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ABSTRACT

A NONLINEARPOSITIVEME’Il+ODFOR SOLVING‘lHE
lRANSFORT EQUATIONON COURSEMESHES

W-F. Wakemad Todd A. Wmeing
Univemityof California

Los A&nw NationalLaboratory
Los Alanm%New Mexico 87s45

(505)66s-5795

Anew~ Sn transport differencing scheme
for slab geometry is presented that is fourth order
accurate for smali meaheaand is suictly positive. TEe
newscheme has bacoded into the existing ONELD
code and tested. We present numerical results to
demonstrate the accuracy and positivity of this new
Scheane.

I. INTIWDUCTION

Since the inception of W discrete ordinates (Sri)
angular treatment of the trnnsport equation, code
developers have tried to develop accurate and positive
spatial differencing schemes to solve the Sn equations.
One of the Grstdifferencingschemeused was the simple
step or constant discontinuousmethodl. The schemeis
strictly positive but only fmt ordtz accurate in terms of
spatial errors, and tlmfore; deemed too inaccurate for
practicaluse. The diamonddifferencemethodl (DD)has
been used for many years because it is second order
accurate for small meshes. However, the DD method
can result in negative fluxes in one dimensional
probkms for meshes tbkker than two mean-free-paths,
and in two- and three-dimensionalgeometries,negative
fluxes can occur for any mesh size. To correct this
problem with DD, set-to-zero, .uep, and weighted
diamond “fixups” have been applied when negative
fluxes are obsemd These are ad hoc remedies wh~ch

ahersely @&t iuxumcy aod interactpoorly with linear
-kl’atkm techniques.

Even the more recently developed numerical
schemes such as Linear DiSCOlltiM10US2 (LD), Lumped
Linear Discontinuous (LLD), Line@ and Bilinea#
Nodal (LN and BN), and Linear Moments6 (1M)
methods are not strictly positive even thoughall except
LLD are third order accurateor beuer for small meshes.
These methods do not require “fixup” because any
ne@tiveailgldtlffiux VdlCS m S@d])f dampedand do
not propagate as rhey can in the DD method. As a
msu14 these modern schemes interact well with linear
diffusionsyntheticaccekwation(DSA) Mhniques

In this paper a new nonlinear scheme is outlined
whi~ is =~ fof SW m~hes ad is
strictly positive, The scheme has been implemented,
for the one dimensional slab geometry, into the ONELD
code and zsted on a varietyof poblems. The method is
not limited to one dimensional geometries and work
continueson multi-dimensionalimplementation.

The remainderof this paper will proceedas follows:
in Sec4(II)we derive our new nonlinear Sn method, in
Sec,(lII) we give numerical results to demonstrate the
accuracy and positivity of our new scheme, and in
Sec,(lV) we give some conclusions and discuss our
plankfor futurework.
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II. THE NEWNONLINEARMETHOD

Using standard notation, the slab geome~~ Sfi

~=8i~by

Ik&(x)+o-t(x)%(x)= %$@ ! (1)

with ~ ~ conditiom%Hm S.(X) is
the neutron source in direction m and can include
scaaerhg, at inhomogeneoussource,w ftssion.

TG spatially discretize E@) we use the spatial
mesh givtmin Figure 1. Here wehavedivided the sIab
ittto J dk, -It having width Axj = xj+112- xj.112

~~~ ‘j ‘(X]+112 ‘xj_l/2)12. Within * lXll
we require the material properties to be constant,
allowing interior material boundaries, if any, to exist
only on the cdl edges. That is, in the j-th cell we
det%u?tk total ~iC lXOSSSWti~ O~(X) = U~,j.

-Ax,+

t-$+ ““”+++ ““-i’+* , wn 4
xla =J-in J V+ln ‘J+m

Figure 1. Slab Geometry Spatial Mesh

We will now consi&2rthe j-lb cell over the interval

xj-1/2 @ xj+l/2, The SOIUtion within the j-th cell to
Eq.(1)for ~~ >0 iw

~m(x) = ~m(Xj-,,2)C-’’U~ m~m

+J- ae-U’~(’fi’’’-a’)’B~S~(x*’ .
Pm ~

xJ-1/2

(2)

Clearly the solution of the average flux, the outflow at
xj+l/2 ? of my ~@Sr flUX within the cell is strictly
positive if Sin(x) is strictly positive, We will now
construct a representation of Sin(x) that preserves the

first two spatial moments
positive.

In the one-dimensional

of S~(x) and is strictly

LM method the source in
t&J-th cell isexpnded inLegmdre momeltts as

[

y 1S~(X) =Sm,j P~(X)+ ~PI(X) ! (3)
m.J

w-, PO(X)=l and Pi(x) =2(x _xj)/Axj ~ the
zaothandfhstderLegendte polynomial, Smf is the
average source ~d S~j is the source sIope. The
representation for $m(x) can be negative if

PI&,j> S.,j . To develop a representationthat is strictly
positive we fa defu a normdkd sourcedistribution
Sin(x) S0 that Sin(X)= Sin(X) Sm,j. ~ k givet]by:

Sin(x)= [Sc+ SIP,(X)] . (4)

H= S0= 1 d St= S;,j/sm,j~ tk Z~b ~d fUSt
Legendremomentsof the sottrce.

We will now construct a strictly positive
distribution, Em(x), that has the same Legendre
moments as the original distribution s~(x). The
information theory’ prescription for choosing such a
distribution is to choose one that maximizes the entn}py
within tbe j-th cell, Hm(x), given only the incomplete
information that the first two moments provide. Here
HM(XJis given by

‘J+112
1

H.(x)=~
~ irn(x)ln&(X)ldX . (5)

X].111

ad

Xm(x)=[~ ‘51P*(X)]. (6)

Tbe two moment constrahm are:

2k + 1“’”~
e:(x) =51 -—

AXJ f
Sm(X)pk(X)dX= O . k = 0,1

Xplll
(7-)



.

We use the Lagrangemuldptiers, h~,j, at the extremum

given by

‘at(jk
$Hm(x)+~J—emtx)=o .

~=02k+ldx
(8)

Next substituting Eq.(6) into Eq.(5) and Eq.(7) and
raking the variation and substituting the result into
Eq.(tWwe W

K(x)= eAo”’-’eAu(x)x). (9)

The Lagrange multipliers are determined by
substituting Eq.(9) into the two moments conswaints
@K21 by E.q.(7).Tkse -

(lo)

ad

‘.j=:={coti(~’)-~l‘1’)
S&s

We can eliminate k~,j in Eq.(9) using Eq.(101to obtain:

A,,j eL,,,P, (x)
i(x) =

sinh(il i)
(12)

Substituting S~(x) = in(x)!$~,j into ~.(2) and
integratingover thej-th cell, we obtain for ~~ >0

Vm,j+l/2 = Vm,j-1/2e-emJ

(13)

Here we have defined V(Xj+l/2) = VJ+l/Z and

~m,j~ Ul,jAXj/~m.

Similar steps are taken to find the representationfor the
discreteangularfluxeswhen p. c O.

IiI. NUMERICALRESULTS

lo this sectionwe provide numericalresults for two
Ust problems. For each problem, we compare the new
non-linear @IL)metlwd with be linear momew:s(LM),
Iinezudiscontinuoua(LD),and diamonddifference(DD)
with set-to-zero negative flux fmup. The LM md LD
schemes do not have fixup routines for negative fluxes
and the non-limar scheme is positivedeftite. The DD
calculationswere performedusing the ONEDAIW code
and rbe NL, LM and LD calculations were performed
using the ONELD code. The ONELDcode is a variant
of ONEDANT that is used for charged particle and
neutron transport.ONELDuses the LD scheme in place
of tlMDD schemeused in ONEDANT.

The fnt test problem is an inftite slab iron-water
shield problem and is shown in Figure 2. We use the
S16 Gauss Legendre quadrature SW three group c?oss-
sections and P1 scattering. All calculations were
convergedto a relativeerrorof 104.

lle results for the fwst test problem are given in
Table 1. Here we give, for each diffemcing scheme,
the neutron leakage from the right side of the slab, The
90 cm water region is 295 mean-free-pathsthick in tie
third neutron group. For coarsestmesh refinementeach
mesh in this region is 74 mean-free-pathsin width. The
LN method is H to be accurate and strictly positive
for all mesh rethermnts. Both the LM and LD methods
are accurateand positive for all but the coarsestmeshes,
The DD method pertonns poorest of all tie methods
examined and does not even converge at the coarsest
mesh. Note that the NL solution monotonically
convergesfromaboveas the mesh size is redued.

The second test problem, which is even more
difficult than the first, is shown in Figure 3. This
problem has 11 material zones of various widths, We
use the SIfj quadrature seg the BUCLE-8047 neutron
and 20 gamma-ray group cress sections8 with P~



scattdng. All cakulations were converged toa relative
elrorof 10+.

-flleremdtsfwthesemndkxtprobk%naregivenin
Tables 2 and 3. In TabIc 2 we give, for each
differencing scheme, the neutron leakage from the right
side of the slab. In Table 3 we give, for each
differencing scheme, the gamma ray leakage from the
right sideofthe slab. Weseethat tbenew NL method
isveryaccmate and positive even for extremely coarse
mesh:ng. This is remarkable since the integrated
neutron fluxinthis testproblem~
~tlcmntberefkctivebmm darym
the vacuum boundary! Both the LM and the LD
melhodsammuch betterbehavedand rnmeamratethim
the DD method with LM being mom accurate than LD
at every mesh. With the exception of the NL method
none of these methods are saictly positive for coarse
meshing.

IV. CONCLUSIONS AND PLANS FOR FUTURE
WORK

The resu!Lsof the previous sectiondemonstratethat
the new NL method is strictly positive and in the timit
of small mesh behaves like the LM method which is
fourth order. The real power of the method however,
will be in its applicationto two-, and three-dimensional
problems, In multidimensional problems memory and
time limitations restrict the &gi.- of mesh refinement
obtainable. This is not the case in simple one -
dimensiomi problems.

We plan to use the method of characteristics to
solve the transport equation in two- and three-
dimensions. In two- and three-dimensionsnot only the
source representation, but also the angular flux
representations on the cell faces must be sfrictly
positive, The method of Section II can be used to
construct a strictly positive source from the average
source and the source moments in two- and three-
dimensions. The same technique can be used to
constructangular flux representationson the faces using

averages values and moments of the angular flux. We
are ctum.ntlyworkingon this extension.

We have recently determined that this new NL
methcd has the diffusion limit and hence, can be
applied to optically thick highly ●~g problems.
-t%eoNELDcOdewhichwasmodifii minmpmtcthe
NL scheme uses an S2 itaation accelerator which was
constswted for use with the LD method m the NL
method. We are developing a more efficient and
consistentdiffusionacceleraticmschemefor use Withthe
NL method.
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Figure 2. Geometry for Test ProblemOne.

Table 1: NeutronLeakages(s-l) for Test ProblemOne

Numberof Cells ONEDANT
1+1+4 6.1777 -1.167-4 -6.191-4 aNC

2+2+8 5.052-7 2.991-7 5.484-8 5.776-11
4+4+16 4.297.7 3.909-7 3.431-7 2.994-6
4+8+32, 4.055-7 3.972-7 3.900-7 4791-7
4+8+64 3.992-7 3.978-7 3.968-7 3.-7T

8+16+!2s 3.979-7 3.97”1-7 3,976-7 3,910-7
8+16+256b 3.977-7 3,977-7 3.977-7 3.%1-7

would not converge problem
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Figuze3. Geome&yfor Test RobieuI Two.

Table 2 Neutma Leakages(s-l) fer Test F%oMemTWO

?iumberofCells New NL Method LM Method ONEDANT

34 1.780 4.375 -501.9 2.090 x 104
51 2.571 -1.016 2.090 6.308
I(X) 2.440 2.201 1.308 0.0375

198 2.3% 2.372 2.172 0.9090
394 2.390 2.388 2.358 1.881
788 2.390 2.390 2.386 2.252
1576 2.39(? 2.390 2.389 2.355

Table 3: Gamma-RayLeakages(102 S-l) forTest ProblemTwo

Numberof Cells NewNL Method LMMethod ONELD ONEDANT
34 5,569 -4.482 -1.450 x 10’$ 5.175 x 103
51 5.543 2.503 -14.04 2s747
100 5,486 5.1% 3.484 0.2900
198 5.413 5.336 5.057 2.533
394 5.339 5.335 5,294 4.421
788 5.325 5.324 5.319 5.080
1576

●
5.322 I 5.322 5,3~1 5,260 +


