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MAJORANA DEPOLARIZATION OF HYDROGEN, DEUTERIUM, OR TRITIUM ATOMS

by

Gerald G.

Ohlsen

ABSTRACT

The theory required to follow the behavior of a hydrogen, deuterium, or tritium

atom in a time-dependent megnetic field is described.

A computer code is

included, and some numerical results of interest to the design of Lemb-shift

polarized-ion sources are presented.

A brief discussion of depolarization

effects in pick-up or stripping of two electrons is also presented.

1. INTRODUCTION

In all sources of polarized hydrogen or deute-
rium ions which have been proposed, the process in-
volves, first, the production of a beem of atoms
with a net nuclear polarization and, second, the ion-
It is frequently
required to change the magnetic field strength or

ization of these polarized atoms.

direction or both from one value to another between
the point at which the polarized atoms are produced
and that at which they are ionized. Thus, one is
required, in the design of such deVices, to estimate
depolarization effects caused by unwanted transitions
between the various hyperfine states when atoms are
(Such

transitions are usually referred to as Majorana

subjected to time-varying magnetic fields.
transitions.) In most cases one wishes to design
magnetic field shapes in & way which eliminates or
reduces these effects. Problems of this type are
particularly important in "Lemb-shift" sources,
vhere the atomic beem velocities are large (~30
cm/usec) .

A related problem, which we will also consider,
is the "zero field crossing" technique of polariza-
tion enhancement. In this method it is required to
reverse the direction of the magnetic field in a way
such that a certain transition is made with high

probability while the remaining transitions occur

with low probability. We will also briefly discuss
the depolarization of ions that may occur when two
electrons are stripped or picked up, as in a tandem

accelerator stripper or a cesium adding canal.

2. THEORY
The Schroedinger equation for a one-electron
atom may be written

Y

(Ho + Hl)w = ih 3%

(1)
where Ho is that part of the Hamiltonian which does
not depend on electronic or on nuclear spin and

where

H = (uogJ3+uNng) o B+ o) . (2)

In the above expression M, = eh/2mc (the Bohr mag-
neton) ; uy = eh/2mpc (the nuclear magneton); g; and
gy are the electronic and nuclear g-factors, respec-
tively; and o is related as follows to the zero

field hyperfine energy separation (AW):

a=AW/I(27 + 1) if I < J
= AW/J(2I + 1) if J < I .

(3)

For hydrogen atoms I = J 1/2 and thus a = AW; for

1/2, and therefore o =

deuterium atoms I =1, J
2 AW/3.



If we assume a complete set of functions u
which satisfy Houn = Eoun’ we may write the general
wave function as

-iE t/a
¥ =Ibue .
nn

(4)

We consider the u, to be the four strong field
states V(mI,mJ) for hydrogen atoms (six states for
deuterium atoms), where the quantization axis is
specified and stationary and where my and m, are the
nuclear and electronic megnetic quantum numbers,
respectively. All of these states have the same
space wave function and, hence, the same eigenvalue
Substituting Eq. b4 into Eq. 1,

multiplying from the left by u;, and integrating

of the operator Ho.

over the space variables, we obtain the equations of
motion of the probebility amplitudes:
ih b = Ib <u [H, |u>. (5)
If we put explicit values of the matrix elements in-
to the above expression and use the quantum numbers

and m_ to label the states, Eq. 5 becomes1
o 7

m_+1

+%uogJ(Bx—iBy)[(J-mJ)(J+mJ+1)]*me, !

g (3,18 ) [(F4m) (5-u+1) %

mI,mJ—l
Hauygr (B,-1B ) [ (T-mp) (T+my+1)] n +1,m

+%uNgI(Bx+iBy)[(I+m1)(1-m1=1)]*bml_l’mJ
ol (T-mp) (Ttm+1) (39m) (F-mp+1) T

m +1,mJ—l

I

Hal (Tray) (T-mp o) (=g o) oy

where 81 is the nuclear and 81 is the electronic g-
factor (see Teble I). We define the following

parameters:

81
k = 1836.1 g5
(N
B =2 .
° Ugs

With these definitions Eq. 6 reduces, for hydrogen

or tritium atoms, to the following four coupled

ithI’mJ = [(uongJ+uNgImI)Bz+umImJ]me’mJ {6) differential equations:
I - 1r T
51 %(l+k)Bz+kBo 3B 0 ¥B+ by
51 . 6, 5 35(1-k)B, 3B B, B b,
= ih R (8)
By 0 XB_ 5(1+k)B_+xB 3kB_ b,
b, ] 3B_ N KB —5(1~k)B_—B | Lbh
TABLE I

HYPERFINE STRUCTURE PARAMETERS

State 81 81 € Bl AW k Bo
1S Hydrogen 5.585486  2.00229 1.522x10'3 507.591  1k420.406 1.520x10'3 506.820
25 Hydrogen  5.585486 2.00229 1.522x1070  63.450  177.55T 1.520x107°  63.35h
18 Deuterium 0.857h407  2.00229 0.233x10'3 116.842 327.384 o.233x10'3 717.877 .
25 Deuterium 0.857h07  2.00229 0.233x1073 1h.605 40.924  0.233x1073 9.735
18 Tritium 5.957680  2.00229 1.623x10'3 542,059  1516.702 1.620x1073 541.181
28 Tritium 5.957680 2.00229 1.623::10'3 67.759 189.594 1.620x1073 67.650



where Bx’ By’ and Bz are the components of the ap-
plied B field (arbitrary time variation), B, = B,

+ iBy, B = Bx - iBy, and states 1-h are the strong
field states W(mI,mJ) ordered according to their
energy in a magnetic field (as indicated in Fig. 1).
For deuterium atoms Eq. 6 reduces to six coupled

differential equations:

where the states 1-6 are the strong field states
ordered as described above (as indicated in Fig. 2).
The paremeter k is a small number (~10_3) and thus
could be neglected for most purposes, although this
assumption has not been made in the numerical cal-
culations to be described in subsequent sections.

We note in passing that the parameters k and Bo
are different from those which arise in the descrip-
tion of the energy levels of the atom. Specifically,
the "Breit-Rabi formula" for hydrogen or tritium

atcms is

T T ! T
. m, ™

172 e

12 -i/2

>
2 Fot
w
S aw
Foo—l-
-i/2 -t/2
L L L 72 /2
(] [ 2 3 4
x=B/B,
Fig. 1. Schematic Breit-Rebi diagram for 1S or 2S

hydrogen or tritium atoms,

5, Elﬁk)Bz*'%Bo kB, 0

B, kB_ B kB,

b, vggs 0 kB_ (3k)B, 3B
T oim

B, 0 0 X8

b, 0 4B B_/V2

B¢ %B_ Bo//E 0

- L.

W= %wﬁAw(1+2%x+x2)%+eAw%x . (10)

where mp = my + my and where the plus sign applies
to states 1, 2, and 3 while the minus sign applies
to state U. The quantity x = B/Bl’ with B, =
&W/[(1-k)u g;] = B_/(1-k) and € = k/(1-k). For

0 0 4B, by

0 B, B_/V2 b,

4B, B //2 0 by

» (9)

-(35+k)B_+4B_ KB_ 0 b,
kB, B, KB_ b

0 kB, -(k)B 3B { |b,
. S

deuterium atoms we have
1,..1 b 2%
= =,

W —EAW_2AW(1+§mFx+x ) +eAWmFx . (11)
The definitions of x and of ¢ remain the seme, but
in this case we have By = 3‘Bo/[2(1—k)]. The plus
sign applies to states 1-h while the minus sign
applies to states 5-6. The mumerical values of the
paremeters used in Eqs. 8-11 are given in Table I.

The solution of the above differential equa-

T ! 1 !

[ ] |

(4] ! 2 3 4
x = B/B,
Fig. 2. Schematic Breit-Rabi diagrem for 1S or 28

deuterium atoms.



tions (Eqs. 8 or 9) for the field variation of in-
terest, then, is a straightforward computational
problem. However, the states we have used in the
description are the strong field states with respect
to a fixed z-axis. Since, in general, the airection
of the magnetic field varies, it is somewhat easier
to interpret the results if the coordinate system is
rotated, so that the new z-axis lies along the (time-
varying) magnetic field direction. The rotation
transformation for composite states may be derived
from the spin-1/2 and spin-1 rotation matrices. For
a spin-1/2 particle, the rotation transformation may

be represented by the matrix equation

1
b+ a a b
= s (12)
b! 8 a b
where the subscript refers to the sign of the mag-
netic quantum number m(=+)). Explicitly, the coef-

ficients are

a,, = cos (38) exp [“gi(a+ty)]

a = cos (38) exp [%i(a+y)]

(13)
a_, = -sin (3%8) exp [-¥i(o-v)]
a,_ = sin (38) exp [¥i(a-v)] ,
-bllw EC R
bé 8+C0+ 844%0 84480~
bé ) 8,.C . 8,8 o a..c__
bﬁ a_,c . a_.c a_.c__
bé a_.c . a_.c o a_,c _
f é‘ f—+°++ 8 4% B4y

where a, B, and y are the positive Euler angles2
which rotate the initial coordinate system (unprimed)
into the final coordinate system (primed). For hy-
drogen or tritium atoms (in strong field representa-

tion), the rotation matrix is essentially a direct

product of the electronic and nuclear rotation. The
complete rotation matrix may be written

1 - T r 7

1

1 8, 8., 8.8, a8, a e, b1

! e, a a, . .a a, a a, a b

21 | b+ L A e — +="—+ 2 (14)
é _,8_, &8_,8 a_a 6__a_, b3

1

iy 4By BB, B 8, a__a++_ Eh_ ’

. product notation were to be applicable.)

(Note
that the states 3 and 4 are interchanged in relation
to the notation one would choose if a true direct

where states 1-4 are ordered as in Fig. 1.

For a
spin-1 particle, the rotation matrix is

1
by e+ %o Cuo b,

b'| = |c c c b
) o+ oo o- <)

b' c c c b

(15) .

|
|
+
|
[o]
|
|

in an obvious notation. In this case the coeffi-
cients are given by

e, = (3tkscos B) exp [-1(aty)]

e, = (sin B/V2) exp [-iv]

e, = (g¥cos 8) exp [1(a-v)]

e , = ~(sin 8/v2) exp [-ia]

c,, = ¢0s B (16)
e _ = (sin 8/¥2) exp [ia]

e_, = (s¥cos 8) exp [-i(a-v)]

c_, = -(sin B/V2) exp [iy]

(2]
n

(3+¥cos B) exp [1(a+y)].

The complete rotation matrix for a deuterium atom

may be written

8, % B %y a+-c+: E 1-
a+_co_ a, Coo a+_co+ b2
a c a, ¢ a, ¢ b
= —— +-"—0 ==t 3 , (1)
a__c a__c_o a_c_, bh
a__co_ a__coo e.__co+ b5
a_c, a__c+o e.__c++ b6
_ L

where the states 1-6 are ordered as in Fig. 2.
Finally, it is usually more convenient to de-
scribe the final system in terms of eigenstates of
the particular magnetic field strength rather than
in terms of the strong field eigenstates. If the
fields are changed slowly enough, the system will
remain in a particular state{ that is, the energy of .
the system will remain on one of the lines 1-4 for
hydrogen atoms or 1-6 for deuterium atoms (provided
that, initially, the system was in such an eigen-
state). These eigenstates are, in general, linear
combinations of the strong field basis states used

in Eqs. 8 and 9. In terms of these "intermediate




field" states, failures of adiabaticity will appear
in the form of transitions from the initial state

(or the state to which it would have been transformed

if the process were adiabatic) to one or more of the

other states. In terms of the strong field state

amplitudes (primed), the amplitudes of the hydrogen

or tritium atom intermediate-field eigenstates

(double-primed) may be written, for arbitrary B, as

- 7 _ -
b; 1 0 0 o]
b; 0 1+68 0 1-8
"
b3 0 o] 1 o]
bﬁ o] —v3(1-6 0 1+8
~ b -

e Wwe - -

, (18)

where § = x/(1 + x2);'i and x = B/Bl' For deuterium

atoms we have

where

(x+1/3)/(1+2x/3+x2)%

o
n

(x-1/3)/(1-2x/3+x°) %

o
L}

b; 1 0
"
by 0 1+5,
by 0 0
L 0 0
" 0 0
b5
bg 0o -/A(1-s)

and again x = B/Bl' From these eigenfunctions one

can easily calculate the nuclear and electronic po-

larization of a beem whose atoms are in a particular

pure state (see Table II).

The nuclear polarization paremeters may be

written in terms of the strong field emplitudes by

means of the appropriate projection operators. For

reference we write the expressions for the quanti-

ties of principal interest:

a) EHydrogen or Tritium Atoms

2 2 2
<o,> = [0 |2+, |20, | %[0
<o > = 2Re(b1*b2+bh*b3)
<g > =

W
2 Im(bl*b2+bh b3)

2
3l

(20)

b) Deuterium Atoms

<6,> = Py = [by|2+]og |2 [0 |2 v, |2
38,582 = Py = [o [P o Be o, P pp, |2
_2|b2|2_2|b5|2 (21)
S > = V2 Re(bl*b2+b2*b3+b5*bh+b 6*‘05)
<8 > =

/2 Im(bl*b2+b2*b3+b5*bh+b6*b5)
where all expectation values refer to nuclear polar-
ization. Similar expressions may be written for
electronic polarization. It is clear that we may
use these expressions to calculate the polarization
parameters in either the initial coordinate system
(unprimed emplitudes), or in the rotated coordinate

system (primed amplitudes), depending on the desired
reference axes.

o
)
|
-3
+
o
N

—
|
o
1
(=
o
W~

s (19)
0 0 bh
¢211+6_) 0 bé
[} 1+6+ bé
TABLE II

POLARIZATION IN INTERMEDIATE FIELDS

Hydrogen or Tritium Atoms

State P{nuclear) P(electronic)
1 1 1
2 -6 [
3 -1 -1
b [ -8

Deuterium Atoms

State P3(nuc1ear) P33(nuc1ear) P(electronic)

1 1 1 1
2 (1~ ) —35(1+36 ) 8,
3 -l5(1+6_) -%(1-35_) 5_
b -1 1 -1

5 -%(1-5_) -35(1+36_) -5_
6 %(1+8,) -}(1-36 ) -5,




The equations of motion of the probability am-
plitudes (Eqs. 8 and 9) may be solved in a straight-
forward way if the field is assumed to be constant
and if the (negligible) nuclear terms are omitted.
We present these solutions here primarily because
they are useful in understanding and describing the
nature of the more general solutions.

If we neglect the nuclear term in the Hamil-
tonian, the differential equations for the hydrogen

or tritium atom become
161 = %(x+%)wbl
152 = %(x—%)wb2+%mbh
163 = %(—x+%)wb3
if)h = ;S(L‘b2—;i(;i+x)wbh s

(22)

where the z axis is defined by the (constant) mag-
netic field direction, x = B/Bo’ and w = AW/h. If
the initial conaitions are b1 = €9, b2 = €5, b3
e3, and bh = £y, the general solution may be written

by = e, exp[-1(rx)iut]
By = e, (1-x/8)-c, (1/8)) expl1(3+8 ot
(e ,(14x/8) +e, (1/8)} expl 4 (3-8 )3gut ] (23)
b3 = e, expl-1(3%-x)kwt]
by, = Y-, (1/8) e, (1+x/8)) expl 1(3+8)5ut]
442(62(1/B)+eh(1—X/8))eXP[i(%—B)kwt] s
where B = /1+xZ.
2 2

2 + €5 + eg + eﬁ = 1 correspond to physical initiael

states.

Only velues of € ~ €, for which

Again neglecting the nuclear term in the Hamil-
tonian, the differential equations for the deuterium

atom become

1‘61 = %(x+l)mbl

. 1
ib2 =% x wb2 + 7% dbs
1B, = ¥(x-1)wb, + L w
3 3 5
a (24)
iBh = %(—x*-l)wbh
1
155 = e wb3 -%x ums
"
1‘66 = 5 wb,, - 15(x+1)mb6 s

where x = B/Bo, w = 2aW/(3h), and again the z axis

is defined by the magnetic field. The solutions
may be written in terms of the initial vector € as

follows:

b

1= ¢ exp[-1i(1+x)3wt]

by = 3{e,(1-[x%1/8, )-c (278, )} expl 103+, Yiwt]
5o, (14 0xv%1/8, ) +e (V2/8,)} expl1 048, Dgut ]

by = 3{e(1-[x-%1/8_)-e 5 (Y2/8_)) expl1(s+B_)et]

+a{e (14 [x-31/8_)+e (/2/8_)) expl1(-8_Paut] (25)

by, =€) expl-1(1-x)swt]
by = d{-e(V2/8_)ve (1+[x-%1/8_)) expl1(ier8_)hut]

+e{e5(V2/8_)+e (1-[x-%1/8_)) expl104-8_)aut]
b = Y{-e,(V3/8, ) eg(1+[x+5]/8, )} expl1(3e+8, Vit ]
+1{e,(V2/8, )+eg(1-[x+5]/8, ) expl 1058, ot ]

where B, = /xztx+9/5. Only those values of €, - €
+ 1 6

2 2 2 2 2 2 _
for which ey + €5 + e3 + €, + €5 + €¢ = 1 corre-

spond to physical initiel states.

3. APPLICATIONS

We will consider several applications of the
theory just described, all of which are of interest
in the design and utilization of polarized-ion
sources. For the most part, where numerical results
are presented, we will have in mind polarized-ion
sources of the Lemb-shift type. We will consider

the following problems:

a) "Adiabatic reduction" of a large (lcngi-
tudinal) to a small (longitudinal) magnetic field;

b) Adiabatic reduction of a large (longitu-
dinal) to a small (transverse) magnetic field;

c¢) The sudden zero field crossing technique
of polarization enhancement;

d) Depolarization effects associated with the
addition of two electrons to a polarized H+ or D+
ion beam.

We first make some general observations about
At low

fields a one-electron atom in & pure state will be- *

the conditions required for adiabaticity.

have like an elementary particle which has the mag-
netic moment of the electron but the total spin

angular momentum of the atom. Since a free elec-
tron precesses about a field at the rate of uogJ/h

= 2,8 MHz/G, a hydrogen atom in the F = 1 state



will precess at a rate of 1.4 MHz/G. (The pure F =
0 state has no polarizationj; thus, its precession
rate, which would be infinite from this point of
view, has no physical interpretation.) A deuterium
atom in the F = 3/2 state will precess at 0.93 MHz/G
while one in an F = 1/2 state will precess at 2.8
MHz/G. Thus, for low fields, transitions will be
induced only if the field direction changes rapidly
with respect to the appropriate one of these pre-
cession frequencies. We will adopt the term "criti-
cal frequency” to denote the particular precession
frequency which serves as the boundary between the
zero transition (adisbatic) region and the complete
transition (diabatic) region.

At high fields the critical frequency ie di-
rectly related to the hyperfine splitting. To il-
lustrate the connection, we consider a hydrogen atom
which has, at zero time, its electron spin aligned
with the magnetic field (+z-axis) and its proton
spin aligned with the +x-axis. In terms of the so-
lutions given in Section 2, the initial conditions
L= e, = 1V
From Egqs. 20 and 23, we find that

X+

<o_> =2Re(b1*b2+bh*b3) + cos(AW/2h)t. (26)

which represent thie situation are €

and 63 =€ = 0.

Thus, if the field is sufficiently strong to main-
tain the elignment of the electron, i.e., for x >> 1,
the component of the proton spin angular momentum
which is not parallel to B will precess around the
magnetic field at one-half of the hyperfine fre-
quency. The classical picture that is involved is
as fcllows. Neglecting, as in Egs. 22 and 2k, the
uN°B term in the Hamiltonian, we may say that the
electron precesses about the applied magnetic field
with e frequency corresponding to the free-electron
precession rate, while the nucleus precesses about
the electron with a frequency closely related to the
If the external field

is to be charged in an adiabatic marner, it must be

normal hyperfine splitting.

changed slowly with respect to both frequencies. At
low fields the critical frequency therefore ap-
proaches the electron precession frequency (modified
by the total angular momentum of the atcm) while at
high fields it approaches one-half of the normal hy-
perfine frequency.

For both the low- and high-field regions, the
critical frequencies arrived at, in this semiclassi-

cal picture, correspond exactly to the energy sepa-

100, T T T T Y
2S TRITIUM ATOMS 94.8MHz
88.8MHz
~ 75F 2S HYDROGEN ATOMS ]
o o
=
S sof ]
Z
w
2
o
w
{C 250/ SLOPE 140 MHz/G ]
2S DEUTERIUM ATOMS 13.6MHz
of—SLOPE, 093 MH2/G . , .
0 100 200 300 400 500 600
B (GAUSS)
Fig. 3. Plot of the critical frequency for 2S5 trit-

ium, hydrogen, and deuterium atoms versus magnetic
field strength. For 1S atoms both the horizontal
and vertical scales should be multiplied by &.

ration between the initial state and the nearest
neighbcring state. For intermediste field strengths
the motion is complicated; the electrcn and proton

may be said to "tumble" atout each other, However,

from the form of Eq. 26 it is clear that the sepa-
ration between the initial and the adjacent state
still corresponds to the critical frequency (see
Fig. 3).

For deuterium atoms we obtain similar results.
For an atom which hss, at zero time, the electron
aligned with the field (+z-axis) and the deuteron
in an m = 1 state with respect to the +x-axis, the
appropriate initial conditions are € = €3 =1/2,
€, = 1//5, and €, = €5 =eg = 0. From Eqs. 21 and
25, we find that

<8,> = ¥2 Re(b, ¥b,+D,¥b _+b5*b +b ¢*b 5)

X0

+ cos{AW/34)t . (27)

In this case the high-field critical frequency is
one-third of the hyperfine frequency. However, we
note that the critical frequency again corresponds
to the energy separation between the initiel and

the adjacent state (see Fig. 3).

Adisbatic Reduction of & Large (Longitudinal) to a
Small {Longitudinal) Magnetic Field

Maxwell's equations imply the following (first
order) relation between the radial and axial compo-

nents of a cylindrically symmetric magnetic field:

r al32
B, =-%% - (28)



Thus, except at r = 0, a changing magnetic fiela
strength Bz is always accompanied by a radial field
component. The angle between the field direction

and the z-axis is therefore given by

o]

3B

= L.__Ir __2z
tan 8 = 3 535 - (29)
Z Z

For example, if we have a uniformly falling field
(Bz = - cz), Eq. 29 becomes

tan 0 = == - | (30)

where z = vt for & beem moving with velocity v. The
gseme result holds for an exponentially falling field

e_Z/Z). Thus, except at r = 0, for any kind

(Bz =c
of declining field, there will be a changing field
direction;
kept small with respect to the relevant critical

For a linearly falling field,

it is this rate of change that must be

precession frequency.

this angular rate of change is

(tan~1 L) = ={z/2v) (31)

avt (r/2v)2+t2

,d_
T

Except at small t (and therefore small B) the rate
of rotation is inversely proportional to r. Thus,
the outer region of a large beam will be less sub-
Ject to depolarization than the inner region.

We now consider the depolarization effects for
some particular field shapes. (These results were
obtained with the computer code given in the Appen-
dix.)
a field which falls from an initial value of 575 G
to a final value of 5 G with an exponential law:
Bz = 575 e_z/Z + 5. (The particular velocity of
30 cm/usec, which is that used in a Lamb-ghift

Figure b presents some numerical results for

polarized-ion source, is assumed for all numerical
Particles trav-

eling on the axis (r = 0) experience no change in

results presented in this report.)

field direction and hence undergo no transitions.
In each case we plot the retained fraction of the
atomsj that is, the fraction which does not make a
transition to any other quantum state.

Figure 5 presents curves similar to those of
Fig. b4 for a particular magnetic field configuration
approximating that which may be obtained by a sole-
noid in an iron cylinder with a small oppositely
directed correction current about one diameter from
the main solenoid end. (The exact field shape used

is shown in Fig. 6.) The depolarization effects for
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Fig. 4. Retained fraction cof hydrogen atoms in
state 1 (I), deuterium atcms in state 1 (II), and
deuterium atoms in state 2 (III) for an exponential-
1y sheped t'ield which decays from 575 to 5 G. The
abscissa is the "1/e" length Z. The curves marked
1, 2, and 3 correspond tc particles which travel

1.25, 2.50, and 3.75 cm from the axis. A velccity
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Fig. 5. Retained fraction of hydrogen atoms in

state 1 (I), deuterium atoms in state 1 (II), and
deuterium atoms in state 2 (III) for a particular
axial field shape which can achieved with a shielded
solenoid (see Fig. 6). Curves are labeled as in

Fig. 4. The abscissa refers to the diameter of the
solenoid shield. A velocity of 30 cm/usec is
assumed.
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Fig. 6. Field shapes for the calculations whose
results are presented in Figs. b4 and 5.

a field of this general shape are somevwhat larger
than with the exponential field. This points out
that the exponential shape is nearly ideal, since
Bz changes more and more slowly as the (more criti-

cal) lower field levels are reached.

Adiabatic Reduction of a Large (Longitudinal) to a
Small (Transverse) Field

Figure 7 presents the retained fraction for an
exponentially declining axial field and a transverse
final field direction; that is, the field on the
axis, in gauss, is described by Bz = 575 e—z/Z’
Bx = 5.
tion in this case than in the case where the final

field is longitudinal, because 8 (= tan~t Br/Bz)

It is somewhat easier to induce depolariza-

must change by 90°, whereas for a longitudinal final
field, 6 increases to some maximum value and then
returns to zero. The critical region is where Bx
= Bz, since the field rotation rate is maximum there.
The meximum allowable w is determined by the total

magnetic field B (= Vﬁi + B§ + Bi). The details of
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Fig. 7. Retained fraction of hydrogen atoms in
state 1 (I), deuterium atoms in state 1 (II), and
deuterium atoms in state 2 (III) for an exponential-
ly declining axial field and a transverse final
field. The curves and the abscissa are labeled as
in Fig. 4. A velocity of 30 cm/usec is assumed.

the shape‘of the Bx field are apparently unimportant
so long as Bx has risen to its full value before Bz
drops below one or two times the final Bx value.
Figure 8 shows the retained fraction for a
final transverse field of 5 G (Bx = 5) and for a
longitudinal field 5 G less than that plotted in
Fig. 6.
displacement.)

(The axial field approaches zero for large
Again the depolarization effects are
more severe in this case than in the exponential
one. This is because the rate of fall of the axiel
field in the critical region (near 5 G) is greater
in the present case.

From Figs. 4, 5, 7, and 8, it is seen that, of
the states considered, state-1 hydrogen atoms are
debol&rized the least, while state-2 deuterium atoms
are depolarized the most. On the basis of the
critical-frequency arguments, we expect hydrogen

atoms to be less subject to depolarization than deu-

terium atoms (in agreement with the calculations).

However, these arguments do not account for the

difference between state-1 and state-2 deuterium

11
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Fig. 8. Retained fraction of hydrogen atoms in

state 1 (I), deuterium atoms in state 1 (II), and

deuterium atoms in state 2 (III) for a particular

axial field shape (see text) and a transverse final

field. The curves and the abscissa are labeled as
in Fig. 5. A velocity of 30 cm/usec is assumed.
atoms. Possibly state-2 deuterium atoms are more

readily depolarized than state-1 atoms because there

are two nearby states instead of one to which tran-
sitions may occur.

A transverse field destroys cylindrical symme-
try, so that particles at a given radius, but at
different azimuthal angle with respect to the beam
exis, will undergo different field rotations. Thus,
atoms in different parts of a beem will be subject
to different transition probebilities. This is, of
course, not important if the transition probabili-
ties are all kept near zero. The curves presented
in Figs. 7 and 8 assume an average situation; i.e.,
they correspond to a ray in the y-z plane and to a

final transverse field in the x-direction.

Sudden Zero Field Crossing Technigue of Polarization

Enhancenent

It has been suggested by Sone.3 that it should

be possible to enhance the polarizaetion of a meta-

stable H or D beem with the aid of a sudden reversal
of the magnetic field direction.
the magnetic field is first reduced adiabatically to

In this scheme

a8 low level; e.g., V1 G.

~ -1 G takes place.

Then a sudden reversal to
If the reversal is so sudden

that the atoms cannot follow it, the states become,

12

with respect to the new magnetic field direction,

different quantum states as follows:

Hydrogen Deuterium
1+ 4 1+ 4
2+ 2 2+ 3
3+1 3+2
>4 b+

5+ 6

6+5
Thus, for hydrogen atoms, if one starts at high pos-

itive fields with an equal mixture of states 1 and
2 (0% polarization), after a sudden zero crossing
followed by an adiabatic increase to a high negative
field, one obtains an equal mixture of states 2 and
3 (100% polarization). For deuterium atoms, if at
high positive fields we have an equal mixture of

states 1, 2, and 3 (P3 = = 0), a sudden zero

P33
crossing followed by an adiabatic increase to a
large negative field leads to an equal mixture of
the states 2, 3, and b (P3 = -2/3, P33 = 0). This
process has been applied with good results at two
laboratories.h’5

Our concern here is the extent to which one
can achieve these diabatic transitions for practical
beem sizes and magnetic field shapes. Our attention
will be focussed mainly on hydrogen or deuterium
atoms in their l-states. [For hydrogen there is no
difference between state 2 for a very small positive
and a very small negative field, so it is not mean-
ingful to inquire whether the atom "followed" the
field direction or not. For deuterium atoms in
states 2 and 3, such a question is meaningful, but
since equal initial populations of 2 and 3 are in-
volved in the applications we have in mind, symmet-
rical transitions (or the lack thereof) between
them are of no consequence. )

Consider again the uniformly falling field for
which Bz = - cz = - cvt and Br = %cr. At z = 0O the
(minimum) field is B = dcr. The field angular ro-
ration rate is, again,

w=-=lx2g (32)

T (r/2v)24t2

Note that this frequency is independent of c, the
rate of fall of the Bz field. However, the minimum
Thus,

increasing the raete of fall of Bz has the net ef-

field, for given r, is proportional to c.

fect of raising the minimum field and thus the
ability of the atom to follow the field reversal is

improved. Larger r increases both the minimum




Q75

STATE | AMPLITUDE SQUARED
o
B g

[+]
[¢] 1

2

RADIUS (cm)
Fig. 9. Fraction of the initial state 1 meking the
desired transition when the field is linearly re-
versed at the indicated rate. The abscissa is the
radius with respect to the (cylindrically symmetric)
field axis. Slightly different results are obtained
for hydrogen state 1 (H) and deuterium state 1 (D),
as indicated. A velocity of 30 cm/usec is assumed.

field and decreases the angular rate with which the
field reverses, and thus also improves the ability
of the atom to follow the reversal. From this dis-
cussion it appears that 1) the field must reverse
as slowly as possible (contrary to one's first im—
pression) and 2) there exists a meximum beem dieme-
ter, for a given rate of fall for Bz, for which the
scheme will be appliceble. As pointed out by Sone.,3
the presence of transverse (stray) field components
will place a lower limit on the field paremeter c.
Figure 9 shows the fraction of the initial
state 1 making transitions to state 3 for hydrogen
or to state U4 for deuterium atoms, as a function of
beam radius for several rates of fall for Bz' There
is no appreciable difference between the results for
hydrogen and deuterium. A priori, one would expect
a larger fraction of the deuterium atoms to make
transitions since the relevant precession frequency
(with respect to which the field must rotate rap-
idly) is only two-thirds as large for deuterium as
it is for hydrogen. The deviation from expectations
is probably because,at & given (low) magnetic field,
the deuterium atom is less well-described as a sim-
ple particle (with spin 3/2) than is the hydrogen
atom (with spin 1).
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Fig. 10. Results of the calculations presented in
Fig. 9 expressed in terms of P (for hydrogen) and
P3 and P33 (for deuterium). The polarizations are
expressed with respect to the final field direc-
tion. A velocity of 30 cm/usec is assumed.

Figure 10 presents the information given in
Fig. 9 in terms of polarization versus beem radius.
For hydrogen atoms this presentation carries no new
information, but for deuterium atoms, one wishes to
know of the effect on both vector and tensor polar-
ization. It would be equivalent, for our purposes,
to specify the relative populaetion of each of the
final states other than the initial state.

Depolarization Effects Associated with the Addition

of Two Electrons to a Polarized H+ or D+ Ton Beam

If a positive H or D ion has two electrons
added to it in a gas or foil, there mey be a time
interval during which the system is a neutral atom.
During this time some depolarization will take
place if a) the time interval is long enough and
b) the magnetic field in the stripper region is
small or zeroj; i.e.,unless x >> 1. Similar argu-
ments apply to the case of the stripping of two
electrons by a negative ion. This point will be
further discussed later.

Let us assume that the magnetic field, if any,
in the "adder" region is constant. We choose our
z-axis to be parallel with the field. The nuclear
polarization may be parallel to the z-axis or in-
(The so-
lutions presented in Section 2 are sufficiently

clined at some angle with respect to it.

13



general to handle any such orientation.)

First, we consider hydrogen ions with the nu-
clear spin parallel to the stripper field. If we
assume that the first electron is captured into the
ground state, the atom will be in either state 1 or
in state 4 (equal probability), where we refer to
strong field states regardless of the actual field
strength.

atoms which are in state 1 initially will remain so;

From the general solutions already given,

thus, for these atoms, we have
<,>=1. (33)

The time dependence of <oz> for an atom initially
in state 4 is obtained from the general solution

(Eq. 23) with e, = ¢, =

1 2 €3 = 0 and €, = 1:

é (x2+cosv‘l+xz %E't) H (3h)

<g > =
¥4
x +1

i.e., for x = 0 depolarization occurs with the normal
hyperfine frequency AW/h as the characteristic rate.
If the time interval (t) between the pick-up of the
first and of the second electron is random, and long
compared to h/AW, then, for a beam of particles,
<0,> will have the average value x2/(x2+l). Com-
bining Eqs. 33 and 34 we obtain for the overall beam

polarization

P = %[1+x2/(x%+1) ] (B/MW << 1) . (35)

If the time t is sufficiently short, no depolariza-
tion occurs. For zero magnetic field (x = 0), we
see that a meximum overall depolarization of 50%

may occur; for large fields (x >> 1), no depolariza-
tion will occur. Consideration of the case where
the initial nuclear polarization and stripper field
are antiparallel gives, except for overall sign, a
result identical to that given above. That is, for

an atom initially in state 3
0> = -1, (36)

vhile for an atom initially in state 2

<¢ > = -
Z

; (x2+cosv'l+x2 %E-t) . (37)
x +1

Thus, the overall polarization for an equal mixture

of states 2 and 3 may be written

P = [1+x2/(x7+1) ] (B/0W << 1) . (38)

1h

In summary, if depolarization is to be avoided,
either the time between the first and second colli-

sions must be small compared to h/AW or a large mag-

.netic field must be present.

If the nuclear spin is perpendicular to the
adder magnetic field direction (z-axis), the (equal-
ly probably) initial states are as follows: for the
electron spin parallel to z, <0x> = 1 implies € =
e2 = l//E'and e3 =g, = 0; if the electron spin is

antiparallel to z, <0x> =1 implies €, = ¢, = O and

1 2
35 €, = 1/¥2. For the first of these initial con-

ditions we obtain

€

<0 > = %(l—x/B)cOS[(l*-X*B)% t]+5(1+x/8)
xcos[(1+x-8)ar t] , (39)

vhere B = (1+x2)%. For the second initial condition

we obtain

<0 > = 35(1+x/8)008[(1—x+8)3—2 t]4%(1-x/8)
xcos[l-x-s)g ] . (40)

For very large X, Eqs. 39 and 4O each become

X0
<g_> -
X

AW
cos zt R (k1)
i.e., the polarization precesses at the expected high
field rate. For small fields Eqs. 39 and 40 each
become

x>0

<0 > ¥(1+cos AW

&) s (k2)

i.e., again depolarization occurs with the normal hy-
perfine frequency as the characteristic rate. (The
zero field limit must, of course, be independent of
the direction of the assumed angle between the nu-
clear polarizatioh and the magnetic field.) A more
general orientation of the magnetic field axis may
be considered with the aid of the solutions given
in Section 2.
For deuterons the situation is similar but

slightly more complicated.
and P

3 33
field) initial states 1-6 is as follows:

The vector and tensor

polarization P for each of the (strong



Initial

State E;
1 1
2 %q{l—cos(2Aw)B+t]
+

3 - —y[x —x+5/h+cos(2AW
L -1

5 - %1[1—005(§§1)8_t]

6 —!Tx #x+5/h+cos(2Aw

where B+ = (x2 + x + 9/h)%. We note that, at zero
field, the time dependence becomes of the form
cos(AW/h)t, so once again depolarization occurs at
the normal hyperfine frequency.

For a deuteron beam initially in the m = 1
state with respect to the adder field direction,

strong field states 1 and 6 are populated with equal

probability; the time-averaged polarization parem-—
eters become
2
P3 = %(l+ _52512L_
2*"*9/‘* (h/aW << 7). ()
= }2(1.'. &L
2+x+9/h
Similarly, for m, = 0 we obtein
1 1
P, = X[ -
3 x2+x+9/h x2_x+9/h (h/8W << 1) , (45)
P = [x +x+3/h —x+3/h]
33 x +x+9/h Xo=x+9/k
and, for mI = =1
2
P. = _%[1+ 5__512L_
3 2—x+9/h
> (h/6W << T) . (46)
P33 = 1+ %_3&]
-x+9/h

For h/AW >> t no depolarization occurs.
field Eqs. Ll-L6 reduce to

For zero

rd F3 P33
1 7/9 1/3
0 0 -2/3
-1 -1/9 1/3

That is, the initial vector polarization is reduced

)8 t]

)8, t]

g

Ei{2x2+2x+3/2+3cos(2Aw)B t]
+

%2.[,(2_x_3/h+3cos (‘23}113-‘1)8_13]
z (43)

- Ey{2x2—2x+3/2+3c08(2Aw)8_t]

—g{x +x—3/h+3cos(2Aw)B+t] >

to seven-ninths of its initial value while the ini-
tial tensor polarization is reduced to one-third of
its initial value. We may summarize the zero field

results as follows:

Characteristic Maximum Depolarization

Frequency for

Depolarization Vector Tensor
Protons 1420 MHZ 1/2 -
Deuterons 32T MHz 2/9 2/3
Tritons 1517 MHz 1/2 -

In the above it is assumed that the intermediate
At higher

fields the depolarization is smaller; however, note

atoms are formed in the ground state.

that the characteristic frequency for depolarization
becomes larger.

In the above discussion, it has been assumed
that the first electron is added in the 1S

1/2
However, the theory holds for capture into any J =

state.

1/2 state, so long as the atom remains in this state
until the second electron is added and provided that
the appropriate hyperfine splitting is used in the
description. If radiative decay occurs, some addi-
On the other

hand, relatively small magnetic fields will be suf-

tional depolarizetion will result.

ficient to produce a strong field with respect to
the higher hydrogen-atom excited states, and radia-
tive decay in the presence of a strong field will
Thus, a field

strength which is sufficient to prevent depolariza-

result in no nuclear depolarization.

tion of o 181/2 state is also sufficient to prevent

depolarization while an atom is in an excited state
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and during the decay of the atom (eventually to the
18 state).
For a "thick" adder, as required for a large

1/2

negative ion yield, electrons may be added and sub-
tracted several times before the particle escapes
The considerations sbove will

apply to each time interval during which the parti-

as a negative ion.
cle exists as a neutral atom. For example, consi-
der & proton which is converted to an H ion via

the process B > 8% > 5" > 8% + H™.  If we assume
zero magnetic field and that both of the time in-
tervals during which the particle is neutral are
large compared to 4/AW, a depolarization of T5%

(t.e. 1 - (—02) would be expected.
the vector depolarization would be 1 - (102 and the

For deuterons
tensor depolarization would be 1 - (—02 In prac-
tice, of course, both the number of charge exchange
events and the interval between them will be random.
The stripping of two electrons from a negative
ion presents a somewhat similar problem. However,
a8 hydrogen negative ion has a diffuse wave function
Thus, if one of the

electrons is suddenly removed, the remaining elec-

compared to a hydrogen atom.

tron will tend to be spread over a relatively large
Stated differently, the atom will have a

high probability of being produced in a state other
Therefore, the effects dis-

region.

than the ground state.
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cussed in the previous paragraph are expected to be
more important in the stripping case than in the

adding case. It is possible that studies of depo-

~ larization versus magnetic field could yield infor-

mation sbout 1) the wave function of the hydrogen
negative ion and 2) the nature of the collisions
which induce radiative decay of the higher hydrogen
atom states that are produced in the partial strip-

ping of an H ion.
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APPENDIX

A COMPUTER CODE FOR SOLVING THE ONE-ELECTRON SCHROE-
DINGER EQUATION

This code solves the time-dependent Schroedinger

equation for a Hamiltonian of the form
H = gy Trug, Depraed) |

where the notation is defined in the preceding pages.

An arbitrary time dependence of the external magnetic Card NZ + 3

field B is allowed. A numerical integration of the I
resulting set of linear first-order differential TTF
equations is carried out with automatic error con- HHP
trol.
The input for the code is as follows: Card NZ + &
Card 1 FORMAT (I6) BZ1
NZ number of points at which axial and BZ2
radial field table is to be speci- BRMAX
fied Y1
= 0 if no table to be specified PHI
Card 2 to Card (NZ + 1) FORMAT (3F12.6)
272(1) axial position (cm) VELOC
BZZ(I) axial field strength (G) Card NZ + 5
BRR(I) radial field strength 1 cm off z1
axis (G)
CARD NZ + 2 FORMAT (3I6)
M type of atom 22
= 1: for hydrogen atoms
= 2: for deuterium atoms z3
= 3¢ for tritium atoms
NSTATE initial state Y
Z

=1 to b if hydrogen or tritium

atoms intermediate field states

(see comments in BFIELD)
= 1: saxial and radial fields as
specified in table
= 2: axial field varies as a
sine-squared function
= 3: axial field varies as an

exponential function

FORMAT (3F12.6)

initial time (usec)

final time (usec)

time intervel between output steps

(usec)

FORMAT (6F12.6)

initial axial field (G)

final axial field (G)

final transverse field (G)
distance off axis (cm)

azimuthal angle transverse field
makes with respect to x axis (deg)

velocity of particle beam (cm/psec)

position at which axial field be-
gins to decline or to be defined by
table (cm)

position at which axial field as-
sumes a constant final value (cm)
position at which transverse com-
ponent begins to rise as sine-
squared function (cm)

position at which transverse com-
ponent assumes & constant final

value (cm)

1toh

=1 to 6 if deuterium atom inter— The code renormalizes the state vector to
mediate field states 1 to & unity total probability before each print to remove
= 11 to 1k if hydrogen or tritium accumulated normalization errors (via subroutine

strong field states 1 to b

= 11 to 16 if deuterium atom sage is printed.

strong field states 1 to 6
MODE option for daefining magnetic field

RENORM) .

If this error exceeds 1%, an error mes-—

The time, field components and total field,

nuclear polarization, electron polarization, and
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squared emplitudes of the four (or six) strong field

states are printed with reference to the coordinate
system as defined by the user. These results are
then printed a second time in terms of the inter-
mediate field states with respect to a z axis de-
fined by the instantaneous direction of the total
field. In the second set of output the field is
specified in terms of azimuthal and polar angles,
and beam displacement is given instead of elapséd
time.

The progrem consists of a main program MJRANA
The function
of each of the subroutines is briefly described be-

together with a number of subroutines.

low.

SUBROUTINE SETUPB
This subroutine réads in paremeters necessary
to specify the B field as described above.
Certain often-used combinations of the input
paraneters are computed here.

SUBROUTINE BFIELD (T, BX, BY, BZ)
This subroutine computes the field components
BX, BY, BZ at the time T, assuming Z = VELOC*T,
X =0, and Y = Y1.

SUBROUTINE DERIV (T, V, FD)
This subroutine computes the values of the
first derivatives FD(I) (I =1 to 8or I =1 to
12) given the value of T (time) and of the
variables V(I) (I = 1 to 8 or I = 1 to 12).
[Note that four (six) complex first-order dif-
ferential equations result in eight (twelve)
real first-order differential equations.]

PQOGRAM ™M IRANA (INPUT4OUTPUTeFILMeTAPE 123FILM)

C UNITs MICROSFCONDS
COMMON/BLNACK1 /A1 4820A34A4,4C1 4RO

COMMON/RLNCK?/RSQ (69201) 4 TIME (201) «BRX(201) ¢BRY (201) ¢RBZ(201)

1P3(201)eP33(201) oPEL (201) oNeITIME
COMMON/BLNACK3/MeNN

SUBROUTINE PRINT (T, VS)
This subroutine prints the first type of out-
put described above at the specified times and
also stores the second type of output for later
printing.
SUBROUTINE ROT (M, ALPEA, RETA, GAMMA, V)
This subroutine rotates the state vector V .
through the Euler angles a, 8, and y.
SUBROUTINE RENORM (N, V, VV)
This subroutine renormaslizes the state vector
V so that it has unity total length.
FUNCTION ARCTAN (Y, X)
This function computes arctangents, in de-
grees, for all zero and nonzero values of Y
and X.
SUBROUTINE TABLE (Z, %ZZ, NZ, I, MFLAG)
This subroutine performs a table look-up in
the ordered table ZZ.
SUBROUTINE INTEG (NN, TI, TTF, HH, HHP, MM, VVM,
IP, X0, TT, XXP)
" This subroutire integrates an arbitrary sys-
tem of real linear differential equations.
The arguments of this subroutine are defined
by comments in the main program listing. The
monitoring feature (a periodic test of a
specified variasble against some limit) is not
INTEG together with the subroutines
START, RNGA, ACCRY, TEST, DIODE, ADAMS, and
DOUBLE constitute the complete integration

used.

package.

MJRNOO10
MJRNOO 11
MJRNOO1?
MJRNOO 1R
MJRNOO 14
MJRNOO1S

COMMON/RFID/T1 o T24T3eTheTS54T64BZ19BZ24BRMAX4CPHI sSPHIPID Y2 ,MONF¢MJRNOD16

lvrFLOC

CoMMON/BF I DP/ZZ2(100)eBZZ(100)¢BRR(100) 4NZ
DYMENSION X0(30) ¢XXP(30),BPLOT(201)

COMPLEX ¢

FOARMAT(10716)

FARMAT (1H )

FNRMAT (# pROTONS *6F 14 ,8)

FNRMAT (# NEUTERONS ®*6F14 ,8B)

FARMAT (# TRITONS *6F 14 ,8)

FNARMAT (12F6,43)

FNRMAT (# TIME ax
1 P33 PFL 1 2
2 K/%)

8 FNRMAT(14F9,44)

N &S W N—

18

MJRNOO17
MJRNOO1R
MJRNOO19
MJRNOO2n
MJRNODOD21 .
MJRNOO2?
MJRNOO023
MJRNOO24
MJRNDO2% .
MJRNOO?A
MJRNOOP7
MJRNOO028
MJRNODO029
MJRNOO3n

B2 8 P13



[eXe e Kol

9 FARMAT (6F12.6) MJRNOO31
10 FARMAT(* STRNNG FIELD STATE COEFFICIENTSe INITIAL COORDINATE SYSTEMJRNG03?

1M MJRNOO033

11 FARMAT (# INTERMEDIATE FIELD STATE COEFFICIENTS, COORDINAYE SYSTEM MJRNOO34
1RNATATED Sn NFW Z aXIS POYNTS ALONG FIFLD DIRECTINN #) MJRNO003S

12 FORMAT (# o3mQQUARF, P33=2pLUS, MAG FIFLD PARAMg # 12F7,1) MJRNOO3s
13 FARMAT (# DARTICLE *12¢% STATF #12,% INITIAL STRANG FIELNP COFFFS ®#MJRN0O37
117F6,3) MJRNOO3R

15 FARMAT (® Z(CM) THETA PH1 BZ B P3 MJRNOO039
1 P33 PFL 1 2 3 4 5 MJRNOO4N

2 a®) MJRNOO4 ]
RFAD 14NZ MJRNOO4?2
IF(N2+.EQ,n) GO Tn 100 MJRNO0043

un 90 I=1,NZ MJRNOO44
RFAD 9e¢2Z(1)eB2Z(T)eRRRI(7T) MJRN004S

90 PRINT942Z(1)eBZ2Z(1]+RRRI(TI MJRNOO 46
100 ITIME=n MJRNOO&47
PrRINT 2 MJRNOO4R
RFALD 1eMenSTATE«MODE MJRNO 049
PPINT 1¢M,NSTATE +MODE MJRNOO0S0
Male?e OR 3 FOR PROTONS,DEUTERONSy NOR TRTTONS MJRNOO0S)
NSTATE= l=4 nR 1=6 FNR INTERMEDIATE FIELD INITIA); STATES MJRNOO0S?
NSTATE= ll=16 OR 11=-16 FOR sTRONG FIELD STATES MJRNO0S1
MODEz192e¢ OR 3 NEPENNING ON BFIELD OPTION (SEE CoMMENTS IN aFIFLD) MJRNOOS4
RFAD 9¢T1,TTFeHHP MJRNO 0SS
POINT YeTTeTTFoHHD MJRNQOOS56&
CaLL SETUeB MJRNOOS?
CaLL BFIFID(TI«BRx(1)eBBvY(1)4sRBZ(1)) MJRNOOSA
HTOT=SQRT (RBX (1) #a2+HBY (1) #*2,BBZ (1) #%2) MJRNOOSq

Af PHA=0,0 MJRNOO6O
HFTA==(3,1418927/180,0) *aARCTAN(SART (RRX(1)##2,RBY (1) *a2) ,RBZ(1)) MJRNOO&]
GAMMA==({3 1415927/180.0)2ARCTAN(BRBY (1) BBX(1)) MJRNO06?

Dn 99 I=i,l12 MJRNDOD K

99 xn(l)=0.1 MJRNOO 64
IF(M=2)101¢102,101 : MJRNOOGRS

101 Hn=63.448,/1.n01522 MJRNOOG&
A1=0,5#(1,040n.001522/1,0n1522) MJRNOO67
Ap=0,5#(1,0=n4001522/1.0n1522) MJRNOOGR
A1=0,5#0e0N1522/1,001522 MJRNOO069
#4=0,0 MJRNOO 70

Nz¢ MJRNOO7}
PRINT 3¢A19AP2¢A3,44R0 MJRNOO7?
X=HTOT/63,44R : MJRNOO T3

98 1F (NSTATE,GE,11) GO TO lsé MJRNOO74
NPLUSSSORT(0,5,0,5%*X/SQRT(1e0sX®®2)) MJRNOO75
DHMINUS=SIRT(NeG=0,5*X/SART (1l ,neX0u2)) MJRNOO7A

A TO (1900181 ,41520153) e nSTATF MJRNOO 77

150 Xn(l)=le.: MJRNOO7R
Gn Ty 104 MJRNOO79

151 Xna(3)=DPLuS MJRNOORN
XAt 7)=nMaUS MJRNOO81

Gn T0 lo0e MJURN0DDOB?

152 xn(5)=1., MJRNOOR]
50 TO 106 MJRNOOR4

153 Xn(3)==DMrNUS MJRNOOBR
Xn({7)=DPL-IS MJRNOO8A

60 TO 10w MJRNOOBY

154 NQTATEENSTrATF=10 MJRNOORR
XA (24NST-TE=1)al.n MJRNOORQ

Gn TO 106 MJRNOO9n

102 Bn=l4,605/1.000233 MJRNO09)
RN=(2.0/3,0) 4«80 MJRNOO09?
AY=0,5+0.n007233/1,000233 MJRNO0913
AP0 ,5«0,n00733/1,000233 MJRNO094
A=) ,00Nn233/1,.,0007233 MJRNO09QS
a4=SQRT(N &) MJRNOO9A

N=6 MJRNOOQY
POINT 49A)eADeA3gA4 RO MJRNOOSR
X=RT0T/14,60% MJRND099

IF (NSTATE ,GE,11) A0 TO 1l4a6 MJRNO10N
NOLUS=(X4)¢0/3,0) /SHRT(1,Ne2,0%X/3,0eX"#2) MJRNO101
DMINUSZ(Aale/3e0)/SORT(1.0=2,0#X/3,06X%82) MJRNO102

19



20

c

OOOOOO0OO0ONTOO000

c

140

l16]

142

143

144

145

146

103

104

REF

NN
Tl
TTF
HH
HHP
MM
VVM
ABS
REL
X0

XXP

1
110
THE

Go TO (l4nelalelépela3elaé,145) ¢NSTATF
Xir(ly=1,0 ’
6Gn TO 104
Xn(3)%xSQRT(0,5+0,54DPLUS)
Xn(1l1)aSAeT(Ne5=0,5*NPLUSR)

Ga Tn 104

X0 (5)=SORT(0,5+40,54DMINUR)

XN (9)=SQRT (0,5=0,5#0MINUS)

Gn TO 104

Xn(T)y=1el)

Gn Tn 104

XN (5)==aSURT(Ne5=0,5*DMINIS)
Xn(9)aSNRT(0,540,5#0MINUS)

Gn TO 104

X0 (3)Z=SURT(1eS5=0,5%1PLUS)
Xn(11)=S0oT(0.5+0,5*NPLUg)

Ga T0O 104

NQTATE=NSTATF=10

X0 (2#NSTATE=1) =l n

Gn TO 104

Bneb67.755/1,n01621%3
Ay=0,5%(1,040,001423/14001623)
A>=(0,5#(]1,0=ns001623/1,0n1623)
A3=0,5%0.n01623/1,001623
Aax=0,0

No6

POINT S59A)¢eA29A3,44 ¢8R0
XesTnT/67,758

Go Tn 9p
AGE2.0%#3,1415927#1.401%2,00229
C1=2CMPLX(n,04=ARG)

MJRNO1013
MJRNOL1 04
MJRNO10R
MJRNO106
MJRNO107
MJRNO10R
MJRNO109
MJRNO11ln
MJRNO111
MJRNO11?
MJRNO1113
MJRNOLl14
MJRNUL1 18
MJRNO11&
MJRNOL117
MJRNO118
MJRNOLl19
MJRNOL12n
MJRNO121
MJRNOL12?
MJRNO123
MJRNO124
MJRND 128
MJRNO126
MJRNO127
MJRNO128
MJRNO129
MJRNO13n
MJRNO131
MJRNO137
MJRNO133

Er INITIA| VFCTOR TO PROmLEM NEFINED 7 AXIS via APPROPRIATE ROTATIMJRNOL34

CaLL RUT(MeALPHAGRETAGAMMA L XN)

npy=2 8N

PPINT 10

PoINT 7

CalLL PRINT(TTeXO0)

HH=0,0001

Mm=0

vvM=a0e.0

ARNS=]1.0E=ng

RFL=] «NE=nS ’

CalLL INTEQR(NNeTIoTTF oHHeWHPeMMeVVMaARSeREL ¢X0,TT ¢ XXP)
NUMBER nF FIRST ORDER NIFFERENTIAL FQUATIONS
INITIAL VALUFE OF INDEPFNDENT VARIABLE
FINAL vALUF OF INDEPENNENT vARIARLE
GUESS AT STEP STZE
PRINT STEP STZE
INDEX UrF VARIABLE TO Bp MONTTORED (n IF NO MONITORING)
VALUE Tn MONITOR FOR
MAXIMIA ACCEPTARLE ABSNALUTE ERROR IN ONE INTFGRATION STEP
MAXIMUM ACCEPTARLE RELATIVE ERROR IN ONE INTFGRATION STEP
VECTOR nF STARTING VALIES
VALUE OF INDEPENNENT VARIABLE RETURNED AT Enmp oF INTEGPATTINN
VALUES nF DEPENDENT VARIABLES RETURNED AT Enn OF INTEGPATION

PPINT 11

PRINT 15

NTIME=ITTE

Do 110 I=)oNTIME

RTOTSQRT (BBX (1) #a2+RBY (T)##2,BBZ (1) ##2)

PnASN=TIME (1) #VELOCG

PuIF=ARCTAN(RBY (1) «BBX(I))

THETAF2ARCTAN(SQRT(BBY (1) #e2,RBX (1)##2)¢BBZ (1))

MJRNO135
MJRNO1 36
MJRND1237
MJRNO13R
MJRNO1309
MJRNOl4n
MJRNO141
MJRNO14?
MJRNO1413
MJRNO 144
MJRNO 145
MJRNO1 46
MJRNO 147
MJRNO14R
MJRNOl49
MJRNO1Sn
MJRNO15]1
MJRNO152
MJRNO153
MJRNO1%4
MJRNO 1SS
MJRNO 1564
MJRNO157
MJRNO 158
MJRNO159
MJRNO16N0
MJRNO1A1
MJRNO1&2
MJRNO16%
MJRNO1 64

‘MJRNO 165

PRINT BePNSNTHETAF+PHIF ,BBZ (1) eBTOTP3I(1)eP33(1)ePEL(I1),(BSA(JeTIMIRNOLEA

v.JmleN)
CANTINUE
FOLLOWING 1R CARNS PRODICE A PLOT WITH LASL SUBROUTINES
csLL ADVI(Y)
CaLL DGA(50+950¢5048009TTeTTF414000,0)
CALL DLNL*(10410)
CaLL SLLIN (10401
CaLL SRLIM(10e02)

MJRNO167
MJRNO16R
MJRNO169
MJRNO170
MJRNO17]
MJRNO172
MJRNO173
MJRNO174



c
c

C

c

C

C

121
120

T1

DI
2

Y1

100
200

300

20U

100

Dn 120 Jsmy¢N MJRNO175
Dn 121 I=)oNTIME MJRNO176
HPLOT(1)®aSQ(Je1) MJRNO177
CaLL PLOT(NTIMEZTIME(1) 91 eBPLOT(1)4104401) MJRNO178
CALL DGA(50¢950950¢500¢T?eTTFeleNe=24n) MJRNO179
CcallL SRLIN(8,01) MJRNO180
CALL PLOT(NTIMEZTIME (1) 91eP33(1)01,1640) MJRNO181
CaLL PLOT(NTIMESTIME(1)e1eP3 (1)9]1463,0) MJRNOL1B2
CaLL LINCNT (40) MJRNO183
PHImPHI®#1R040/3+1415927 MJRNO 184
WRITE(12012)71022¢23¢24¢754264B21¢BZ2sBRMAXY],PHI+VELOC MJRNO18S
WRITE(12¢13)MeNSTATE S (XO(I)eIm]leNN) MJRNO186
CaLL AOVI(Y) MJRNO1B?
PRINT 13eM¢NSTATE. (XO(I!,InleNN) MJRNO 188
Gn T0 100 MJRNO 189
End MJRNO190
SHRROUTINFE SETUPR SsETBOO10
READe IN FIEL.D PARAMETERS AnD COMPUTES SOME FREQHIFNTLY USED QUANe SETB0011
TIFS FOR USE ay SURROUTINF BFIFLD SETR0012
COMMON/BFI D/T]1 9o T2¢T34T49T5,T64BZ1eB72¢BRMAX¢CDHI (SPHIPI2¢Y2,MODF+SETRB0013
1veLOC SETR0014
STANCES IN CM FOR FIELD PARAMEYER ENTRY SETBOO01S
FORMAT (6F12.K) SETB0016&
P1223.,1415927/2.0 SETR0017
RFAD 2.8 1,8722+8RMAX Y1l eoHIsVFLOC SETB0O01 8
PRINT2¢8Z1¢B22+BRMAX Y1 ePHI oVFLOC SETB0019
RFAD 2421.22¢230¢740¢25¢26 SETRO0020
PRINT24¢Z21¢224230240¢254¢26 SETR0021
T13Z1/VELNC SETB0022
T2=2Z2/VELNC SETR0023
T21=2Z3/VELNC SETRN024
Ta=24/VELNC SETR002%
Te=x25/VFELNC SETBONZ26
TAxZ6/VELNC SETB0027
1n CMe PrT In DEGREES SETB002R
CrHI=COS(PHI®P12/90.0) SETB0029
SOHIxSIN(PHI#PI2/00.0) SETR0030
Gn TO(100.2000300) ¢MNDE SETR003)
Y»=Y1 SETR003?
RFTURN SETB0033
YP==(Y1/2,0)#P12%(BZ1=-822)/(VELOC*(T2=-T1)) SsETB0034
R TURN SETR0035
Y75 (RZ1=872)8Y1/(2.0#VELAC#(T?2=T})) SETB0036
RF TURM SETB0037
Eab) SETB003R
SHBROUTINF RFIELD(TeBXeBveRZ) gFLDOO1n
COMPITES FIEILD COMPONENTS AT POSITION Z=VELOC*Te v=yle X=0 8FLNDO011
COMMAM/RFID/T] ¢ T24T3¢T4eT75¢T64BZ14RZ2¢BRMAX¢CPHI 4SPHIP124Y2,MODF+BFLDO01?
1vFLOC BFLD0013
CNAMMAN/RFI DP/2Z(1n0)+¢BZ22(¢100) ¢BRR(100) ¢N2 BFLDOO14
Gn TN(2004300¢400) +MODE BFLDOO1S
MODE 1 (READ IN TARLES OF RZ+8R) AFLDOO16
IF(T.GT.T)) GO TO 700 RFLDOO17
RAy=B21 RFLDO0O1R
Hye0,0 /FLDO0019
Hy=0,0 RFLDOO2nN
Gn TO %00 8FLD0021
IF(T,6TT>») A0 TO 101 BFLDO0022
Z=VELOC*T BFLD00213
TAHLF IN GAUSS NN AXTS AND 3 CM nFF axTIs NORMALI7?FD TO UNITQ BzZ¢1) RFLDO024
CALL TABLF (7¢2Z(1)eNZel ,MFLAG) RFLDO025
DRZDZE(R27(141)=R2Z2(1))/(72(1+1)=22(1)) BFLDOO026
DaRDZ8(RRR(141)=RRR(1))/(2Z(1+1)=22(1)) RFLN002T
37NORMaRZ7(1)+DBZNZ*(2Z=27(1)) RFLDOO028
BuNORM3RRR (1) +DBRNZ* (Z2=27(1)) RFLD0029

21



22

C

c

[eXeNa)

H7=BZ2de (#7]1=nZ2) #RZNORM RFLNOO30
INITIAL RAY NEFINES veZ PLANME RFLD003)
ByxY2# (RZ1=H72) *RRNORM RFLDNO3>?
Hy=0,0 RFLN0033

Gn To 500 RFLD0034

101 HraB22 ‘BFLD003%
Hv=0,0 BFLD003A
Hv=0,0 RFLD0037

Gn To 500 . BFLDOO3R
MODE 2 (COQINE=SQUARED FIFLD DECAY) BFLDO0039
300 Ir(T.,GT.T1) Gn TO 301 RFLD004N
Hvz0,0 BFLD004]
By=0,0 RFLD0042
H7=B71 8FLD004

Gn TO 500 RFLDO044

301 1r(T,GT.12) GO TO 302 8FLD0045
ARGEPI24(T=T)) /(TP=T1) . RFLDOO4A
H7H724 (871 =RZ2)#COS (ARG #a2 RFLDO0&Y
BY=Y2#SIN(2,n#ARG) RFLN004A
14v=0,0 BFLNDO00&9

Gn To 500 BFLDOOSO

302 Hx=U,0 8FLD00S]
Hy=0,0 AFLD00S?
Hr=B22 BFLD00S3

Gn TO 500 RFLO00S4
MNLE 3 (EXPONENTIAL FIELD DECAY) RFLD00SS
400 Ir(T,GTeT)) 60 TO 401 RFLDOO0S&
Ry=0,0 RFLDOOSY
Hy=0,0 RFLDOOSA
H7=871 RFLDOOSA

Gn TH SO0 RFLUD06D

401 EARG2EXP (o (TaT1)/(T2=T1)) RFLDOOAY
R7= (RZl= 72)9EARG.BZ? RFLD006?
By=0,0 RFLD0063
Hy=Y2#EARA RFLDO064s
START TRANSVFRSE COMPONENT. PHI 1S ANGLE WITH RESPFCT TO X AX1s RFLDOOAS
INCINENT REAM In y=7 PLANE RFLDO06A
S00 IF (BRMAX.5Q4nen)RFTURN RFLNOO6T
IF(T.GT. 1) G0 TO 501 RFLNOO&R
Bz0,0 RFLDO069

6n To 50% RFLNOOTO

501 IF(T.GTeT4) GN TO 502 RFLD0O71
Hu=BRMAX*SIN(PI2# (T=T3)/(T4=T3)) %82 BFLDOOT7?

Gn TO 504 RFLDOO7Y

512 RraBRMAX HFLDO0O0 74
505 Byz=HBR#SPHT+RY RFLDOO7w
BY=BR®CPHY+RYX AFLDOO07A

RF TURN RFLDOO77

EnD RFLDOO7R
SIBROUTINF DFRIV(T.V.FD) _ DERIOOL1N
COMPITES THE FIRST UFRIVATIVE OF THE STATE VECTOR FOR USF By INTEG PERIOO1Y
DTMENSION v (30)+FN(30) DERIOO12
CNMMON/BLNACK1/A14A20A30A4¢C1l 4RO NDERIOO1N
COMMON/BLNCKY/MeNN DER10014
COMPLEX 3)¢H2eR3I4R&sBSeHRAPLUSIBMINUSCl4B0OOT DERI001&
CalLL BFIEID(TeRX4RYsRZ) NERIOO1A
HROLUSECMP| X (RX4BY) DERI0017
HMINUS=CONJG (HPLUS) DERIOO1R
IF(M,EQ.2) GNn TO 100 DERIOG19
SPIN 1/2 SECrIOM NERIO020
Al=0 5% (1eK) A2=(0 ,5% (]1=K) A3=0,5%K A4=mp 0 DER10021
BO=DFLTAW/ (M11#G)) Cl=aM!#GJ/ (HBAR®*T) UNITs 1/MICROSDERI0022
B1=CMPLX(v(l)ev(2)) NDERI00223
Bo=CMPLX (V(3) eV (4)) DERI0024
H3CMPLX (Vv (5) sV (6)) DERI0025%
RasCHMPLX (v (T)sV(R)) . DERIODO2A
BNOT=Cle#((AlwBZ+0,25#B0) wB1+A3#BPLIIS#R2+0,5#Bp| US*B4) DERIOO27?
Fn(l)=REA; (BNOT) DERIOO2R
Fn(2)mAIMaG (RONT) DERI0029



C
c
C

[aNeNa]

100
SP

HNOTuC1#(A3#AMIN|IG#B1+ (A3#AZan,25%R0) #R2+0+,5%RPLIIS#BI+0,5*BO#RS)

Fn(3)=REA| (BNOT)
Frn(e)sAIMAG (RUNT)

BROTRC1#(n,S#BMINIIS*R2+ (n,25#R0=A1#B7) #B3+A3#RMINUS#B4)

Fn(S)=REA| (BNOT)
Fn(6)mAIMAG (ROOT)

HNOTaCl® (n ,S#RMINIS#R1+0,5480#B2+ARPLUS#B3=(A2#B2+0,254B0) #84)

Fn(7)sREA (BDOT)
Fn(B)=AT a6 (ADNT)
RETURN

CANTINUE

IN 1 SECTlan

Al=y 5¢K A2mn,S=K A3mK

HO=DELTAW/ (1 ,5#MU#GY)

Ci1=sMI#GJ/ (HBAR®?T)
Ry =CMPLX (v (1)yev(2))

32xCMPLX (v {3)yev(s))

HIECUPLX (v (S)yeV(6Y)

34 =CMPLX (Vv (T7)eV (8))

He=CHPLX(v(9)eviln))

AaECMPLX (v (1)) oV ()2))

KnOT=Cle ((A18H74n S#R0) *n]1+A3#BPLUS®R2+0,5%*BP) 11S#B6)

Fn(ly=REar (BNOT)
Fr(2)=A1446G (RONT)

A4=SQRT (,5)

DERI0039
NnER1003]
DER10032
DER10033
DERI0034
DERI0035
DER10036
NDERIO0037
DERI003A
DER10039
NERIOO4N
DER1I004])
DER1004?

UNITs 1/MICROSDER10047

DER10044
DER10045
DERI004s
DER10047
DERI004R
DER10049
OER10050
DERI005]
DERI10057

dNOT=C1# (A3#¥RMINIS#B]+0,5#R32eR2+A34KBP[ US#HE340,5%RPLUS#BS5,A4#rN#BR)NERTID053

Fn{3)=RFA (RNOT)
Fn(4)=AIMAG (RDNT)

BAOTxCl® (A30HMIN|IS#B2+ (AP#RZanS5*BN)#R3+N,5#80| US#B4+AL#¥RO#RE)

FR(5)=REA (BOOT)
Fn(6)=AIMaG(RDONT)

3G0T=C1® (n,SeBMINIS#BI+ (n,S5*BN=A1#RZ) *BL+A3#BMINIIS#*BED)

Fn(T7y=REQ| (RPOT)
Fr(B)ymAIMaAG(RDNT)

HOT2C1#(n,S#RMINIIS#R2+A4,#B08R3I+A34BPI_ US#R4-0 , G¥RZ#RS5+A30RMTNUSH

1vrn)
Fro{9y=RFAa| (RNOT)
FA{ln)=xAT-+AG(HNOT)

HNOT=Cl®(n ,SeBMINIISH#R]1 +A4#RONR2+AINBPLLIS*#BS=(AP*RZ+05%Bn) *BA|

Fa(ll)=REAL (RDOT)
FR{l12)=A1-4AG(RNOT)
Rr TURN

Enml}

SIAROUTINE PRIMT(TLVS)

PRINTS STRONR FTELU SQUARED AMPLITUDES WITH RESPFAT TO PROB| EM nF-

FINEn Z AXIS,

STORES WEAK FIELD SQUAREND AMPLITUNFS WITH RESPECT

TO 1:STanNTanFQUS R AX1S FOR LATER PRINTAUT BY MATN PROGRAM
COMMON/RLACKS/RSW(60201) 4 TIME (201) 4BRX (201) ¢BRY (201)eRBZ(201)

90

A0

101
98

105

1°2(211)eP33(201) «DEL (201 ¢NoITIME
CAMMON/BLACK A/Mo NN

NIHENSION V{12)evs(12) «BRSQ(A)
1TIME=]ITI«E+)

n 90 Ixz]1 NN

ViT)aVs ({1l

CALL REMNOURM [NV eVY)

18 (VVeB3Te1,01) PRINT BO

FARMAT (# RENNRMAL TZATION EXCEFDS 1 PERCENT®)
CaLL BETEIDITeAXeRYWRZ)

HaX{ITIMEy=zRY

BRY{(ITIMFy=RY

RRZ(ITIMFy=R?
HTOT=SURT (X #R2eRyR#24BZ082)

Ky PHAE[241415927/180,0) #*ARCTANIBY ¢RX)
RETAx(3.1415227/120.0)#AQCTAN(SQRT (RX##2+RYN#2),437)
GAMMA=0, 0

6o TO (101410241073) M

X=RTOT/63,44K
DPLUSESQRT (0,540 ,5#X/SURT(1e0DaX#82))
OUIMHISES SOT (U aS5=0,54X/SQART (1,neX%82))
Do 105 I=1e06

HRSQU(l) IV (2#T=])na2ev(20T)082

PER10054
DERIO005%
DER10056
DER10057
DER100%5R
NERI00S9
NERIO06N
DERIOU61
NERT0067
NERIDOAY
NDER100AG
PERIOO6S
DERI0066
NERID06T
NERIODOKA
NERIN069
DERIO07n

PRNTO010
PRNTO0011
PRNT00]2
PRNTOU] 3
PRNTO014
PRNT001&
PRNTO0016
PRNTNO017
PRNTO01R
PRNT0019
PRNT002n
PRNT0021
PRNT002?
PRNT0023
PRNT0024
PRNT002%
PRNT0026
PRNT0027
PRNT0028
PRNT0029
PRNTO0030
PRNTODON
PRNT0032
PRNT00313
PRNT0034
PRNT0035
PRNT003A
PRNT0037

23



2h

e NN eXe]

PPEL=BBS v (1) +BRSQ(2) =BBSN (3) =RARSO(4) PRNTO003R
P7aV(1)#80,v (2)#824V(T) #8224V (R)#2.V () #8222y (4) #82=V () #a2=V (6) ##2PRNT0039

P7220.0 , PRNT0040
CalLL ROT(mMeAl PHAGRETAGAMMAY) PRNT0041
Q7aV(1)R02eV (2) 802,V (T)#82eV(R)HB2.V (3)# 82y (4 ) #02aV (5)#u2ay (6) #22PRNT0042
P33(ITIMEy=0,0 PRNT0047
Pa(ITIME) =07 PRNT0044
HSO(1e1TIME) =V (1) w24V (2)#ad PRNT0045%
BRO(2¢ITIME) = (NPLIIS*V (3) JDMINIS®V (7)) ##24 (DPLIIS*Y (&) +DMInUS#y (B) ) *PRNT004A
142 PRNT0047
RGQA(IeITIHE) 2V (D) aR2.V (6) 882 PRNT0041R
HGO (4o ITIME) 2 («DMTNUS#V () sDPLUSHV (7)) # #2024 (cDMTNIS#V (4) +nPLIIG#V (R)PRNT0049

1) e®2 PRNTOUSA
PrLIITIMEY=HSA (14 ITIME) ¢uSQ(24ITIMF)=aRSQ(3eITIME)~BSQ (40 ITIMF) PRNTO0051
Ggn TO 110 PRNTOUS?

102 xxBTnT/14 A0g PRNT0053
UPLUS=(X4140/3,0) /SQART(1,042,0%X/3,04X882) PRNT00%4
OMINUSZ(4-1e1)/3,0)/SART()eN=2,0%X/3sNeX""2) PRNT005%
E)y=SQRT (U ,5¢n.5#hpLUS) PRNT0056
E2=SnNRT (U ,5=n.5#0pLUS) PRNTO0057
E3=SRT (0,540 ,5*NDMINUS) PRNTO0SR
E4=SQRT(0,9-0.54NMINUS) PRNT0059
Na 1n4 1=y,6 PRNTO0060

1046 BRSQ(I)=V(2#l=a])nu2eyV(2%T)a®D PRNTO0061
PoEL=8BB8S411) +8RSQ(2)+BBSH(3) =ABSQ(4) =RBSQ(5) =RRSN(6) PRNT0067
P72V (1) #8254V (2)#02,V(11) 0824y (12)#02av(5)#82ay(6)#82ay (T)#%2,v(B) PRNT00673

1#a2 PRNTO0064
P72Z=V(1)9824y (21 8082+V (D) a82ey (6) 8824y (T)RR2,V(R) #8224V (1]1)#83,V(12)PRNTOURS
100222,0# (v (3)#82ey (4) 82,V (F) a4V (1n)0e2) PRNT0066
CaLL ROT(reA| PHARETAGAMMAWY) PRNTO0067
278V (1) 8824y (2) %804V (1] ) w024y (12) 802y (5) 482y (6) 882y (T)##2.V(8) PRNT0068
1462 PRNT0069
A773¢ (1) %824y (2) 4024V (D) w824y (6) R824y (TIHB24V(R)##24V (1]1)##2,V(12)PRNTO070
1002=2,0% (Vv (3)#a2ey (4)WB2,V(F)un2eV(10)#2) PRNTO0071
PA(ITIME) Q2 PRNT0072
Pa3(I1TIMEY=RZ22 PRNT00713
RSA(1eITIVE) 2V (1) we2eV(2)#e2 PRNTOUV74
BGA(2eITIME ) (F1¥#y (3)+E2aV(11))#82, (E1#V(4)+EP8V (12)) w82 PRNTO007S
HSO(3eITIME)a(F38v (51 +E4aV(9))#e2s (E30V(6) sE4Ry(10)) #02 PRNTO0076
BGA(4s ITIME) =V (T)w#24V (B)#a2 PRNTO0077
RGUI(S ITIME) 2 («E4#V (D) +EARV(Q) ) #0824 («E4PV(6) +F2Wy(]10) ) #e> PRNT0078
BSQI6EIITIME) z(=FE28V(3)+E18V(11)) 802+ (LE2#V(4)sFlev(12))%a2 PRNT0079
PFLIITIME)=HSQ(1¢TTIME) 4nSQ(24ITIME) ¢RSQ(3¢ITTME)=BSQ(4sTTIMF) PRNTO0080
1=pSQA(SeITTME)=d8SN (6 ITIMr) PRNTOO0R)
Gn To 110 PRNT0087?

103 x=BTOT/67,755 PRNT00R3
Gn TO IR PRNT0084

110 TIME(ITIMF) =T PRNT008BS
PRINT Z20¢TeRBXeRY RZeRTOT ,PZeP7ZePPEL (BBSQ(I),T=1¢N) PRNT00B5

20 FARMAT(14FY,4) PRNTO0B?
ReETURN PRNT008R
END PRNTOUR9
SUBRQUTINF RAT (MgALPHABFTAsGAMMA,YV) ROT 0010

ALPHAe HETAs ANND GAMMA ARE FULER ANGLES AS DEFINEN RY ROSEes WHICH ROT 0011

ROTATE THE IMITIAL COORDINATE SYSTEM INTN THE FINAL SYSTEM, ALPHA ROT 0012

IS PASITIVE ROTATION ABOUT 7, BETA ABOUT Y PRIME, AND GAMMA ABNnuT ROT 0013

Z DONHLE PRIME ROT 0014
DIMENSION Vv (12)eVV(6) sWW(6) ROT 0015
COMPLEX VyewWweXIeAPPoAMMAMP APMeCPPoCPOsCPMeCOP+CO0ICOMCMPCMOs ROT 0016

1CMM ROT 0017
X1eCMPLX(Nne0yl,0) ROT 001R
APP=ECOS (0 ,5%nETA) wCEXP (=x1#0 5% (ALPHA+GAMMA)) ROT 0019
AMMECONJG (APP) ROT 002n
AMPE=SIN(n ,5#BETA)#CEXP (_XI%*0 , 5% (ALPHA=GAMMA)) ROT 0021
APME=CONJG (AMP) ROT 0027
Gn TO (10,20410)eM ROT 0027

10 Dn 11 1Im].4 ROT 0024

11 Vw(l)sCMP| X(v(2%#1al)eV(2#1)) ROT 0025
WW(1)=APP# (APP#VY (1) +APMaVV (2)) ¢ APM® (APM®YV (3) LAPP#VV (4)) ROT 0026




12
20

21

22

¢ RE
C PR

1n

11

C AR

300
3n3

304

anl
305

306
3n7

302

Wl (2)2APP® (AMPaYY (1) ¢ AMMEVV (2)) s APM® (AMMBYY (3) JAMP®YY (4)) ROT 0027
Wi (3)ZAMP s (AMP#VY (1) ¢AMMaVV (2)) +AMM® (AMM®YV (3) JAMP#VY (4)) ROT 0028
Ww{4)TAMP# (APP#yVy (1) sAPMavy (2)) +AMM® (APM#VY (3) JAPPRVV (&) ROT 0029
Nn 12 I=1.4 ROT 0030
V(2*T=1)3nEAL (WW(Y)) ROT 0031
V(2*1)2aTuAG (WW (1)) ROT 0032
Re TURN ROT 0033
CnSH=COS(RETA) ROT 0034
STNBaSIN(RETA) ROT 0035
CPPE (0,540 ,5#CNSR) #CEXP(XI* (ALPHALGAMMA)) ROT 0036
CoO0=(SINH/SNRT(2,n) ) ®CEXD (=X]#BAMMA) ROT 0037
CoM=(0,5=n,5#COSB)#CEXP (v1I# (AL PHA=GAMMA)) ROT 0038
CAP= (=St /SORT(2,0)) *CExP (=XT®#ALPHA) ROT 0039
Cn0=COSH ROT 0040
CoM==CONJG (COP) ROT 0041
CvP=CONJG (CPM) ROT 0042
C+0==CONJr (CPOD) ROT 0043
CaMzCONJG |CPP) ROT 0044
Nn 21 1=1,6 ROT 0045
Vu(1)=CMP X(v(2®#]a]l) eV (24])) . ROT 0044k
25 {1)=APPa (CPP#VV (1) +CPOaVV (2) +CPMaVV (3) ) ¢ APM# (CPM®#VV (4) o CPO®VV (S)ROT 0047
1ecPPRVV (AY) ROT 0048
wW(2)2aPPa(CAPeVY (1) +CO0RVV (2) +COMRVVY (3)) ¢ APMa (COMBVY (4) ,CONaVV (5)ROT 0049
14~0P®VV (A} ROT 005n
W (3)=APPa (CMP#VY (1) «CMOaVV (2)+CMMaVY (3) ) s APMa (CMM*VV (4) ,CMOWVV (S)ROT 0051
1+rMPoVY (6y) ROT 0052
Wul{4)=AMP* (CMP®#VV (1) +CMO#VV (2) ¢CMMBVY (3)) s AMMa (CMM®#VV (4) 4CMNaVV (5)ROT 0053
lerMPaVY (61y) ROT 0054
Aw (5)=aMPa (CNPRVY (1) +CO0aVV(2)+COMBVY (3)) ¢«AMMa (COM®YV (4) . CONWVV (8)ROT 0055
1+4r0PBVV (6}y) ROT 005k
Ay (6)=AMPs (CPPaVV (1) +CPOaVV(2) +CPMuVvy (3)) +AMMa (CPM#YV (4) 4CPNaVV (S)IROT 0057
lerPPBVY{ -y) ROT 005A
Nn 22 1=1,.6 ROT 0059
V(2#1=1)=0EAL (WW(T)) ROT 0060
V(2#1) A1 4AG (WW (1)) ROT 0061
RF TURN ROT 0062
Fr ROT 0063
SHRROUT1tir RENORM (NeVeVVy RENMOO010
NDMALIZES TO REMOVE ACCUZULATED DEVIATION FROM UNITY TOTaL RENMNO11
03aR1LITY RENM001?
DIMENSTON v ()2) RENMO0113
wh=poN RENM0O014
Vu2=0e0 RENMOO018
N 1a I=1,N RENM0OO0164
VVESVV2eu (28Ta] ) Ba2ev(20r)u¥p RENMOUO] ?
VU=SART (vu2) RENMOO]1R
tin 11 I=14NN RENM0O019
vily=v(l)svv RENMOO020n
RETURN RENMOD2]
E L RENM0O022
FuttCTION ARCTAN(Y 4X) ACTNOO10
CTANGENT RAUTTINFEe GNRRECT IN ALL QUADPANTSs IN NEGREES ACTNOO11]
Ic(X)3004730)4302 ACTNOO1?
Ir(Y)303¢306,3004 ACTNOO19
ARCTAN=ATAN(Y/X)=3,1415927 ACTNOOl 4
S To 3u ACTNOO]S®
ACCTANSATAN(Y/X)¢3,14159>7 ACTNOO1A
13500 TO 303 ACTNOO17
TF(Y)30%e306,307 ACTNOO]1R
APLTAN==3 _1615927/2.0 ACTNOO]@
6n To 3ns ACTNOO20n
ALCTANS=Oen ACTNOO21
Gsn To .. ACTNOO2?2
ACTANZ3 1415927 /7,0 ACTNOO23
B TN 308 aCTNOO024
ARCTAN=ATAN(Y/X) ACTNOO2S

25



308 AoCTAN=ARCTAN®1B0,0/3.1415927 ACTNOO26

RFTURN ACTNOO27

EnD . . . ACTNOO2R
SURROUTIIF TABLE (ZeZZoN741eMFLAG) TBLEOOl0

C RETURNS INDEY T OF NFXT SMA|LER ENTRY OF ZZ(I) THLEOO11
C MFLAG=0 IF Z=2Z2(1l) FOR SOME 1 TBLEOO]1?
HHTMENSION 2Z2¢(100) TBLEFOO12

NJ=1ln THLEOOla
MFLAG=] TBLEOO1&
I¥(2Z.LTeZ7(1)) GO TO 30 ; TBLEOO1A
Ir(Z.GTeZ7(MN?)) Gn TO 30 THLEOO17?

N 10 t=11e47010 THLEOO1AW
Ir(Z.EQ, 7(1)) MF| AG=0 TBLF0019

I+ (Z.LTe27(1y) GO TO 20 THLEOO2n

10 CoNTINUE TBLEOO21
N.1=NZ=1 TBLEOO2?

Gn T0 11 TBLE0023

20 I=I=10 : TBLEOO24

11 Dn 21 J=l M) TBLEOO2S
IF(ZsEQe?7(1eJ)) MFLAG=0 THLEOO026
IF(Z.LTeZ7(1eJ)) GO TO 4n TBLEOO27

21 CnANTINUE TBLEOO2R

40 Izleu=l TBLF0029

RF TURN TBLEOU30n

30 PRINT 31 THLEOU3)

31 FARMAT(#* 7 OIUT OF RANGE nF TARLE®) TBLE0O3?
I1=1 - TBLFO0033
RFTURN TBLEOO34

Ewb) TBLEOO3sR
SHBROUTINE INTEG(MNeTIoeTTF ¢HH o HHP ¢MMoVVMeABSIREL ¢ X0e TTe X¥P) INTE0O10

C INTEr SOLVFS A SYSTEM OF NN FIRST ORDER OIFFFRENYTAL EQUATIONS RY INTEOO1]
C A 4TH OROER aDAMS PREDICTORLCNRRFCTOR METHON WITH AUTOMATIC ERRNR INTE001?2
C CONTROL., STARTING Is HYy THF RUNGA=KUTTA METHOD INTEO0019
LnoGICAL accC INTFOOla
COMMON/INT /N eToTF e HoHO e HP e MoVMe JoACC o XLBIRELTRToABSTSToFACTORBNNINTEDOD1S
1Xt30¢5)eF (30,5)eF (30)eXP(30)¢G(30e4) s 100UBL NNAURL INTEOO1sk
DTYMENSION X0 (30)4xyP(30) INTEVO17

¢ SET 1P INITiAL VALUFS INTEOO]R
N=NN INTFO0019
TF=TTF INTEO0020

H=HH INTE0021
HP=HHP INTEO0O02?

MzMM INTEQO0213
VMayVvM INTENO24

Un 10 I=1,N INTE002%

10 X(lel)=X0¢I) INTE0026
T=Tl INTEO0027
BND=TIeMP INTEQO2R

MnaH INTE0029
AnSTST=ABG INTEOO03n
RFLTST=RE| INTE0NO3)
FACTOR=RE| TST/ABSTST INTEO03?

X| R=0,009#RE TST INTE00313
INnOURL=D INTE0034
NNOURL =3 . INTEO035

Hu2 o N®H INTEQO036

30 CALL START(IRETRN) INTEQO037
Gn TO (160e99) ¢ IRETRN INTE0O03R

C SHOuLD ANY OF THE STARTING vALUES BE PRINTED OUT INTE0039
100 T=xT=3,0#H INTEO0O&4N
Dn 35 JUm2,4 INTEQUS1

T=T*H INTEOOA?

CALL TEST(IRETRN) INTE0043

Gn TO (35,60)¢IRETRN INTE0O044

35 CANTINUE INTEOVAS




HEGIM ADAMS METHOD
4n CalLL ADAMg
CaLL ACCRy
IF (ACC) a0 TO 50
Dn 4% I=1,N
45 X(lel)=mX(Teéh)
Gn TO 30
50 CaLL TEST(IRETRN)
150n TO (101460) ¢« IRFTRN
101 CaLL QOUw E(TRETRN)
Gn TO (403034 IRETRN
60 I+ (JeEQeg) 0 TN &5
Do 64 I=1,N
64 X (I)=X(I,d)
65 CalLL PRINT(T.XP)
Tr=T
0n 70 I=1.N
70 XxP(D)=XP (1)
99 RFETURN
Epu)

SItHROUTINF START (IRETRN,

RUNGA=KIITTA qTARTING METHOD
LNGICAL ArC

INTEO0O4&
INTEQCOAY
INTEQO4R
INTEOC4Q
INTEOOS0
INTEOO0S]
INTEQO0S?
INTEO0O051
INTEQO0S4
INTEO005S
INTEOOS6
INTEQOS5?
INTEOOSR
INTE0O059
INTEOO60
INTEOO61
INTE0O062
INTEQO061
INTEOO64
INTED065

STRTO0O010

STRTO0011]
STRT0012

COMMON/INT/NeToTF JHoeHO sHP ¢MoVMe JoACC o XLBIRELTeToABSTSTeFACTOR'BND¢STRT0017

1X(30,5) oF (30,5)eF (30)eXP(30) 4G (30¢4) 4 TOOURL ¢NNDNURL

J=2

CaLL RNGA
10 DA 15 1l N
15 xo(l)=x1l.2)

XP(1)=DalL INTERVAL RFSULT FAR ERROR ANALYSIS

T=Ter

Hz0 ¢S %H

IF ((TeH) NE,T) Gn TN 30
ENINT 20

20 FaRMAT(SuH4 £QNS CANNOT HRF SOLVED FURTHER WITHYN GIVEN ERROR

TOLUSH=T+H
POINT 21eTPLIISHST

21 FARMAT(AH TerHzE E1S.10e¢ HAH T=

IoFTRN=?2
Rf TURN
30 Un 4n J=P 3
40 CiLL RNGAa
41 CALL ACCRv
IF {JNOTeACGC) GO TO 10
J=6
CALL RNGa
IETRN=]
RF TURM
(1))

SHRROUTINE RNGA

INTERRATE (v FONS AHEAD ON THE J/TH STEP nF LENGTH H,

E1%.10 )

)

STRTO0014
STRT0015
STRT001A
STRTO0017
STRT001R
STRT0019
sTRT0020
STRT0021
STRT0022
STRT0027
STRT0024
STRT0025
STRT0024A
STRT0027
STRT002%
STRT0029
STRT0030
STRT0031
STRT003?
STRT0033
STRT0034
STRT003%
STRT003A
STRT0037
STRT003R

RNGAOO1n
RNGAOO11

CnMMON/INT/N.T.TF.HoHOoHP.M'VMoJ.ACCoXLBoPELTcToABSTSToFACTﬂD-BNDoRNGAOOIZ

1%x¢3045) oF (30,51 ¢F (30)9XP(30)¢6(30¢4) ¢ INCURLyNNAURL
CALL DERIV{(TeA(le.1=1)eF(10J=1))

un 10 I=l N
Gilel)=Her (] J=1)

10 x(loed)=X1TeJal)s0,6#G(101)
17=T+0,5%n

CALL DERTV(TTox(1eJ)eF(l.U))

un 20 I=1,.N
Gle2)=He®s (1.J)
20 X(led)=X{Tedal)*n 5#G(1s2)

CalL DERIuw(TTex(1eJ)eF (1))

Hn 30 1=l N
5i1e3)mHEF (1 ,4,J)
30 x(le)=X{TeJal)*G(1e3)

RNGAOO11
RNGAOO1l4
RNGADO1S
RNGAOO16
RNGADO17
RNGAOO1~R
RNGAO0O19
RNGAOO2n
RNGA0021]
RNGA0022
RNGA0023
RNGAOD24
RNGADOD25
RNGADO26



28

40

TESTS AHS AnNn REL ERROR AND SETS ACC ,FALSE.

10

an

75

5n
99

MONITNRS FOR vMm,

1n
70

20
80

81
30

35

40

SAVE ALL VARTABLES WHICH MAy BE MODIFIED IN PRINT PROCEDURE

45

T=T+H

CaLL DERIV(TeX(le.g)eF(le 1))
On 40 I=1,N

Gtleg)=mHeF (1,4J)

XtToed)aX(Tedal)e(Gllel)*p 0% (a(142)¢G(103))eG(T04))/6,0

RETURN
EnD

SHIBROUT INF ACCRY

LnGICAL arC

IF MFITHER SATYSFIFD

RNGA0027
RNGAOO2R
RNGA0D29
RNGAOO03n
RNGAOD03)
RNGAOO03?
RNGAQOU31

ACCY001n
aCCyool
ACCY0012

COAMMON/ZINT/NeToTFoHoHO oHO gyMoyYMeJoACC o XLBRELTGToABSTSTeFACTOR«BNNeACCYO013

AcC=,TRUE,
Na 50 I=1,N
E(I)=ARS(¢P(T)=aX(TeJ))

IF (E(1)«eBE«ABS(X({IsJ))*RELTST) GO TO 10

E(D=E(1) /ARS (X (IsU))
Gn TO SO
E(D=E(1)«FACTOR

G8n TO SO

TaT=H

HN=0 ,5%H

AcC=,FALSF,

FARMAT(1H o Y6HSTFP SIZE CUT TUs F12.Re

PRINT 75414007
Gn TO 99
CnANTINUE
RFTURN

EnD

SYBROUTINF TFST (TRETRN)

IF (MeEQen) GO TO 20

IF ((X{Me.)) LE,VM) ¢ANDs (¥ (Mo Jal) eGT,VM))
IF ((X(Mo ) e3T VM) e AND s (X (Mo Jal) e LFsVM))

Gn TO 20

CaLL OIOULF
IF(T=TF)7nae7ne30
IRETRN=2

RFTURN
IF(ABRS((TaTF)/TF)alenE=6) RO4Rl A1
IRETRN=2

RETURN

IF(T.LE.TF) GO Tn 40
HeTF=T

On 35 I-loN
X(lol)=X{1eUy

J=2

CaALL RNGAa

IRETRN=2

RFTURN

IF(T,LT.BND) GO TN 50

HGAVE=NH
TQAVE=T
JSAVE=Y

DA 45 1=],N
X1(I)y=xX(1,1)
X2 (Iy=x(1,2)
Fi(hy=F(1l,1)
Fp(ly=F (1,21
XtIel)mX(14J)

1x(30¢5)eF (30,5)¢F(30)9XP(30) 46(3044) ¢ TDOUKHL ¢ NNNURL

6H AT T=,

END OF INTFGN OR PRINT RANGE.
COMMON/INT/NgT o TF qHeHO s HO o MoyMeJo ACC o XLBeRELTSToABSTST+FACTOR«RND»
1X(30¢5)¢F (30,5)9F (30)eXP(30) ¢63(30s4) ¢ IDOUBL¢NNDAURL

DTMENSTON X1(¢30)ex2(30)er1(30)+F2(30)

GO Tn 1n
GO Tn 1n

ACCY001a
ACCYO001%
ACCy001+h
ACCy0017
ACCY001R
ACCY0019
aACCyo02n
aCCyo0021)
aCCy002?
ACCY00213
ACCY0024
ACCy002%
ACCY0026
aCCyo0027
ACCY002Rr
ACCY0029
ACCY003n
ACCy003)
ACCY003>

TESTOO01N
TESTOO 1
TEST0017
TESTO0011
TESTO0014
TESTOU1R
TESTO0014
TESTO0017
TESTO001R
TESTO0019
TESTO002n
TESTO0021
TEST002>
TESTO002
TESTNO024
TESTO002%
TEST0024
TESTO0027
TESTO002"
TEST0029
TESTO0030
TEST003)
TESTO003?
TEST0033
TEST0034
TEST0035
TEST0036
TEST0037
TESTO03R
TEST0039
TEST0040
TESTOVL4)
TESTO0047
TEST00413
TESTO0044



J=2 TEST0045

HetNO=T TEST0046k
CALL RNGa TESTO0047
CaLL PRINT(TeX(1le 1)) TEST004A
HMU=3NU ¢ Hiy TEST0049
RESTARE VARTIARLFS TO PROCEEN . TEST0050
J=.1SavVE TEST00S5)
H=HSAVF TEST005>
T-TSAVE TEST0053

VA w6 I=l N TEST0054
X¢Tel)aXlyI) TEST0085
x(le2)=X2¢(1) TEST00S6
Filel)sFi(T) TEST0057

a6 F(le2)=F2(1) TESTO005A
50 IF (JeNF &) G0 Tn 99 TEST00%9
Nn 60 1=1,N TESTO0060N
X(Tea)=X(1¢9) TEST00m1

Nn 60 J=2.5 ’ TESTO0K?

60 F(leJd=l)=r{led) TESTO0067
99 InFTRN=l TESTO0064
Ry TURN TESTO0065
£ TESTO0066
SHRRNAUTTNE DTONE plopnoln
FInt VALUEL OF T WHERF THE M/TH yvaRIARE REACHES THE VALUF Vm pIocpo0o1l1l
CAMMAN/T A T/NoT qTF ¢HoeHOsHPpoeMoyMe Jo ACC o XLBIRELTGTeABSTST+FACTORANDeDIODO0D12
1¢30e5) oF (30,5)eF (30)9XP(30) ¢6(3044) ¢ TDOURL e NNAURL Dl0D0011
HIMENSTON D (30) DIononole
YI=X{(MeJ) pIoD001s
Ya=X{MeJ-1) pIODOO1A
DELT==8HS (HeY]l/(Y1=Y0)) pIoDo017

10 H=DELT olopoolR
A 20 1=1,M nIoDO01Y

20 x(leld=X(te.)y plobDo02sn
Y pIoD0021
CrLL. RNGA olopgoz2
CalLL DERIw{(TeX{lo 1)eD) ploD0023

e LT (VMay (Mg )) ) /N (M) pIoN0024

IF LaKS{DFLT14GBFe1.0E=4) GO TO 10 plIobpougs
XMy ))=Vn ‘ DloD002A

KF TURN plopo027

g al) ploD002R
SHRRAUT INE aNAMS aDAMOO10
INTEGRATE ONF STEP Ay THE ANAMS pPREDICTNR=-CORRECTNOR METHOND aDAMO00]11
COMMAN/TAT/eT e TFoHeHO sHO ¢MoyMo Jo ACCo XLBIRELTGTeABSTSTeFACTORBNNoADAMOC1?
LX130e5)0r (3049 oF (30) o XP(30) ¢G{(3044) « TDOURLeNNNURL ADAMOO13
Je5 aDAMOOl4
CrLL DEPTIw(TeX({1eb)eF(1le4)) ADAMOO1S

e n Izl N ADAMOO 1A

10 xe(I)=X({1,4)40,06)66666TsH®(56,0#F (144)=59.0%F (I,3) aDAMOO17
1027 en#F (1,2)a9,04F (141)) ADAMOO01R
T-Te ADAMOOlQ
CalL DERTU(T4XPeF(1e5)) ADAMOO02n

hn 20 I=1,N ADAM0021

20 A{106)SX[T1e6)14NeNG]166666THHUS (Q 0#F (1,%5)419.0%F (1,4) ADAMOO2?2
lacN#F ([92) *F (T 4P)) ADAM0O023
RF TURN ADAMO0024
Foat ADAMOU2S
SHRRNUTINE NAURLE (1RETRw) PBLEOO10
TEST 10 SEE tF TMTEWyAL CAN RE DNUBLED NBLEOO11
CndMON/INT/N.T.TF.HoHOoHn.MovM.JoAcC.XLB.RELT:ToABSTST.FACTOP.RNDoDBLEOOIZ
1X(30'5)'F(30.5)'F(30)'XP(30)'6(30'6)'IDOHFL'NDOURL PBLEODO1Y
IPOURLZTHAUBL*Y DBLEOOl4

29



30

IF (INCURL LT NNOURL) GO 1O 99
ALLOwS NOUBLF ATTEMPT ONLY FVERY NDOURL/TH CALL
I1nOURL=0
Ba 1y I=1,N
I (E(I)enT4XLR)IGN TO 99
10 CANTINUE
VY=HDR/ (26 n¥H)
IF(D1+LEs?e0) GO TO 99
U= (1IND=Ty / (P, N#H)
16 (D2 eLFe240) GO TO 99
Vo 2” l=loN
20 X(Te1)=X(T44)
Hn=2 , 0K
Hzle 0#140
30 FPRMAT(18H STEP IMCREASEn TO F12,8, 6H AT Tz F12.8)
PRINT 3004067
IwETRN=2
RE TURN
99 1pETun=z]
RETURN
(AN

DBLEOOV1S
DBLEOO1n
nBLEOOl7
NnBLEOO 1R
DBLEOO1%
NBLEODO?n
NEBLEOOD21
DBLEODO22
NDBLEOD2?
nBLEO0D24
NBLEODO25
NPHBLEOO24
NBLEODODZ27
NHBLEOOP?R
NBLEODOPY
NBLEVLO3n
NBLFO003)
NDBLEOD3?
DBLEOOV33
DBLEOO034
DBLEOO03%




