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AN APPLICATIONOF THE LAGRANGIAN FUNCTIONAL
TO COLLAPSINGREACTOR CROSS SECTIONS

by

Jeffrey S. Philbin and Byron M. Carmichael

ABSTRACT

The characteristicLagrangian functional for the infinite-mediumtranaport

equation has been used to derive a complete set of collapsing formulas for

broad–group cross sections. These formulas include adjoint-fluxweighting but

reduce to regular-fluxweighting formulaswhen the adjoint spectrum is constant.

The collapsed cross sections were used to generate broad-group r,egularand adjoint

fluxes, which agreed very well with the values predicted by the initial fine-group

spectra. This formulationalao ensures the preservationof the eigenvalue.

,

.

1. INTRODUCTION

The continuousenergy spectrum of the neutrons

in a nuclear reactor ranges from thermal energies

to about 10 MeV. Equstions formulated to describe

the neutron density in a reactor, such aa the

Boltzmann tranaportequation, therefore, include

energy-dependentcross sections in the neutron

balances. The anergy-dependentcross sections are

simply probabilitiesthat a specific neutron reac-

tion will occur.

The traditionalapproach to solving such

integro-differentialreactor equations has been to

formulate a number of discrete energy groups, the

neutron cross aectiona being asaumed constantwith-

in each group. In the caae of an infinite, iso-

tropic medium, this leads to a set of linearly in-

dependent multigroup equationa which can be solved

simultaneously.

Accurate solutions can be ensured by using a

sufficiently fine group structure. However, fine-

group reactor analysis calculations,especially

those for finite-geometryproblems, take a consid-

erable amount of time even on high-speed digital

computers. It ia, therefore,desirable to reduce

the number of groups and still retain an accurate

model for reactor computation. In this paper, a

variational analysia of the multigroup system is

presented. l%is analyais leads to a set of collap-

sing formulas for croaa aectiona which include

adjoint-fluxweighting. This collapsing method

preserves the eigenvalue of the reactor and the

flux distributionapredicted by the fine-group

calculations.

2. THEORY

Given any system described by linear operator

equations, an adjoint solution can be defined to-

gether with a Lagrangian functionalwhose station-

ary property is equivalent to the equations of the
1

systern. A Lagrangian functional can, therefore,

be formulated for the tranaport equation. For

simplicity, an infinite medium and isotropic scat-

tering are aasumed. The steady-state tranaport

equation for such a system ia

.

IIt(E) $(E) = 1 dE’ PS(E’+E) $(E’)

o

J
+x-p “ dE’ u(E’) l.If(E’)o(E’),

o

(1)

or, in multigroup form,

NFGPS

Ll;$g =
X[ 1$’glva(g’%)++<wf>g!. (2)

g’=1



The ad.jointequation ia
In multigroup form, the functionalbecomes

03

!Jt(E) $*(E) =
/

dE’ Pa(E+E’) $*(E’)

o
. (3)

v(E) Pf(E)
+

k i
dE’ x(E’) I#)*(E’),

o

.

or, in multigroup form,

NFGPS

~[

<.uf>gx ,1+j,)Jak-%’)+k g, (4)

g’=1 where pa,
gg

= Ps(g’%) iS the tranafer scatterin8

cross section from group g’ to group g, and the

stationary properties of the functionalare retained.
macroscopic cross section for i reaction

eigenvalue of the reactor

fission spectrum

regular flux

adjoint flux

number of fine groups.

We now assume that a set of broad-group croaa

sections can be found such that the reactor has

the same eigenvalue as in the previous fine-group

formulation.

The Lagrengian functional in terms of the new

parameters can be written down at once:In operator form, these equationa are

H@(E’) = f(E) ~ O

and

H*$*(E’) = g*(E) S O

where the operators H and H* are

(5)

(6)

(7)

(8)

(9)

F=

(11)

:<vPf>G!4G*.
G G’

1[dE’ -Pt(E’) 6(E - E’)

o

1US(E’+E) +$$) (E’) Pf(E’)

AS before, the stationary properties of F are
H=

and

H* _

The

F=

retained. The eigenvalue of the reactor is assumed

to be the same in both functional.+

The Lagrangian functional from the fine- and

broad-group formulation must be equal if they

describe the same ayatem. We ensure this eqUalitY

by equating correspondingterms from each of the

functional. This operation leads to a natural and

necessary definition of the broad-group cross sec-

tions in terms of the fine-groupcroaa sections,

regular fluxes, and adjoint fluxes. For example,

m

HdE’ -Pt(E) cS(E’

o

- E)

1v(E) Pf(E) .+ US(E+E’) +~

Lagrangian functional for this system is

.

-($*,H$) ~ -
[

dE $*(E) H@(E’).

(12)

‘o

This functionalhaa stationary propertieswith

.
Since the broad-group parameters are still unde-

fined, the individualbroad-group terms may be

defined aa follows:
respect to $* and $ which are equivalent to Eqs. 1

and 3 (i.e., perturbing F through $* + $* + 6$*

yields F + 6P and setting 6F = O gives back Eq. 1;

perturbing F through $ + $ + 6$ givea back Eq. 3).

.

(13)

.4



This leads to the collapsing formula for p:

(18)s
‘G’G =

(14)

the eolutions of

epectra, @G is

.

where pt are known, and @g, $: are
g

Eqs. 2 and 4. From the fine-group

obtained by
z ‘$gt <Wf>gt

<wJf>G, =g
‘ cG”’

z ,
bg, (19)

‘$G = z ‘$g.

!+G

(15)
g’cG’

and
The expression for $& in terms of the fine-

group spectra is derived by combining Eq. 15 with

Eq. 14 for the special case when pt is constant,
E!

which yields ‘G”27’2’”
?,

(20)

(16)
The reet of the broad–group cross sections are

eaaily derived from the above results:

(21)
These values for I#JGand $*, in addition to

G
being used in the collapsing formulas (see Eq. 14),

will also serve as standards to which we can com-

pare the broad-group spectra obtained by solving

Eqs. 2 and 4 with collapsed cross-sectioneets.

The cross sections of the new collapsingmethod, as

well as the regular-flux-weightedcross sections,

will be used for this comparison.

NBGPS

(22)

(23)

and

(24)
This procedure of obtaining the broad-group

fluxes directly from the fine-groupspectra elimi-

nates the need for computing $G and +; with regular-

flux-weightedcross sections as suggested by Little
2

and Hardie.

These formulae can be applied to the micro-

scopic cross sections as well. This collapsing

scheme preserves the multiplication factor of the

reactor. In all instances, the LF collapsing formu-

las reduce to the regular-flux-weightingformulas

when the adjoint flux is a constant,

The collapsed cross sections derived from the

Lagrangian functional (LF-weightedcross sections)

can now be written entirely in terms of fine-group

spectra and cross sections.
The same procedure applied to the time-dependent

problem leads to a collapsing formula for the group

velocities. Only one additional assumption is made:The LF collapsing formulas are

O(E,t) = $Ig eat, (25)
,

.

t
‘G

where E <E<E and u 5 stable inverse period.
g-1 g’

(17),

The resulting multigroup equations and Lagran-

gian functionalwill then be the same as before,

except that a time-absorptionterm appears along



with the total cross sections. The functional for

the time-dependentmultigroup problem la (32)

.

.(33)

(26)

Thus, the group velocities are collapsed as follows:
As pointed out before (see Eqs. 21-24), the

rest of the broad-group cross sections may easily

be derived from the above results. Equations 29,

30, and 31 are developed by equating the reaction

rates of the broad and fine groupa, where the broad-

group flux is given by

(27)
‘G = .

The multigroup expression for the neutron life-

time in the infinite medium Ls derived from pertur-

bation theory. If the lifetime is invariant under

the transformationfrom fine groups to broad groups,

z‘$G= ‘$g.

ga

(34)

4. SOLUTION OF THE INFINITE-MSDIUMMULTIGROUP
EQUATIONS

As demonstrated in Sections 2 and 3, one can
(28)

obtain reduced aeta of cross sections in terms of

This approach is entirely consistentwith the La-

grangian functional formulationand lenda further

support to the correctnessof this collapsing

procedure.

the fine-group parameter.

For the special case of an infinite medium, the

regular fluxes and adjoint fluxes are obtained by

solving Eqa. 2 and 4.

We begin the solution by imposing normalization

conditions,
3. REGULAR-FLUX-WEIGHTINGFORMULAS

Sets of cross sections are usually collapsed by

regular-fluxweighting techniques. The regular-

flux-collapsingformulas are (35)

g=l g=l

on Eqs. 2 and 4. These conditi.onaprovide ua with

a definition for k and transform Eqs. 2 and 4 into

two inhomogeneoussystems of equations:

(29)

NFGPSz 4g<vlJf>g

<vPf>G=gcG ,

z ‘$g

gcG

v: f$g - z @g,I$,g=xg

g’=1

(36)

(30)

.

.

NFGPS

(37)

P:lG- (31)

6
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Equation 36 represents a set of linearly in-

dependent equations for the unknowns $g. Similarly,

Eq. 37 is a set of linearly independentequationa

for the unknowns $:. These two inhomogeneoussys-

tems can be written in matrix form and solved

separately. With tensor notation and the summation

convention for repeated indices, Eqs. 36 and 37

become

[
Ptti , 1- ll:g, ‘$:1= Vvf
ggg 13”

(38)

(39)

In this form, the individualmatrix elements are

easily identified. Let us now define

Kronecker delta,

co”lumnvector of regular fluxes, @g,

column vector of adjoint fluxes, $*,
g

g x g square coefficientmatrix of the
adjoint-fluxeswhose individual elements
are:

B
13g’

= ll~gg, - V:g,,

transDose of B u coefficientmatrix of—
the regular fyuxes,

(
Note: Bt =B

l%’ f3’g [
= p: 6g,g - U:,g

1)

and

~ ~ inhomogeneouscolumn vector of the regu-
lar flux system,

= inhomogeneouecolumn vector of the ad-~-
joint flux system.

The matrix syetems to be solved are

&tl[Ql - [xl

[gl[Q*l = [Wfls
—

and the solutions to

Q= [fl-l [xl

Q*= [g-l [Vhf].

(40)

(41)

these systems are

(42)

(43)

These solutionswere obtained by matrix inver-

sion on a computerwith the Linear System Solver

subroutine.* This subroutine can solve systems

with as many as 59 groups in less than 10 sec.

This matrix inversionmethod eliminates the time-

consuming iterationmethod of solution.

* This subroutine,LA-F’D04,can be obtained by
writing to C Division of the Los Alsmos Scientific
Laboratory.

5. APPLICATIONS

The LF and regular-fluxcollapsing schemes were

applied to three sets of reactor core cross sec-

tions:

(1) a 59-group set of thermal cross sections,3

(2) a 25-group set of thermal and nonther&
cross sections for a thermal reactor, and

(3) a 16-gfoup set of fast reactor cross sec-
tions.

Fine-group cross sections were collapsed into a

broad group over a range where the adjoint flux was

flat or relatively flat. The collapsed cross sec-

tions, the broad-group regular fluxes from Eq. 15,

and the broad-group adjoint fluxes from Eq. 16 were

computed. Then a new aet of broad-group fluxes was

computed by solving Eqs. 42 and 43 (written for a

reduced number of groups), with the cOllapsed cross

sections forming the matrix elements.

Comparing these values with the broad-group

regular and adjoint fluxes calculated previously

from Eqs. 15 and 16 provides a check on the accu-

racy of the collapsed cross sections.

After the collapaed cross sections and the broad-

group regular and adjoint fluxes were obtained, the

eigenvaluewas recomputed and compared to the initial

eigenvalue. Agreement waa observed to four or more

significant figures for both LF and regular-flux

weighting. This agreement was expected, since it

can be shown theoreticallythat the eigefivaluefor

the infinite medium is unaffected by these two col-

lapsing methods. The individual cross sections

depend, of course, on the choice of the weighting

function.

The LF and regular-flux-weightingmethods for

collapsing cross sections have been incorporated

into two codes, CHILE and TAOS. The operational

characteristic of these codes are described in

Appendices A and B.

6. RESULTS

6.1 59-Group Set of UHTREX Thermal Cross Sections

Microscopic cross sections and atom densities

for the UHTREX reactor3 at Los Alamos Scientific

Laboratory were the input data for this problem.

The nuclidea in the core mixture and their atom

densities are given in Table I. The only nuclide



TABLE I

UHTREX CORE COMPOSITION

Atom Density
Nucllde (atoms/barn-cm) Description

Aluminum 7.36127 X 10~~ Absorber
Boron 1.10252 X 10_5 Absorber
Iron 4.05971 x 10-5 Absorber
Uranium-235 1.06540 X 10_4 Absorber
Thorium-232 1.51100 x lo_2 Absorber
Carbon (393”K) 8.10805 X 10 Scatterer

with a scattering transfer matrix in the assembly

was carbon. A group scattering transfer matrix,

as(g’+g), was constructed for carbon from a point

scatteringmatrix, Us(Eg,+Eg). Appropriate source

terms were derived for the thermal energy groups by

calculatingthe probabilityof neutrons above the

thermal boundary (3.056 eV) scatteringinto each of

the 59 thermal groups.
4

The sources, normalized

to 1, are:

’59
= 0.852

’58
= 0.148

s = O.O
g

05g557,

where 59 la the highest thermal energy group.

A code, THMOD, was designed to collapae this

59-group aet of thermal cross sections by LF weight-

ing.
6

It is modeled after THEKMl, which executes

the collapse by regular-fluxweighting. THMOD CSIl

collapse both macroscopic and microscopic cross

sections of a medium. The input specificationsfor

THMOD are given in Appendix C.

The 59 groups were collapsed to 13 groups. The

THMOD cross sectionswere compared with the THERM

cross sections. Agreementwaa observed to four

significant figures for macroscopic cross sections

and, in general, to five significant figures for

microscopic croaa sections. These two different

collapsingmethods give similar results because the

adjoint flux for this problem waa nearly constant

over the entire 59 groups. This close agreement

was expected since <VPf>g/P~, the probability of a

fission reaction in group g, is nearly constant in

the thermal range. For such a case, the adjoint

flux ia nearly constant end the LF collapsing for-

mulas reduce to the regular-fluxcollapsing

formulas.

The LF cross sections were used in the multi-

group equations to generate new regular and adjoint

fluxes, and the agreement between these calculated

fluxes and the broad-group fluxes defined in Eqs.

15 and 16 waa remarkably good. The values agreed

to four significant figures or better for all

groups. The eigenvaluewas accurately preserved

after the collapae:

km = 1.631 59 groups

km= 1.631 13 groups (LF weighted)

6k/k = 0.00 59+13 groups.

Similar results were obtained with the regular-flux-

weighted cross sections.

6.2 25-Group Set of UHTREX Cross Sections

This 25-group sets of cross sections is a com-

bination of the 13 collapsed thermal cross sections

just discussed and 12 nonthermal groups. The com-

plete set is obtained as punched output from THERMl,

with a table length of 13 for each group. GHILE

requires a special set of reading cards to accom-

modate this set. The nuclides and atom densities

are those given in Table II, but the nuclidea are

no longer classified as absorbers and scatterers,

because an abbreviated transfer matrix has been de-

fined for each nuclide in the mixture. Three col-

lapsing routi.neawere investigated: 25+6, 25+2,

and 25+1. The 25-group regular and adjoint fluxes

are shown in Figs. 1 and 2. Superimposedon the

fine-group fluxes is a collapsed set of fluxes (the

6-group set). The adjoint flux for this thermal

reactor is nearly constant. Thus, the difference

between the LF-weighted and regular-flux-weighted

cross sections will be less significant for UHTKEX

than for the Argonne fast reactor,which has an

irregular (nonconstant)adjoint flux spectrum.

Table 11 presenta a 25-group set of microscopic

cross sections for boron and sets collapaed to 6

and 2 groups by both LF and regular-fluxweighting.

The differencesbetween the LF cross sections and

the regular-flux-weightedcross sections become

important if three-placeaccuracy is required for

subsequent calculations. The agreement between

the aluminum cross-sectionsets was slightly better

than that for boron. The total macroscopic cross

sections of the reactor (after collapsing by both

methods) agreed to four significant figures for the

6-group sets and to three significant figures for

the 2-group sets.

.

.

.

4
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Fig. 1. Regular flux spectra for IJHTREXreactor

TA8LEII if one is interested only in preserving specific
EORONMTCROS03PICCROSSSECTIONSFOR U7STR5XRMCTOR reaction rates, the regular-fluxmethod gives
25-CrOuPSet

Cfoton collapsing
M Schemes

1
2
3

4

5
6

7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25

1.52
1.79
2.14 1
2.27

3.16
4.08 1
4.97
7.00
13.00 1
23.5o
36.50
54.50 1

95.8514
149.492
201.168
228.955
257.548
292,518
357.325
453.072
569.614
694.521
823.537
1068.13
1838.22 A

1
1

2

3
1

4

5

162

Collapsed6-crOuPSet
*c..~on (barns)

Broad LF- Regular-Flux
EEs?!x?Weifihted WeiRhted

1 1.85 1.85
2 2.27 2.27
3 3.64 3.64

4 8.43 8.4L

5 38.18 37.99
6 397.423 396.213

collapsedZ-croupSet

1 11.56 11.22
2 397.423 396.213

better values and, therefore, cross sections ob-

tained by this method should be used for such

calculations.

The new eigenvalue is calculated from

NBGPS

kl =
x

@G<vllf>G ,

G=l

where the @c are solutions of Eq. 42, using the

(44)

appropriate set of collapsed cross sections as the

matrix elements (either LF or regular-fluxweight-

ed). Let us define another eigenvalue

NBGPS

k2 =
z ‘$;XG (see Eq. 35). (45)

G=l

with LF collapsing,k, = kp is always obtained,

but with regular-fluxcollapsing, kl # k2. The

It is interestingto note that the total reac- reasons are twofold:

tion rates for boron and aluminum (the only ele- 1. +; generated with the regular–flux–weighted

ments investigated)using the 6-group set of LF cross sections generally show poor agreement

cross sections differed by only 0.3% and 0.1%, with the original $*, whereas agreem,?ntis ex-

respectively,
G

from their initial reaction rates. cellent when LF-collapsed cross sections are

The error in the ratio of these reaction rates was uaed.

less than 0.3%. However, as pointed out before,

~ 1.6 ~“’1’’,’1’
I Ill 1~1~ 1 I 1 111111 I I [111111 I 1 I 111111 1 I 11111!1 I 1 1111111 1 1 I 111111 I I II IIIT——

Zx

—————

— ~ 1,4-
OJ —FINE GROUPS (25)
=LI.2 -
n

----BROAD GROUPS(6)

a 1.0~11[11 [ I lllu_

10-3 eV 10-2eV 10-’eV leV 10eV 100eV lkeV 10keV 100keV lMeV 10MeV

ENERGY
Fig. 2. Adjoint flux spectra for UHTRSX reactor,

9



2. Even if the original $8 are used, there is

still a alight error in k2 because the x are
g

simply accumulated in the regular-fluxforma-

tion

(46)

such that the sum of the~willbel.o, where-

as in the LF formulationthe Xg are weighted

The LF method exhibita an inherent stability to

repeated collapsing. A set of one-group constants

is presented in Table III. The LF formulation

leads to consistentone-group constants,whether

TABLE III

ONE-GROUP CONSTANTS FOR THE
AND THE ARGONNE FAST

UHTRSX Reactor

Group LF-Weighted
Constant 25+1 25+6+1——

km 1.499 1.499
-1 -1

pt x 10 cm 3.508 3,508
-1 -1

pa x 10 cm 3.487 3.487
-3 -1

Va x 10 cm 2.091 2.091

v x 105 cm/sec 8.871 8.871

.!x 10-4 sec 5.392 5.391

Argonne Faat Reactor

Group LF-Weighted
Constant 16+1 16+4+1.—

km 1.425 1.425
-1 -1

pt x 10 cm 1.564 1.564
-1 -1

Us x 10 cm 1.498 1.498
-3 -1

ua x 10 cm 6.596 6.596
8

v x 10 cmlsec 4.878 4.878

1 x 10-7 sec 3.108 3.108

UHTREX RSACTOR
REACTOR

Regular-
Flux~Weighted
25+1 25+6+1——

1.499 1.499

3.486 3.486

3.464 3.464

2.200 2.200

9.277 9.276

5.156 5.155

Regular-
Flux-Weixhted
16+1 16+4+1——

1.425 1.425

1.634 1.634

1.581 1.581

5.354 5.354

4.222 4.222

3.591 3.591

the collapsing scheme is 25+1 or 25+6+1. The

regular-fluxmethod also leads to fairly consistent

resulta, but the agreement is not as good aa with

the LF method. Collapsing schemes 25+2 and 25+6+2

ahowed similar results. Different values were pre-

dicted for neutron velocity and lifetime by the two

weighting methods. The broad-group fluxes from Eqs.

15 and 42 for the collapsing scheme shown in Table

II are given in the first part of Table IV.

10

Broad

l?EQY12

1
2
3
4
5
6

Broad

!?EQYl?

1
2
3
4
5
6

TABLE IV

BROAD-GROUP FLUX SPECTRA
FOR THE UHTREX REACTOR

Regular Fluxes

Eq. 42 with
LF-Weighted

u Cross Sections

36.08 36.08
18.13 18.13
58.50 58.50
91.97 91.98
44.93 44.93
204.89 204.89

Adjoint Fluxes

Eq. 43 with
LF-Weighted

Eq. 16 Cross Sections

1.499 1.499
1.499 1.499
1.500 1.500
1.511 1.511
1.595 1.595
1.647 1.647

Eq. 42 with
Regular-Flux-

Weighted
Cross Sections

36.08
18.13
58.50
91.97
44.94
204.91

Eq. 43 with
Regular-Flux-

Weighted
Cross Sections

1.499
1.499
1.499
1.503
1.564
1.630

In Table IV, the agreement of columns 2 and 3

is only slightly better than that observed between

columns 2 and 4. It is interesting to note, however,

that column 4 showa ita poorest agreement in group

6, whi<h is the severeat collapsing test, since it

contains the most fine groups (see Table II). In

contrast, the $G calculated from LF-weighted croaa

sections agreed with column 2 consistently for all

cases investigated,regardless of the collapsing

scheme chosen. The second part of Table IV pre-

sents the resulta for the adjoint flux. Here the

agreement of the firat two acts of adjoint fluxes

is notably better than that of the first and third

seta. These results are typical of all collapaed

seta of cross sections which were investigated. In

all cases, the LF cross-sectionacts yielded more

consistentvalues for the regular and adjoint

fluxes of the reactor.

6.3 16-Group Set of Argonne Fast Reactor Cross
Sectional

Tha nuclide mix from the central core region of

the Argonne Fast Reactor7 was used for the follow-

ing calculations. The 16-group flux spectrum (per

unit lethargy) ia plotted in Fig. 3, except for the

low-energy groups where the flux waa negligible.

Superimposedon this set of fluxes is a set of

.
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Fig. 3. Regular flux spectrum for the Argonne

Fast Reactor.

broad-group fluxes (4 groups). The corresponding

adjoint fluxes are plotted in Fig. 4. The total

macroscopic cross sections are shown in Fig. 5.

Microscopic cross sections for
239

Pu are given

in Table V. The cross sections of energy groups 9

through 16 were weighted very lightly, because the

flux in those groups was practicallynegligible.

Since the adjoint flux in the Argonne Fast Reactor

is more irregular than that in the UHTREX reactor,

the LF-weighted cross sections and the regular–flux-

weighted cross sections in the Argonne reactor will

not agree as closely as they did in the UHTREX cal-

culations. The one-group constants for the Argonne

Fast Reactor are given in Table III. The regular

and adjoint flux spectra generated by both sets of

4-group cross sections are given in Table VI.

x
3
-1
IL

TA5LE V

M2CS!3SCOPICs50SS SECTIONSFOR
239PU

A5GONNIlPAST ~cTOR

16-OrouPSet t (barns)OPu
Pine t (barn,) Collapsing Broad LF- Res.ular-Flux-

EE!!P ‘~ Scheme- * Weighted Weighted

1
2

:

5
6

7
s
9
10
11
12
13
M
15
16

7.

4.25
4.5 1
4.8
5.699991
8.39999
13.19991
13.4999
16.6999
34.2999
35.0999
65.1999
26,6999
33.0
171.599
1300.0 I
990.0 J

CONCLUSIONS

}

1
1 4.42 4.42
2 5.4s 5.49

21
3 9.66 9.93
4 14.73 14.60

3 Collcmsnd2-Or.mmSet

}

1 8.03 5.45
2 14.73 14.60

42

The LF method ie a complete and accurate method

of collapsing cross sections. For the infinite-

medium problems which were diecussed in the report,

the eigenvalue,broad-group regular fluxes, and

broad–group adjoint fluxes predicted by the fine-

group calculationsare preserved when computed with

the LF-weighted cross sections. The agreement with

the fine-group calculationswas as good as, or

slightly better than, the agreement afforded by the

regular-flux-weightedcross eections, but the dif-

ference between the two methods was not substantial

for infinite-mediumproblems. The regular-flux-

weighted cross sections are preferable for the

preservation of reaction rates.

I.7 I I 1111111 I I 111111[ I I I 111111 I I I 11111[ I 1 1111111 ! 1 [ 111(11 I I I 111111 I I I 111111 I I 1 Illrl’
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lwg.4. Adjoint flux spectrum for the Argonne Fast
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Fig. 5. Total macroscopic cross sections for the Argonne Fast Reactor.

TARLE VI

BROAD-GROUP FLUX SPECTRA
ARGONNE FAST REACTOR

EkE
13.82
41.27
120.5
11.20

E.q.16

1.534
1.309
1.092
0.822

Regular Fluxes

Eq. 42 with
LF-Weighted
Cross Sections

13.82
41.27
120.5
11.20

Adjoint Fluxes

Eq. 43 with
LF-Weighted
Cross Sections

1.534
1.309
1.092
0.822

Eq. 42 with
Regular-Flux-
Weighted

Cross Sections

13.82
41.27
120.5
11.19

Eq. 43 with
Regular-Flux-
Weighted

Cross Sections

1.540
1.323
1.156
0.808

REFERENCES

1.

2.

3.

4.

5.

6.

7.

The space-dependentproblem presents a more

rigorous and more important test of the LF

collapsing technique. Investigationin this area

ia now under way. For most applications,few-group

cross sections can be constructedby the regular-

flux weighting method, but for reactivity coeffi-

cient calculations,flux-weightedcross sections

are often inadequate. The LF method of collapsing

may improve the accuracy of these calculations.

D. S. Selengut, “VariationalAnalyais of Multi-
Dimensional Systems,” Nuclear Physics Research
Quarterly Report HW-59126, 89, Hanford Atomic
Products Operation, General Electric (January
20, 1959).

W. W. Little and R. W. Hardie, “Methoda for
Collapsing Faat Reactor Neutron Cross Sections,”
Nucl. Sci. Eng. ~, 402 (1967).

“UHTREX Facility Description and Safety Anal-
ysis Report,” LA-3556 (Revised),Loa Alemoa
ScientificLaboratory (1967).

“Los Alamoa Group Averaged Cross Sections,”L.
D. Connolly, cd., LAMS-2941, Los Alamoa Scien-
tific Laboratory (1963).

G. E. Hansen and W. H. Roach, “Six and Sixteen
Group Cross Sections for Fast and Intermediate
Critical Assemblies,”LAMS-2543, LOS Alamos
Scientific Laboratory (1961).

J. C. Vigil, private communication(1966).

“Argonne 1000 MW(e) Metal Fueled Faat Breeder
Reactor,” ANL-7001. Ar~onne National Laboratory
(1966).

.

.

.

,

12



APPENDIX A - CHILE

For each collapsing scheme, two complete sets

of broad-group macroscopic cross sections and x

factors are punched. The broad–group regular and

adjoint fluxes from Eqa. 15 and 16 are also punched

out. One set of broad-group cross sections is col-

lapsed by the regular-fluxmethod, and the other by

the LF method. These cross sections appear on the

printout along with the results of a one-group col-

lapse, which is always calculated regardless of the

specific collapsing scheme requested. It should be

noted that the adjoint-weightedx factors do not,

in general, sum to 1.0. This fact is not surpris-

ing, since thie method imposes no restrictionon

the broad-groupx’s. Physically, the broad-group

X’S represent a perturbed fractionaldistribution

of fission neutrons. This leads to an interesting

result in the one-group case. Since the multipli-

cation factor, k, is the total number of fission

neutrons divided by the

absorbed, then
X<vuf>

k=~.
a

total number of neutrons

Normally, x would be defined as 1 when setting up

a one-group problem, and k reduces to:

<vlJf>
k=—.

Pa

However, when LF weighting ie used to collapse

multigroup cross sections,X generally will not

equal 1.

CHILE can easily be extended to compute micro-

scopic collapsed cross sections by storing the

fine-group cross sections for each element on a

scratch tape and recalling them, element by eJ.e-

ment, after the multigroup equations have been

solved. This has been done for the 59-group set

of thermal cross sections.

INFUTSPECIFICATIONSFOR CNILF.

Card Format E!Ks.Y Descrivtion

1 12A6 A(I),1-1,12 Title card for problem

2 1216 NFCPS Numberof fine groupe

NSCPS Number of broad groups
NELEN2 Numberof nuclidesin the

mixture

3 1216 NR(N) ifip,he6tfine group included
in broad groupN

4 1216 NC(N) Lowestf2.negroup included
in broad groupN

5 6E12.5 E(I),1-l,LFGPS Fins-groupupper energy
where boundaxy(eV)(exceptforthe

LFGPS-NFGPS+l last entry,which is the lower
boundaryof theloveatenergy
group)

6 6F,12.5 VEL(I),1-l,NFCPS Fine-groupvelocitfen (cm/shake)

7 6E12.5 S(I),1-l,NPGPS Fine-groupsources(fioaion
spectrum)

Repeatcards 8-11 for each nuclide.

8 12A6 AID(I),1-1,12 ID card for n“clide

9 6E12.5 ADEN Atom density(10-24.stmmlcc)

Card@ 10 and 11 ara for 16 fine groups;thaymumt be repeated
16 timem .

10 6E12.5 USLSS1 Not used
XF(I) Fisnioncrone nectionfor group I
XS(I) Scatteringcrasssectionfor group I
XA(I) AbsorptioncrosssectionforgroupI
SFN(I) Wf
XTOT(I) TotalCrOSOOe.CtiOn

11 6E12.5 02SANS(I,I) &(I+I)
GTRANS(I-1,1) OS(l-l+l)
GTRANS(I-2;I) 00(1-2+1)
GTMNS(I-3,1) ,3S(I-3+1)
GTSANS(I-4,1) cS(I-4+1)
GTRANS(I-5,1) ,Jll(~-fi~)
I-l,NFGPS

For 25 groupsreplacecardaID and 11 by card 10A.

10A 6E12.5 XA(I) .3a(I)
XFN(I) ~af(~)
~OT (I) at(I)
USLES1 See card 10

GTRANS(I+4,1) ,JS(I+q+~)
GTRANS(I+3,1) .3S(1+3+1)
GTSANS(I+2,1) @( 1+2+1)
GTRANS(I+l,I) as(1+1+1)
CTRANS(I,I) Sea card 11
GTSANS(I-1,1) See card 11
GTruNs(I-2,1) Sea card 11
CTRANS(I-3,1) Sae card 11
GTRANS(I-4,1) Sea card 11
1-1,NFGPS

.
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APPENDIX B

TAOS

A second code, TAOS, solves the multigroup Eqs. sections for generatingbroad-group regular and

2 and 4 for a reduced number of groups using the adjoint fluxes. The output of TAOS displays these

collapsed cross sections as input data. Both LF- fluxes next to the fluxes which were defined earlier

weighted cross sections and regular-flux-weighted in terms of the fine-groupregular and adjoint fluxes

cross sections are tested by this code; TAOS (see Eqs. 15 and 16). This program also computes

contains an optional routine for collapsing to an the new eigenvalue from Eq. 44 (written for a re-

even smaller number of groups. Primarily, however, duced number of groups) and compares it with the

TAOS makes it possible to use the collapsed cross initial eigenvalue.

Card

1

2

3

4

5

6

7

8

INPUT!SPECIFICATIONSFOR TAOS

Fine-group input for TAOS is the collapsed output from CHILE.

Format J!!lEXY Description

12A6 A(I),1-1,12 Title card for problem

1216 NFGPS Number of input groups (broad groupa from initial
collapse)

NBGPS Number of broad groupa (for multiple collapsing)
NELE2TI’ Number of nuclides in the mixture

1216 NK(N),N=l,NBGPS Highest fine group included in broad group N

1216 NG(N),N=l,NBGPS Lowest fine group in broad group N

6E12.5 OLDEIG Original eigenfunctionof the reactor (calculated
in CHILE)

6E12.5 E(I),I=l,LFGPS Fine-group upper energy boundary (eV) (except for
the last entry, which is the lower boundary of
the lowest energy group).

6E12.5 VEL(I),I=l,NFGPS Fine-group velocity

6E12.5 S(I),I=l,NFGPS Sources

Repeat cards 9 end 10 for each nuclide.

9 12A6 AID(I),I=l,NFGPS ID card for nuclide

10 6E12.5 ADEN Atom density collapsed (10-24 atoms/cc)

11 6E12.5 SIGA(I),I=l,NFGPS Macroscopic absorption cross sections from CHILE

12 6E12.5 FISNU(I),I=l,NFGPS <VPf>G from CHILE

13 6E12.5 SIGTOT(I),I=l,NFGPS U& from CHILE

14 6E12.5 ((EKVR(I,J),J=l, PS(G+G’) macroscopic transfer matrix from CHILE
NFGPS),I=l,NFGPS)

15 6E12.5 OLDPHI(I),I=l,NFGPS Defined regular fluxes from CHILE

16 6E12.5 OLDPHIA(I),I=l,NFCPS Defined adjoint fluxes from CHILE

.

.
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APPSNOIXc

INPUTSPECIFICATIONSPOR TNM3D

Card Format E!wY Deacription

1 12A6 A(I) ,1-1,12 Title card for problem

2 1216 NFCPS Numberof fine groups
NEWS Numberof broad groupn
NAZIS Numberof ●bnorberm
NRSR Numbarof scatterer

3 1216 NX(N),N-1,NSCPS Highestfinn group included
in broad 8roupN

4 6s22.5 EFSI Convergencecriterionon
calculatedflux (notused)

DBS ns2 leabge allowancefactor

5 6E12.5 E(I) Ffne-sroupupper e“argy
boundarfen(eV)

Repeatcards 6-1o for each ●baorber

6 12A6 AID(I),1-1,12 IO card for absorber

7
-246E12.5 AOEN Atom density(10 atomslcc)

AN7J VW “ O for nonfimsile
nuclide)

8 6E12.5 XA(I),1-l,NFCPS Absorptioncrosssectionsby
fine groups (barne)

9 6E12.5 SS(1),1-l,NPOFS Scatteringcroonsectio”c.by
fine gmupa (barns)

10 6E12.5 SF(I),1-l,NFOFS FiesionCross sectianaby
firm groups (barns)(omit
card 10 if ANN-O)

RePeatcarda11-15 for each scatterer

11 12A6 AID(I),1-1.12 IO card for scattarer

12 6E12.5 T Temperatureof scatterer(“K)
FSX Free atom scattering crom

section (barns)
AOSN See card 7

13 6E12.5 XA(I),1-l,NFWs s.. card 8

14 6E12.5 X5(I),1-l,NFGPS See card 9

15 6E12.5 VSC(M) ,lt-1, 5 Half kernelfrom SOM42T
I~J,J-1,NFGPS

16 6e12.5 s(I),1-l,NPOFS Fim-grouP nources
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