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ABSTRACT

A review of fission theory is presented with atten-
tion focused on the liquid drop model. The contour of the
liquid drop is described by a two-parameter equation in
order that dynamic calculations could be performed. To ob-
tain an indication of the accuracy to be expected in the
dynamics, calculations of the fission-barrier energy and
other saddle-point properties were made and compared with
other studies. The equations of motion were derived under
the assumptions of incompressibility and irrotational fluid
flow. With the time dependent coordinates being the two
shape parameters, a velocity potential is defined as a sum
of terms, each of which satisfies Laplace's equation. The
coefficients of each term are fixed by the boundary con-
ditions and are seen to be functions of the shape parameters
and their first derivatives. Lagrangian mechanics furnish
the basis for the equations of motion. Tests of the theory
are proposed and evaluated numerically using a two-term

"velocity potential."”
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INTRODUCTION

This paper is divided into three major sections. The
first section is a review of fission theory with emphasis on
the applications of the liquid drop model. The remaining parts
describe new work. By limiting the number of parameters which
specify the surface shape of the drop, it becomes feasible to
treat the fissioning liquid drop on a dynamic basis. This is
considered in the third section. The second section deals
with the static or potential energy aspect of symmetric fission.
Comparisons are drawn with other more exact formulations to
give an idea of the accuracies to be expected in the dynamic

treatment.



I. REVIEW OF FISSION THEORY

The ideal way to theoretically treat nuclear fission,
and for that matter all the problems of nuclear theory, would
be to write an exact nuclear Hamiltonian, and solve the equa-

tions of motions. Such a Hamiltonian could be expressed as

A A
H = . 2 + v
z Eﬁi‘ V& %:E }13
i=1 1#]
i=1
j=1

where the first term represents the kinetic energy of all A
particles in the nucleus and the second term the potential
energy of interaction. 1In this expression two body forces
are implied, although there is no evidence to rule out the
possibility of many body forces.

However, this approach is impractical, because the
many body problem is incapable of exact solution at present
and the two body potentials are not fully understood. One
approach has been to simplify the problem by proposing to treat

"nuclear matter".! By definition "nuclear matter" consists of
a very large number of nucleons, so that surface effects can be
ignored. Since such a large system of nucleons, half of which
are protons and half neutrons, would be unstable because of
Coulomb repulsion, these Coulomb forces are assumed to be turned
off.

13.8. Bell and E. J. Squires, Adv. in Physics, 10, 211
(1961) .



Brueckner and Gammel? have performed calculations on
such nuclear matter subjected to the two body potential which
best conforms to the present state of knowledge. This poten-
tial consists of a hard core to a radius of 0.4 Fermi. Out-
side of the hard core it included an attractive central poten-
tial acting on even orbital angular momentum states (a Serber
force), a tensor potential (designed to fit the quadrupole
moment of the deuteron), and a spin-orbital angular momentum
term (to account for high and low energy scattering data). The
inclusion of the hard core prevented the use of ordinary per-
turbation techniques and tremendously increased the computa-
tional difficulties. However, their results, which should be
applicable to the central region of naturally occurring heavy
nuclei, were very close to the experimentally observed values
of energy per nucleon and nuclear density.

These calculations demonstrate that, although the nu-
cleons are subjected to strong two body forces, they behave dy-
namically as free particles in a degenerate Fermi gas. Weisskopf®
recognized that this property is related to the operation of the
exclusion principle for fermions. 1In a review article Edert
has indicated how the further developments in the many body
problem have supplied the bases for the assumption of the in-
dependent particle shell and optical models, which have been
so successful in accounting for nuclear data.

Historically, two models have been discussed in connec-

tion with the process of nuclear fission, These are the

®K. A. Brueckner and J. L. Gammel, Phys. Rev., 109,
1023 (1958).

V. F. Weisskopf, Science, 113, 101 (1957).
4R. J. Eden, Nuclear Reactions,North Holland Pub. Co.,

Amsterdam, 1959.



independent particle shell model and the liquid drop model .

The Shell Model

The basic assumption of the shell model is that each
nucleon moves in an average potential, which depends only on
the coordinates of that nucleon. For a nucleus of A nucleons,
this potential is considered to be the resultant of the effects
of the other "A-1" nucleons. How such a potential, which seems
at first sight to require a weak interaction between individual
nucleons, can be compatible with the known strong interactions
is a problem which only recently has been resolved in the manner
indicated above. Upon inclusion of spin-orbit coupling properties,
the shell model theory has accounted for the especially stable
"magic number" nuclei with 2, 8, 20 , 28, 50, 82, 126 protons or
neutrons.

One of the unexplained features of low energy nuclear
fission of 235y and 22°pu is the well known asymmetry in mass
division. 1Instead of the nucleus dividing into two equal parts,
the mass and charge divide in about a 2 to 3 ratio in most cases.
Mayer,® Wick,® and Meitner” observed that the number of neutrons
in the fragments were near the "magic numbers" of 50 and 82, and
suggested that shell effects might play a part in the explana-
tion of asymmetric fission. However, Hill and Wheeler® contended

that a nucleus in the process of fissioning could not "feel any

® M.G. Mayer, Phys. Rev., 74, 235 (1948) .

8G. C. wick, Phys. Rev., 76, 181 (1949).

L. Meitner, Nature, 165, 561 (1950).

®D. L. Hill and J. A. Wheeler, Phys. Rev., 89, 1102
(1953) .




potential shell structures in the not yet formed products",
and thereby discount shell effects as an explanation of
asymmetric fission. This observation of potential shell ef-
fects has arisen periodically whenever new experimental data
on fission seem to indicate "magic number" tendencies. 1In any
event, probably because of the enormous difficulties and lack
of understanding, there have been no shell model calculations

of the fission process.

The Nuclear Liquid Drop Model

In contrast with the shell model the description of
fission falls quite naturally in the framework of the nuclear
liquid drop model. However, even these calculations are ex-
tremely difficult, as is borne out by the lack of a complete
treatment of the process.

The three primary assumptions which underlie the nuclear
liquid drop model are:

1) The charge distribution is constant throughout the nucleus
and has a sharp surface boundary.

2) The mass distribution is also uniform with a sharp surface.
3) The nuclear surface is characterized by uniform surface
tension regardless of the distortion.

When the model was introduced, these assumptions were reason-
able and made the model mathematically tractable. Hill® has
summarized some of the experimental and theoretical data which

now support these assumptions.

®Dp. L. Hill, Handbuch der Physik, 39, 178 (1957).



The most convincing evidence of uniform electrification
is furnished by Hofstadter's!® electron scattering experi-
ments. It was demonstrated over a wide range of nuclei that
the mean radius of the nuclear surface can be represented by
the relation R = roA%. In these experiments r,= 1.07 Fermi
and corresponds to the radius at which the charge density is
50% of that at the center of the nucleus. For nuclei with
A240 the central region was found to be quite uniform. The
thickness of the nuclear surface, as defined by the fall-off
distance from 90% to 10% of the central charge density, was
approximately constant at 2.4 Fermi from nucleus to nucleus.
Other support of the first assumption is furnished by analyses
of x-rays from mu mesonic atoms, x-ray and optical-spectra
fine structure in isotopic shift, and the Coulomb energy dif-
ferences in mirror nuclei.® All of these approaches confirm
that the nuclear radius is proportional to A%, but they give
no indication of the diffuseness of the surface.

In contrast to the case of electron scattering, the
experimental support of the second assumption is furnished
primarily by scattering data on particles which interact ap-
preciably with the nuclear constituents. Above 10 MeV the
de Broglie wave length of the neutron is small compared to the
nuclear dimensions, and the scattering cross section may
reasonably be defined as the geometrical cross section 2nRZ2,
where R is the nuclear radius. Early experiments!! indicated
that R = 1.4A% Fermi. More refined analyses must take into

account nuclear transparency when the neutron energy exceeds

?°R. Hofstadter, Science, 136, 1013 (1962).

'1E. Amaldi, et al, Nuovo. Cim., 15, 203 (1946)and R.
Sherr, Phys. Rev., 68, 240 (1945).



50 MeV. One such analysis!® based on the "optical model",
which assumes both a real and an imaginary nuclear potential,
gave the nuclear radius as R = (0.8 + 1.23Aé) Fermi., High
energy proton scattering has also been analyzed on the basis
of the optical model with a special potential which has the
surface thickness of the nucleus as a parameter.!® The data
was fitted to an A% radial dependence, and the nuclear "skin"
thickness was found to be approximately the same as that in-
dicated by the high energy electron scattering data. Further
support for the Aé radial dependence is obtained from alpha
particle scattering and alpha decay data, although the con-
stant of proportionality is somewhat larger.® In all these
cases the radius measured is the nuclear force radius, which
is assumed to be essentially the same as the mass radius.

The final assumption of constant uniform surface tension
is reasonably supported for nearly spherical nuclei. The ex-
perimental findings of constant volume per nucleon and constant
binding energy per nucleon (A>20) support the concept of satura-
tion of nuclear forces. By analogy to molecular fluids the sur-
face nucleons would experience unsaturated bonds, the manifesta-
tion of which would be a surface tension and sharply defined
surface. For highly deformed nuclei, since experimental evi-
dence is lacking, this remains the weakest assumption.

One of the early applications of the liquid drop model

127, B. Taylor, Nuclear Scattering of High Energy Neutrons
and the Optical Model, Thesis, Cornell University, 1954, AECU-2916.

13M, A, Malkenoff, et al. Phys. Rev., 106 793 (1957).




to the general field of nuclear theory was through the semi-
empirical mass formula.!4 This formula accounts for the
binding energy of nuclei in terms of saturated exchange forces
whose effects are reduced by 1l) incomplete saturation near the
surface, 2) the Coulomb repulsion, 3) symmetry properties em-
bodied in the exclusion principle, and 4) finite pairing
energy differences between odd and even A nuclei.

The resulting formula with five empirically determined
constants is useful for predicting mass and binding energies
of any nucleus with A>40, the Q value (energy release) of
nuclear reactions involving changes in the mass number A, the
energy considerations in alpha decay, and the energy release
in nuclear fission. For example, in the case of symmetric
fission, neglecting the small contribution from the pairing

energy term, the energy release is

Q = M(ZIA) - 2M<%" %) ~ asA% (1—2é) + ac%<l—(%)g‘)
A

where ay = 17.97 MeV and a, = 0.7183 MeV.®

Using this result for thermal neutron fission of ?35U an
energy release of about 185 MeV is obtained. Applying the
Weizsdcker formula to asymmetric fission of this same isotope
results in a smaller energy release, indicating that on an

energy release basis symmetric fission would be expected.

l4c. F. Weizsicker, Z. Physik, 96, 431 (1935).
| A. E. S. Green, Rev. Mod. Phys., 30, 569 (1958).




The Classical Uniformly Charged Liquid Drop

Since the assumptions made about the nuclear liquid
drop model are only approximately fulfilled, and since no
quantum mechanical effects were included, the problem actually
under consideration is that of fissioning of a uniformly charg-
ed liquid drop obeying the laws of classical hydrodynamics. An
understanding of the physics of this relatively simple concept
is by no means trivial (since no analytic solution is possible),
but rather requires long and involved numerical calculations.
Most of the treatments of the liquid drop model have considered
just this classical problem, and as yet no complete solution has
been obtained.

In order to discuss and treat the hydrodynamic motions
of the classical charged liquid drop, several additional as-
sumptions are made:

l) The fluid is taken to be absolutely incompressible.

This does not actually constitute a new assumption, as it is
embodied in the assumption of uniform mass distribution. How-
ever, the statement of incompressibility simplifies the equa-
tions of motion.

2) Irrotational flow is assumed. This assumption implies
that all surface motions of the liquid drop will be perpen-
dicular to the surface of the drop. Lord Kelvin first showed
that "the irrotational motion of a liquid occupying a simply-
connected region has less kinetic energy than any other motion

consistent with the same boundary motion."'® gince it is the

164, Lamb, Hydrodynamics, Dover Publications, N. Y.,
1945, p. 47.




intention of these studies to consider the lowest energy fission
in a classical hydrodynamic sense, there would be no energy avail-
able for any other type of motion, such as rotation of the nucle-
ar fluid.

3) The fluid is assumed to be nonviscous. By this assump-
tion and that of incompressibility it is assured that no
rotational or vortex motion will arise during the sequence of
motion preceding fission.!?” For nuclear matter this assump-
tion is not unwarranted, as multiple and random momentum trans-
fers between the particles of a viscous liquid are largely pre-
vented by the Pauli exclusion principle for nucleons.

4) For simplification of the computations it is further
assumed that the motions of the fluid and the shapes of its
surface are cylindrically symmetrical. A drop lacking azi-
muthal symmetry would be expected to require higher excitation
for fission than a cylindrically symmetric drop.

Thus, the study of the nuclear liquid drop model is
actually a study of a classical, incompressible, inviscid,
uniformly charged liquid drop with a sharp surface and con-
stant uniform surface tension, which is restricted to irrota-
tional flow with cylindrical symmetry.

Since the fluid is incompressible, the mass density o
is constant. By definition of the divergence of mass flow, we
have

V0, v=90,V rv=20
Since the flow is irrotational, curl v = 0, and the velocity
v is derivable from a scalar potential, as v = -grad ¢, and

¢ satisfies Laplace's equation, vzw = 0.

17L. M. Milne-Thomson, Theoretical Hydrodynamics,
The Macmillan Co., N. Y. 1960, p. 82-85.
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The kinetic energy (K.E.) of the liquid drop may be

expressed as

I Q

(-9e)2 dr
1.

T=_2fy . vdrs=

Y
2
ol. vo

L] V]

By the relation V . Ve = (Vvon)2 + @v®¢, the K.E. can be con-

verted to a surface integral,

T=O_M/V~Q0de'r=g-l-'/‘mvto.d—s
2
S

vol.

Thus, if the velocity potential subject to the necessary bound-
ary conditions can be found, an expression for the K. E. can
be determined as a double integration.

Other investigators have not found such an attack to be
convenient and Hill!® has used a slightly different approach.
He assumed that he knew the surface shape and velocities of
each point on the surface at an initial time. Using the
Eulerian equation of motion for a nonviscous fluid with mass
density o, , subject to body forces y per unit volume and an
external pressure p, he writes for Eﬁe acceleration

:—% = %-(x -grad p)

Since the body forces are purely Coulombic, they are the neg-

ative gradient of the electrostatic potential V. Thus, the

acceleration becomes

dv 1
EE = - EHV(V+p)

lep L. Hill, Dynamical Analysis of Nuclear Fission,
Doctorate Dissertation, Princeton University, 1951.
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Upon taking the divergence of this equation, and using the
assumptions of incompressibility (v . v = 0) and irrotation--

ality (v v = 0), the result may be expressed as

X
v (V+ p+ yo,v?) = v"H =0
The functional qualtity H is expandable in a series expansion

in solid harmonics. At an arbitrary point P on the surface,

H

Hy is determined from the calculable electrostatic po-
tential v, the pressure p =d« , and the known velocity, where
¢ is the surface energy (tension) and « is the curvature

of the surface at P. By minimizing the intergal JTH-HS)QdS
over the surface, the coefficients of the solid harmonic ex-
pansion of H can be obtained. This solution for H is sub-

stituted in the equation

d
_'Y' = - -]—'- v(H_%UmVQ)
dt O

to obtain the acceleration. Having determined the accelera-
tion and knowing the initial velocity, the velocity and posi-
tion of the surface a short time later can be calculated. By
this iterative procedure the surface shapes and kinetic energies
can be calculated for incremental increases in time.

Previous investigations of the liquid drop model have
primarily dealt with calculations of the potential energy for
different values of Z2/A. Supplementary to these calculations
have been a few studies of the dynamics and kinetic energy.

Some calculations of the spontaneous fission half life have

also been performed.

Potential Energy Studies

The potential energy of a uniformly charged liquid drop

consists of two classical terms: the surface energy (E;) and
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the Coulomb or electrostatic energy (E.,). By definition, the

surface energy is simply
S

where J is the surface energy (tension) per unit area, which
is assumed constant, and whose numerical value is obtained
from the semiempirical mass formula. The Coulomb energy is

given by the integral

E, = % f(?z dr, drs
Ly

vol.

where o is the charge density and r,, is distance between the
two volume elements, dg, and dr,.

For a spherical configuration with a total charge Ze
and radius R, = rnAg, it is readily shown that EQ = 4mdr,? A%
and E.® = % ezzz/roA%. Bohr and Wheeler!® introduced the
dimensionless fissionability parameter X, defined to be the
charge squared over the product of ten times the surface ten-

sion and the volume of the sphere, that is

. 73 a2 _E," _ (22 /A)
1019%nr03A 2Esn (Zz/A)L|M|1|NG
40mdr, 2
where (ZQ/A)L|M|T|NG = 2 .
3e®

Based on the 2271 fission threshold measurements,2° the best
value of (2%/A)_ ;ui;1ve = 48.4. This value is somewhat smaller

than that obtained from Green's!® values of r, and 4, but

'*N. Bohr and J. A. Wheeler, Phys. Rev., 56, 426 (1939).
20p, s. Burnett, et al, Phys. Rev., 134, 5B B952 (1964).
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should be more appropriate in that it is based on an isotope
near the fission region, rather than on an average of proper-
ties throughout the range of nuclides.

Previous calculations of the potential energy have de-
scribed the surface contour of the drop as a surface of revo-
lution, the generator being expressed in terms of a radius as
a function of the angular displacement #§ from the z-axis. The

most commonly used form has been

R(a) = Raf14 &
( aiw + E a, Py (cos 8) (1)
N=1 :

where R, is the radius of the spherical drop, A is a constant
to insure volume conservation, and g, are the shape defining
parameters. For shapes with reflection symmetry about the
z=0 plane, only the even order Legendre polynomials are re-
quired. When asymmetric shapes are allowed, one of the odd
parameters (usually a,) may be eliminated (by expressing it in
terms of the remaining N-1 parameters) in order to restrict
movement of the center of mass of the drop.2?

Small symmetric deviations from spherical may be speci-
fied by retaining only the second order term, i.e.,
R = R(\l + 05P, (cos Q)) ,» where R is determined by the condi-
tion of constant volume, and 2, is much less than unity. In

Appendix I the surface and Coulomb energies for this case are

®'w, J. Swiatecki, P/651, Proceedings of the Second
United Nations International Conference on the Peaceful Uses
of Atomic Energy, Geneva, 1958 (United Nations, Geneva,
1958).
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shown to be

E, E,%(1 + 2 %2 + terms of higher power in q,) and

E, E."(l - ¢ a,® + terms of higher power in q,).

Thus, the deformation energy AE = (E, - E,") + (E, - E.") is

AE ~ b 2% (2E4® - E.") = § 02%E"(1 - X).
When X<1, the drop would be in a stable configuration requir-
ing additional energy to cause fission. Wwhen X>1, the drop
would be absolutely unstable, and fission would follow in the
order of the period of a nuclear motion. In the case when
X=1, the drop would be in a condition of unstable equilibrium,
and any dynamical motion, such as the zero order quantum mech-
anical oscillations, could be sufficient impetus to initiate
fission. By extrapolating the ratio of Z2/A for naturally oc-
curing and man-made isotopes to (ZQ/A)L|M,,|NG, the hypo-
thetical element (for which X=1) would have 2 ~ 130 and
A ~ 340.'® Heavy nuclei such as 22°pu and 248Cf have X values
of 0.74 and 0.77, well below the value for unstable equilibrium.
Thus, applications of the liquid drop model to actual nuclei
require the use of fissionability parameters less than unity.

From the equation for AE given above, it is seen that
the deformation energy increases as the distortion (g,) increases.
However, it was observed earlier throuéh use of the semiempirical
mass formula that energy is released in nuclear fission, implying
a lower potential energy for the fission products than that pos-
sessed by the parent nucleus. Thus, as a fissioning drop or nucle-
us becomes more distorted, the potential energy must pass through
a maximum value.

In order to consider the more distorted shapes on the
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path to fission, one could retain more terms of equation (1).
The electrostatic (E.) and surface (E,) energies have been
calculated®! explicitly by similar but more complicated tech-
niques than those used in Appendix I.

Frankel and Metropolis2®® introduced the convention of
expressing the surface and Coulomb energies in multiples of
their respective energies for a spherical configuration. They
also defined the total deformation energy (£) as a multiple

of the surface energy of the sphere, i.e.,

AE
g = Esn = Bs -1 + 2X(Bc—1)

where By = E;/E°® and B, = E./E.°.

In Fig. 1 the Frankel-Metropolis graphical representa-
tion of g versus n,, a, is reproduced. 1In this figure the
saddle point of the deformation energy is readily visible.
Mathematically, a saddle point is defined®® to be a point for
which the two first partial derivatives of a function f(x,y)
are zero, but which is not a local maximum or a local minimum,
If the second partial derivatives are continuous in a neigh-

borhood of "p",

af _
AX

o’ |/
<5

2
= 0, and (2—2—?-) - gaf gzzf > 0 at "p", then "p" is a
IXQY X° 9y

saddle point. For a hyperspace of more dimensions, the re-

quirement that the first partial derivatives all equal zero

225, Frankel and N. Metropolis, Phys. Rev., 72, 914

(1947) .

23G, Jgames and R. C. James, editors, Mathematical
Dictionary, D. Van Nostrand Co., Princeton, N. J., 1959,




08

§= 85-1 +2X0.% (8-1)
vs
£, AND L,
(6nar L'5-0)
SADOLE APPLARS AT U+ 040; £,0020, {- am
CONTOLR LINES LASELLED WITH § — VALK

from: S. Frankel and N, Metropolis, Phys. Rev.,
72, 914 (1947). o

Fig, 1.

Relative deformation energies as functions of a,,0, for X=0,74

LT



18

must still be met. A criteria for determining that such points
do not represent a local maximum or a local minimum is given
in Appendix II.

The physical significance of the saddle point is that
it represents a condition of unstable equilibrium. A nucleus
or drop could not remain at such a point, because the zero
point quantum oscillations would force the nucleus to a more
stable configuration on either side of the saddle point. 1In
a simple case, to one side of the saddle would lie the spher-
ical configuration and to the other, the path to binary fission,
although Cohen and Swiatecki (C and S)2* discussed other pos-
sible situations. .

The interest in locating the saddle point is that the
deformation energy at that point (for the simple case usually
treated) is the minimum energy which must be supplied to the
drop to induce fission with a high probability. Thus, the
deformation energy at the saddle point is the classical fis-
sion threshold energy, a quantity which can be compared with
experimental data.

Regardless of the number of parameters used to describe
the surface of the liquid drop, the technique for locating the
saddle point is the same in all cases. As indicated by the
definition, such points are theoretically found by the solu-
tion of the simultaneous equations resulting from equating to
zero the partial derivatives of the deformation energy with
respect to each of the shape parameters. 1In the close neighbor-

hood of the saddle point the contour of the deformation energy

245, Cohen and W. J. Swiatecki, Ann. Phys., 19, 67
(1962) .
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hypersurface is approximated by a quadratic expression of the
parameters. The quadratic approximation of a two parameter
surface is simply a hyperbolic-paraboloid, for which the saddle
is obvious. In practice, the saddle point is obtained by com-
puting the deformation energy in a grid of points near the sad-
dle and mathematically fitting the "best" quadratic approximation
to these energies.

The most extensive calculations on the static aspects
of fission have been performed by Swiatecki®®:/28.,21 and C and
§2%/27 in a series of papers entitled "The Deformation Energy
of a Charged Drop." In the latest of these papers,®? n, param-
eters through order 18 have been included. For fissionability
parameter X from 0.30 to 1.0 (in steps of 0.02 units), the
symmetric saddle shapes and the corresponding energies (total
g, surface By, and Coulomb B.), the moments of inertia about
the two perpendicular axes, and the quadrupole moments were
calculated. The instability of these saddle shapes for asym-
metric as well as for symmetric distortions were investigated
with the finding that asymmetric distortions did not become
energetically favored for any X values larger than 0.39. It
was also shown that for actual nuclei having low fission
thresholds (i.e., nuclei for which X=0.7) only two parameters,
a, and q,, had any appreciable effect on the fission threshold
energy. C and S's saddle shapes®” have been reproduced as

Fig. 2. It can be seen that for X<0.7 the saddle shapes were

25w. J. Swiatecki, Phys. Rev., 101, 651 (1956).
28y, J. Swiatecki, Phys., Rev., 104, 993 (1956).

27g5. cohen and W. J. Swiatecki, Ann. Phys., 22, 406
(1963) .
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of the "dumbbell" variety and for larger values of X, they
exhibited no necking-in, but were of the "cylindrical" form.

The isotope 2!°Po would have a fissionability parameter X=0.67,
and would require fairly large excitation energies to be in-
duced to fission. It was stressed that for actual nuclei, which
have low fission threshold energies (i.e., when X>0.7), it
"becomes impossible to predict with any confidence, on the basis
of the properties of the saddle shapes, the relative sizes or
even the number of fragments to be expected in the division" .27
C and s?®7 concluded that to understand the fission process

for x>0.67 the dynamics of the process must be treated.

Work on the potential energy aspect of the liquid drop
model was also pursued in the USSR by Struntinskii, et al,®®.29,30
Using a different approach requiring the solution of an integro-
differential equation, he found the symmetric equilibrium (saddle
point) shapes to have the same properties as those found by C
and S.2”7 In the last referenced paper®? corrections for non-
uniform surface tension and compressibility of the drop were
included, but had small effects. Strutinskii also found that
asymmetric saddle shapes had higher potential energy in accord-
ance with earlier investigations. Concurring with Hill'® and

C and S,2” strutinskii also recognized that the problem of

28y, M. strutinskii, JETP(USSR), 42, 1571 (1962).

29y, M. Strutinskii, N. Ya. Lyashchenko, and N. A. Popov,
- JETP (USSR) , 43, 584 (1962).

30y, M. Strutinskii, Results of Calculations Based on
the Liquid Drop Model of Nuclear Fission, order of Lenin,
Institute of Atomic Energy, Moscow, 1963.
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They found significant corrections to the binding energy for
spherical nuclei lighter than A=100, but negligible changes for
nuclei with low fission thresholds (i.e., nuclei with A>230).
Hill and Wheeler® also discussed the possibility that nuclear
polarizability and compressibility could split the symmetric
saddle point into two asymmetric ones, but for a fissionability
parameter near 0.7, they argue that the effect "does not off-
hand seem greater enough to lead to asymmetric critical forms
for uranium." Since these refinements appear to lead only to
minor corrections, further consideration of them is not planned
in the present investigation.

Hill and Wheeler® did propose two mechanisms to account
for the asymmetry of low energy fission. The first was at-
tributed to a division of the individual particle states into
"gerade" (wave function does not change sign on reflection in
a plane perpendicular to the z-axis) and "ungerade" (wave
function does change sign) classes. For approximately spher-
ical shapes both classes of states are evenly filled. However,
for large deformations the gerade states fill more rapidly,
since "the one kind of wave function feels the pinch of the
necking-off process more than the other". Thus, the total
energy of the system could be lowered, and fission facilitated
by "slippage" from gerade to ungerade states. For a completely
symmetric system these slippages cannot occur, but could readily
take place as an asymmetry develops. The second mechanism sug-
gested was that the zero point asymmetric quantum oscillations
would be amplified as the liquid drop system passed on toward
the scission point after surmounting the symmetric fission

barrier. .
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Dynamics of the Liquid Drop Model

In support of their second mechanism, Hill and Wheeler®
attempted to follow the motion of a liquid drop at successive
intervals of time by high speed computer techniques Even
though the largest and fastest computer available at the time
(1950) was used, they were forced to describe the surface of
the drop by an eleven-point mesh, which proved too coarse for
following the motion to the scission point. Nevertheless, they
did find an amplification of the asymmetric oscillations and
concluded that this might lead to a division into droplets of
different mass.

A series of rather crude dynamical calculations were
carried out by Inglis,®® using a cylindrical approximation to
the liquid drop shape. This work supported the previously
mentioned result that small asymmetries become magnified. How-
ever, Inglis concluded that this effect was too small to ac-
count for asymmetric fission.

Nix®®+37 ,38 has undertaken a series of studies in the
dynamical aspects of fission theory. In an extensive effort,
he idealized the liquid drop as two spheroids, overlapping prior
to and separated after fission.2®®/2?” He concluded from a con-
sideration of the saddle point energies and shapes that this

model would be most useful for discussing the fission of elements

88D. R. Inglis, Ann. Phys., 5, 106 (1958).

28J. R. Nix, "Estimates of Fission Fragment Kinetic
Energy Distribution on the Basis of the Liquid Drop Model,"
UCRL-10695, (1963), unpublished.

®7J. R. Nix, Nucl. Phys. 71, 1 (1965).

*8J. R. Nix, "The Normal Modes of Oscillation of a
Uniformly Charged Drop About its Saddle-Point Shape." UCRL-
16786, (1966), unpublished.
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lighter than radium.®?” 1In contrast to Hill's calculations,
where the motion was followed from the saddle point shapes,

Nix began his dynamic calculations at the scission point and
traced the motion. He also calculated probability distributions
for the total translation kinetic energies, mass, individual
kinetic energies and individual angular momenta on the basis

of this model. For the elements lighter than radium, the theo-
ry accounted for the magnitudes of the most probable values and
widths of the experimental distributions of the total kinetic
energy and fragment mass. He concluded that the limitation of
the liquid drop model in his simplification of shapes (for the
elements. lighter than radium) were not yet in evidence to a
severe degree. Taking a different approach, Nix3® treated the
subject where the drop shape was defined by equation (l1). 1In
the harmonic approximation he considered the normal modes of
oscillation of such a drop about its saddle point shape, and
calculated the frequencies and eigenvectors of these modes as
functions of the fissionability parameter X. This study, he
felt, was more applicable to the heavier elements in contrast
to the aforementioned work . In general, experimental data
concerning these modes of oscillation were not available for
comparison,

A method of dynamic calculation of fission of an
axially symmetric liquid drop was outlined by Kelson.2°? fThe
basic assumption (accredited to Wheeler) is that the drop can
be visualized as divided into a series of disks. and that the

fluid initially in a disk always remains in that disk. When

29I. Kelson, Phys. Rev., 136, B1667 (1964).
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the shape of the drop changes, the disk's expansion (or con-
traction) in radius is accompanied by a decrease (or increase
respectively) in thickness in such a way that volume is pre-
served. Kelson's application of the technique was to the light-
er elements where the saddle points shape exhibits a necking-in
at the midpoint.

The problem of dynamics of the liquid drop model was
further investigated with increased precision by Hill.4° Re-
taining the assumptions outlined earlier in this paper, he con-
sidered only the single case of uranium-235 which has fission-
ability parameter X=0.72. Starting with a spherically shaped
drop, and imposing only symmetric zero point harmonic oscilla--
tions (in the form of a second order Legendre polynomial, P,),
timewise integrations followed the motion of the model surface
to the scission point. Just prior to symmetric division, a
long neck developed, indicating that the fragments would possess
considerable excitation energy.

Although this work was not continued, Hill%*° outlined a
plan of attack, which he thought might account for asymmetric
fission. He suggested superposing surface oscillations of the
lowest symmetric and asymmetric orders (i.e., P, and P, oscil-
lations) on the saddle.point shapes, and restricting the motion
such that the drop would proceed towards fission rather than
towards the stable spherical configuration. This restriction
of motion was merely to prevent excessive calculations on non-
fissioning cases. The imposed oscillations were to be performed

for different phase relations between the P, and P, modes to

40p. 1. Hill, P/660, Proceedings of the Second United
Nations International Conference on the Peaceful Uses of Atomic
Enerqgy, Geneva, 1958, United Nations, Geneva, 1958.
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obtain a sampling of the possible division ratios. By a suit-
able averaging of a random selection of phase relations, Hill
hoped to produce the experimentally observed fission fragment
distribution. A by-product of these calculations would be the
capability of computing the excitation energy of the fragments.
Using this excitation energy in combination with the statistical
model for evaporation of neutrons, he suggested that the neutron

multiplicities could be predicted for comparison with experiment.

Spontaneous Fission

One of the possible decay modes for nuclei of A3230 is
spontaneous fission, where the nucleus fissions in the absence
of external excitations. Bohr and Wheeler!®? suggested that
spontaneous fission was a quantum mechanical barrier penetra-
tion phenomena similar to alpha decay. By a natural extension
of the alpha decay theory, they proposed® that the probability

of spontaneous fission should be proportional to

Py

k
- _ ax, \2
exp 4;{0{2(V(m) E%:mt(a—L> } dn/h

.

%
= exp |- %-f {(potential minus available energy)

1
. (effective mass)} 23 (distance)

where x, is the coordinate of each elementary particle, m,,
expressed in terms of the parameter ~, which specifies the
path of the system in configuration space. The integral ex-
tends from point P, of stable equilibrium over the fission
saddle point and down on a path of steepest descent to the

point P, where the classical value of kinetic energy, E - V,
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is again zero. Bohr and Wheeler made a very crude estimate of
the spontaneous fission half-life for an A=239 nucleus. The
obtained value of 1022 years is considerably larger than
measured half-lives for such nuclei which vary from 102 to
10'® years.

Foland and Present*! have used a modification of the
formula given above to calculate the penetration factor for
spontaneous fission. The potential and kinetic energies of
the liquid drop were calculated, using only the second order
Legendre polynomial term in their expansions. From their
expression for the kinetic energy a representation of the
effective mass was obtained as a function of the single param-
eter describing the surface of the drop. It was realized that
the use of such a low-order approximation would preclude the
possibility of an accurate half-life determination. However,
they did find from their calculation that an increase of 1.0
Mev in the barrier height would correspond to a 10?7 increase
in half-life. This was thought significant, since it agreed
well with the empirical deduction of Swiatecki.4?

Nix®® has applied his study of the normal modes of
oscillation to the penetration of the fission barrier. However,
he obtained only order of magnitude agreement and stated that
"the daté (experimental) are at present not sufficiently ac-

curate to provide a sensitive test of the theory."

“lw. D. Foland and R. D. Present, Phys. Rev., 113, 613

(1959).
42w J. Swiatecki, Phys Rev., 100, 937 (1955).



II. STATICS AND POTENTIAL ENERGY CONSIDERATIONS

choice of Units

For computational simplicity, it is desirable to use
dimensionless quantities. This is accomplished by adopting
a "natural" set of physical units and expressing all normally
dimensioned quantities as multiples thereof.

Considering the liquid drop to consist of A nucleons,
of which Z are protons, the fundamental mass unit M, is taken

to be: M, =m, A, where m, = 1.66 x 10°2* (reciprocal of

n
Avogadro's number) grams/nucleon.

Consistent with the Frankel and Metropolis' convention
for defining the relative deformation energy, the fundamental
unit of energy is chosen to be the surface energy of the spher-
ical nucleus, i.e.s E® = qug where g, = 17.97 Mev.'®

The radius of the spherical nucleus, R is selected

-
as the fundamental unit of length, and is proportional to the
cube root of the number of nucleons i.e., R, = roAg. The value
of r, is determined through the definition of the fissionability
parameter X, consistent with the value of (Z2/A) ,,,+1nc 3S

found by Burnett, et al,®° from a measurement of the fission
barrier of 2°!Tl. The merit of this method of defining r, is

its direct relation to the fission process.

The fissionability parameter X has previously been de-
fined as: 1) the ratio of the Coulomb energy E,® of a spherical,
uniformly charged liquid drop divided by twice the surface energy
E," of that drop, and 2) the ratio of 2?/A for the drop under

consideration divided by (Z2/A), yu,ri1nve = 48.4.2° The spherical

29
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Coulomb energy is E,% = 2e?z3®/R,, where e is the electrostatic
charge of the electron. Manipulation of these relations gives:
r, = 1.16, x 10-'2 cm,

Having defined the fundamental units of mass, length,
and energy, time is no longer a fundamental unit. However, it
becomes convenient to define a "basic" time unit, T,, such that
the kinetic energy is normally expressed in multiples of E .

This is accomplished by setting:

1
T, = r n” = 0.482, x 10-22A% seconds.

Parameter Choice

The surface of the symmetric liquid drop in the present
study is to be designated by only two free parameters. While
such a system would probably not provide as accurate results as
a more numerous set of parameters, the choice of a two-parameter
set should facilitate calculations.

If one examines C and S's saddle shapes®” in Fig. 2
(discounting the case for X=0, which is uninteresting for ap-
plication to nuclear fission since it corresponds to a drop-
let with no electric charge), three features emerge. All of
the indicated shapes have 1) at most two lobes, 2) zero slopes
at the median plane (z=0), and, 3) infinite slopes at the ex-
treme values of z. These general properties which C and §
obtained with a ten-parameter expansion can be reproduced by
a simple three-parameter description of the surface. One such
three-parameter description is given by the dimensionless equa-

tion :
P2 = Cc + a,z? + a,z* (2)

where z is the distance from the median plane and p, is the
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distance from the z-axis. While the variables in equation (2)
are dimensionless, the dimensionality problems are treated
Appendix III. To describe the surface of the drop, this equa-
tion is rotated about the z-axis. The shapes obtained are
necessarily symmetric about the z=0 plane. Of the three para-
meters a,, a, and ¢, only c has an obvious graphical interpre-
tation, i.e., the ,/c is the distance of the surface from the
z-axis at the median plane.

The assumption of an incompressible fluid requires that,
regardless of the distortion undergone, the volume of the liquid
drop must remain constant. This restraint serves to fix one of
the three parameters, leaving only two parameters free for de-
signating the shape of the drop. C and $*7 used the same re-
straint to obtain their nine free-parameter system.

In the computer calculations the parameter c was chosen
to be fixed by the condition of volume preservation. A subroutine,
CALCZO, was prepared for detemmining the value of the parameter

c and the intercept, =z of the surface along the positive z-axis.

n ’

The intercept, z applies only to prescission shapes and is used

-
as the limit of integration in computing the Coulomb and surface
energies and other saddle point properties. One equation re-
lating ¢ and z, is equation (2) when p°=0. The second equation
is obtained by setting the volume of the surface of revolution
from -z, to z, equal to the volume of a unit sphere. These equa-

tions combine to give:
£(z,) = a5z, + 2a, 2,5 + 1 =0 (3)

Because of the physical interpretation of z only the smallest

0 ’
positive real roots of equation (3) are acceptable. If one

wished to examine this model after scission, then the integrated
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volume must be modified, and two values of the intercept must
be determined.

At the scission point the value of P becomes zero for
z=0, but the integration from -z, to zo'does not extend over
any imaginary values of P, Setting c=0 (which represents
scission) in the two relations used to determine equation (3),

and eliminating z, between them, the scission line in a,-a,

a, = —a .04825 (4)

This expression was used to limit the range of the parameters

space is seen to be

a, and a, to prescission values.

Cross sections of some of the shapes obtainable with the
chosen parameter set under the condition of constant volume
are shown in Fig. 3. While no shapes with a,<-1.0 or for a,>0
are shown, search programs for the saddle point in a,-a, space

did include the possibility of such values.

Surface and Coulomb Energies

The Frankel and Metropolis®? convention of using the
relative surface and Coulomb energies was adopted. In addi-
tion, these energies were further normalized to a sphere of
unit radius. These procedures made possible direct compari-
sons not only with their work but also with that of ¢ and §.27

For the shapes described by equation (2), the relative

surface energy is given by the integral
1
E ) L
By = E?’ = ZB,z4a‘anxe+ (dagaz+ay) z, *x%+ (ag®+ay) 2, 2 x? +c}5dx (5)

This equation is developed in Appendix IV. With arbitrary

values of a, and a,, equation (5) belongs to a class of integrals
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which cannot be evaluated in closed form in terms of ordinary func-
tions.*® rTherefore, it was necessary to perform the integration
numerically by computer techniques.

In Appendix V the relative Coulomb energy of the uniformly

charged volume of revolution is shown to be

5 1 1 2 1 sinznxdx (6)
- -]
BC = IZOan p1 dz-[sz dyfz(l_y)+Jzz (1_y)2+p12+p22_2p1 OchS‘r\‘X
0 0 0
where
P2 = 4a,z,%2* - 8a,z,%2® + (6a,z,%+a,)2® - (2a,z,%+a,)z
P,? = 4a,z,2z4y* - 8a,2,%23y® + (6a,z,%+a,) 2%y? - (2a,z,%+a,)zy.

This integral was also evaluated on a computer.

Assuming that the integration technique suitable for the
triple integral B, would be more than adequate for B; , consideration
was given to the numerical integration of equation (6). Attempts
on an IBM 7090 computer to integrate equation (6) by breaking each
integral into evenly spaced intervals failed to give satisfactory
results for a sphere.

Other integration techniques were investigated and Gauss
quadrature was chosen when it was found to have a theoretical ac-
curacy of 2N evaluation points when only N points were used. Since
the three integrals of equation (6) have unit weighting functions,
Legendre Gauss quadrature proved the most appropriate.

In Gauss quadrature the integrand is evaluated at each of
the zeros of an nth-order Legendre polynomial (normalized to the
interval of integration), multiplied by weighting factors which

depend only on the particular zero of the Legendre polynomial,

43R. Courant, Differential and Integral Calculus, 2nd ed. Vol.
1, (Interscience Publishers, Inc., New York, 1937) p. 242.
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and the result is summed for all "n" zeros. In effect, this
procedure expands the integrand in terms of Legendre polynomials
of order n-1. Thus, the higher the order used in the numerical
integration, the more accurate the results; but also the more
time required for the calculation.

After modifying the zeros and weights for order 2 through
16 Legendre polynomials** to correspond to the appropriate in-
terval of integration, equation (6) was programmed for the IBM
7090. For a sphere the exact relative Coulomb energy is unity,
and for spheroids the exact energy is also calculable., These
shapes provide a check on the absolute accuracy of the Gauss
quadrature calculations. The Gauss quadrature results were also
compared with those obtained by C and S27 and with those of
Beringer*® who claimed to have calculated the Coulomb self-
energy of axial figures "accurate enough for studies in liquid-
drop nuclear fission."”

These comparisons are included in Table I, where it is
seen that the absolute accuracy is correct to about 1 part in
10°. wWhile this is about a factor of 10 better than Beringer's
results, it is less accurate than C and S's results.

The inaccuracies noted could arise in two ways: 1) they
could be the result of too low an order Gauss quadrature, or
2) they could be accumulative results of the inherent inac-
curacies during the summation in the Gauss quadrature. On the
IBM 7090, sines, cosines, and square roots are computed only to
five units in the eighth significant digit, and the summation
of some 4000 terms could result in errors in the fifth significant

digit.

445 N. Lowan, N. Davids, and A. Levenson, Bulletin of Am.
Math. Soc., 48, 739 (1942).

*5R. Beringer, Phys. Rev., 131, 1402 (1963).



CALCULATED VALUES OF RELATIVE COULOMB AND SURFACE ENERGIES OF A SPHERE AND TWO SPHEROIDS,

TABLE I.
WITH COMPARABLE FIGURES FOR OTHER INVESTIGATORS.
Machine Spheroid Spheroid
or Gauss Order or Major axis = 1 Major axis =1
Author Number of Grid Points Sphere Minor axis =.7 Minor axis =.5
. Relative Coulomb Energy B,
STRETCH Exact 1.000 000 000 0.988 678 870 0.957 975 926
7090 16 0.999 990 396 0.988 669 217 0.957 967 214
STRETCH 16 0.999 999 708 0.988 678 578 0,957 975 557
STRETCH 96 0.999 999 999 0.988 678 869 0,957 975 925
C and s" 41 0.999 998 2 0.988 676 6 - -
Cc and s® 61 0.999 999 3 0.988 678 4 - -
C and s® 81 - - 0.988 678 6 - -
)
Beringer 40 0.999 828 - - 0,957 662
Relative Surface Enerqgy B,
STRETCH Exact. 1.000 000 000 1.021 383 583 1.076 728 262
STRETCH 16 1.000 000 000 1.021 383 583 1.076 728 262
STRETCH 96 1.000 000 000 1.021 383 583 1.076 728 262

a
"Exact means that the closed algebraic expressions for the energies were evaluated, while the

numbers designate numerical integrations.

> Reference 27

Reference 40

9¢
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The second possible source of error was reduced by per-
forming the calculation on the STRETCH (IBM 7030) computer.

On this computer, sines, cosines, and square roots are calculated
accurately to 14 decimal digits. Thus, even with a 10,000-fold
accumulative error, the final results of 16th order Gauss quad-
rature should be accurate to the ninth decimal digit.

Zeros and weighting coefficients for 96 order Gauss quad-
rature were found,*® and programmed for STRETCH. The results
for l6th order Gauss quadrature on STRETCH were now slightly
improved over C and S's values. Ninety-six order Gauss quad-
rature also showed significant improvement over the 16th order
Gauss quadrature. However, each 96 order triple integral re-
quired about five minutes computer time, which is prohibitive
for the many calculations required to determine the saddle
points. Sixteen order Gauss required only a few seconds com-
puter time,

Since the Coulomb energy calculations by 16 order Gauss
quadrature were slightly more accurate than any known to be re-
ported in the literature, it was decided to use 16 order Gauss
quadrature on the STRETCH computer for all integrations. Use
of a CDC 6600 computer which has since proved more readily avail-
able has given the same results as those quoted for STRETCH.

The computations of B; were also of acceptable accuracy. The
results for B, and By for the sphere and two spheroids are

given in Table I.

“ep., pavis and P. Rabinowitz, J. of Research on N.B.S.,
0, 613 (1958).
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Deformation Energy Saddle Point Calculations

The relative deformation energy (f) by the Frankel-
Metropolis2®® convention is

E = (Bg-1) + 2X(B,-1) (7)

where X is the fissionability parameter. The saddle point is
represented by a pair of values (aas, a‘s) of the parameters
which define the shape of the liquid drop.

For X=1 no true "saddle" exists. 1In the parameter space
of this study the spherical configuration is given by the para-
meter point (-1,0). A change in "a," to a less negative value
leads to a prolate spheroid deformation and a decrease in the
deformation energy. A change in "a," to a more negative value
or any change in "a," results in an increase in deformation en-
ergy. Numerical calculations have established the validity of
these statements. Thus, for X=1 there is a zero classical fis-
sion threshold, but the point representing the sphere is only
an unstable point, not a saddle point.

The C and S27 calculations determined several liquid drop
properties of the saddle points for X=0.98 to X=0.30 for dif-
ferences in X of 0.02. This investigation covered the same
range of X.

Prior to beginning the computer search for the saddle
points, a model was constructed of the relative deformation
energy for X=0.7. The approximate saddle point (a23= 0.25,
Agq= 0.10) observed from this model served as a verification
of later computer calculations. It was also seen from the mod-
el that for similar changes in deformation energy the variations
in the "a," parameter should be less than those in "ap". It
was arbitrarily decided that the magnitude of the "a," varia-
tions would be one-tenth of the "a," variations in the computer

search,.
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The computational method of locating a saddle point is
outlined in Part I. For a two-parameter space, the deforma-
tion energy in the vicinity of the saddle point may be ex-

pressed as:

- 2 2
g(az,a,) = ©, + ca, + cga, + c,a,% + cgaza, + cza,

(8)

where the pair (a,,a,) represents a point in the parameter

space and (c,,y=1,6) are the coefficients defining the hyperbolic
paraboloid. The partial derivatives with respect to "a," and
"a, " are taken and equated to zero. The solution of these two
simultaneous equations for "a," and "a," in terms of the c,'s

is the critical point:

a,.= C,aCg — 2C3Cy
¥ dcg,c, - g2
(9)
a, = Sa%s - 2c,C,
45~ 2
dcgcg - g

This point is a saddle point, if cg® -4c,c,>0. Thus, the prob-
lem simply becomes one of approximating the actual function £
by equation (8) to a sufficient degree of accuracy.

An initial estimate (a,,a,) is made of the saddle point.
For X=0.98 an initial estimate corresponding to the spherical
shape was attempted. This converged on itself, and indicated
a minimum rather than a saddle point. A second initial es-
timate, equal to one-fifteenth the distance (from spherical) of
the approximate saddle found for X=0.7, was successful in locat-
ing a saddle for X=0.98. As X was reduced by increments of 0.02,
initial estimates for the saddle points were the actual saddle
points for the next larger value of X.

A quantity defined as the original grid size (GRDSZO)
was set at 0.04 units. For the first attempt to locate the
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saddle point the grid size (GRDSZ) was set equal to the orig-
inal grid size. A pentagonal array about the initial estimate
provided the remaining five points needed to fit equation (8).

The coordinates of these six-point sets were:

A2(1) = a,, A4(1) = a,
A2(2) = a, + 0.95 GRDSZ A4(2) = as,+ 0.031 GRDSZ
A2(3) = a, + 0.59 GRDSZ A4(3) = a, - 0.08 GRDSZ
A2(4) = a, - 0.60 GRDSZ A4(4) = a, - 0.08 GRDSZ
A2(5) = a,, - 0.93 GRDSZ A4(5) = a, + 0.035 GRDSZ
A2(6) = ag A4(6) = a, + 0.10 GRDSZ

The deformation energy was calculated for each of these
point sets. A matrix solution of the six simultaneous equa-
tions provided the coefficients (c,,s=1,6) in equation (8),
and the new estimate of the saddle (a23a4s) was provided by
equation (9).

Three convergence conditions were imposed:

bag = | a,, - ag |s0.0004

ha, = |a, - a,, |¥0.00004 (10)
Ag = lg! - £4 |¥0.00000005

where &, and £y are the deformation energy of the point (azi,
a41) and the point (azs,a4s) respectively. If any of these con-
ditions were not met, the results (ags, a4s) just obtained were
used as the new initial estimate (az, ,a,,) and the process re-
peated.

For a constant grid size the procedure detailed above
can lead to erroneous results when deviations from the parabolic
are large compared to the grid size. To eliminate this diffi-

culty, a procedure was instituted to reduce the grid size, when
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the current grid size (GRDSZ) exceeded the value:

DIST = .,/ 100 (Ba,)® + (Ba,)°

The grid was reduced by dividing the original grid size
(GRDSZ0=0.04) by successively larger Fibonacci numbers (Fk for

k>2). The Fibonacci sequence of numbers is defined as

FO=F1=1

Fp = Fp 1 + P o k=2,3 ..c0.0eceennn.

Just how economical such a scheme is for reducing mesh size is
not known; however, convergence to meet the requirements of
equation (10) was accomplished in all cases by the tenth such
reduction.

Grid size reductions were initiated by two other condi-
tions. When any of the grid points exceeded the scission line,
as defined by equation (4), a reduction was accomplished. This
occurred only for original size grids (GRDSZ = GRDSZ0 = 0.04),
since the first reduction was sufficient in all cases to correct
this condition. The second condition came about when the con-
vergence conditions [equation (10)] were met the first time for
each value of X. In this case, a reduction by 1/F,, = 1/89 was
performed, and the surface refitted. If a reduction by F,, had
already been performed, then the reduction was by the next larger
Fibonacci number. The purpose of this procedure was to provide
further assurance that the computational determination of the
saddle point was correct, and not inaccurate because of too large

a search grid.

Results of Saddle Point Calculation

The primary purpose of the saddle point calculations was
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to determine how well the chosen two-parameter system would
describe the actual liquid drop properties. Assuming that

the nine-parameter work by C and S27 comes the closest of any
known studies to the actual physical situation, comparisons of
the results of this two-parameter study with those of C and S
appeared appropriate.

In addition to the properties already treated, C and S*7
made saddle point calculations of the moments of inertia about
different axes and the quadrupole moment. For the (a,,a,)
parameter space the moment of inertia (relative to a sphere of

the same volume) about the axis of symmetry is:

15 3aezzo9 N 2a,a, z,”7 (ag®+a,c)z,® 2a;cz,?

In = 5 ' + 02205

9 7 5 3

The relative moment of inertia about an axis at right angles

to the symmetry axis is:

15(a,22,° (2a,+a,a,)z,” (4a,+a,?+2a,c)z,b (a2c+2c)z°3+czz°£
= — +
L =318 * 7 + 10 3 2

C and S27 also calculated the inverse of the effective moment of

inertia which is defined as:
T = 1/I|| - 1/11_

Using the C and s*7 definition of the quadrupole

moment one obtains:

ﬂ;—aﬁzo9 (2a,-aza,)z,” (4ay,-a,%-2a,c)z,%(2c-a,c)z,® c?z,
Q =4

36 T 14 + 20 + 6 T T2

The saddle point values of these properties are obtained by
substituting the saddle point values of a,,a,,c, and z,. The
development of the expressions for I, , I, and Q is outlined

in Appendix VI.
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The saddle point values of "a," and "a," are given
in Table II. This information is plotted in Fig. 4 along with
the scission line. It is seen that the calculated saddle
points approach the scission line as the fissionability param-
eter decreases below X = 0.60, but a significant separation
still exists at X = 0.30 (the right most point plotted).

Table III contains the calculated saddle point properties.

The results of this study have been graphically com-
pared with C and S27 in Figs. 5 through 11, 1In all these
figures the fissionability parameter X is plotted along the
abscissa, and the various saddle point §r0perties along the
ordinate. The results of this study compare favorably from
X = 0.98 to about 0.70. The reason for this is seen in Figs.
12 through 18 in which are plotted the contours of the saddle
point configurations for selected values of X. The C and §27
contours are indicated at specific points, and to about X = 0.7

they fall extremely close to the shapes derived in this study.



TABLE IXI. SADDLE POINT VALUES OF THE PARAMETERS

a, AND a,
X a, a,
+38 -.00€190 -.8€43
36 -.01333 -.7380
.34 -.03477 -.6211
.32 -.04338 -.5134
<90 -.06341 -.4142
+88 -.07483 -.3231
.86 -.08338 ~.2333
.84 -.03033 -.1622
.82 -.0358¢ =.0312
.80 -.03a81 -.025¢
.78 -.10011 .0353
7€ -.03387 .0322
.74 -.09822 .1458
.72 -.03526 1370
.70 -.09122 2463
. G8 -.08742 2345
€66 -.086€75 3327
. 64 -.J3836 « 3635
.62 -.09211¢ 3823
.60 -.03584 +4:325
.58 =.09973 4233
13 -.10338 4370
54 -.10895 4523
.52 -.11223 LE€82
« 590 -.11657 48323
<48 -.12023 4373
4€ -.12323 5112
L4 ~.12363 . 5243
82 ~.13433 5334
.40 -.13355 5516
.38 -.1430€ 5647
36 -, 14761 5776
.34 -.15229 +5933
.32 -.15682 €323

32 -.16150 .€154
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TABLE III. CALCULATED SADDLE POINT  PROPERTIES FOR THE
RANGE OF FISSIONABILITY PARAMETERS
0.98 TO 0.30

}{ 4 I33 IBC I1| ]:L T (2
.98 .00001 1.0008% 99357 «3547 1.0253 0728 2383
96 00008 1.00334 «.33828 3117 1.0574 1511 .4880
.94 .00018 1.00740 «99614 .8708 1.0343 2351 75118
92 <00037 1.01302 «39312 8314 1.1333 3251 1.0318
90 .00072 1.02022 38317 « 7334 1.1316 4212 1.3346
.88 .00125 1.02303 908422 «7566 1.2533 5233 1.6646
.86 .00199 1.03353 «37818 .7208 1.3260 6333 2.0281
.84 00301 1.05183 «97094 .6853 1.4120 <7437 2.4332
.82 .00434 1.06608 96235 .6513 1.5144 .8736 2.8301
.80 00604 1.08248 35222 .6187 1.6374 1.0054 3.4134
.78 .00818 1.10135 34028 .5865 1.7871 1.1456 4.0235
.76 «01085 1.12312 «32614 «555¢ 1.3730 1.2946 4.7513
74 01413 1.14845 «30024 .5250 2.2093 1.4322 5.6460
.72 .01815 1.17832 .88873 4363 2.5231 1.6161 6.7338
.70 .02309 1.21368 .36386 4730 2.3531 1.7757 8.3111
.68 .02908 1.25137 .83655 4594 3.5073 1.8916 10,2135
«66 03608 1.27762 «81633 4610 3.3736 1.3180 11.731¢
.64 04359 1.23019 «.80734 4632 4,2452 1.8357 12.6536
.62 .05140 1.23626 80254 4734 4,3875 1.3625 13.0338
.60 .05338 1.29542 79335 4872 4.4664 1.3286 13.3345
.58 .06739 1.30111 .79852 +4956 4.5058 1.7361 13.4517
56 07547 1.30133 «T3775 .5035 4.5314 1.7656 13.4376
.54 .08357 1.30233 73739 .5109 4,538638 1.7363 13.4374
.52 .09167 1.30248 73730 .5180 4,5366 1.7100 13,4663
.50 .09378 1.30238 «73733 .5248 4,5276 1.6348 13.4135
.48 .10788 1.30217 «73762 .5312 44,5137 1.66093 13,3453
86 11537 1.30187 79793 .5374 4.4363 1.6384 13.2664
44 «.12404 1.30153 «73331¢ «5434 4.47618 1.6470 13.1738
.42 .13210 1.30115 73375 5431 4,4536 1.5365 13,0841
.40 14014 1.30077 73322 .5547 4.4238 1.577¢ 12.393858
.38 .14316 1.30038 «7337¢ .5601 4.4743 1.5585 12.3341
.36 «15617 1.30000 80023 5653 4,.3730 1.5407 $2.7830
.34 .16415 1.23963 .80076 .5703 4,3524 1.5236 12.6738
.32 .17210 1.29927 80131 .5753 4,3254 1.5072 12.5667

.30 .18004 1.23892 801356 5800 4,2373 1.4313 12.4587
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sionability parameter X=0,9, Continuous line is the
result of this investigation, while + signs are C and
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Fig, 13, Comparison of saddle point drop-contours for fis-
sionability parameter X=0,8, Continuous line is the
result of this investigation, while + signs are C and

S data27,
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Fig, 14, Comparison of saddle point drop-contours for fis-
sionability parameter X=0,7, Continuous line is the
result of this investigation, while + signs are C and

S data=z7,
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Fig, 16, Comparison of saddle point drop~contours for fis-
sionability parameter X=0.5, Continuous line is the
result of this investigation, while + signs are C and

S dataz=",
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Fig, 18, Comparison of saddle point drop~-contours for fis-
sionability parameter X=0,3, Continuous line is the
result of this investigation, while + signs are C and

S dataz7,




IIT. DYNAMICS AND KINETIC ENERGY CONSIDERATIONS

The treatment of the motion of the liquid drop differs
from the usual motion studies in that there is no displacement
of the center of mass. The entire motion consists of changes in
the shape of the drop. Since in this work the shape of the drop
is given by equation (2), the dynamic variables are taken to be
a, and a, and their time derivatives. The approach adopted for
this study differs from those discussed in the section REVIEW
OF FISSION THEORY and is based on the Lagrangian formalism.
The standard definition of the Lagrangian L is the difference

in the kinetic energy B, and the potential energy £, as

L=B -¢ (11)

In this study both the kinetic energy and the potential (defor-
mation) energy are expressed relative to the surface energy E°
of the spherical configuration.

Since irrotational flow is assumed, the velocity of
the fluid at any point in the liquid drop is derivable from a

scalar velocity potential,i.e..,
vV = - grad®

Requiring the fluid to obey the principle of the conservation of
mass implies that within any volume element the rate of loss of
mass must equal the flow of mass from that element. This is
simply a statement of the equation of continuity for the fluid.

If 0, is the density of the fluid, then

do, v
3t -~ ° %Y

61
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For an incompressible fluid (which is also assumed), o, is a
constant and the equafion of continuity reduces to Laplace's
equation:

v2p = 0
Thus for an incompressible fluid undergoing irrotational motion,
the potential ® defining the velocity must obey Laplace's
equation. It follows that an arbitrary potential (not satisfy-
ing Laplace's equation) would correspond to a compressible
motion,and account must be taken of such compressions in the

equations of motion.

Velocity Potential and Kinetic Energy

The solution of Laplace's equations in spherical coor-
dinates is a convenient form of the velocity potential. Because
of the assumed axial symmetry, only two of the three spherical
coordinates enter this representation. These are "r", the radial
distance from the origin to the point under consideration, and
“6", the angle between "r" and the z-axis. In terms of these
coordinates the velocity potential has the form:

N
-0 =Z 8,, F2" B, (cosB)
n=1
where P, is the Legendre polynomial of order "za. " and 8,, 's

are time dependent parameters (functions of a a, and their

2'
first time derivatives). Wwhile readily recognizable as a
solution to Laplace's equation, this form of the velocity
potential is not suitable for application. By successive

applications of the relation:

r cosb® = z,
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followed by:

r? = p24 22,

the velocity potential is re-expressed in cylindrical coor-

N
_ =Z BauH, (0,2) (12)
n=1"

While the functions H, (0,2z) are not widely tabulated, they are

dinates as:

easily derived from the well published Legendre polynomials.
In terms of equation (12) the vector velocity at any

point in the liquid drop is

N N
. Z 3, . Z 2H
V= -grad® = i, anggL +1, BaaSEL (13)
n=1 n=1

where i, and_i_o are unit vectors in the z and p directions,
respectively. In Appendix VII, treating the dimensionality
aspects fully, the kinetic energy (relative to the surface
energy of the sphere) is shown to be

(14)

where

zo (-]
d9H, dH dH, 3H
=1 H i 4+ i d 15
Izglz, /;iy{ 3z 32 YR } pdp (15)

-z, ©
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Boundary Conditions and 8, Determinations

For a fluid of finite extent the equation of continuity
is replaced at the surface of the fluid by a special boundary
condition*?. This boundary condition is obtained from the
requirement that the motion of a fluid point on the surface
follows exactly the motion of the surface itself. If the implicit

equation of the surface of the axially symmetric liquid drop is:

F(P,z;a,,a,) = P, (2;35,3,) =P = O

then the special boundary condition becomes

DF OdF
pt ~at T L *VF =0
or
G = PVp—p,ps Vy=PyPo= O (16)

where Vp and v, are the p and z velocity components evaluated

z
on the surface and P, and bo are the derivatives of p, (equation
(2)) with respect to "z" and time, respectively. Again dimen-
sional considerations are discussed in Appendix VII.

In general for a finite number of terms in the velocity
potential it is impossible to satisfy equation (16), because of
contradictions in the determinations of the Bga's. A compromise
was adopted which uniquely determines the B, 's, and which more
nearly satisfies the boundary conditions as the number of terms
in the velocity potential increases. By squaring equation (16)

and integrating over the range of z spanned by the liquid drop,

47
H. Lamb, Hydrodynamics, 6th Ed., Dover Publications,

New York, p. 6.
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i.e., from -2, to z,, an expression quadratic in the Bz"s is

obtained as

J
J J
GSI =§ :33.33,6.,+§ 85,6+ G, (17)
3=1

i=1
j=1
where
zo
_ 3H, 2H, ) 28, 3,
Gyy = { P2 35 35 —2p°(azz+2a‘z)$g
3 3H, 2H
+(azz+2a‘z°) 32 a—z"l}dz (18)
zo
. dc . 8H dH
= 4, = oAl —
o fne B Y B )2 e o
Z, 3 2
/) : 4,9C 2 2,3C
G, —/{ a‘(z +aa4)+ a2<z +aa2)} dz (20)
-z

GSI is minimized with respect to the B,, 's by setting its partial
derivative with respect to the 8,, 's equal to zero. The resulting
set of N linear equations in the N 8, 's is then solved for the

82, 's. The B,, 's so determined will be linear in éz and é‘.

The Equations of Motion

By inserting the 8, 's found by the above procedure
in equation (14), the kinetic energy B, is seen to be a function
of a, and a,, quadradic in éz and a,. In the section STATICS AND

POTENTIAL ENERGY CONSIDERATION the functional dependence of the
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deformation energy € is expressed by equations (5), (6), and (7).

In Appendix VII application of the Euler-Lagrange operator:

_@_(a)_ 2 _
dt aax aan

to the Lagrangian, equation (ll1), provides the equations of

motion as:

J
asa, 38, J.. 28, ,38,, 38\ _
da, 2da, 3"2’+§ :a” da aa823 aaK 3a, 21 '3y

=1 i=1
J=1 j=1
1=2,4 1=2,4
, 8, 3py;.,
da, 2! da,
J
J aﬁ 3131'24 y 9E
‘E : aa 823 21 729+ 382,85 da,, t 5 3a,” 0 (21)
i=1
J=1

for v« = 2,4

Equation (21) is a linear set of equations in a, and a,. This
set of equations may be numerically integrated to provide
successive values of a,, a,, 52 and 54 after an initial set of
values of these variables is specified. Because the set of
equations is coupled, changes in a single one of the quantities

a,, a,, 52 or a, will affect both accelerations.

Tests Applicable to the Developed Theory

An obvious check on the theory is its prediction of
the motion of small amplitude about the equilibrium confiqura-

tion (spherical). Early investigations of the oscillations
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of water droplets in jets by Rayleigh*® were modified by
Plesset*® to treat a uniform electrical charge throughout the
volume of the drop. Both Rayleigh and Plesset considered
very small oscillations, such that for kinetic energy purposes
the drop could be approximated by the undeformed sphere.
Both of their treatments were to order a2 (where G is a small
quantity). In Appendix VIII somewhat larger motions are
considered (to order q*). To reduce the complexity the coor-
dinate a, is not considered. It is shown that to the order
a?® the motion in the a, coordinate is simple harmonic, with
a period:

2nT,

oar © BT @

where X is the fissionabil%ty parameter and T, is the "basic"
time unit (= 0.482,x10-22A%seconds).For a motion starting from

spherical with a non-zero 52, the kinetic energy is

By = ti3a,° (23)

In considering the higher order approximations (i.e., to order
a*) an unusual property of the motion becomes apparent. This
property is the existence of non-vanishing accelerations at
the equilibrium configuration (spherical) whenever finite

coordinate velocities are present. It is shown that this

48
J. W. Strutt (Lord Rayleigh), Theory of Sound, ed.2,

Vol. II, (Dover Publications, New York, 1945) pp. 371-375;
Phil. Mag. 14, 184, (1882).

49
M. S. Plesset, Am. J. of Physics, 9, 1 (1941).
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property arises from the linear coordinate dependence of the
"mass"” in the kinetic energy expression. In the single
coordinate treatment of Appendix VIII this acceleration was
proportional to 533. However, in the complete two-coordinate
theory where ;3 and ;‘ are coupled, one should expect at
spherical that a non-vanishing 52(5,=0) would generate both

a, and a,.

Two other tests of the theory are suggested from the
general description of the liquid drop (as given in the section
REVIEW OF FISSION THEORY). One is to start the motion from the
saddle point with a small velocity component in the direction
of scission. The second is to start from spherical with suffi-
cient kinetic energy to surpass the fission barrier (saddle
point energy). 1In both cases an acceptable theory will produce
a motion which goes to scission.

A final general check will be the behavior of the
total energy of the system (i.e.,B,+£). Since the forces acting
on the system are derived from the deformation energy, the
system is conservative, and the total energy of the system

should remain constant as the various test motions proceed.

The Deformation Energy Surface

The deformation energy € is a function of fission-
ability parameter X (see equation (7)) as well as of the
coordinates a,, a,. While the individual appearance of the
deformation energy surface as a function of a,, a, will depend
on the value of X, the general features will remain for the
same for any X < 1. In Figs. 19 the calculated deformation
energy contours are plotted in a,-a, space for X = 0.74. While
the selection of X = 0.74 was arbitrary, it does represent an

easily fissionable nucleus (i.e.,?2?Pu). To simplify the
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discussion all numerical calculations of the dynamics will be
done for X = 0.74.

A prominent feature is the saddle point at (a, =
0.1458, a, =-0.09822). At the point (0,0) the shape of the
drop degenerates into an infinitely long line with infinite
deformation energy. For shapes defined by equation (2) the
region of positive a,, labeled "Diasllowed Region for Volume
Conservation", was not anticipated. It arose because of the
inability to satisfy the volume conservation condition, equation
(3), for positive real roots. The border of this region is

defined for negative values of a, by the relation:

a, = '@ =0.02 a,®

In the vicinity of spherical (-1,0) the deformation energy
could be represented by a paraboloid, which is slightly mis-
aligned from the coordinate axes. This mis-alignment is an
indication that the chosen parameter set (a;, a,) are not

those which diagonalize the potential energy, even in the
vicinity of spherical. This mis-alignment should contribute to
some mixing of the a, and a, motions for small oscillations
about spherical.

Numerical Calculations of the Motion

While a many term velocity potential (large "N" in
equation (12)) would be capable of satisfying the boundary
condition to a greater accuracy, the complications of the
expressions involved (and increased computer time) dictated
that a simple velocity potential be used to investigate the
motion. The simplest velocity potential, which results in an
independent set of simultaneous differential equations in

a, and a,, is for N=2 in equations (12). For this two term
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velocity potential the specific expressions required for the
kinetic energy, boundary condition integral,and equations of
motion are developed in Appendix IX. Using these expressions
and a suitable integration scheme the problem was programmed
in FORTRAN for the CDC 6600 computer.

The first integration technique attempted used the

relations:

.an (ty+1) = .a’t (t,) + ;K(t") At
a, (tys1) = a, (t,) +a () bt

for *=2,4
This failed to give simple harmonic motion about spherical,
probably because of too large a value for At and the coupling
of the a, and a, motions.

Successful integrations were obtained by the Runge-
Kutta method. An excellent concise account of this method is
given by Scarborough®®, an available computer subroutine
utilizing a dual pass 4th order Runge-Kutta was used. The
interval determining and self testing features of the subrou-
tine are described in Appendix X.

The motion experienced by the liquid drop in the
present description depends only on the initial values of
variables a,, a,., 52, and é‘. For this set of initial values
at time zero the corresponding values of the accelerations
(;2 and ;‘), energies (B,, &, and total= B,+5),and GSI are

calculated. By Runge-Kutta integration the values of

50
J. B. Scarborough, Numerical Mathematical Analysis,
(The Johns Hopkins Press, Baltimore, 1966) pp. 358-367.
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a,, a,, a;, and 5‘ are computed to an accuracy of 5 decimal
digits at a time of 0.1 T, seconds. For the value of the
variables at 0.1 T,seconds the corresponding accelerations,
energies,and GSI are calculated. Time is advanced by 0.1 T,
seconds; and using the values of a,, a,, éa, and é‘ from the
integration just completed, the process is continued. Before
each integration is begun, the values of time, the variables,
the accelerations, the energies,and GSI are stored for eventual
tabulation. The calculation is terminated by the completion
of 100 time steps, the occurrence of scission, or the elapse
of the alloted computer time. In general the 100 time steps
for the 5 decimal digit accuracy required computer runs from
60 to 90 minutes.

To investigate the motion about spherical the initial
conditions were always for a,= -1.0, a,=0.0, and é‘=0. The
motions for three initial values of 52 are discussed. If the
deformation energy surface had been aligned with the az-a,
axes, these initial conditions would generate no motion in
the a, direction. 1In such a case the period of oscillation
in a, (or 52) would be 4.3566 T, for X=0.74 (from equation (22)).
The kinetic and potential energies would oscillate with half
that period, since B, is proportional to ézz(from equation (23)).
The total energy should remain constant at the value of the
initial kinetic energy, since there is zero deformation (poten-—
tial) energy at the spherical configuration.

In Table IV the initial values of 52 are listed along
with the initially computed accelerations (;2 and ;4) and
kinetic energy. The calculated initial kinetic energy is in
all three cases precisely that given by equation (23). As

predicted the initial accelerations, both a, and a,,are approx-

imately proportional to the square of the initial input velocity.
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From these properties the effects of increasing the energy to
remove the motion from the class of "small oscillations" are

not obvious.

TABLE IV
INITIAL VALUES OF THE ACCELERATIONS AND KINETIC ENERGY
CAUSED BY THREE INITIAL VELOCITIES
FOR MOTION ABOUT SPHERICAL

as a3 as By

0.01 -0.5046x10~3 0.4454x10-2 0.5555" x10~8
0.1 -0.3751x10-? 0.3015x10-} 0.5555° x10-*¢
1.0 -0.3738x10%?} 0.3000x10*? 0.5555° x10-2

Fig. 20, 21, and 22 show the time variations of a,,
a, . By and total energy for these three cases. The most con-
sistent feature of all three motions is the constancy of the
total energy. For the motion with the least energy (Fig. 20)
the observed period of oscillation is 4.36 T,. While not
shown the ratio of the maximum excursions of é‘ to 52 is
approximately T%F ; thus the contribution of the a, motion to
the kinetic energy would be insignificant. For the next larger
motion 52=0.1 (Fig.21) the ratio of the maxima of a, to 52 is
approximately ;?. Again since the kinetic energy is proportional
to the square of the velocity components, the effect of é‘ on
the kinetic energy is indiscernible. However, the increased
amplitude has affected the period of oscillation slightly,
raising it to 4.37 T,. When a,=1.0 (Fig.22), the coupling effect

between the a, and a, motions is quite apparent. In this case ;2

and 5‘ have about the same amplitude of variation, and the

kinetic energy no longer has a true sinusoidal appearance.
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The single cycle in the variation of a, is about 5.2 T7,, a
significant increase over that for the "small oscillations".
In Fig. 23 the motion on the deformation (potential) energy
surface is shown for 52 (initial) = 1.0. The small circled
numbers indicate the number of time steps to reach that
configuration. After the 66th time step the motion began
backtracking its path. At the 40th, 50th and 66th time steps
the shapes of the drops are shown.

An ihdication of how well the two term velocity
potential is capable of satisfying the boundary condition
integral (equation (17)) is supplied from these motion studies.
In all three cases for the spherical configuration GSI=0. For
the calculated motions the magnitude of GSI varies from config-
uration to configuration. However, the maximum value of GSI is
~10-19, ~10-12, and ~10-% for the motions induced by a, (initial
values) 0.01, 0.1, and 1.0, respectively.

In Fig. 24 is shown the motion induced by the initial
conditions: a,=0.25, a,= -.09, éazo, and 5¢=0. From a standing
start on the scission side of the saddle point, 28 time steps
(or 2.8 T, seconds) were required to accomplish scission. 1In
Fig. 25 the motion was initiated at the saddle point with 52=.01
and é‘=.00075 (initial kinetic energy = .3425x10-*), and scission
occurred in 60 time steps. With a zero or near zero initial
momentum one might naively expect the path to scission to be
directly down the gradient of the potential energy surface.

However, as Wilets®! has remarked in discussing the qualitative

817,, wWwilets, Theories of Nuclear Fission, (Clarendon
Press, Oxford, 1964) pp. 46-47.
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features of the deformation energy surface, such motion would
occur when the kinetic energy was solely a function of the sum
of the squares of the velocity components. He®! implies that
the motion cannot be arbitrarily predicted when the "mass" is
coordinate dependent and mixed products of the velocities occur
in the kinetic energy expression. Since the kinetic energy of
this theoretical treatment (equation (14)) is of the latter
form, the observed motion was to be expected.

Two cases of scission with the motion begun at the
spherical configuration appear in Figs. 26 and 27. 1In Fig. 26
zero initial velocity was given in the a, direction and éz=l.7.
The initial kinetic energy of 0.01606 well exceeded the saddle
point energy of 0.01413, and scission occurred in 59 time steps.
In Fig. 27 éz(initial) = 2.0 and é‘(initial) = -0.45,correspond-
ing to a kinetic energy of 0.01451. In this case the available
energy exceeded the fission threshold (saddle point energy) by
very little. Due to the oscillations about the saddle point
this motion required 89 time steps to scission.

In Fig. 28 the motion was started from spherical with
a,=1.6 and a,=0. The initial kinetic energy of 0.0142222 is in
excess of the saddle point energy of 0.01413. However, scission
did not occur. The saddle point was approached, but the motion
oscillated "between the hills on two sides of the saddle". The
maximum deformation energy attained was 0.0142189, when the
kinetic energy reached a minimum of 0.0000033 at 50 time steps.
The motion then proceeded to approximately retrace its path in
the direction of the spherical configuration. Had the path of
approach to the saddle been different and the component of
motion in the a, direction been greater as the saddle was neared,

the energy available was sufficient to lead to scission.
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In the motions which proceed to scission the value
of the boundary condition integral GSI grew from about 10-%®
at the saddle to about 10-2? just prior to scission. This
suggests that a more complicated velocity potential than that
used in these numerical calculations could provide a better

fit to the boundary conditions as scission is accomplished.

Future Efforts and Conclusions

A considerable effort was made to develop aﬁ alter-
native theoretical treatment along somewhat different princi-
ples. Basic to this second approach was the statement of
Kelvin's minimum energy theorem!®, as given in the section
REVIEW OF FISSION THEORY. For a velocity potential of a form

which did not satisfy Laplace's equation:

I
J

-0 =E énB,,sztzﬂs

i=0
3=0
0=i#3=0
=2,4
the boundary condition (equation (16)) was to be satisfied
exactly over the range -z, to z,. This condition was not

sufficient to determine all of the B ‘s. The remaining

1
B!,n's were to be determined by the condition of minimization
of kinetic energy, in view of Kelvin's minimum energy theorem.
Calculations of small amplitude motions about spherical did
not agree with the predictions of Rayleigh*®, and Plesset*®.
In analysis this was ascribed to relaxation of the restriction
of incompressibility (satisfaction of Laplace's equation).
Further work attempting to incorporate the compressibility

corrections was deferred to the future.
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The immediately obvious continuation of this study
is the inclusion of‘more terms in the velocity potential. The
algebraic manipulations (required to obtain the equations of
motion) are long and complicated, but use of the IBM experimen-—
tal programming system FORMAC (FOmula MAnipulation Compiler)
would reduce the labor involved. While a more complicated
velocity potential should reduce the boundary condition inte-
gral at all shape configuration, its effect on the motion is
certainly of interest but unpredictable from the general
equations.

A two parameter description of the liquid drop shape
has been used to calculate the deformation energy and fission
barrier shapes of a uniformly charged liquid drop. The calcu-
lations compare favorably with other work that used a nine-
parameter description of the shape. The agreement was best
for values of the fissionability parameter X greater than 0.70,

With the additional assumptions of incompressibility
and irrotational fluid flow the equations of motion for such a
two parameter liquid drop were developed. Subject to the
minimization of the error in the fulfillment of the boundary
conditions calculations of the motion of the liquid drop were
performed. The calculated motions,even for a simple form of
the velocity potential ,were in substantial agreement with the
predicted motion a fissioning liquid drop.

Consideration was restricted to symmetric shapes and
symmetric fission. By including additional parameters in the
equation defining the shape of the liquid drop it should be
possible within the framework of the developed theory to des-
cribe asymmetric fission without taxing the memory capabilities

of the currently available computers.



APPENDIX I

In considering small deviations from a spherical drop, the

radius may be expressed as

= = —-2‘- '3- 2
r i't<1+<3,3P2 (cose)> R(l 2+2c.,u>
where a, is a small quantity compared to unity, and

M = cos 8.

Imposing the condition that this distorted spheroid has the same

volume as the sphere of radius R,, we set

2 n r(e)
4—; Re® = f do f sin 646 r3dr
o o o
o 1l
20 a3 . 2m 3
=73 r® (8) sin 6460 = =3 r® (u) du
o -1

1
2na°

[G-% i) a

-1

Neglecting terms of order a;® and higher, we obtain

4 2mR3 9 9
4, = /o- SRY IARE T prry

—c.au)du
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'}
w [
13

3 (1 +§-a33>

Solving for R, and using the binomial expansion to retain only

terms of order a,° or lower, we get

R =R (1- % 02 (al)

To find the surface energy we must evaluate the integral

: CEve
B, =% fas = forz[l +,<%/ ¥ sin easap

Discarding terms in a; higher than squared in evaluating

dr N2 &
[1 + ;3?) ]’ by the binomial expansion, and integrating with
respect to o,

3
Es = 2mR2 Qj(l + a3 ) (1 - g a;® cos®@ sin®0) sin 630
A\
= 2R ;/.Cl + 2 a3%P;% + ap%pP? - gu.aa cos® 8 sin’9> sin 646

= 4R & (1 +%a,’>

Substituting for R by equation Al, expanding, and retaining terms

of order a;® or lower, we obtain

Es 2= 41 & Ro? (l + %-a3’> = Eg° ( 1+ %‘Q,’) (A2)

To find the Coulomb energy we evaluate

dry d
Ec = }03/]‘_%_;"3 =-}o’fv(r1,eg) dT,

dr,

where V(r1,91) =fr

® electrostatic potential
-]



The term % can be expanded in Legendre polynomials as
13

k

.-}
r
=E -r-‘:,—,.r P, (cos 6,;) for ry < r,
k=0

s

E 1"+ Py (cos 8,,) for r, > n,

k=0

where 6,, is the angle between the points.

Evaluating V(r,, 8,) first, we write

3
V(ry, 6,) =ff sin eadezdcozf -?1’—- dr, for r; < ny
o 3

r(ea

ff sin 0,d6, dcpaf -3— dr, for rg > r,

and integrating over ryz, we obtain

Substituting for 1
rla

V(ri, 6) Z (k+3)ffd‘”a Py (cos 8,,) +
g: Tki-Z_)ffdwzpk (cos 8,,) T2
Z(—k+2)ffd‘”apu (cos 8,,) +

fdwaP, (cos 8,;,) r;1%1n f‘-;

where dw, = sin 6,d6;4Y; .
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The integrals involving Py (cos 815) are evaluated using the

relation
-m)! -
Py (cos 8,;) = {%Iﬁ%T'P'. (cos 8.) P," (cos 8,) etn (P1-05)

Mw-k

where P;" are the associated Legendre functions.
By the orthoginality conditions the integration over ¥, is zero
except for m = O, which gives an answer of "2n", and the inte—

gration over 6, is zero except when terms of the form./ﬁpkade

occur and give Upon substituting r = R <1+a3P, (cos 93)>,

2
2k+1°
performing the integration, and retaining terms of order az? or less,
one obtains

V(r,, 6,) = 2 2 + 2w R2 + %-ﬂrla 0Py (cos 6,) +

3
.-}
m R2 E (g*—) (-k+1) a,? Cenp Px (cos 6;)
=0
L)

where Cg g, =./.sin 8,d8; Py (cos 8;) P,® (cos 8,).
o)

Performing the integration over dT;= r,2 sin 6, dr, 46, dy, ,
and retaining only those terms of order a,?, yields four

correspondiﬁg terms as
.o -8 R° a 8mR® - 3,
= o2 = fV(rl , 61) dr, = 15 <1+20.3 > + —3 <1+§U-a >

16 6 2 _8 5 2
+ 5% ™R ag® + G ™R" a,
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Collecting terms, substituting o = Ze/4 s and R = Ro(l—lu 3)
E'TTRO 52 7/

and discarding terms of order higher than 4,%, one finally

obtains

I EJETORAIE D
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APPENDIX II

Since in practice the potential surface near the saddle
point is a quadratic surface, it is sufficient to discuss the
property of quadratic forms. As mentioned in the body of this
paper, the necessary condition for a point to represent a saddle
point (or a local maximum or minimum or inflection point) is
that all the first partial derivatives vanish at that point.
Such a point is termed a "critical point"., Limiting the dis-
cussion to the quadratic form, £ =) a;yx,;xy, such a critical
point can only represent a saddle point, maximum or minimum, but
not an inflection point (as this requires surfaces of higher
order than quadratic).

Such a quadratic surface is conveniently expressed in matrix

form as
a1y Aia . o o . Ayg
. agg .
£f = . .
- Y . o o o . An a
32 f

where we recognize that a;; = TR
1 0Xy
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We restrict discussion to real symmetric matrices. It can be
shown that by a unitary transformation such a matrix can be
diagonalized provided the determinant of f is nonzero. A zero
matrix would imply that all the elements of the matrix are not
independent, and this condition we exclude. It can also be

shown that the determinants of the principal minors of the £,

a11 a;»

a a etc., are invariant under such a transformation.
21 33

ioeol all

’

The transformed matrix is real and diagonal, and the elements
along the diagonal are the unmixed second derivatives of the
function with respect to the transformed coordinates. Thus, for

the unitary matrix T

33 f
™ 0
32f’
13
£' =17 £ = ax2°

O

3% £
3x, 2

Near the critical point (x1°, x;°, ..., Xa°), £’ is a representa-

tion of the potential function V. Expanding V about the critical

point to second order in a Taylor series yields
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. %v 3%v o ¥
V-V, = S;?; x1 - x1‘> + ——7—' xa - X + .. . .+
33v ' 3
axy e \* ~ x,°>

This expression shows that the critical point is a minimum if the
unmixed second derivatives are all positive, a maximum if all are
negative, and a saddle point if some are positive and the rest
are negative. The equivalent result, stated in terms of the
original (nondiagonal) matrix £, is proven by matrix techniques
in Watson Fulks, "Advanced Calculus", John Wiley & Son, Inc.,

New York, 1961l.
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APPENDIX IIIX

Let the shape of the liquid drop be defined by equation
(A4) rotated about the Z-axis:

P,? = CctA,2%+a, 24 _ (24)
where P, and 2 have the dimensions of length, C the dimension
of squared length, A, of reciprocal squared length and A; is
dimensionless, Dividing equation (A4) by R,? results in a

dimensionless form:

Po’ = ctagz>+a,z* (a5)
where
Po = Po/R,
z = Z/R,
c = C/R,? (n6)
as = Agj

a, = A4R,>
By defining R, to be the radius of the sphere having the same
volume as the multitude of closed shapes given by equation (A4),
the quantities p, and z become the coordinates relative to the
radius of the spherical configuration,

For simply connected closed shapes the maximum value of
Z in equation (A4) occurs when P,=0, and is designated as Z,,
The volume of the surface of rotation is:

Zo
Volume = Tthode = 2m(C2Z,+ 2R2Z, 3+ %A4Z°5)

..Zo

Equating this to the volume of the sphere of radius, R,, the

condition for volume preservation becomes:



96

§TR, 2= 21(CZ,+8R22,°+}A,2Z,5)
or in the dimensionless form:
- §°a4z°5—éazz°3-§cz°+l =0 (A7)
Combining equation (A7) with the defining equation for

z,, i.e.,
Po3= 0 = ctazz +a,zt (a8)

results in the equation for volume preservation given in the
text as equation (3):
£(z,) = azZ,3+5a,z,5%+ 1 = 0 (1n9)
Equations (A8) and (A9) indicate that 2z,= 2z, (as,a,)
and ¢ = c(z,;a3,3,)= c(ag,a,). In such a case the time

derivatives of ¢ can be expressed as:

c - ap 28 4 53¢

das 33, (210)

The partial derivatives of z, and c are:

82, _ _ Z,
das 3(az+2a4z;57 \
-LGo = = 2z°
da, 5(a2+2a4z;§7 (A11)
)
X - . z° 1
aaz 3
s )

8¢ .- Zoo
da, 5
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APPENDIX IV

The surface energy E; of a closed surface may be ex-

2 =of as

where ¢, the surface tension (surface energy per unit area),

pressed as:

is assumed constant, and 4S5 is an element of the surface'area.

For a nucleus of magsiA and spherical radius R,, 9§ = asA§/4nR°3,
A

where og,= 17,97 MeV, A gymmetric surface of revolution

(about the Z-axis) has the area

2, 5
ap 3
/ds - 2rfp,[1 +(?1'z'°> ] dz
...zo
where P,and 2, are as defined in Appendix III.

Substitution of equation (A4) in the above expression
yields:

‘/;s = 2T/P{ 4A4’ZS+ (4A5A,+A,) 24+ (A22+A3) z’+c};5 daz

_Zo
Using the change of variables as given by equations (A6),

fds

zo
1
2ﬂR°j/ﬁ{4a4zz°+(4a3a4+a4)24+(a33+a3)22+c% ‘ dz

= "r"'fRoi/?{4a4*’z'5+(4a;,a‘,,+a4,)z“'+(a=*’+a;,)z*’+c}!5 dz
o]
For numerical integration, it is more convenient to integrate

from 0 to 1, This simple change of variable gives:

‘lA, E. S, Green, Rev, Mod, Phys.,30, 569 (1958)
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1l
1
E, = 4TrR‘,*’,92‘,'[{4%”2‘,'5x°+(4aaa,,__+a4)z,,"'x"=+(a;;*’+aa)z,,*’x*’+c}2 dx
0
A sphere of, radius R, would have a surface energy

E,° = 4TR,%y =0 (A%, Thus, the surface energy of an arbitrary

contour relative to that of a sphere is:

(Al2)
E 2 5
B, = F° = zt/‘{ 4a4az°°x°+(4aza4+a4)z°"'x“'+(aza+az)z°2x’+c} dx
s
0
. . . oB 3B
In treating the dynamics, expressions for —% and —*
. oasz aa4
are required, From equation (Al2)we obtain:
1
z,9C 22z,
3B, _ {Nzez°°x°+Nz4z°4x4+Nggz°zxz+ 5°das+c aa;} (A13)
aaa f(X)
1l
Zo dC 02
s = , —" ax (Al4)
da, £(x%)

where
z
Nae = l6a,? %;;
3z,
Na, = 2a,z,+3(4aza,+a,) 3aa
Na, = (ag+h)ze+2(ag+ag)Ze
33 3 o 3 dasz
2 92
N = 2a3zZ,+ =+ 3(4aza,ta,) 2z,
44 3% 2 4 4 384

32,

2
= 2(a3 +a2) aa4

2
»
N
I




£(x) = { 42,%z,°x°+ (daga,+a,) 2, *x4+ (2, +as) z, 3x’+c};5

o2 32
2z, 3z, 2¢c andl?. are equations (all).

and dag ' aa‘ ! day da,

99
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APPENbIX v

In order to develop an expression for the electrostatic
energy E. of a volume of revolution filled with a uniformly
charged medium, consider this volume sliced into many thin
disks., Using this model and the diagram in Fig, Al, the
integral equations are developed. For convenience, the origin
of the coordinate system is selected to be one of zeros of
the generating function P(2). (The subscript "o" in P, (2) has
been omitted, as it will be necessary to distinguish two
generating functions in this treatment).

Consider a thin disk of uniform volume charge density
o and a radius P, situated with its center on the Z-axis at A,
Following the development of A, Gray‘z, an expression in terms
of Bessel functions is found for the potential at any point ¢,
Let the thickness of the disk be dZ,, and the axial distance
(along the Z-axis) between the disk and point * be IZA—ZBI.

Let the distance of the point ¢ from the Z-axis be P,,

On the thin disk at A, consider a ring with its center
at A of radius P and thickness dP, Let E represent a point on
this ring and ¢, be the angle AE makes with the radius which
lies in the ?PBA plane. The potential V at , ig given by:

P, 2m

PdPd
vV = caz, o . (A15)
{12z,-2, [°+p, +p°-2PP, cosgy}
o o

A2
A, Gray, Phil, Mag., Series 6, XXXVIII, 201 (1919).
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Fig, Al, Diagram of the surface of revolution about the
: Z2-axis ‘
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Setting R®=P,2+p2-2PP,cos ¢, and using the identity*?
» ’ A Y

1 .-}
(a0 % =f e ¥ (bx) ax

we obtain:

2 P

@™
V= cdzfdm‘f pdp/e"" 2y <2 J, (A\R)ax (ale)
° ° °

By use of Neumann's multiplication theorem*+*

J, (V b?+2bc cosg +?)= J, (b)d, (c)+ 22 (-1) %3, (B)T_(c) cos sn
s=1

with the substitution m-g,=q, PA=b, P, =c, and n=s, we obtain:

J, OR) = J, (\P) J, (AP, )+ 2ZJn(XP)Jn(xP,)cos n o, (a17)
n=1

Using this expression in equation (Al6), and inte-

grating with respect to ®) -

2, -2, P‘

VvV = 2ﬂchJ e—x AT {f J, (\P)P arp } J, (AP, ) ax (aAl18)
-] -]

since the summation term in the integration of equation (Al7)

vanishes. To evaluate the integral
A \A

/x J, (A\x)dx = %a/y J, (y) dy

A3
A. Gray, G. Mathews, and T. MacRobert, Bessel

Functions‘(MacMillan and Co.,London, 1922) pp. 64-65.

Ad
Ibid. p. 38
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one uses the recursion relation: yJ,'(y) = -nJ, (Y)+ yJ,_ 5 (y)

which for n=1 becomes: yJy '(y) = -J, (y)+yJ, (y). Substitution

and integration by parts yields:
A

foo (Ax) dx = 1—;‘- Jy (AR) (A19)

Inserting equation (Al9) in equation (Al8), the
potential at a point ¢ (P, .24, ) due to a uniformly charged,
thin disk of thickness dZ,, diameter P,, at point Z,, on the
Zz-axis disk is

o

V(PB, ,24) = 2ncdz,/ eM 22l p 5 r)a, 0p,) R

Fy (A20)
°
For the coordinate system in Fig. (Al), with the
angle o measured clockwise from the positive X-axis, the electro-
static energy of an element of volume (of charge density o)

located at point » (Py .24 ,tpp) would be:

dE, = X%oV(P, ,2,) P, dP, dey, d2z,
The energy of interaction of a pair of disks is represented by

the double integral
2n

. Py
Ecol3xs= ko /{f v(p, ,Z,)P,dP,}dq}, daz, (a21)

Since V(P, ,2y) is not a function of ¢, , immediate integration in

equation (A2l) yields:
Py

E, = frcf V (P, .2y ) P, dP, dZ, (A22)
p18KS
-]
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substituting equation (A20) for V(P, ,Z,; )., the energy of inter-

action of the pair of disks a distance | Z,-%, | apart is:

8
-2 12, -2
Ec = 2ﬂ3°2dz‘ dZ,'/' P’ dP,fe ‘ A ,‘
pi18Ks

x P, J, (\P, )3, (AR, )X (a23)
P, \

The integral;/P,Jo(kP,)dP, is evaluated by use of equation (Al9).
°
This gives:
o

Be . .= 2nzczdz‘dZJ e 1202 !p,p,J, (AP, )J, (\Py)
DISKS

ax

3 (A24)

°

The total energy of interaction over all such pairs of
disks is obtained by integrating both dz, and 42, over the range
of 2, i.e., from 0 to 22,. Thus,

22 22 o

-\ 2, -2 ar
E, = 2n2cy p‘dz,fP.dZ.fe | 2,2, |J1 (AP, )3y (A\Py )7 (A25)
o

(-] (-]
where P,=P, (2,)
Pa=Pl(Zu)

Equation (A25) can be transformed into an integral
involving only trigonometric functions by use of the identity*®:

fe J (bt)g (ct)thLae = (be)” T (u+2v)
a(ut2V) (50

114
2 2v+1 - .
xsz1<!; V , u+ \2)4‘ s v+ 17-‘:’2351113\)@(3(0

ABa. N. Watson, A Treatise on the Theory of Bessel
Functions, (University Press,Cambridge, 1944) p. 389.
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X

where @ = (b2+c?-2bc cosyp)
s Fy= hypergeometric function
if Real (a + ib * ic)>0 and Real (y + 2v)>0
For the values of a, b, c, M, and v correspondiﬁg to
the integral in equationA(Azs), the conditions for validity of
the identity are met, and one obtains:

'/e—x IZ‘ —Z, |J1 (XP‘ )J1 (XP.) f—g

[
T

PyPyT'(1) 9>
w12, 2, I0(3) [ 2F2 (3 1i2i ) sinode

0

3 P, 2+P, 2 -2P, P, cos
where :QE= _CA ] AfS ®

a ‘ZA—ZB lz
r(1) =1
r'(3) =
ey ab z _ a(at+l)b(b+l) =22
3F1 (alb,CIZ) =1 + c 11+ C(C+l) 21 +... .

3
Since the hypergeometric function aFy (%,1:2;5- %;) never terminates,
it was desirable to find a form which did terminate. The following

transformation*® accomplishes this:

42
(1+2)2a,F, (2a,2a+l-c;c32) = 2F1<°'°+5’c’ (1+Z)f)

AéwW. Magnus and F. Oberhettinger, Functions of
Mathematical Physics (Chelsa Publishing Co., New York, 1954)

P. 9.
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In the present case a=X%, c=2, such that
w3 42
aFy (%,1:2; 2t = —(-1_*_—2-)-5-) = (1+2),F, (1,032;2) =1 + z (a27)

solving for (l+z) in terms of P, ,P, ,cosp, and |Z‘—Z,|, one. finds:

(1+z) = 2|2, -2, \{ _D%}-ﬁ} (A28)

where

DEN = { 12,-2, | £ ‘] |2, -2, |3+P‘3+P,3—2P‘P,cosm}

Combining equations (A28), (A27), and (A26) with (A25), one

obtains:
27 22, o
3
E, = 2nc=fp‘3dz‘ p,2dz, [ 2in vde
DEN (A29)
[} [, 8

Since the square root in the denominator (DEN) of equation (A29)
can never be less than \Z‘—Z,l, only the positive sign has
physical meaning. The negative sign could give a negative
energy of interaction, which is not physically acceptable.

The triple integral equation (A29) involves two
integrations extending over the same physical range of Z.
A savings can be accomplished in numerical calculations if
we change the range of integration over 2, to 0 to 2, and
double the value of the integral. This has the further ad-
vaﬁtage of eliminating the absolute value requirement on the
difference in 2, and 2,.

In the above development, the generating function
P(2) differs from that for the surface energy integral in the

shift of the origin by Z,. At this point of development
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P? = A Z'-4A,2,2°+(6A,2,%+A, ) 2% - (48,2, 3+2R,2 )2

The dimensionality of the integral is removed by

making the change of variables given by equations (A6). Thus:

2z, z, n
in? pdew
E, = 4no®R B[ P 23z, [P, 24z Sin” ocdo
¢ °j[ A YL ) den
0 o] 0

where

den

{(z‘—z,) + ‘[zz‘-z,)3+D‘3+D.‘—2P‘p,cosm}

p? = a,z*-4a,z,2%+(6a,2,%+ay) 2% - (da,2,%+2a,2,) 2

By definition the electric charge density o is the
electric charge (e%, where e is the electron charge and Z is

the number of protons in the nucleus) divided by the volume.
3e3

Normalizing to the volume of a sphere of radius R,, 0 = 4nR. %"
(-]

3
The Coulomb energy of such a sphere is E°= 2%%&1 . The relative
(-]

Coulomb energy becomes

1 2z, z, T .
B, - Ze _ 22 [ p,%az, [ py2az, { S oo
E.° ldn den
o} [}

0
The desired form for B, is obtained by three changes
of variable making the range of integration 0 to 1 in all cases.

Thus,

1 1 1
_ . . sin®mwx dx
B, = 12029/ P, dz./‘zp,, d}i/z(l_y)+ z? (1-y)2+p,%+p,%-2p, P, cosnx
° ° o

(A30)
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k)
©
il

4a, 2,22 -8a, 2,822+ (6a,2,%+a, ) 2? - (23, 2,2 +a, ) 2

Py = 4a,z,%2¢y*-8a, 2 222y3+(6a,2,2+a,) 2%y? - (23, z,%+a, ) zy

oB

The corresponding expressions for 2°¢ and EE& '
dagy da,

which are required in the dynamics, are obtained from equation

(A30) , as:
1 1 1 :
3B, . _
33, = 60z, 4/ zdz dy/G381n3nx dx (a3l)
2
o ) n

dz Py ?+d, P, 2 P, 2Py [da (l-p: cosnx)+d, (1-2- cosnx)]

where

Py
Ga = z(l-y)+da 2
1 2d1[ z(l—y)+d1]
d, = ‘/zz (1-y)®+p,3+p,2-2p, P, cosTIX
d, = 44,z,°2%+2d52z,2°+d, z

dy = 4d,2z,2%2%y%+24; z, z°y?+4, zy

32

d, = -4a, o

4 4 aa.

dg = 12a,2z 22 4 1

() 4 Oaaz

d8 = —(128‘ Zoz ai +2aaai + 2z°)
3z, -2z,
dag, =

3(az+2a,z,2)
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and
1 1 1
3B, N -
S;: = 60z, zdf/r d{/fG‘91n nx dx (r32)
0 6 o |
where
d,P,2+da p,® p.’o,’[d,(1—%?cosnx)+d,(1-%§cosnx)]
Gy = - . ,
2 (1-y)+d 26, 2(1-y)+4, | ®

d, = 8z 22z*+4d52,%2%+2d,,2,2%+4,, z

de = 8z,%z*y*+4d,2,222y%+24, 42, 2°y?+4,, 2y

32
32
d, o= 62,2+12a,2z, —°
(-] (-] Ba‘

4, ,= -(4z°3+128‘z°3 ai+ 2a‘ai)
A, 38‘

o (-]
da, 5(az+2a‘z°°)
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APPENDIX VI
In Cartesian coordinates the moment of inertia about

each axis is:

I, = M"+M”==fffc. (¥®+2?) ax av az
v M"+Mzz=ff/c- (Xx2+2%) ax dy az
M"+M"='/:/:/c- (x*+¥?) dax 4y a4z

where o, is the mass density and M., /M, .,M, are the second

H
I

I,

moments of inertia with respect to the coordinate planes. To
express these equations in cylindrical coordinates the usual
substitutions are made, i.e., X=Pcos§, Y=Psin®, 2=2, and
dv = dX dy dz = PdPde3z.

The moment of inertia of a sphere of radius R, and

. . .8_. B . .
constant density is I = ismo, R, . Since the axis of
SeuERrE

symmetry for the liquid drop is the Z-axis, the relative
parallel and perpendicular moments of inertia are

L Iy Ty
I

SPHERE SPHERE $PueEReE

I I

The liquid drop contour is formed by revolving about the Z-axis
the curve:

P® = C + A,2%+A, 24
Making the indica d substitutions, one obtains
\17C+AQZ=+A4 i
fcos de dZ/PadP = M,
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gsince
2n 29

cos®ede i/(.sinzsds
0

and

2n g, VC+A,2%+A,24
M, = °-/d@/ 22dz [ parp
0 -2, 0

where Z, is the positive real root of P(2,)=0.
Combining the results of the indicated operations and

converting to dimensionless units by equations {A6) yields:

15 a,%2z,% 2a;a,z,” (ay®+2a,c)z,® 2a,cz,?
In =g 5 7 5 3 ' %%
and

15 a,®z,° (aga,+2a,)z,” (ag®+4ai2a,c)z,® (azc+2c)z,? c?z,
L.="g 18 * 7 * 5 3 *3

The electric quadrupole moment of a uniformly charged

solid is defined to be
1 3_p3
Q=g g, (32°-RrR?®) avol
vyol

where e is the electron charge

o = Ze . gZe
°'°‘jHVol \'4
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V is the volume
2e is the total charge in multiples of the electron charge e

R is the radius of any point in spherical coordinates

R = \}zz+p9

P is the distance from the Z-axis (cylindrical coordinates)

To obtain results comparable with those of C and S*?, the
above definition is modified slightly to be
Q f(3z -r®) avol

vyol
In this form dimensionality has been removed.
Substitutions of the appropriate quantities in cylindrical

coordinates yield:

z, \c+agz +a,zt

/dydz/(zz’ -p2)dp

a,%2,° a,(2-23,)z,” (4a3-2a5°-2a,¢c)z,® c(2-a;)z,® c®z,
°=4"{ 36 14 T 20 T 4

A7s. cohen and W. J. Swiatecki, Ann. Phys.,22, 406
(1963).
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APPENDIX VII
For an axially symmetric liquid drop, defined by
equation (A4), a suitable form for the velocity potentiai

which satisfies Laplaces' equation is

N
- =Z B2nR*"Pon(coss)

n=1
where By, are time dependent parameters, R is the radial
distance from the origin to the perimeter of the disk of
cylindrical radius P located at position Z on the Z-axis,
Pon is the Legendre polynomial of order "2n", and § is the
angle between the Z-axis and R. The term for "n=0" is omitted,
as it is a constant, not affecting the motion. The dimensional
features of this velocity potential become a constant coefficient

by change of variables

r = R/R°

2n=-2
B2nToRo

Bzn
Thus, N
R,2 R.?Z
-b= - ﬁcp‘:ﬁ z :Banr’ann(cose) (a33)
n=1

Furthermore, © may be expressed in terms of z and p by the

change of variables:

r cosff = 2z
r?® = p2422

such that

N
"% =) Bankin(p.2) (a34)
n=1
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Since axially symmetric motion is assumed, the

two non-zero velocity components (in cylindrical coordinates)

are
Y aZ_Roz: 3, R ‘
N
R
3d 3P o 2 : 8H, R,
- _ 9P P _o° —n_ "o A36
Ve 3P 3P T, P2n ap T, Vo (a36)
n=1

Using these equations and those describing the shape of thg drop
the desired expressions for the kinetic energy and boundary
condition are next derived.

For a liquid drop which simply changes shape the

kinetic energy is expressed by the integral:

Oa 2 Ou
= 53-f (v9)2avol = 3] (V;2+V,2) avol

vol vol

where o  is the mass density of the liquid (=3M,/4nR,®), or

3M, R,
Ey = ar, 2 /dz/(vz +Vp ) pdp

where p, is obtained from equation (A5), and v,® and v,.? are

z p
double summations of equations (A35) and (A36). Integration

over p and z yields

J
J
3M,R,?
Ee = —53 E Bat1BayIsy,ay (A37)
o
° i
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where

Z, o
1[4,/ C)2, oH, 3H, 3H,
IQ! 139 - 4 z 3z Az 2P 3P pdao (A38)
-z, © :
Dividing equation (A37) by the fundamental energy
3
unit E,° (=q¢A%) gives the relative kinetic energy B, :

3m, Ar :E:

i=1
J—
Setting the coefficient of the summation to unity provides the

relation defining T,, as given in the discussion of units, i.e.,

smoA -23 !5
T, = Ir, = 0.482,x%10 ~““A%geconds (a39)

Thus, the final expression for the relative kinetic energy is:

=§ : P21 B2 lay 2, (240)
j=1
The implicit (dimensional) equation for the surface

of the drop may be written as
F(P,2) = P-P_(2) = O (a41)

where the entire time dependence is contained in P, (i.e., neither
P nor Z are considered functions of time). The special boundary
condition to which the equations of continuity degenerated at

the surface is:

DT 3T =

where V is the vector velocity of the fluid on the surface.

Applying this condition to equation (A41), and multiplying by
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P, (to simplify future numerical calculations) the boundary

condition becomes:
G' = P,V, -P,P,V, -P,P =0 . (n42)

where V, and V, are the velocity components on the surface,

3P o 3P
P, = SEPand P = SE?. By use of equations (A6), (A35), (aA36),

and 5.=§°T°/R°, the boundary condition becomes:

Rz
G' = °_G=0
. To
where
G = PV =P, PgV; =P, P, =0 (A43)

and vp and vz are evaluated on the surface.

The boundary condition is used to determine the
functional relations of the Bon's (to be used in equation
(A34)). since the dimensional coefficient Roz/'T° is a constant,
it will be omitted from further discussion, and equation (A43)
will be considered the boundary condition.

Only for a velocity potential with an infinity of
terms would it be possible to exactly satisfy equation (A43)
over the range -z, to z,. Since a mathematically tractable
method of following the motion of the liquid drop is desired,
it is necessary to compromise and use a finite number of terms
in the velocity potential, which will only approximately
satisfy equation (A43). Z

Consider the integral: GSI i/ﬁGadz
z
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If equation (A43) were satisfied exactly, the integral would
vanish. The technique for determining a finite number of

32n's is to minimize this integral with respect to the g,;4's

zo
agan{/Gadz} =0 (A44)

by forming:

Since GSI is quadratic in the g,n's, equation (A44) becomes a
linear set of "n" equations in the "n" p;n's.
From the shape defining equation (A5) expressions

for p,p, and pobo are

PoPs = ayz+2a,zd
P, P, = Mo+ka,z3+ka, z¢

Combining these equations and (Al0), (a35), (A36), and (a43),

equation (A44) becomes:

zo J
<)
Ban./.szz = 2 Bz 4Gyp +G, =0 (A45)
-z, J=1
where
zo
3H, 3H, d3H, 3H
= 2 i o a - ay -3
Gyq -f {po 3P 3p 20, (apz+2a, 2 30 3p
-z

0Z 3z

zo
. ac . a—c aHn a BHu
[ e e s 2

3H, 3H,
+(ay z+2a,22)2 dz
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Solution of equation (A45) yields the 8,,'s as explicit functions
with linear dependence on éa and ;4.
In terms of G,, and G,, the boundary condition
integral is: .
J

J
GSI z : Bax B2y G,y E Boa Gy +G,
) n=1

where

v 3
G, = %/{é‘(z +:—: >+ég<za+:—:2>} dz (nd6)

While the meaning of the actual values of GSI for a particular
velocity is uncertain, the smaller the value of GSI the closer
the boundary conditions are being met.

Having obtained the 8,,'s in this manner the
equations of motion are determined from the Lagrangian

L(=B¢ - ,where £=(By-1)+ 2X(B,-1)) as:

d 3 . -]
9 (L) 3L_d (3Bc) 3B 28 _ (247)
3t d2 aa dt \a3a aaK aax

The term -gz(%ﬁ ) vanished, because B, and By had no explicit
an

dependence on a2 or 5‘.
Since the kinetic energy B, does not explicitly

depend on time, the total time derivitive becomes:

e it D

n=2,4 n=2,4
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Recalling that the B,,'s are functions of the shape coordi-
nates (a, and a,) and linear in 53 and 3‘, and using equation

(A40) for B, , the complete equations of motion are:

3
aﬂ day aa" Iaglzg
i=1
j=1
”=2I4
J
L 1 3B,, 2B 38
- 3
+Z an{(a.2! B2y +__a?! _a_.'l) SR __2‘_1_ 32’ _?a_L.L?_S}
i=1 dayoa, ay 93y 2a, 3y
=1
1’=2,4
3
3881 oI ’
Z : 1 21 73 3 3%
- { aan 333131 ’2 3 + 2—82!33’ Tan—} + 3z -a—'a—n= 0 (A48)
i=1
j=1

The fact that I, ,;,is symmetric in "i" and "j" has been used
to simplify this equation.
Equation (A48) is a coupled set of differential

equations linear in a, of the form:

Ul

Cao33+ Chedy = H1+£;
Ll .0 (A4 9 )
Ceo83+ Cueay = f£4+E,
where Cy,, Coyas Coenr Coeusr £1. £5, £5, and £, are functions of
the coordinates (a,.,a,) and in addition f, and f, are quadratic
in éz and é‘. wWhen initial conditions on the coordinates and

their time derivatives are specified, this set of equations
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may be numerically integrated with respect to time, thereby
determining successive values of a,, a,, 53, and é‘. At
each time step the various properties of the motion are
readily calculable from the equations given.

While the methods described are quite general, one
limitation deserves mentioning. The shape defining equation
(AS5) is too general for the description of motion defined by
a single term velocity potential. For such a simple velocity
potential one of the coérdinates (a, or a,) must be restricted
to the value zero (and never change), because the set of

equations (A49) otherwise became linearly dependent.
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APPENDIX VIII
In extending Plesset's treatment of small oscil-—
lations of a uniformly charged liquid drop about the spher-
ical shape*®, consideration is restricted to a single shape
defining parameter ;. Following Plesset's nomenclature,

the surface is defined by the relation:

where 0, is fixed by volume preservation and P, is the second
order Legendre polynomial.

For small oscillations the maximum excursion of ag
and its time derivatives are very small. The surface and
Coulomb energies will be calculated to order a,*. To fourth

order in a, conservation of volume fixes a, at

_ 2_ _» 3 4
Q = éa? Tos %2 t OQ;

The relative surface energy may be expressed
2 T

X
1 1 dar\?
= 2 = ==
B, 4R, ? /d:)/.r [1 +<r ds)] sin6ds (A51)
o

Retaining terms of order a,*, equation (A51) after integration

over © becomes:

T

2
2
B, = %‘/{(1 - %c"" - 1gsaaa+“zpa>

(«}

‘%M. s. Plesset, Am. Journal of Physics, 9,1 (1941).
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Straight forward integration using the orthoginality proper-

ties of Legendre functions yields
By = 1+ %7~ 1330,°- rido, (a52)
The relative Coulomb energy may be expressed as

2m m  r (%)

15 .
Be = W///V(& +61) rydry sinS, a8, do,
" o o

where

2e ry (@1)

V(r,.,6,) = r,dr,sin®, de,do,
r12
6 oo

1 z : r.X
;1 = —zi—n- PK (COSS13) s < Iy
2 r1
k=0
.-}
r.X
E : 1
= —FT Px(cosslz) r, > ry
K =0 ra

6, is the angle between the vectors r, and Ia-
The indicated integrations are tedious, requiring
use of the orthoginality and other properties of the Legendre

polynomials, and finally yield to order a,*:

3 334

1 4 4
Be = 1 - gap®- i0c%2 ~ 135y Qe (A53)

The expression for By equation (A52), and B, equa-

tion (A53), agree through order q,? with Plesset!® and through
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order qga with those obtained by Nix*? (who did not include

terms of highér order). The relative deformation energy is:

4
g = Z2a,%- 1E-a,®- W.B:az"*' 2X{- 2oy’ - g+ 1—::—:% } (a54)

Because the handling of the expression for kinetic
energy differs appreciably from that of Plesset®, more detail
will be given. Again, the expression will be developed to
order a,* (actually &eaaaa).

The implicit equation of the surface may be written

as:
f=r-R, (1 - ta,2- o502+ azP2)= 0 (a55)

The assumed form of the velocity potential is

L d r‘ ra
- = aa{ 82r2P3+ Be R—3P4+ 8e I—Q—‘Pe

(] -]
where the "&2" dependence is explicitly stated and B,, B,, and

B¢ are to be expressed to order 2 in q,. The velocity becomes

. rs r®
Vv = -grad® = a,{ 2rB,P,+ 4 —2541’4'*' 6 — Bepe)ir
R, R ¢
dp r3 dP r® 3P
+(r 28, + IS —4p+ — —8 ) i

In appiying the boundary condition:

DE _of

= . d £f=0
Dt at+! gra

A®
J. R. Nix, "The Normal Mode of Oscillation of a

Uniformly Charged Drop About Its Saddle-Point Shape", UCRL-
16786 (1966), unpublished.
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a common factor "&3 o appears in all terms and is factored
out. Performing the indicated operations on equations (A55)
and (A56), with appropriate substitutions for "r" from equa-
tion (A50), an expression with only angular dependence (from
the P,, P,, and P;) is obtained. Correct through order a,?
the resulting boundary condition equation can be satisfied

by assuming 8's of the form:

Bg = A + Bay+ Cop?
Be = Da,+ Eqa,®
Be = Fay®
This algebra yields:

B, = 3+ rfay + §tas?

By =-330, + FogeG,°

B8 = 3"3‘%2

The relative kinetic energy is

2 m r(8)
1 :
By = W-/dcp/sux&d&/vzrgdr
o o 0

where the time dependence in q, is expressed in terms of T,
(equation (A39)). 1Inserting the expressions for v2 from
equation (A56) and the expression for r(®) from (A50), the

integration gives, to order a,%a,’:

Bx = %aga{aaz(;- + ;‘a2+;-%c'32)+ lﬁaz aa p&"' %B‘z}

Inserting the relations for 8, and 8,, the kinetic energy to

order q,? a,? is:
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B, = &a"{a—‘a + ri80, ~ ,—R-Z-a%’} (a57)

Plesset's expression*® for the kinetic energy .
contains only the first term in the brackets because of his
assumption that the drop shape could be assumed undeformed
(in his kinetic energy treatment).

For the derived expressions for the deformation

energy and kinetic energy the equations of motion would be

d 3By 3B, 3§
dt ad; 30, | day

1 ) 8% ? . ) )
Q. —e —_ [ - R A 3 - 8%
’{ 10 T 70% 1aase } + a, { 20 Izasazj

+{ ;‘0.2— _3_3%2_ f'éaé%a}*‘ 2}({— 20.2— ai‘sc'za + %_:_:_g%s}.;_ 0 (A58)
For motion sufficiently near spherical such that terms of
order a,2 (or &23a2) are neglible compared to terms of order
a2 (or ézz), the expressions for the kinetic and deformation
energies are simply quadratic in &2‘ and a,?, respectively.
In this case the equation of motion is that of a simple harmonic

oscillator, i. e.,

1 4 (1- = 0
150t 2 (1-X) a,

For such a motion the period of the sinusoidal oscillation of

a, (53 and a,) will be

2" __ (A59)

Tsun \B(1-X) °
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where T, is the "basic” time unit (=0.482,x 10'92A}seconds).
In the small oscillation limitation a simple rela-
tion exists between the coordinates a, used in this Appendix
and the coordinate a, used in the main text. Equation (A50)
may be expressed in terms of z and p, and compared with the
corresponding equation in terms of a,(a,=0), i.e.,P, 2=a_,z2+cC.

Equating the coefficients of the z2® terms gives

a,+1
Qa= 3 (A6 0)
which has a first time derivative:
L ] — 1 L ]
G,z = ¥ a2 (A6 1 )

These approximate relations are valid only when az;? is negli-
gible compared to a,?. Under this restriction the motion will
still be sinusoidal in terms of a, with the same period as
given by equation (A59). The kinetic energy will be:

By = -1-’;5 éaa (A62)

For larger amplitude excursions the motion will
d%ffer from simple harmonic motion, and be described by equa-
tion (A58). The .second term of equation (A58) contains a
feature which is seldom encountered in oscillator problems.

For the liquid drop problem the spherical configuration is

the equilibrium position. At this position there is no force
generated by the potential energy, and in the commonly encount-
ered oscillator problems there would be zero acceleration.
However, in the present case because the "mass" appearing in
the kinetic energy expression is dependent linearly on the

position coordinate, there appears a force in the equation of



”

127

motion which is proportional to the velocity squared. 1In the
standard treatments of small oscillations, the mass is inde-
pendent of the position coordinate and such non-vanishing
terms do not arise for the equilibrium position.

This property of the liquid drop should also appear
in the more general description where the two coordinates a,
and a, are used to define the shape. That is, there should
exist an acceleration for non-vanishing velocities at the
spherical shape in the a,-a, description of the problem. The
situation is somewhat more complicated because the equations
of motion (equation (21) in main text) are a coupled set in-
volving both ;3 and ;‘, and a non-vanishing 52 with é‘=0
should cause both accelerations to be non-zero (even at

spherical).
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APPENDIX IX
For purposes of numerically checking the theory a
two term velocity potential was used. Let this velocity

potential be written:

-

B r2P, (cos8) + B,r*P, (cosb)

azrz(}COs!S— %-) + 841"(3?5;08‘@— 1Tsc0829 + %)

= pz{%zz' %(02+23)}+-8‘{ﬁfz‘—v%?zz(p3+zz)+ %(ps+zz)z}

= Bz{zs— %p°}+ B‘{z‘— 3z2p34+ gp‘}
Thus in the notation of the main text
Hy = z2- }p2
Hy, = z*- 323024 2p4

The components of the vector velocity are

2
OH,
Vg = Ban 3z - 2zB,+(422-62p2) B, (A63)
n=1
and
2
OH,
Vp = Ba g; = —PB,+ [-622p+ 2p3) g (r64)
=1
) 3H oH
The expressions for —2 and % are evaluated at the surface
Az ap

(i.e., set p=p,) before insertion in the equation for GSI
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(equation (17) of the main text), giving,
GSI = Gy1B,°+(Gy,+G1 )8, By+G,, By 2+Gy B +G, B4 +G, (a65)

where
Zo

Y

2{ z,+2a,cz, %+ L(91: +10a‘c)z°5+ Lo"ahz + %ga 3, 9}

2¢

ic? 2c2 -lglaac3> z,2+ :—(20azc— %hcz" ’a‘lazzc) 2,°

+ ?;(28a‘c— 129a,a,c+ 22a,°%- %aaa) z, 7
+ z-22=a %c+ 68aja - _%232334 z, °

2( ani 3 11 _ 147, a,_, 18
'*'11( 5 a5 4°) % "~ ‘F& A %,

Gy, = 2{ - g-caz°+(2c3- g-azca) z, %+ }(36aQC—1}a4c3— %’Zazac) z,5

1 _201
Tz

+

-

(60a‘c 93a,a,c+38 a,?- .3-2_ 3)
4] 2,

Gya = 2{2—c‘z°+(9azc3—6c3)z°3+;—<453‘c3—138a2c2+ E_g_?.aazc2+36c2> z,®

153a‘3c+116a2a‘ Ma 2a

+
I._, !np-o

4
-
-
“’l

1(-&11 a,2+86a, ) Zotl-

+
¥y

<—222a‘ c?+333a,a,c2-270a,2 c+120a3c+135a33c) z," '

(ma‘3c3—804a3340+16334c+603a a,ct100a, 1503+ %3 :)z:

+
[ od

1
+ 1‘{(873aaa‘3c—582a‘3c+280a3a‘—630a23a‘+315a,3a‘) z 1!
+ 1—-15(405a‘3c—858a3a‘3+ l—a-,juazza‘2+l96a‘3) z,12

4
+ %(—1268‘3+18982843) 20154- %34 2017}



. dc¢
= 2a‘{- 2c2 g

z,+(

3cC

aa‘

-3a5+2)c g—:‘zoa

3¢ . 3% a3
533;;- 332 —;;— T3°3 zo5
a, 3, - 73 ¢ + g-c)zo"

d
(—3a‘c : +2aaa—c - 23,2 %_g - Ba,c + e-c)z &
3
(2343 "332343:2' 175_3‘ Ha. ) °
2a,,2 8S . 1 7 9_ 27 11
- a5t Ya,- a,a,)z a2z

130
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a,? 2 a,a, ac ac 3° 2
G°=2 +3_c+3‘_3_+i é-c— Z
da 2 da, da, 4 da °

1(a.5, 3¢, 3223),s
+ 8(a,a‘ 2a,t 22 aa,>z°

1 /. « o 3¢ . 3¢ « o 2
+ ﬁ(a22+2a284 S"*' 23,2 S-a-‘> z,%+ sqaz8,2,7+ 51§a4z°°}
After taking the partial derivatives of equation
(A65), the resulting set of equations are solved for B, and

By in terms of Gyy., Gya, Gay, Gyp. Gy, and G,, yielding:

263G, —G; (Gy o+ Gy1)
[
(Gy 21+Gs1 ) -4G, 1G2 3

o= (A66)

_ 263631 -Gy (Gy,+Gz,)

(A67)
(Gy2+G13)° 464,62,

Be

Equationsg (A66) and (A67) are the functional forms
of the B's which are now used in the kinetic energy and equations
of motion. The partial derivatives of the f's with respect to
53, 5‘, a, and a, are obtained from equations (A66) and (A67),
using the expressions given above for Gyy, Gyy, Gzy, Goz/ Gy

and G, , and equations (All) for

dc , dc , 9z, 3z
=, ==, =22 a —& .
da, da, aazan da,

‘ The functional expressions for the three Iz 02,
integrals which appear in the kinetic energy and equations of

* motion are also extracted in the routine manner, yielding:
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Y R | R P TR X
i
+ ?;-(a‘+ }a,a;) 2,7+ #52422,°
Io, = }caz°+ i—(azc2-6c3) z°8+ :—(i-a‘cﬂ.;. i-azzc_ 952c+ 4c)z°s
+ }( Fa.+ §aza,c- 9asc- 2a,%+ 43,)2,’
t %( fas2a,+ Ras?c- 9aaa‘+4a‘>z°°
=2 2_ 9. 2], 22, 1, 3,13
+ T3\ 4353,°%- Fa,%) 2,7+ gras” 2,
9 . 2 a, 1.3 a, 1(2 3.27. 3.8.8 . A .
144 = 84C Z,+ 1ea,C+ 3¢ Z,°+ Fl183,C +33a3 c +a-azc _g.c z,

4
T8a,°ct §laja,ci+ fa,%c- §a4c3—3a2c+4c> z,”

+
Qll-‘
-

4
o
»

(
(e

a7z '+2ga,%a, 04215, c%+82a,%+9a,a,c-3a,c-2a, +4aa) Zy °

9
“sa,3ac+ 3:-;8234 c+ -azza‘+—a‘2c—3a3a4+4a4> z, 1

17

[y

3 ! 18 _2° 4
+ ( ﬁaaa‘3+ §a4a) zo ima‘ zo

The required partial derivatives were obtained from these

expressions in the usual manner.
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APPENDIX X

The interval determining and self testing features of
the Runge-Kutta subroutine provide a balance between the desired
accuracy and time required for an integration. The user provides
an initial and final value of the independent variable (time):
an initial interval size; and an accuracy specification (ACC).
Integration is performed twice over the same time interval; the
first time in a single step, and the second time in two steps.
The difference (DIF) in the two integrations (for each dependent
variable) is compared with the accuracy specification (ACC).

ACC

If DIF < il then the integration is considered successful,

and the time interval doubled before the next integration. If

é§g < DIF < ACC, the integration is also successful, but the

time interval is unchanged. If DIF > ACC, the integration failed,
the time interval is cut in half, and an integration attempt is
repeated for the shorter time interval. 1In using the subroutine
no difficulties were encountered by unlimited cutting of the

time interval. After each successful integration the independent
variable is increased by the amount of the time interval. Should
the difference in the final and current value of the independent
variable be less than the time interval, the time interval is
reduced to exactly this difference (so that the final integration
is completed at the value specified as "final" for the independent

variable).



