~mbj.
ylym

v-r
o

1

0

0

0

.

●

.

x

where

o 0 0 0.

v-r, O 0 0

1

0

0

‘1

1

0

0

0

v-r2 O 0

1

0

0

‘2

1

0

0

v-r
3°

1 v-r4

00

00

‘3 0

1
‘4

01

‘o =0 rl = (v - rl-l)-1

.

.

●

✎

.,

.

● ☛

J

●

(2.22)

(2.23)

(2.24)

If we now define
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(2.25)

and

then (2.2) becomes, by (2.17), (2.21), ~d (2.23),

‘B ‘% =f3(&)2(l!y)2‘~1

(2.26)

(2.27)

Now as w: involves only values of (w) such that v ~ k, u ~ 1> we my

proceed from low index numbers to high ones and solve (2.27) for the ‘~

i bJ involves only values ofby straight-forwardelimination. Then as Xbv ~u

(ij) such that i ~ u, j ~ m, we may proceed from high index nunlbersto

low ones and solve (2.25) for the ‘e.. by straight-forward elimination.
lJ

The formulae involved may be written conveniently as

P(@2(4f)2‘a - ‘gi-l,j-l
- (v - r.-l) ‘gi-l . - (u-si-l)ngi .-l

ngij =
ij

(v-r.
J-l)(u - ‘i-l)

(2.28)

‘e =
ij ‘g~j

-Sne
i i+l,j

- rjn8. - s.r ‘e1,j+l I j i+l,j+l (2*29)

with appropriate modifications at the boundaries.



3. GEITERAIXZATIONTO THE NONLINEAR CASE

In this section we shall consider generalizing the method given in

Sec. 2 to the solution of nonlinear partial differential equations of the

type

(3.1)

In the linear case we modified the equation under consideration by adding

9* to each side. Here we obtain

In the linear case we chose f3 so that the right-hand side was indepen-

dent of 6 at the advanced time. Here this is not possible. Let us, how-

ever, choose

(3*3)

where A is the coefficient of $ at the advanced time in the representation

of the time derivative. In the heat flow problem h will be positive and

in most cases of interest (see Sec. 6) will vary roughly like V-7, where

o~7<l.

side of the

late by the

L& us now guess a value of $, end substitute it in the right

difference equation approximation to (3.2). We may now calcu-

method of Sec. 2 the values of ~
ij

which appear on the left side.

-16-



If our guess was-close to

first order in the error.

If Ifguess = true

the true solution, we may expand everything to

Let

*
+e (3.4)

ifcalculated = Vtme + ~

Then, by (5.2)

peij + V%id =

[ 1ah *
~+Ah(ij)+AAiJ~ ~J ‘iJ

where A A is the representation of the t:imederivative.
ij

(3.5)

Let us re-

strict the possible choice of representations of the time derivative

such that (all V ~ O)

This condition will

‘A
ij = ‘Wij - ‘-’*ij

(3.6)

be satisfied if, for instance,

(3*7)

and it is satisfied for our choice [(4.1)] as long as the temperature

does not drop by a factor of more than 4 at one time step. We shall neg-

lect &E as small in (3.5) because we expect our guess to have only
ij

small systematic errors, rather than the type of errors which would create

large errors in the second derivative. Thus,

Eic{l+- ‘]}~~-XiJfj (38)

Because of our selection[(3.3)] of (3,X must be positive or zero. There-

fore, if we take a weighted average of $ and $Calculated as
guess

-17-



$ca.lcl.lla.ted+ x‘guess
if’ = 1+X

then V‘ will agree with ytme to within

(3.9)

second order in G*. If ~t is now

used as a new guess, we may continue our iteration procedure and be as-

sured of second-order convergence. We shall see in Sec. 6 that this

scheme provides very rapid convergence in a sample case.

-18-



Let us

Sec. 2 for

4.

first consider the

the case of linear

STABILITY

stability of our method as described in

heat flow. We pick a representation of

ae
~ which, to within terms of third order, gives ~ evaluated at the

advanced time, namely,

& (;en - 2&l + &#-a)

From (2.1) and (2.6) we see that @ of Sec. 2 is

P .--L

ZY%it

(4.1 )

(4.2)

Let us obtain the exact solutions to our difference equations. We may ex-

pand any function on the mesh points in a Fourier series, so it will be

sufficient to consider the behavior of

‘e = e. exp
ij

We shall assume that

X(n) =
#/At

Substituting (4.3) into

(iblxi + ib2yj) X(n) (4.3)

(4.4)

(2.1) as expressed by (2.16) we obtain, making

use of trigonometric half-angle formulaej

-19-



(Hb&- ( )1b2Cy
- f3(&)2 + 4 sin2 -& - P(~)2 + 4 sin2 ~ (Pfk@)-2

(4*5)=~z-1-~z-2

3 3

Thus,

–+

By definition,

both real and

Z-7 = 2 ~Jm (4.6)

as b, and b2 are real, I’> 1. Thus, for r ~ 4/3, Z+ are

l>Z

If l“> 4/3, then

IIz+ =
—

(4.7)

Z+ are both complex and

(~r)-1/2 < ~ (4.8)

I_lTherefore as Z+ < 1, the difference scheme is uncondj.tionallystable.

In the limit as h, @, and At tend to zero,

[
(Z-)t/& +exp -C12(b~ +b~)t

1

[
(Z+)t/&+3-t/&exP ~a2(b~+b~)t

1

(4.9)

The root Z- represents the analytic solution of (2.1). The root Z+

enables us to represent any computational error involved in advancing.

from time n-2 ton-l . We see

is dsmped by at least a factor of

The behavior of the solution

itast+ ~with& #O is also

tained by setting Z = 1 in (4.5)

from (4.7) and (4.8) that this error

2 at each time step.

of the difference equations in the lim-

~f interest. This behavior may be ob-

md removing the reality requirement on

-20-



b, and b2. Thus, for the steady state

(2K)2 [J+si%&)]-l +(Ay)2~si#&)]-1 =-2X2&/3 (4.10)

If we have enough mesh points so that &bl ~< 1, ~b2 << 1, then we may

expand the sines to first order and by some manipulation obtain

(4.11)

In the differential.equation, the steady state solution is characterized

by

b;+b~=O (4.12)

In order to get a good steady state solutionwe see from (4.11) and (4.12)

that b~C?& must be small. In order to get a good time-dependent solu-

tionwe mustbe near the limit givenin (4.9). Ws requires thdbl~

and b2Ay be small, and b~cX2Atbe small. Hence, we will get a good asymp-

totic solution when the requirements are met for a good time-dependent

solution. We see from the above analysis that this method is limited in

mesh size and time-step length only by the requirements of accuracy and

not by stability.

In the nonlinear case, the analysis is more difficult but proceeds

in a similar manner.

case (3.1) but shall

We shall not investigate stability in the general

restrict h to be of the form

f(x,Y)9y (4.13)h(x,y,$) =

where O? 7 > -2. We shall for convenience consider only the case of

-21-



homogeneous boundary conditions. We can, of course, simulate nonhomo-

geneous boundary conditions by letting f be very large near the bound-

ary and so make a region near the boundary

In this analysis we follow BeUman [3] md

nonlinear case. We remark that it is both

stability in the usual sense that

an effective heat reservoir.

extend his analysis to the

necessary and sufficient for

(4.14)

hold for any initial conditions and homogeneous boundary conditions. We

shall prove that our differencing scheme is unconditionally stable in

the sense that (4.14) holds for any (&/(@ 2).

Let us fix our attention on a time, which we shall denote by n. Let

us attempt to separate variables. From (2.17) and (3.1) we obtain the

equation which must be satisfied for some separable component, v. It iS

(4.15)

where we assume that

%ijb.)) = Z(D) %ip (4.16)

and that

‘*iJ = g ‘$LJ(D) P(~) (4.17)

In fixing our attention on a time n we imagine that ‘ViJ is somehow known.

If we set

-22-



[

_2.-,

then i’tis easy

solution of the

F =

-; 2-’(0) + *Z-%)
1
=A (4,18)

to show that the solution of (4.15) is the same as the

fouowing problem. Let (suppressing the n and 1))

Find the extrema of F + AG subject to (4.20) and honmgeneous

conditions. If we have NX M interior mesh points, then the

quadratic forms [4] assures us, as

orthogonal vectors
[nVkf(u)l which

fore (4.15). The orthogonality is

~ is negative, that there

satisfy (4.19) and (4.20)

in the sense that

As A can be shown to be the negative of F, we

A<o

We may now solve (4.I8) for the corresponding

(4.18) implies that for the i’of (4.5) we get

must have

(4.19)

(4.20)

boundary

theory of

exist NM

and there-

(4.21)

(4.22)

values of Z+(o). Equation

(4.23)rl = .$?dk>l

by (4.22). Thus Z+

I -1

< 1 as in the linear case. Let us now expand

-23-



‘Vij in terms of

n-l
reproduce ~ij

tional to Z+ and

decomposition as

our set of orthogonal vectors
[n@l ●

In order to

and ‘-2$ij it willbe necessary to use parts propor-

to Z ; however, we have enough freedom to effect this

‘*++ is assumed to be calculated by our difference
.-II

scheme from the values at the two previous times. Let us now compute

the time derivative of the Norm of ‘$ij

Ifwe now approximate~by LUIe~ression of the formof (401) ad

use our expansion in terms of ‘V. (D), then, if p(u) denotes the co-lj

efficient of ‘V (0) in ‘Vij, we get
ij

& NOI’DI (%ij) = (2 + 7) ~ 1P(U)12 Mu)

(4.25)

~wx [A(v)] (2 -I-7) Norm (nifiJ)
D

We must now examine the behavior of~x [A(v)I* ~rst let us con-
U

sider the maximum attained by Max [A(u)] with respect to all variations
u

of components for a fixed ~orm. As this represents continuous varia-

tion over a closed and bounded set, the maximum of Max [A(v)] must be
v

attained at some point of the set by Weierstrass’ theorem. However,

applying the arguments that lead to (4.22) we see that for fixed Norm,

h(v) ~A(Norm) <O (4.26)

-24-



We may

easily

consider a variation in

follows from (4.19) and

.

Normby simply scaling all the Vkl. It

(4.2o) that for any Norm

r

[ 1

-Y
7(I))~ A. Norm (nWij)

Thence, by (4.25) and (4.27) we have

[ 1 [& No~(n$ij) <~o(a+y) NO~(n$44)]’-y

Thus as O? 7 > -2, and A. < 0, we see

zero. In the linear case (y = O) this

that the

ciecrease

proof is subject only to the proviso that & be

(4.1) will give us an approximation of the

that reproduces the sign properly. As the

that our scheme is unconditionally stable,

time

Norm

(4.27)

(4.28)
Ad J

Norm must decrease to

is exponential. This

small enough so that

derivative of the Norm

tends to zero, we see

at least for this special

class of problems. It should be noted that both the diffusion equation

[2] and the radiation transport equation with power-law temperature-

dependent opacity belong to this class.

Analogous arguments for the nonlinear case corresponding to the

arguments involving (4.10) to (4.12) indicate that the requirements for

obtaining good time-dependent and steady-state solutions are about the

same as the requirements for obtaining such solutions in the linear

case. !L’herefore,the nonlinear case has the same properties so far as

I stability and accuracy

1 in which the numerical

I tially from the linear

tive procedure must be

I
i

are concerned as the linear case. The only way

solution to the nonlinear case differs essen-

case in rectangular coordinates is that an itera-

used on each time-step

-25-
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5- EXTENSION TO NONRECM_ REG1ONS AND THREE-
DIMENSIONAL PROBLEW WITH AN AXIS OF SYMMETRY

Consider a simply-connected, two-dimensional region with more than

one boundary point. Riemann* s theorem [5] implies that we may map it by

a one-to-one conformal transformation into a rectan@lar region.

transformation amounts to a change of independent variables. If

u = U(x,y) v = V(x,y)

in such a nonformal mapping, then (3.1) is transformed [6] into

‘(3+3)=h(u~v@
where

‘2= ($$2 + ($)2

= ($)’+ [$)2

= g’(u,v)

Thus, defining

~(u,v,$) . w

g2(u,v)

This

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

-26-



We may therefore first transform our region into a rectangle and then

solve by the method of Sec. 3. It should be noted that when a nonrec-

tangulm region is to be solved, the iterative scheme of Sec. 3 is neces-

sary, even in the linear case.

One simple example of this method is a transformation

ordinates. Let

u + iv = log(x + iy)

or

u=logr

where r and CPare the

tion (2.1) becomes

$8+
bu2

V.q)

standard polar coordinate radius and

e2ua-2 ae
x

to polar co-

(5.6a)

(5.6b)

angle. Equa-

(5.7)

The singularity near the origin (u +-m as r -bO) should be noted. This

transformation actually carries a slit annulus into a

are other more ccnnplicatedtransformations which will

rectangle. There

carry a whole cir-

cle into a rectangle. For-instance,

I

x+iy
~, ~4, -*dw

U+ iv= o

For problems with an axis of symmetry,

nates as the basic point of departure. The

(5.8)

we adopt cylindrical ccmrdi-

Laplacian is

(5.9)

As we assume an axis of symnetry we may choose our coordinate system so
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V is independent of Q. Let us set
.
$*CD=r

Thus Eq. (3.1) becomes

&+& b(l)
= h(r,z,u) ~-—

&2 ~z2 4r2

(5.10)

(5.11)

From the point of view of numerical solution we are free to add a term

involving onlyu and independent of any derivatives, and the method of

solution proposed in Sec. 3 is still applicable. It should be noted that

the iterative scheme will have to be modified to include this term, and

if the coefficient ofu) at the advanced time contributed by the right-

hand side of the difference equation analogue of (5.11) may change sign,

we may no longer pick

tween the guessed and

extrapolate for a new

@ so that the error will change sign everywhere re-

calculated values of w, but we must in some regions

guess of u, rather than interpolate throughout as

we did

The

that

in Sec. 3.

boundary condition to be applied along the axis of symmetry is

i-

dlou))=~
dlogr) 2 (5.12)

This condition ensures that $ will be finite on the axis.

For many problems with an axis of symmetry, cylindrical coordinates

are not the most convenient. Other axial shapes may be treated by con-

fo~lly mapping them into a rectangle. A sphere is corlvenientlY

treated by transforming (5.11) by (5.6) where we, of course, consider
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only the right half r-z plane (-x/2 ~ v ~ Ye/2). Thus for spherical co-

ordinates we get

(5.13)

*
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6. NUMERICAL EXAMP-

In order to illustrate the method described above we programmed it

for an IBM 704. Two sample calculations are described.

We set up initial conditions corresponding to the solution of the

linear problem,

&x,y,t) = sin (~) sin(~) exp
()

2C?.2t
-~

(6.1)

We chose LX2&/(&)2 = 1.02392228 so that the amplitude would be dim.in-

‘1/16 at each time step.ishedby a factor of 10 This choice enables us

to check the accuracy at many times without excessive labor in calculat-

ing the analytic values. We ran this calculation with mesh points 15°

apart (11 X 11 interior points), and advanced it 320 time steps. It =S

found that over the range of 20 decades through which the solution passed,

the only discernible numerical error was a truncation error (the 704

. does not round, but truncates instead) that caused the solution to de-

crease by an additional factor of (1 - 5.44X 10A) at each time step.

When a fixed number of decimal places are carried, the truncation error

is expected to be proportional.to ~4(&)2/[(&)2(&)2]. The difference

between the solution of the difference equation and the differential

-30-



equation is that time flows 2.5 per cent more rapidly in the latter case.

It should be noted that the explicit scheme is unstable for this case.

The calculating time for this case was about 6 minutes, or about 10 mini-

seconds per cycle point.

For our other example we chose radiation flow in a material medium.

The equation is

‘3(64) = 16K ~

If we let V = K-4/3 ~4, (6.2) becomes

(6.2)

(6.3)

[If there were a power-law temperature-dependent opacity, the equation

would be

?.(0%%4) = 16K ~ (6.4)

By use of the identity.

fi&n
= -&;@+n

and the transformation

~= #j

we can put (6.4) in the formof (3.1).]

For our sample cal.culationwe picked 13(&)2 = f3(&)2 = -1.5 and

(6.5)

(6.6)

used 11 X 11 interior mesh points. The other constants were chosen so

that this is an optimal iteration, as definedby (3.3). For initial

conditions we chose

*(x,y) = 1 - ‘in (%9- (%9
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and we maintained the boundaries at unit temperature. We added 0.01 to

V at the central point to prevent it from vanishing. Initially some 10

or 12 iterations were required per time step, but after 15 time steps,

only about 2 iterations per time step were required for three-place ac-

curacy. We make the initial guess of $ at each time step by a linear

extrapolation from the two previous times. The running time for this

calculation was about 15 minutes for 120 time steps, or about 20 milli-

seconds per cycle point. From runs with other values of @(Ax)2 we es-

timate that the accuracy of this solution is about 2 to 3 per cent.

It should be noted that some care must be exercised to prevent

the guessing of a negative temperature, as the occurrence of tempera-

tures of different signs produces an instability which causes the

solution to diverge.
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