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USING NONLINEAR LEAST-SQUARESMETHODS FOR QUAN’fALRESFONSE AND

SENSITIVITYANALYSES, MINIMUM CHI-SQUAREESTIMATION, AND DIFFERENTIALEQUATIONS

by

Roger H. Moore and R. Keith Zeigler

A number of special statisticaland mathematical techniques re-

duce to solvhg equations equi.vs.lentto those required by general

least-squaresprocedures. In the statisticalcategory are quan-

tal.response and sensitivityanalyses and minimum chi-square

estimation of parameters; in the mathematical, is the problem

of determining constants for differentialequati.onawhose solu-

tions are I’eh3tbnS among observablevariables. This report

contains demonstrationsof the equivalences and prWide8 ex-

amples to which the m?thods were applied.

INTRODLKTI!ION

Computationalprocedures in statistics,as in

many other fields, are often strtigbtforwardbut

tedious. Modern computers, elongw.tth simplified

progrsxnningmethods, make possible application and

re-evaluati.onof many hitherto complicated tech-

niques. Nonlinear least-squaresmthods, often.at-

tributed to Gauss, were thoroughly outli~d early

in the lgth century but did not cornsinto wide-

spread use until the middle 1950’s. An early com-

puter program in this area by the authors of this
1

report was reported elsewhere.

Since the program’s first availability,a

number of computer i.nstellationshave made It a

pert of their libraries, and it has been used rou-

tinely by many nonprofessionalprogrammers as a

research tool. This broad applicationhas led the

authors to consider many XY3Wuses for the program.

This report discusses sore?of these =W applica-

tions and indicates how three general problems,

basically unrelated to least squares, can be solved

by least-squaresm?thods.

QUmW ~SmNSE AND SENSI’WITYANALYSES*

1. Background.

Quantal response and sensitivitymthods are

used in many scientificfields. They are concermd

with the statisticalanalysis of data obtain?d by

subjectinga test item to a known level of stimulus

(an insect is given a certain emount of poison, an

explosive is dropped a predetermim?d number of

feet) and noting whether the test item responds

(d5.es,explodes) to that level or does not respond

(lives, does not explode). A series of suchex-

pertints is carried out on different test items

*
Based on “Multivari.ateQuantal Response Analysis
Using Regression Methods,” by R. K. ZeigLer and
R. H. Moore, presented at the 126th Annual Meeting
of the hrican StatisticalAssociation, Ims An-
geles, California,August 15 - 19, 1966.
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until seversl levels of stimulus are encountered at

which mm? respond and sam do not.

Ferhaps the best-known technique is that of
2

probit analysis. ‘fhG“up-and-down”n&hod3 iS

also widely used and has the tivantega (compared

with probit anelysis) of being noniterative. These

~thods are both designed to estimate parameters by

the method of maxhnn likelihood, an id~ still.em-

ployed in fairly recent LINEstigations. It is ap-

propriate to m.?ntionstill another estimating pro-

edure,5 that is designed for smell samples and

based on a stochasticprocess concept rather than

maximum I.ikellhood.

Maximum likelihood equations derived for eval-

uating quantal response data can be sol-d by non-

linear regression formulation,and the “tn?atm?nt”

to which the expariuk?ntalunits am subjectedmay

be a mixture of individualtreatments. These con-

cepts wiJ1.be illustratedby fin examples, three

of the univariate type and two bivariate.

2. Maximum Likelihood Estimation.

It is the following lins of reasoning that

leads to the maximum likelihood equations. Each

test item is assumed to be randomly selected from

sum larger population. It is further as-d that

each item has a level of stimulusbelow which it

will not respond and above which it will respond.

This level may be called the threshold of the item.

Finally, the thresholds of the population of items

~ pres=d to be distributed according to a den-

sity function f(t; a) where a is a vector of k pa-

rereters which are of interest. Thus, if a ran-

dmil.yselected item is subjected to a level of

sthsulus, say x, the probability that it will r+.!-

spond may be written

x

Pr(t <x) = J-f(t; a) dt = F(x; a). (1)

-m

It is cosmon, and somet-s reasonable, to ●saum?

that the threshold density iu normal, so that

x

Pr(t <x) = J (2r)-1/2u-lexp
[- $(t=)%

-m

(1’)

ahd v and u are the paramters to be estimated. It

is not our intent to discuns the choice of the ●p-

propriate form of Eq. (1) for a particular ●pplica-
2

tion. Probits, normits,
6

and logits7 all have

their advocates and users.

The usual procedure leading to the likelihood

estimates is to select a set of levels of sthul.us

xl) Z-# ● ..2 xi> ...) Xm. A number of items, say

~, ere tested at the level ~, and ri of them

respond. If the probability of a single item re-

spending at xi is Pi(a) = F(xi; a), then pi = ri/ni

is an estimate of Pi(a). Since the tests are as-

aumd to be independentlyparformsd, the probabil-

ity of obtaining the m results PIJ P2~ ...~ Pi)

.... pm can be expressed as

P=:

()

‘i
P;i(l - Pi)

‘i-ri
)

i-l ‘i
(2)

where it must be remembered that Pi Is a function

of the pareusstersof the threshold density function

The likelihood equations which must be solved

are (See Ref. 2, A~ndti II.)

(3)

j =1, 2, .... k.

These equations generally are nonlinear in the pa-

rametera and are commonly solved by iterative

mthods. The straight-lin? fitting Involved in

probit, normit, a!kilogit analysis is a device to

prwide initial estimatss of the p=.mm ter vector

a and to make esch iteration Som?what more ps.lat-

able. That such methods were and axe effective,

however, cannot be overlooked or overstated. A

great de&1 of work was expetied in preparing ME&L-

iary tables for use when the calculationswere be-

ing Perf-d by hand or on a conventional desk

ca.1.culator.

The variances and covariances of the maxhum

likelihood estimates w be obtained in the usual.

manner by inverting the matrix A whose elmmnt in

the Jth row and ~th column is

ajj‘ ( ). -E a2 log P/&Y3&ZJ, . (4)

In practice, of course,

evaluating these second

this matrix is estimated by

partial derivatives using

.

,
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the maximum likelihood estimates of the parsnk?tera.

3. Nonlinear Reuression Estimation.

In the formulation of the general regression

problem, it is common to ass= that the data fol-

low the model

Yi = g(zi; P) + ei, i=l, 2, .... M, (5)

where the yi are observed random variables, Zi is a

vector of associatedknown mathematicalvariables,

B is avector of u.nknownpsremat.ersto be estima~

and ei is a random variable whose expected value is

zero and whose variance is a~. Any two of the ran-

dom variables, say ei, and ei,,(i.’+ i“), are as-

sumed to have zero covariance. If there art?K pa-

rroters in the vector P, they may be estimated by

minimizing the weighted sum of squares

M
-. . .

by solving the normal equations

g= -25WJY, - Edzi; P)]ag(:;;‘) =0,
L-1 d

(6)

(7)
I-l =1, 2, . . . . K

for the pex-ters. The Gauss-Markoff theorem

states that> if g(zi; B) is linear in p and Wi .

l/o:, the best lim?ar unbiased estimate of p is ob-

tained from the solution of 13qs.(7). Consequently,

even when the model is nonlim?ar in the parameters,

it seems to be standardpr.scticeto set the weight

equal to the reciprocal of the variance.

The usual procedure for estimating the covar-

ience matrix for the estimates of the regression

parameters is to invert the matrix B whose elmm?nts

are

(8)

j,j’ =1, 2, . . . . K.

As with the maximum likelihood covariancematrix,

bhe ‘le=ntsbdd’
in practice are evaluated at the

estimates of the pareters before the matrix is

inverted.

Much effort in recent years has been devoted

to obtaining improved m?thods of minimi;i~Eq. (6)

when the parameters appear nonlim?arly. ‘ This

effort has been fostered by dissatisfactionwith

the basic muss linearizationprocedure, and it has

been stimulatedby the availability of computers

which make such investigationsfeasible. Most com-

puter facilities, therefore, have available non-

linear regression programs designed to solve Eqs.

(7). usef~progrm of this type allow Witobe a

known function of the parameters, so that the val-

ues of the weights may be modified as the itera-

tions proceed.

4.

(3)

the

[Pi

The

Equivalence Demonstration.

The equivalence of the likelihood equations

and the normal equations (7) is made clear by

three equivalences:

*yi], and
[
pi(a) -g(zi; P)],

[

‘i
Wi -p,((Y) 1(1 - P<(a)) “

L“
equivalence of the cwexiance

from expressions (4) and (8), and

ing

J
matrices derives

is seen by writ-

+ terms

When the negative

tai.ned,the terms

involving (p. - P.(a)). (9)-(.J.

expectation of Eq. (9) is ob-

involving (pi - Pi(a)) are zero
—

for large samples.

5. UnivsriateExamples.

In the following examples, reference to the

LASL program mans the computer program used ex-

tensively at the Los Alemos Scientific Laboratory

for least-squaresproblems.
1

Results are reported

to the seinenumber of figures used in tbe original

examples, even though the LASL program was required

to solve the least-squaresequations to at least

seven, and somtims eight, significantfigures.

The convergence criterion in the LASL program when

operated on an IBM 7@ (which has slightly more

5



than eight-digit single-precisionaccuracy) re-

quired that the esti.m!kad-~rections at the final

iterationbe less than 10 of the current values

of the paramters.

ExemPle 1. Perhaps the best known example

(because of its appearance in a pioneering text) of

probit analysis ia concernedwith the effect of a

series of concentrationsof rotenom? sprayed on the

chrysanthemumaphis (Ref. 2, pp. 25 - 55). The

data are repeated in Table I.

Table I

Toxicity of Rotenone to Ch.rysenthemumAphis

Log
Concentration Concentration

(w/ )1 (xi) ‘i ‘1——

10.2 1.01 50 44

7.7 0.89 49 42

5.1 0.71 46 24

3.8 0.58 48 16

2.6 0.41 50 6

0 -. 49 0

As is typical of this type of experiment, the

assumptionwas made that the common logarithms of

the thresholdswere normeJW distributedwith man,

v, and standard deviation, a. The LASL program was

given the concentrationsof Table I and computed

the comnon logarithms for the remainder of the cal-

culation. The estimates reported in the reference

gave (alter some manipulation)~ = 0.686(%JF =

0.0220) d ~F = 0.23g(~& . 0.0267), while the

LA.SLprogram gave & = 0.&35(5GL = o.0221) and GL =

0.237(~~ = 0.0271) directly. The discrepancies

clearly are zmdl and attributableto differing

degrees of precision in the performance of the two

methods of calculation.

ExemPle 2. This is an example of a situation

in which the values of xi cannot be preselected.

A tabulation of such a set of results
10

is given in

Table II. The data com from an exparim?nt con-

cerned with determining the p??mi!trationcharacter-

istics of a projectile. The Pamstrati.ngvelocities

were ass-d to be nornwillydistributed as in

model (l’).

Table II

Velocities and Conditions of Impact of a

Given ProjectileFired at a Given Armour Plate

Velocity (f/s) Condition of Impact

2433 lion-pe~tration (~ . l,rl = 0)

2415 Non-Pem?tration (~ = l~r2 = 0)

2415 Non-Fenstration (n3 = l,r3 = O)

2453 Penetration (~ = l,r4 = 0)

&23 penetration (~ = l,r5 = @

Using initial estimates of PO = 2435 and a. .

17, the reported results were JG = 2431.6(60 =
G

10.7)and%G . 15.o(& . 12.5)tith an estimated
‘G

covmiance of 50.8. The LASL program gave CL .
A

=10.6) luxi~L=14.9(3A =12.0) with2431.6(aOL
‘L

an estimated covariance of 46.6.

Example 3. The up-and-downnEthOd5 is iJJ.us-

trated with a set of “mocked-up”data based on a

sample of sise 60 from a normal distributionwith

p.1.3anda.O.2. The observationsare repeated

inTabla III, where the term “normalizedheight” is

used to indicate that these data tight have Cm

frcm an exparinx?ntin which explosims are dropped

certain distances and a response is an explosion.

Table III

Demonstration “Data”

Normal.ized Number of
Height Explosions Non-Explosions

2.0 1 0

1.7 10 0

1.4 I_8 9

1.1 2 1.8

0.8 0 2

Ths results were CD = 1.32(& = 0.035) and

. ‘D
aD = 0.17(”m = 0.039), while the LASL program gave

aD
CL = 1.32(?J.

VL
= 0.035) and 6L = 0.17(~A = 0.038].

aL

6. Bivariata Ex9mP1.es.

The procedures outlined in 9ections 2 and 3

above are not limited to data obtained from shple

treatrnnts. A txatment ~ be a combination of

simple treatments, such as two kinds of poison ap-

,
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plied 8s a mixture, or dropping di8tance, humidity,

and temperature used in testing sensitivityof ex-

plosives. To apply these procedures, It is m?ces-

sary to arrive at a formulation involving the com-

binatlonof treatments that is similar toEq. (l).

Thus, one

~(Pi’

must be able to write

= f(xfi, .... Xti; ~, ..*, y),

1=1, ...9 n (10)

where C(pi) is the expected value of the observed

fraction responding to the &th treatm!?ntcombina-

tion, (xfl, .... Xti) is the set of m simple treati

m?nt levels that compose the &th treatmmt combi-

nation, and (~, .... ~) are the parameters to be

estimated.

ExsmPh 4. Consider a portion of the data

presented elsewhere (Ref. U, pp. 534 - 535, Ta-

ble 2), which are given here as Table IV in a

somewhatdifferent form. The expected value of

the fractions responding to a combination of lev-

els of the two poisons was equal to one minus the

incompletebivariate normal distributionusing the

common logarithms of the simple treatmsnt levels;

that is,

logxfi logxti

E(P,) = 1 - f ds r g(s,t)dt, (u).
-m

where

g(s,t) =
2mJlu:&?

and where the parsmters of Eq. (10) were identi-

fied srbitrar~ with those of Eq. (IJ) by the

pairs (~, PI), (a2$ al), (~~ V2), (~j U2)J and

(~J P). The estimates of the five parameters ob-

tained from a LASL least-squaresanalysis of the

data were fiU = -0.9949, au = 0.3450, !la =

-0.8333, ;= = O.4949, and &=-O.7380. (The es-

timated standard errors were, respectively,O.025~

0.0332, 0.0316, 0.0565, and 0.I..I25.)~ original
u

procedure, using the mixture data, provided an

estimate only of the correlationcoefficient,

?lH = -0.74, with (what appears to be) a standard

error of 0.09. Using the LASL program’s results,

it was found that the weighted sum of squares was

12.17. This was not significantlydifferent from

19 (using chl-square critical values of 8.91 and

32.87 for (24 - 5) = 19 degrees of freedom at the

0.05 level of significance). Consequently,the fit

could be considered satisfactory. The last two

columns of Table IV give, respectively,the ob-

served cud estlmated proportions reeponding to the

treatmnt combinations.

ExamPle 5. This example is prwlded by a

problem involving the quast for m empirical func-

tlon to describe the probability of survival of hu-

mans who had received whole-body irradiation,when

no two individualshad identical treatnt?nts. Data

were available on lCk sub~ectswho had received ra-

diation for a period of 2 weeks or longer.12 The

radiation received was m?asured in midli= rads per

week. The observationtie on each subject was

whether he was alive or dead 2 months after the

cessation of treatmsnt. Thus, for each of the 1~

subjects, there was available the triplet (ri, ti,

pi) where ri Is the midline rads/week, ti is the

total treatment t-, and pi = O or 1 according to

whether the subject was alive or dead 2 months af-

ter treatnnt. For the subjects considered, ri

ranged from 0.3 to 184.8 rads/week and ti ranged

from 2 to 2.I.6 m?eks.

For various reasons, it was felt that the

probability of survival could be expressed in the

fOrm

Pi = exp [w(ri) til , (12)

where w(r) was an unknown function of r that had to

be det.ermin?d.To accomplish this, the data were

divided into six sets according to ri lying in the

intervals (0-20), (20-40), (40-80), (80-120), (120-

160), and (160-200).Each of the sets was fitted

to the function

Pi = e- (Mi), (13)

with the SIX values of the estimates of a being ap-

proximately -0.0020,-0.0023,-0.0529,-0.1751,

-0.1739,and -0.2339. These numbers were associ-

ated, respectively,with the numbers 10, 30, 60,

7



SiX-Day Toxicity to Beetles

Pyrethins, D.D.T., 0XY3

Deposit

Insecticide (m /. 10 sq.cmo)

1.2 0/0 w/v 2.52
pyrethins 3.30

4.25
5.33
7.15
9.53

12.28
15.58

2.0 0/0 w/v
D.D.T.

1.2 0/0
pyrethins

+
2.0 0/0
D.D.T.

2.45
3.18
4.25
5.48
7.24
9.54

12.36
15.54

2.74

?:E
5.34
7.11
9.60

12.45
15.65

Table IV

(Triboliumcastamum) of Direct Sprays

the Two Together, in Shell Oil P31

Treatment Combination—

‘u

o.030&
0.03960
0.05100
0.06396
0.09580
0.u436
0.14736
0.18696

0
0
0
0
0
0
0
0

0.02$%4
0.03840
0.04920
0.064c8
O.C8532
0.u520
0.14940
0.18780

100, 140, and .180which were the midpoints of the

arbitrary grouping intervals. A plot of these

pairs of numbers on log-log graph paper rewsaled

that a straight line connected them reasonablywell.

Consequently,it was decided that w(r) might have

the form

(P2)
w(r) = Blr .

CcsnbiningEqs. (12) and (14), the function

[1(P2)
pi = w $lri ti

(14)

(15)

was obtainsd. The entire set of ld+ obeervationa

was submitted to the LASL program with the final

estimates (and standard errors) of @l = -0.w241

(0.0C0203)and b2=l.36 (0.21). ‘l? heweightedsum

of 8quares, defined by

S=5W, (+
i=l

i’ (16)

‘i2

o
0
0
0
0
0
0
0

0.04$cl
0.0636
0.C850
0.1096
0.1448
0.1 09

1?0.2 72
0.3109

0.0494
0.0640
0.0820
0.1068
0.1422
0.1920
0.&$-o
0.3130

‘i—

3
3
9

16
20

:
35

:
16
21
25
28
35
37

14
18
22

::
45
50
50

Pi

0.0625
0.0625
0. I.800
0.3200
O.blxxl
0.6000
0.7551
o.7om

0.1633
0.1600
0.3200
0.42cx3
0.5000
0.5600
0.7000
0.7400

0.2800
0.3673
0.4400
0.7200
0.8400
0.9000
l.oa)o
1.00CK)

.
pi

0.0642
0.I.I.89
0.193
0.2019
0.4178
0.5613
0.6820
0.7802

0.1678
0.2315
0.3158
0.3988
0.4952
0.5910
0.6763
0.7448

0.2307
0.3442
0.4839
0.6553
0.8267
0.9454
0.9867
0.9974

where l/Wi = ?i(l - *i) since ni .1 for all cases,

had a value of 122.0. Cunparing this at the 0.05

level of significancewith the expected value of a

chi-squarevariable with 102 degrees of freedcm, S

wa8 found not auspiciouslylarge. Hence, the fit

was considered satisfactoryfor these data.

7. Ccmmmlm.

Ons i.mmsdiateconclusion that may be reached

is that a reasombly general.least-squarea cauputer

program can replace sevm’al specialized quantal

anakfsis Programs, as long as the gem?ral.program

haa the capability of convenient specificationof

the function being fitbd. It must also allow the

modification of weights at appropriate stagea of

the computation. However, it is not rmcessary to

specify the algorithm by which the least-squares

solution ix ●tttinsd. For instance, it is not Mc -

eaauily required that the derivatives be anaJ.y-ti-

C~ cmnputed. Indeed, direct search methods of-

ten are nuccemsfulwhen conventionalprocedures

fail.

*



It is worth noting that nothing in the preced-

ing development requires ni to be larger than em?.

Thus, levels at which only a single item is tested

may be incorporatedinto the computation. However,

experimental data, in order to prwide unique pa-

rameter estimates, must exhibit at least one

“cross-over”level; i.e., there must be at least

o= level of stimulus at which there is a lack of

response which is higher than the lowest level at

which reaponse does occu.

The relationshipbetween maximum likelihood

end least-squaresestimates has been noted previ-
13

Ously. However, that discussion seems somewhat

clouded by the requirement that the function be

linear in the parameters and by the introductionof

severel forms of functions to be minimized, all of
2

which are given the generic n- x .

MINIMUM CHI-SQUAREESTIMATION*

1. A Problem.

Suppose the

of Table 30.4.2)

data (Ref. lb, p. b39, a portion

appearing in Table V are given.

Table V

Distribution of Mean Temperatures for JurE

in Stockholm, 1.84.I-1~0

Degrees Years
Celsius Observed

-12.4 10

12.5-12.9 12

13.0-13.4 9

13.5-13.9 10

14.0-14.4 19

14.5-14.9 10

15.0-15.4 9

15.5-15.9 6

16.o-16.4 7

16.5- 8

It is desired to estimate the msan and stan-

dard deviation of the distribution and to test the

hypothesis that the data me “normally distributed;’

*
Based on “Minimum Chi-SquaraEstimationwith Non-
Linear-LeastSquares Procedures,” by Roger H.
Moore, presented at the Spring Mestlng of the Rio
Grande Chapter of the Association for Computing
Machirm’y, Cloudcroft, New Ih2xico,April.21.-22,
1966.

2. usual Solution.

It may be determi~d (Ref. 14, p. 440) that

II....the exact class intervals are 12.45, 12.95,

etc.” Hence, orn?may estimate the p=ameters by

the standard wthod (See Ref. 15, PP. 14-27)of

settingup a frequency distribution,coding the

midpoints of the intervals, and correcting the

coded estimates to obtain the final estimates. Af-

ter application of this method to the data of Table

V, Table VI is obtained.

Table VI

Computing Layout of Data in Table V

Mid-point
of Interval

‘i

1.J..7O

12.20

12.70

13.20

13.70

14.20

14.70

15.20

15.70

16.20

16.70

17.20

Coded
score

~

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Frequency
fi

o

10

12

9

10

19

10

9

6

7

8

0

Total ............. 100

The additional interval at either

to conform to the statera?nt(Ref.

~

o

-40

-36

-18

-lo

0

10

18

18

28

40

0

10

2
fixi

o

160

ml

36

10

0

10

36

54

1.12

200

0

726

end is introduced

14, p. 438) that

‘We first assume that the grouping has been ar-

ranged such that the two extrm? classes do not

contain any observed values.” Thus, fl = f12 = 0.

Letting i’ . 0.50 be the interval width and

X. = 14.~ correspond to x = O, this layout pro-

vides for the fol-1.owingcomputations:

N .Zfi = 100

; = (~fixi)/N= 10/100 = O.1O

~= i’=+ X. = (0.50)(0.10)+ 14.20 = 14.25

S2
x [

2-- (2fixi)2/N]/(N -1)
= ‘fixi

= [726- (10)2/loo]/99

9



. 725/~ = 7.3232

‘x
. 2.706

‘x
= i’sx= (0.50)(2.7C6) =1.353.

It must be emphasized at this point that the

paramters should be estimated from the ungrouped

data W they are available.

The question of whether the data have cow

from a normal distributionmu be answered by per-

forming a goodness-of-fittest (Ref. 15, PP. 226-

227). This is accomplishedby comparing the ob-

served frequenciea with those obtained theoreti-

cally under the assumption of normality. Table VII

ia then established.

Table VII

ComputationalLayout for Ooodneaa-of-Fit

of Data in Table V

@per ~ -~l?heomtical Observed (fi -Fi)2
Endpoint i Frequency Frequency

‘i % ‘i ‘i
‘i

12.@

12.95

13.45

13.95

14.45

14.95

15.b5

15.95

16.45

-1.330

-0.961

-0.591

-0.222

0.148

0.517

0.887

I.256

1.626

9.18

7.65

logo

13.48

14.67

13.87

IL50

8.3o

5.25

10

12

9

10

19

10

9
6

7

0.07

2.47

0.33

0.90

1.28

1.08

0.54

0.64

0.58

co co-z?9—Q _1.51

100.00 100 9.40

The atatiatic obtdmed by summing the last

column of the table is to be compared with a crit-

ical value obtained from a chi-square diatributlon

with (10 - 3) = 7 degrees of freedc?nsince there

are 10 Intervala, nine of which have independent

probabilities aaaociatedwith them, and two param-

eters havebeen estimatedfromthe data. For ex-

ample, if the 5$ level of aignificmce ia chosen,

the critical vabe is 14.07. Since 9.40 is I.esa

than 14.07, the hypotheaia of normality is ac-

cepted.

Thus, the problem posed earlier ia answered.

However, sore?questions remain: Would the con-

clusion be the aam if the ungrouped paramter es-

timates had been used? Suppose 100 (instead of 99)

had been used in the c-tation of ~? Should

Sheppard’s corrections (Ref. 14, P. 438) have been

applied? Are these estimates “beat’l?

3. Minimum chi-square Solution.

Often, it ia not possible to recover the raw

data, end one must rely on grouped data. Scme-

timss, aa in sorting or sieving operations, there

is no chance at all to use individualmsaauremmts.

How, then, ~ est.1.untesbe obtcd=d?

One ww of doing this ia to obtain values,

say g* and s*, that minimize the aum of the entries

in the final column of Table VII. Tbeae are called

minimum chi-square eathnatea and are detailed else-

where (Ref. 14, PP. 424-441).

To obtain these estlmatea, one must minimize
. .-

by fi~ing the valuea Of P W u for which aX2pV

and ax /au are both zero. These values may be

denoted by ?* and a*.

That solving such equations ia not =cesacu’ily

a simple task may be demonstratedby noting, for

instance, that

[

a~=-~ z 1(fi -Fi) (fi -Fi)2 aFi

Fi
+

‘i
2 F“

‘i

*

4. The Leaat-SquaresApproach.

The way out of thla dilemma lies in applying

the observation (Ref. 14, p. 425) that it can be
!7...shown for lexge N the influence of the secoti

term within the bracketa becoms negligible.” Then

it becomes a matter of solving the simpler ayatem

a? Z(fi-Fi) aFi

~=-2i Fi ~=o

for v and u. This technique ia called (Ref. 15,

p. 426) the “modified ~ minhmunmthod.”

It happena that these are precisely the kind

10
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of equations that must be 801ved in a gemera.1least-

squares problem when it is recognized that the

weights in such a problem may be regarded s+athe

reciprocals of the function being fitted. To see

this, consider a simple two-parsns?terleast-squares

problem where the function to be minimized is

Q(P1> 132) =~Wi[Yi -g(xi; t31,@2)]2.

The normal equations are of the form

j=l,2.

That these have the ssm form as those of the mini-

mum chi-squaremethod may be seen by using fl for

YiJ Fi for g(xi; $1> B2)? ad l/Fi for Wi. The

trick lies in having a nonlinear least-squarescom-

puter program that tiows OIX?to modify the v.eights

at each iteration. On? such program containing

this provision is available.
1

When this approach is applied to the data in

Table V, the

are obtsi=d

Results of

upper
Endpoint

12.45

12.95

13.45

13.95

14.45

lb.95

15.45

15.95

16.45

m

egtimates X* = 14.23 OJKIS* . 1.512

and Table VIII may be derived.

Table VIII

Applying Modified Minhun Chi-Square

to Data in Table V

(fi -Fi)2

‘i ‘i ‘i—

U.gl 10 0.31

7.89 12 2.15

10.41 9 0.19

12.34 10 0.44

13.13 19 2.63

1.2.53 10 0.51

10.73 9 0.28

8.24 6 0.61

5.69 7 0.30

7.15 8 0.10

100.01 G G

It wIIJ.be noted that the sum of the entries

inths last colmn is considerably sma.Uer than

that obtaind using the freq=ncy distributiones-

timates and shown in Table VII. Indeed, this is

slightlybetter than the ~ = 7.86$ fiow with a

meanof 14.23 and a standard deviation of 1.574>

reportad with the original data (Ref. 14, p. 439).

5. Conclusion.

When a general least-squaresprogram is avail-

able, it is suggested that mimlnnxnchi-square es-

timates are as easy to obtain as any other type.

This removes the problem of subjectivelychoosing

the proper computing procedure when data are slready

grouped. Indeed, there axe some sets of data whi.ch

demand this kind of treatm?nt because individual

nasurenmts dmply are not available. In addition,

the minimum chi-square mthod provides the proper

statisticfor testing the hypothesis of normality

in an un?quivocel.manner that gives every consider-

ation to the hypothesis itself. Finally, the n&h-

od maybe ap@ied h any form of the Fi that may be

required. It is satisfactoryeven when Fi and its

partials are not expressible in closed form and

must be obtai=d numerically.

DDWTRENTIALEQUAT IONS*

1. A Problem.

To avoid circumlocution,consider the follow-

ing: The tins?when a shock wave in Plexiglas pas=s

a known distance is nasured. Table IX displays a

set of data obtsi~d from such an experi.m?nt.

Table IX

Measured VeJ.uesof Di.stamcevs Time

for a Shock Wave In Plexiglas

t(usec)

0.720

1.468

2.235

3.031

3.846

*Although they clearly

X4&

5.105

10.185

15.263

20.350

25.441

are applicable to the situ-
ations, the mthcxls diecussed in this section make
use of an example end data kindly supplted by B.
Hayes, Group CMX-8, Los A.1.amosScientific Labora-
tory.

u.



It is desired to determh? the instantamoue veloc-

ity for any distance traversed by the shock wave.

For any one-dimnsione.lwave propagating in

the positive x direction, OM can write

g + f(t)G= O (17)

a~ a solution to the wave equation, where 13is the

amplitude function and f(t) is the decrement. Spe-

cializing to the shock velocity, Eq. (17)can be

written

du
d~

+ f(t)u= o (la)

with u . dx/dt the velocity of the wave front. A

solution for expression (18)

- Jt f(w)dw

to
u.~e

is

> (19)

and the problem is to determine the function

-~: f(w)dw
o

x= x(t) = qfte dz

‘o

(20)

from a given tabular set of x~s and corresponding

t’s. The assumption that the function is well-

behaved in being continuous and in having continu-

ous derivatives is required.

2. An “Easy“ Solution.

One approach is to assure that

stant and that to = 0, so that x(0)

Then the velocity expression canbe

u=ue
-at

o

f(t) is a con-

= t(o) =0.

written

(a)

where ~ = o = dx/dt . This results in the

t=o

equation

x=>(l-e-a). (22)

For a given set of data, then, it is a simple mat-

ter to apply nonl.insarleast-squaresmethcxlaand

obtain estimates of U. and a. Applied to the data

in Table IX and using initial estimates for U. and

12

U of 7.0 and 0.07, respectively,this nthod gives

final estimates of <0 . 7.15 and 6. 0.0415 from

which the minimized sum of squared deviation (ob-

served minus calculated distances) is found to be

1.688 x 10-3.

3. A More Gemrel Solution.

There are occasions in which the function f(t)

must take on forms other than the constant. For

example, if f(t) = a + pt, the nonl.i~ar contribu-

tion to the shock can be assessed. That is, if B .

0, normal attenuation occurs as the shock wave

passes through the Plexiglas. Lf p ~ O, the vslua

of p is an indication of the amount of distortion

as the shock wave propagates. These considerations

lead to the modification of

f
e-aZ-pz2

x = x(t) =
o

Eq. (20) into

dz, (23)

an expression that is not integrable in closed fens.

However, the conditions imposed earlier allow dif-

ferentiationunder the integral sign (See Reference

16, pp. 167-169). It is therefore a simple matter

to treat the problem as a least-squaresproblem,

using som num?rical integration scheme to obtain

the quantities required to perform the fit.

The foregoing discussion was based on the as-

sumption that the is the independentvariable SM

that distance is the dependent variable. There are

reasons for making the reverse assumptions: (1)

velocity at some specified distance, rather than

time, is usually required; and (2) expansion of the

exponential function for hand computations then re-

sults in s-U terms being positive, rather than

alternatelypositi~ and negative, thereby aiding

certain calculations. ~us, Eq. (18)can be re-

arranged to read

W+g(x)=o

dx

with the result that

where u . dx/dt and U. . dx/dt ●

X.t. o

(24)

.
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To illustrate: The assumption that g(x) . a,

leads to the final form

t.

to be fitted.

Si.mllarly,

leads to

A (eax - 1)
%

(25)

the assumptionthat g(x) = C2+ ~x,

J

x az + f3z2
e dz . (26)

o

Using initial estimates of UO, ~, and B of 7.15,

0.0415, and 0.0, respectively,final least-squares
. .

est~tes were GO = 7.22, ff= 0.0c816, and P =

0.0000782. Although P is small, its estimated

standard deviation, O.COO0305, is such that accep-

tance of the hypothesis that p . 0 is nm.rginalat

the 1O$ level of significmce. Certainly, further

experimmtation is indicated by this result for o=

to be completely comfortablewith acceptance of

that hypothesis.

k. Remarks.

Experim?ntel data are often obtai~d for which

the only known relation among tke variables is

some differentialequation. When the equation can

be reduced to the form

F(dy/dx, x; ~, U2, .... ~) = O , (27)

the function to be fitted can be written, in its

most gemrel foma, as

U2(X; a)
Y=J f(t, X; CY)dt + const. (28)

%(x; @

In expressions (27) and (28), a denotes the vector

(~, a2, .... ~) whose elements are the par-ters

to be estimated. Even though exact integrationmay

be impossible,the problem yields to str@@-

forward nonl.imar least-sqtis =thods which em-

ploy num?ricsl.integrationtechnlq~s to evaluate

the function (28) and its derivatives.
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