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AN APPLICATION OF THE LAGRANGIAN FUNCTIONAL
TO COLLAPSING REACTOR CROSS SECTIONS

Jeffrey S. Philbin and Byron M. Carmichael

ABSTRACT

The characteristic Lagrangian functional for the infinite-medium transport

equation has been used to derive a complete set of collapsing formulas for

broad-group cross sections. These formulas include adjoint-flux weighting but

reduce to regular-flux weighting formulas when the adjoint spectrum is constant.

The collapsed cross sections were used to generate broad-group regular and adjoint

fluxes, which agreed very well with the values predicted by the initial fine-group

spectra. This formulation also ensures

the preservation of the eigenvalue.

1. INTRODUCTION

The continuous energy spectrum of the neutrons
in a nuclear reactor ranges from thermal energles
to about 10 MeV. Equations formulated to describe
the neutron density in a reactor, such as the
Boltzmann transport equation, therefore, include
energy-dependent cross sections in the neutron
balances. The energy-dependent cross sections are
simply probabilities that a specific neutron reac-

tion will occur.

The traditional approach to solving such
integro-differential reactor equations has been to
formulate a number of discrete energy groups, the
neutron cross sections being assumed constant with-
in each group. In the case of an infinite, iso-
tropic medium, this leads to a set of linearly in-
dependent multigroup equations which can be solved

simultaneously.

Accurate solutions can be ensured by using a
sufficiently fine group structure. However, fine-
group reactor analysis calculations, especilally
those for finite-geometry problems, take a consid-
erable amount of time even on high-speed digital
computers. It is, therefore, desirable to reduce
the number of groups and still retain an accurate
model for reactor computations. In this paper, a

variational analysis of the multigroup system is

presented. This analysis leads to a set of collap-
sing formulas for cross sections which include
adjoint-flux weighting. This collapsing method
preserves the eigenvalue of the reactor and the
flux distributions predicted by the fine-group

calculations.

2. THEORY

Given any system described by linear operator
equations, an adjoint solution can be defined to-
gether with a Lagrangian functional whose station-
ary property is equivalent to the equations of the
system. A Lagrangian functional can, therefore,
be formulated for the transport equation. For
simplicity, an infinite medium and isotropic scat-
tering are assumed. The steady-state transport

equation for such a system 1is

WSE) (B = / dE' uS(E'-E) $(E")
0

(¢}
+XS—)—RE / dE' v(E") u (E') ¢(E"),
0
or, in multigroup form,
NFGPS X
= S(e" -E
Hg 0g > bgr|¥ (g'+g) + k<"“f>g'] . (2)
8 =



The adjoint equation is

uE(E) ¢*(E) = fdn' LB (ESE') $*(E")
0 . (3)
V(E) 1g(E)
+— fdn’ X(E') $*(E"),
0
or, in multigroup form,

NFGPS

gD,
t - z : s ' £78
e ¢§ fbg.[u (gg') + — xg.] s %

g'=1

U = macroscopic cross section for i reaction
k = eigenvalue of the reactor
X = fission gpectrum
¢ = regular flux
¢* = adjoint flux
NFGPS = number of fine groups.

In operator form, these equations are

HO(E') = £(E) = 0 (5)

and
H*¢*(E') = g*(E) = 0 (6)

where the operators H and H* are

H = f dn‘[—u“(ﬁ‘) 8(E - E")
0

+ e + XE v ufa:')] (7)

and

H% = f dn‘[—u‘(n) §(E' - E)
0

8 een) + XED y) uf(E)] . (8)

The Lagrangian functional for this system is

F = -(¢*,Hp) = —f dE ¢*(E) Ho(E'). 9
0

This functional has stationary properties with
respect to ¢* and ¢ which are equivalent to Eqs. 1
and 3 (i.e., perturbing F through ¢* -+ ¢* + §¢*
yields F + SF and setting §F = O gives back Eq. 1;
perturbing F through ¢ + ¢ + 8¢ gives back Eq., 3).

In multigroup form, the functional becomes

NFGPS NFGPS NFGPS
t 8
F = * - *
Z ¢s e ¢8 Z ¢s Z ¢g' Ye'g
g g g'

(10)
NFGPS  NFGPS

-3 % Z Ewmo o,
g g

where u;'g = us(g'+g) is the transfer scattering
cross section from group g' to group g, and the

stationary properties of the functional are retained.

We now assume that a set of broad-group cross
sections can be found such that the reactor has
the same eigenvalue as in the previous fine-group

formulation.

The Lagrangian functional in terms of the new

parameters can be written down at once:

NBGPS NBGPS  NBGPS
t 8
= * - *
F z o¢ ¥g % Z o Z %' ¥e'G
G ¢ G'

NBGPS NBGPS an

* XG
- Z i Z 0 Sougder dgr
c G

As before, the stationary properties of F are
retained. The eigenvalue of the reactor is assumed

to be the same in both functionals.

The Lagrangian functionals from the fine- and
broad-group formulations must be equal if they
describe the same system, We ensure this equality
by equating corresponding terms from each of the
functionals. This operation leads to a natural and
necessary definition of the broad-group cross sec-
tions in terms of the fine-group cross sections,

regular fluxes, and adjoint fluxes. For example,

NFGPS NBGPS

TIRD T
Z ¢8 Mg ¢8 ¢g g dge 12)
4 G

Since the broad-group parameters are still unde-
fined, the individual broad-group terms may be
defined as follows:

t t
& ¥g % = E: % Vg % 3
g8€EG



This leads to the collapsing formula for ué

t
*
§ :¢g Mg ¥g
t geG 14)
H, = * ’ (
¢ % %
where u; are known, and ¢g, ¢§ are the solutions of

Eqs. 2 and 4.
obtained by

og = Z o (15)

geG

From the fine-group spectra, ¢G is

The expression for ¢6 in terms of the fine-
group spectra is derived by combining Eq. 15 with
Eq. 14 for the special case when ut is constant,
which yields

ok - BeG (16)
2 %
geG

These values for ¢G and ¢%, iq addition to
being used in the collapsing formulas (see Eq. 14),
will also serve as standards to which we can com-
pare the broad-group spectra obtained by solving
Eqs. 2 and 4 with collapsed cross-section sets.

The cross sections of the new collapsing method, as
well as the regular-flux-weighted cross sections,

will be used for this comparison.

This procedure of obtaining the broad-group
fluxes directly from the fine-group spectra elimi-
nates the need for computing ¢G and ¢E with regular-
flux-weighted cross sections as suggested by Little

2
and Hardie.

The collapsed cross sections derived from the
Lagrangian functional (LF-weighted cross sections)
can now be written entirely in terms of fine-group

spectra and cross sections.

The LF collapsing formulas are

t
I AIEN
{{¢]

A an
2% %
gEeG

8
*
Z ¢g| ugng ¢g
g'eG' (18)

s - geG
T (D D )

Z ¢g'( 2 ¢§/ %

g'eG' geG geG

o bgr gy
<Vuf> v = = €C ]
' 19
¢8
g'EG'

*
:E:. Xg %%

geG

Xg ° ) (20)
*
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geG geG

The rest of the broad-group cross sections are

easily derived from the above results:

Vi
- e,
G
NBGPS
s _ E : s
UG = uGG' s (22)
G'=1
a_ .t _ 8
Mg = Mg ~ Mg » (23)
and
uc - ua _ uf (24)
G G G °

These formulas can be applied to the micro-
scoplc cross sections as well. This collapsing
scheme preserves the multiplication factor of the
reactor. In all instances, the LF collapsing formu-
las reduce to the regular-flux-weighting formulas

when the adjoint flux 1s a constant.

The same procedure applied to the time-dependent
problem leads to a collapsing formula for the group

velocities. Only one additional assumption is made:

B(EE) = o, et (25)

where Eg-l < E < Eg, and oo = stable inverse period.

The resulting multigroup equations and Lagran-
glan functional will then be the same as before,

except that a time-absorption term appears along



with the total cross sections. The functional for

the time-dependent multigroup problem is

NFGPS NFGPS

F= 82 Z % d’s[(“; * 3—3) Sgtg

‘=1 g=1

X
-8 .28
Mg Tk (vuf>8.] . (26)

Thus, the group velocities are collapsed as follows:

Z¢*¢
Z

geG

. 27

The multigroup expression for the neutron life-
time in the infinite medium is derived from pertur—
bation theory. If the lifetime is invariant under

the transformation from fine groups to broad groups,

NFGPS . NBGPS o 6
Z i Z e
- 871 =
X . (28)

This approach is entirely consistent with the La-
grangian functional formulation and lends further
support to the correctness of this collapsing

procedure.

3. REGULAR-FLUX-WEIGHTING FORMULAS
Sets of cross sections are usually collapsed by
regular-flux weighting techniques. The regular-

flux-collapsing formulas are

Z¢ ug

“c (29)

Z¢

geG

Z g VgD,

- BEGC (30)

(31)

%" 2 % e
geG

(33)

As pointed out before (see Eqs. 21-24), the
rest of the broad—-group cross sections may easily
be derived from the above results. Equations 29,
30, and 31 are developed by equating the reaction
rates of the broad and fine groups, where the broad-

group flux 1is given by

4 = Z 8 - (34)
gEG

4. SOLUTION OF THE INFINITE-MEDIUM MULTIGROUP
EQUATIONS

As demonstrated in Sections 2 and 3, one can
obtain reduced sets of cross sections in terms of

the fine—-group parameters.

For the special case of an infinite medium, the
regular fluxes and adjoint fluxes are obtained by

solving Eqs. 2 and 4.

We begin the solution by imposing normalization

conditions,

NFGPS
> —3<vuf> DI % Xg (35)
g=1 g=1

on Eqs. 2 and 4. These conditions provide us with

a definition for k and transform Eqs. 2 and 4 into

two inhomogeneous systems of equations:

t 8
ug ¢8 Z ¢8| uglg = Xg (36)

= gD, - (37




Equation 36 represents a set of linearly in-
dependent equations for the unknowns ¢8. Similarly,
Eq. 37 is a set of linearly independent equations
for the unknowns ¢g. These two inhomogeneous sys-
tems can be written in matrix form and solved
separately. With tensor notation and the summation
convention for repeated indices, Eqs. 36 and 37

become

t _ .8 -
[”gsg'g ”g'g]¢g' Xg S

t s
S - * =
[ug g'e ”gg'] o3

In this form, the individual matrix elements are

easily identified.

VHg g - (39)

Let us now define

Ggg' = Kronecker delta,

column vector of regular fluxes, ¢8,
¢* = column vector of adjoint fluxes, ¢g,

B = g x g square coefficient matrix of the
adjoint-fluxes whose individual elements
are:

t s
B = [ -
gg' ~ Mgee' T Ves'’
gt = transpose of B = coefficient matrix of
the regular fluxes,
Note: B® , = B =[ut &, -t ]
gg' '8's Ls g's '8's

X = inhomogeneous column vector of the regu-

lar flux system,

and
Vi, I inhomogeneous column vector of the ad-
—— joint flux system.

The matrix systems to be solved are

[B°11¢] = [x) (40)

[B] [¢*] = [vuf], (41)
and the solutions to these systems are

o= 897 1Y) (42)

% = (817" [vugl. 43)

These solutions were obtained by matrix inver-
sion on a computer with the Linear System Solver
subroutine.* This subroutine can solve systems
with as many as 59 groups in less than 10 sec.
This matrix inversion method eliminates the time-

consuming iteration method of solution.

% This subroutine, LA-FDO4, can be obtained by
writing to C Division of the Los Alamos Scientific
Laboratory.

5. APPLICATIONS

The LF and regular-flux collapsing schemes were
applied to three sets of reactor core cross sec-—
tions:

(1) a 59-group set of thermal cross sect:ions,3

(2) a 25-group set of thermal and nonthermal
cross sections for a thermal reactor,? and

(3) a l6-group set of fast reactor cross sec-
tions.

Fine-group cross sections were collapsed into a
broad group over a range where the adjoint flux was
flat or relatively flat. The collapsed cross sec-
tions, the broad-group regular fluxes from Eq. 15,
and the broad-group adjoint fluxes from Eq. 16 were
computed. Then a new set of broad-group fluxes was
computed by solving Eqs. 42 and 43 (written for a
reduced number of groups), with the collapsed cross

sections forming the matrix elements.

Comparing these values with the broad-group
regular and adjoint fluxes calculated previously
from Eqs. 15 and 16 provides a check on the accu-

racy of the collapsed cross sections.

After the collapsed cross sections and the broad-
group regular and adjoint fluxes were obtained, the
eigenvalue was recomputed and compared to the initial
eigenvalue. Agreement was observed to four or more
significant figures for both LF and regular-flux
weighting. This agreement was expected, since it
can be shown theoretically that the eigenvalue for
the infinite medium is unaffected by these two col-
lapsing methods. The individual cross sections
depend, of course, on the choice of the welighting

function.

The LF and regular-flux-weighting methods for
collapsing cross sections have been incorporated
into two codes, CHILE and TAOS. The operational
characteristics of these codes are described in

Appendices A and B.

6. RESULTS
6.1 59-Group Set of UHTREX Thermal Cross Sections

Microscopic cross sections and atom densities
for the UHTREX react:or3 at Los Alamos Scientific
Laboratory were the input data for this problem.
The nuclides in the core mixture and their atom

densities are given in Table I. The only nuclide



TABLE 1
UHTREX CORE COMPOSITION

Atom Density

Nuclide (atoms/barn-cm) Description
Alunminum 7.36127 x 1072 Absorber
Boron 1.10252 x 1.0:5 Absorber
Iron 4.05971 x 10_5 Absorber
Uranium-235 1.06540 x 10 3 Absorber
Thorium-232 1.51100 x 10'2 Absorber
Carbon (393°K) 8.10805 x 10~ Scatterer

with a scattering transfer matrix in the assembly
was carbon. A group scattering transfer matrix,
cs(g'+g), was constructed for carbon from a point
scattering matrix, os(Eg.*Eg). Appropriate source
terms were derived for the thermal energy groups by
calculating the probability of neutrons above the
thermal boundary (3.056 eV) scattering into each of
the 59 thermal groups.A The sources, normalized
to 1, are:

859 = 0.852

858 = 0.148

Sg = 0.0 0<g< 57,

where 59 is the highest thermal energy group.
A code, THMOD, was designed to collapse this
59-group set of thermal cross sections by LF weight-

ing. It is modeled after THERM1,6
the collapse by regular-flux weighting.

which executes
THMOD can
collapse both macroscopic and microscopic cross
sections of a medium. The input specifications for

THMOD are given in Appendix C,

The 59 groups were collapsed to 13 groups. The
THMOD cross sections were compared with the THERML
cross sections. Agreement was observed to four
significant figures for macroscopic cross sections
and, in general, to five significant figures for
microscopic cross sections. These two different
collapsing methods give similar results because the
adjoint flux for this problem was nearly constant
over the entire 59 groups. This close agreement
was expected since (vuf>h/u§, the probability of a
fission reaction in group g, is nearly constant in
the thermal range. For such a case, the adjoint
flux is nearly constant and the LF collapsing for-
mulas reduce to the regular-flux collapsing

formulas.

The LF cross sections were used in the multi-
group equations to generate new regular and adjoint
fluxes, and the agrecment between these calculated
fluxes and the broad-group fluxes defined in Eqs.
15 and 16 was remarkably good. The values agreed
to four significant figures or better for all
groups. The eigenvalue was accurately preserved

after the collapse:

k= 1.631 59 groups
k, = 1.631 13 groups (LF weighted)
Sk/k = 0.00 59+13 groups.

Similar results were obtained with the regular-flux-

weighted cross sections.

6.2 25-Group Set of UHTREX Cross Sections

This 25-group set:5 of cross sections is a com-
bination of the 13 collapsed thermal cross sections
just discussed and 12 nonthermal groups. The com-
plete set is obtained as punched output from THERML,
CHILE

requires a speclal set of reading cards to accom-

with a table length of 13 for each group.
modate this set. The nuclides and atom densities
are those given in Table II, but the nuclides are
no longer classified as absorbers and scatterers,
because an abbreviated transfer matrix has been de-
Three col-
25+6, 25+2,
The 25-group regular and adjoint fluxes

fined for each nuclide in the mixture.
lapsing routines were investigated:
and 25-+1.
are shown in Figs. 1 and 2. Superimposed on the
fine-group fluxes is a collapsed set of fluxes (the
6-group set). The adjoint flux for this thermal
reactor is nearly constant. Thus, the difference
between the LF-weighted and regular-flux-weighted
cross sections will be less significant for UHTREX
than for the Argonne fast reactor, which has an
irregular (nonconstant) adjoint flux spectrum.
Table II presents a 25-group set of microscopic
cross sections for boron and sets collapsed to 6
and 2 groups by both LF and regular-flux weighting.
The differences between the LF cross sections and
the regular-flux-weighted cross sections become
important if three-place accuracy is required for
subsequent calculations. The agreement between

the aluminum cross-section sets was slightly better
than that for boron, The total macroscopic cross
gections of the reactor (after collapsing by both
methods) agreed to four significant figures for the
6-group sets and to three significant figures for

the 2-group sets.




L RS A 01| N R R P

LLELRRLLL

T T 11T

o

nNn 00 ®
o O

o

T TTTTTTg T

LIRERRLL] LEILIRARRRLI T ll‘l”ll] LRI

—FINE GROUPS (25)
--- BROAD GROUPS (6)

T T T

1

LETHARGY

o

ol o orgenol ooyl 8ol

o S

el

cooed v rrend o v renel -y gyl

FLUX PER UNIT

10°ev 10%eV 10'eV  leV  10eV

I00eV

lkeV  IOkeV I100keV [MeV IOMeV

ENERGY

Fig. 1.

Regular flux spectra for UHTREX reactor

TABLE II
BORON MICROSCOPIC CROSS SECTIONS FOR UHTREX REACTOR

25-Group Set Collapsed 6-Group Set
t
o: . %%boron (barns)
Fins boron Collapsing Broad LF- Regular-FPlux
Group (barns) Schemes Group Weighted Weighted
1 1.52 1 1.85 1.85
2 1.79 D 2 2.27 2.27
3 2.14 3 3.64 3.64
4 2.27 2 4 8.43 8.41
5 3.16 J N 5 38.18 37.99
6 4.08 Tl 6 397.423 396.213
7 4.97
8 7.00 4 Collapsed 2-Group Set
9 13.00 ] 1 11.56 11.22
10 23.50 2 397.423 396.213
11 36.50 5
12 54.50 ] .J
13 95.8514
14 149.492 W B
15 201.168
16 228.955
17 257.548
18 292.518
19 357.325 6 »2
20 453.072
21 569.614
22 694,521
23 823.537
24 1068.13 J
25 1838.22 J

It is interesting to note that the total reac-
tion rates for boron and aluminum (the only ele-
ments investigated) using the 6-group set of LF
cross sections differed by only 0.3% and 0.1%,
respectively, from their initial reaction rates.
The error in the ratio of these reaction rates was

less than 0.3%. However, as pointed out before,

if one is interested only in preserving specific
reaction rates, the regular-flux method gives
better values and, therefore, cross sections ob-
tained by this method should be used for such

calculations.

The new eigenvalue is calculated from
NBGPS

kl = E ¢G<\’uf>c ]
G=1

where the ¢G are solutions of Eq. 42, using the

(44)

appropriate set of collapsed cross sections as the
matrix elements (either LF or regular-flux weight-
ed). Let us define another eigenvalue

NBGPS

= *
ky Z % Xg
-1

With LF collapsing, k

(see Eq. 35). (45)

17k

but with regular-flux collapsing, k1 # k2.

1s always obtained,
The

reasons are twofold:

1. ¢E generated with the regular-flux-weighted
cross sections generally show poor agreement
with the original ¢é, whereas agreement is ex-
cellent when LF-collapsed cross sections are

used.
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Fig. 2. Adjoint flux spectra for UHTREX reactor.



2. Even 1if the original ¢6 are used, there is

still a slight error in k2 because the x8 are
simply accumulated in the regular-flux forma-

tion

Xe = D% 46 |

geG

such that the sum of the Xg will be 1.0, where-
as in the LF formulation the x8 are weighted
with ¢*,

¢8

The LF method exhibits an inherent stability to
repeated collapsing. A set of one-group constants
is presented in Table III. The LF formulation

leads to consistent one-group constants, whether

TABLE III

ONE-GROUP CONSTANTS FOR THE UHTREX REACTOR
AND THE ARGONNE FAST REACTOR

UHTREX Reactor

Regular-
Group LF-Weighted Flux-Weighted
Constant 25+1 25+6~>1 25+>1 25+6+1
ke 1.499 1.499 1.499 1.499
pEx 1070 eml 3.508 3.508 3.486 3.486
W x 1071 enl 3.487 3.487 3.464  3.464
W@ x 1073 em’ 2.091 2.091 2.200 2.200
v x 10° cm/sec  8.871 8.871  9.277 9.276
£ x 1074 sec 5.392 5.391 5.156 5.155
Argonne Fast Reactor
Regular-
Group LF-Weighted Flux-Weighted
Constant 16+1 16+4-+1 16~1 16+4~+1
Koo 1.425 1.425 1.425 1.425
wt x 107t ca™l  1.564 1.564 1.634 1.634
W x 10t emt 1.498 1.498 1.581 1.581
w2 x 103 enl 6.596 6.596 5.354 5.354
v x 108 co/sec  4.878 4.878 4.222 4.222
2 x 1077 sec 3.108 3.108 3.591 3.591

the collapsing scheme is 25+*1 or 25*6+1. The
regular-flux method also leads to fairly consistent
results, but the agreement is not as good as with
the LF method. Collapsing schemes 25+2 and 25+6+2
showed similar results. Different values were pre-
dicted for neutron velocity and lifetime by the two
welghting methods. The broad-group fluxes from Egs.
15 and 42 for the collapsing scheme shown in Table
II are given in the first part of Table IV.

10

TABLE IV

BROAD-GROUP FLUX SPECTRA
FOR THE UHTREX REACTOR

Regular Fluxes .
Eq. 42 with
Eq. 42 with Regular-Flux-
Broad LF-Weighted Weighted .
Group Eq. 15 Cross Sections Cross Sections
1 36.08 36.08 36.08
2 18.13 18.13 18.13
3 58.50 58.50 58.50
4 91.97 91.98 91.97
5 44.93 44,93 44,94
6 204.89 204.89 204.91
Adjoint Fluxes
Eq. 43 with
Eq. 43 with Regular-Flux-
Broad LF-Weighted Weighted
Group Eq. 16 Cross Sections Cross Sections
1 1.499 1.499 1.499
2 1.499 1.499 1.499
3 1.500 1.500 1.499
4 1.511 1.511 1.503
5 1.595 1.595 1.564
6 1.647 1.647 1.630

In Table IV, the agreement of columns 2 and 3
is only slightly better than that observed between
columns 2 and 4. It is interesting to note, however,
that column 4 shows its poorest agreement in group
6, which is the severest collapsing test, since it
contains the most fine groups (see Table II). 1In
contrast, the ¢G calculated from LF-weighted cross
sections agreed with column 2 consistently for all
cases investigated, regardless of the collapsing
scheme chosen. The second part of Table IV pre-
sents the results for the adjoint flux. Here the
agreement of the first two sets of adjoint fluxes
18 notably better than that of the first and third
sets. These results are typical of all collapsed
sets of cross sections which were investigated. 1In
all cases, the LF cross-section sets ylelded more
consistent values for the regular and adjoint

fluxes of the reactor.

6.3 16-Group Set of Argonne Fast Reactor Cross
Sections/

The nuclide mix from the central core region of
the Argonne Fast Reactor7 was used for the follow-
ing calculations. The l6-group flux spectrum (per &
unit lethargy) is plotted in Fig. 3, except for the
low-energy groups where the flux was negligible.

Superimposed on this set of fluxes is a set of
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Fast Reactor.

broad-group fluxes (4 groups). The corresponding

adjoint fluxes are plotted in Fig. 4. The total

macroscopic cross sections are shown in Fig. 5.

Microscopic cross sections for 239
in Table V.

Pu are given
The cross sections of energy groups 9
through 16 were weighted very lightly, because the
flux in those groups was practically negligible.
Since the adjoint flux in the Argonne Fast Reactor
is more irregular than that in the UHTREX reactor,
the LF-weighted cross sections and the regular-flux-
weighted cross sections in the Argonne reactor will
not agree as closely as they did in the UHTREX cal-
culations. The one-group constants for the Argonne
Fast Reactor are given in Table III. The regular
and adjoint flux spectra generated by both sets of

4-group cross sections are given in Table VI.

TABLE V
239,

MICROSCOPIC CROSS SECTIONS FOR Pu
ARGONNE FAST REACTOR

Collepsed 4-Group Set

t
16-Group Set %y (barns)

Fine of (barns) Collapsing Broad LF- Regular-Flux-
Group Pu Schemgs Group Weighted Weighted
1 1 h 1 4,62 4,42
2 4.5 ] 2 5.48 5.49
3 4.8 251 3 9.66 9.93
4 5.69999 4 14.73 14.60

5 8.39999
6 13.1999 ] 3 Collapsed 2-Group Set
1 8.03 8.45

7 13.4999
8 16.6999 2 14.73 14.60
9 34.2999

10 35.0999

11 65.1999 4 p2

12 26.6999

13 33.0

14 171.599

15 1300.0

16 990.0

7. CONCLUSIONS

The LF method is a complete and accurate method
of collapsing cross sections. For the infinite-
medium problems which were discussed in the report,
the eigenvalue, broad-group regular fluxes, and
broad-group adjoint fluxes predicted by the fine-
group calculations are preserved when computed with
the LF-weighted cross sections. The agreement with
the fine-group calculations was as good as, or
slightly better than, the agreement afforded by the
regular-flux-weighted cross sections, but the dif-
ference between the two methods was not substantial
for infinite-medium problems. The regular-flux-
weighted cross sections are preferable for the

preservation of reaction rates.
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Adjoint flux spectrum for the Argonne Fast Reactor.
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The space-dependent problem presents a more

rigorous and more important test of the LF

collapsing technique.

is now under way.

For most applications, few-group

Investigation in this area
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Fig. 5. Total macroscopic cross sections for the Argonne Fast Reactor.
TABLE VI REFERENCES
BROAD-GROUP FLUX SPECTRA 1. D. S. Selengut, "Variational Analysis of Multi-
ARGONNE FAST REACTOR Dimensional Systems," Nuclear Physics Research
Quarterly Report HW-59126, 89, Hanford Atomic
Reg Fl
egular uxes Products Operation, General Electric (January
Eq. 42 with 20, 1959).
Eq. 42 with Regular-Flux-
Broad LF-Weighted Weighted 2. W. W. Little and R. W. Hardie, "Methods for
Group Eq. 15 (Cross Sections (Cross Sections Collapsing Fast Reactor Neutron Cross Sections,"
1 13.82 13.82 13.82 Nucl. Sci. Eng. 29, 402 (1967).
2 41.2 41.27 41.27
3 120.57 120.5 120.5 3. "UHTREX Facility Description and Safety Anal-
4 11.20 11.20 11.19 ysis Report," LA-3556 (Revised), Los Alamos
Scientific Laboratory (1967).
djoint F
Adjoint Fluxes 4. "Los Alamos Group Averaged Cross Sections," L.
Eq. 43 with D. Connolly, ed., LAMS-2941, Los Alamos Scien-
Eq. 43 with Regular-Flux- tific Laboratory (1963).
Broad LF-Weighted Weighted
Group Eg. 16 Cross Sections Cross Sections 5. G. E. Hansen and W. H. Roach, "Six and Sixteen
Group Cross Sections for Fast and Intermediate
% i'ggg i:ggg i'ggg Critical Assemblies," LAMS-2543, Los Alamos
3 1:092 1.092 1.156 Scientific Laboratory (1961).
4 0.822 0.822 0.808

J. C. Vigil, private communication (1966).

"Argonne 1000 MW(e) Metal Fueled Fast Breeder
Reactor," ANL-7001, Argonne National Laboratory
(1966) .

cross sections can be constructed by the regular-
flux welghting method, but for reactivity coeffi-
clent calculations, flux-weighted cross sections

are often inadequate. The LF method of collapsing

may improve the accuracy of these calculations.
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APPENDIX A - CHILE

For each collapsing scheme, two complete sets
of broad-group macroscopic cross sections and ¥
factors are punched. The broad-group regular and
adjoint fluxes from Eqs. 15 and 16 are also punched
out. One set of broad-group cross sections is col-
lapsed by the regular-flux method, and the other by
the LF method. These cross sections appear on the
printout along with the results of a one-group col-
lapse, which is always calculated regardless of the
It should be

noted that the adjoint-weighted x factors do not,

specific collapsing scheme requested.
in general, sum to 1.0. This fact is not surpris-
ing, since this method imposes no restriction on
the broad-group X's. Physically, the broad-group
X's represent a perturbed fractional distribution
of fission neutrons. This leads to an interesting
result in the one-group case. Since the multipli-
cation factor, k, is the total number of fission
neutrons divided by the total number of neutrons
absorbed, then

XoBe>

u,

Normally, X would be defined as 1 when setting up
a one-group problem, and k reduces to:

o>

k = —— .

Ha

However, when LF weighting is used to collapse
multigroup cross sections, x generally will not

equal 1.

CHILE can easily be extended to compute micro-
scoplc collapsed cross sections by storing the
fine-group cross sections for each element on a
scratch tape and recalling them, element by ele-
ment, after the multigroup equations have been
solved. This has been done for the 59-group set

of thermal cross sections.

INPUT SPECIFICATIONS FOR CHILE

Card Format Entry Description
1 12a6 A(I),I=1,12 Title card for problem
2 1216 NFGPS Number of fine groups
NBGPS Number of broad groups
NELEMT Number of nuclides in the
mixture
3 1216 NK(N) Highest fins group included
in broad group N
& 1216 NG(N) Lowest fine group included

in broad group N

5 6El2.5 E(I),I=1,LFGPS
where
LPGPS=NFGPS+1

FPine-group upper energy
boundary (eV) (except for ths
last entry, which is the lower
boundary of the lowest ensrgy
group)

6 6E12.5 VEL(I),I=1,NFGPS
7 6E12.5 S(I),I=1,NFGPS

Pine-group velocitiea (cm/shake)
Fine-group sources (fission

spectrum)
Repeat cards 8-11 for each nuclide.
8 1246 AID(I),I=1,12 ID card for nuclide
9  6E12.5 ADEN Atom density (10-24 atoms/cc)
Cards 10 and 11 are for 16 fine groups; they must be repeated
16 timss.
10 6E12.5 USLES1 Not used
XP(1) Figsion cross section for group I
XS(1) Scattering croas section for group I
XA(I) Absorption cross section for group I
XFN(I) vog
XTOT(I) Total cross aection
11  6E12.5  GTRANS(I,I) o3(1+1)
GTRANS(I-1,I) o3(1-1+1)
GTRANS (I-2,1) o8(1-2+1)
GTRANS (I-3,1) 08(1-3+1)
GTRANS(I-4,1) 08(I-4+I)
GTRANS (I-5,1) 08(I-5+1)
I=1,NFGPS .

Por 25 groups replace cards 10 and 11 by card 104,
10 ee12.5

XA(I) o4(1)
XFN(I) vof(1)
XTOT(I) ot(1)
USLES1 See card 10

GTRANS (I+4,1) o8 (I+4+1)
GTRANS (1+43,1) oS (I+3+1)
GTRANS (1+2,1) 08 (I+2+I)
GTRANS (I+1,1) o8 (I+1+I)
GTRANS(I,I) See card 11
GTRANS (I-1,1) See card 11
GTRANS (I-2,1) See card 11
GTRANS(I-3,1) See card 11
GTRANS (I-4,1) See card 11
I=1,NFGPS
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APPENDIX B

TAOS

A second code, TAOS, solves the multigroup Eqs.

2 and 4 for a reduced number of groups using the
collapsed cross sections as input data. Both LF-
weighted cross sections and regular-flux-weighted
cross sections are tested by this code; TAOS
contains an optional routine for collapsing to an
even smaller number of groups. Primarily, however,

TAOS makes it possible to use the collapsed cross

sections for generating broad-group regular and
adjoint fluxes. The output of TAOS displays these
fluxes next to the fluxes which were defined earlier
in terms of the fine-group regular and adjoint fluxes
(see Eqs. 15 and 16). This program also computes

the new eigenvalue from Eq. 44 (written for a re-
duced number of groups) and compares it with the

initial eigenvalue.

INPUT SPECIFICATIONS FOR TAOS
Fine-group input for TAOS is the collapsed output from CHILE.

Card Format Entry Description

1 12A6 A(TI),I=1,12 Title card for problem

2 1216 NFGPS Number of input groups (broad groups from initial
collapse)

NBGPS Number of broad groups (for multiple collapsing)
NELEMT Number of nuclides in the mixture
3 1216 NR (N) ,N=1,NBGPS Highest fine group included in broad group N
4 1216 NG(N) ,N=1,NBGPS Lowest fine group in broad group N
6E12.5 OLDEIG Original eigenfunction of the reactor (calculated
in CHILE)

6 6E12.5 E(I),I=1,LFGPS Fine-group upper energy boundary (eV) (except for
the last entry, which is the lower boundary of
the lowest energy group).

7 6E12.5 VEL(I),I=1,NFGPS Fine-group velocity

8 6E12.5 S(I),I=1,NFGPS Sources

Repeat cards 9 and 10 for each nuclide.
9 1246 AID(1),I=1,NFGPS ID card for nuclide
10 6El12.5 ADEN Atom density collapsed (10724 atoms/cc)
11 6E12.5 SIGA(I),I=1,NFGPS Macroscopic absorption cross sections from CHILE

12 6E12.5 FISNU(I),I=1,NFGPS  <wufyy from CHILE
13 6El12.5 SIGTOT(I),I=1,NFGPS uf from CHILE
14 6E12.5 ((EKVR(I,J),J=1, u8(G*G') macroscopic transfer matrix from CHILE

NFGPS) ,I=1,NFGPS)

15 6E12.5 OLDPHI(I),I=1,NFGPS Defined regular fluxes from CHILE
16 6E12.5 OLDPHIA(I),I=1,NFGPS Defined adjoint fluxes from CHILE
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Card

Pormat

12A6
1216

1216

6E12.5

6E12.5

Repsat cards

6
7

10

12A6

6E12.5

6E12.5

6E12.5

6E12.5

Repeat cards

11
12

13
14
15

16

1246
6E12.5

6E12.5
6E12.5
6E12.5

6E12.5

APPENDIX C
INPUT SPECIFICATIONS FOR THMOD

Entry
A(T),I=1,12

NFGPS
NBGPS
NABS
NKER

NK(N) ,N=1,NBCPS

EPSI

DBS
E(I)

AID(I) ,I=1,12

ADEN
ANU

XA(I),I=1,NFGPS
XS(I),I=1,NFGPS

XP(I),I=1,NFGPS

AID(I),I=1,12
T
FSX
ADEN
XA(I),I=1,NPGPS
XS(I),I=1,NFGPS

VEC(M) ,M=1,5
I1>J,J=1,NFGPS

$(1),I=1,NFGPS

De; tion
Title card for problem

Number of fine groups
Number of broad groups
Number of absorbers
Number of scatterers

Highest fine group included
in broad group W

Convergence criterion on
calculated flux (not used)
DBZ leakage ellowance factor

Pine—group upper energy
boundaries {eV)

6-10 for each abaorber

ID card for absorber

Atom density (10°2% atoms/ec)
V(ANU = 0 for nonfisstle
nuclide)

Absorption cross sections by
fine groups (barns)

Scattering cross sections by
fine groups (barns)

_Pission cross sections by

fine groups (barns) (omit
card 10 if ANU=0)

11-15 for each scatterer

ID card for scatterer

Temperature of scatterer (’K)
Free atom scattering cross
saction (barnms)

See card 7

Sse card 8
See card 9
Half kernel from SUMMIT

Fine-group sources
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