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Univemityof California
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ABSTRACT

Recently a new diffusion-synthetic acceleration
scheme was developed for solving the 2-D Sn
Equations in x-y geometrywith bilinear-discontinuous
finite element spatial discretizatio~ using a bilinear-
discontinuous diffusion differencing scheme for the
diffusion acceleration equations. This method differs
from previous methods in that it is unconditionally
cfflcientfor problemswith isotropic or nearly isotropic
scattering, We have used the same bilinear-
discontinuousdiffusionscheme,and associatedsolution
technique,to accelerate the x-y geometry Sn equations
with linear-bilinearnodal spatial differencing, We find
that this leads to an unconditionally efficient solution
method for problems with isotropic or nearly isotropic
scattering. Computational results are given which
demonstratethis property.

1. INTRODUCTION

It has been shown that nodal Sn transport
methods1)2 arc very accurate, especially for radiation
shielding problems, For example, the 3-D transport
code, TORT3, uses nodal spatial diffcrcncing and is
used extensively on many shielding applications,
However, the efficiency of nodal Sn methods in
multidimensional geometries can be significantly
increasedby meansof effectiveaccelerationtechniques,
The purpose of this work is [o introduce a new

diffusion-syntklic acceleratedalgorithmfor solvingthe
x-y geometry Sn equations with the li~-bilinear (L-
BL) nodal spatial differencing introduced by Azmy4.
RecentlyMorel,Dcndyand Wareing5intmduccda *W
diffusion-synthetic acceleration (DSA) scheme for
solving the 2-D Sn equations in x-y geometry with
bilinear-discontinuous (BLD) finite-element spatial
discretimtion.The method of Morel-Dendy-Wareingis
the first DSA method for the BLD Sn equations that is
unconditionallyefflcierufor problemswith isotropicor
nearly isotropic scattering. We have used the same
BLD diffusion acceleration equations, and associated
multilevelsolution techniqueof Morel-Dendy-Wareing
to accderate the x-y geometry Sn equationswith L-BL
nodal spatial differcncing. We have Fourier analyzed
and computationallytested the acceleratedL-BL nodal
Sn solution method to find that it is unconditionally
et%cientfor problemswith isotropic or nearly isotropic
scattering,and is just as ef!lcicntas the associatedBLD
Sn solution method. To our knowledge, this is the
first DSA method for the L-BL nodd Sn equations to
be unconditionallyef!lcicntfor such problems.

11,THE DSA ALGORITHM

The DSA algorithm is essentially the same as the
Morel-Dcndy-Warcing method for the BLD Sn
equations. This method is considered as a multilevel
synthesis of the Adams-Martin6and Warcing-Larscn-
Adams7 methods, neither of which arc unconditionally
efficient, In particular, at the first level, the BLD Sn



equations are accelerated with a slightly modified
version of the Adams-MarlinBLD difl%sionequation.
At the second level, the BLD diffusion iterations are
acderated with a bilinear-continuous(BLC) diffhsion
equation that is equivalent to the W’arcing-Larsen-
Adams asymptotic diffusion equation Finally at the
third level, the BLC diffusion iterationsare accelerated
with Dendy’s blackbox multigrid algorithm. In our
DSA methodwe simply replaceW BLD Sn equations,
in the multilevel DSA method of Morel-Dendy-
Wareing,with the L-BL nodal Sn equations. We have
performed a homogeneous infinite-medium Fourier
analysison the first level of the iterationprocessto find
a worst case spectralradius of about 0.5. Morel, Dendy
and Warein- show a womt case spectral radiusof about
0.5 for the second level. Dendy’smultigrid algorithm
haspreviouslybeen shownto have a worst case spu.ual
radius of about 0.1. Unconditional efficiency for the
overall DSA scheme follows directly from the
unconditionaletllciencyachievedon each Ieve!.

There arc two operational modes of our method.
Operatingin the first mode, the BLD diffusion solution
and the BLC diffusion solution are iterated to
convergence. This mode is consistentwith our Fourier
analysis for the first and second acceleration levels,
which assume that the accelerationequations on these
levelsarc solvedexactly.Operatingin the secondmode,
a set numberof iterationsaru performed. In particular,
the BLD diffusion solution is art epted after three
iterations, and the BLC diffusion solution is accepted
after one iteraiion, The second mode of operation is
mcm efficient than the first and recommended for
productionuse.

111.COMPUTATIONALRESULTS

The first set of calculations demonstrates the
effectiveness of our DSA scheme in terms of error
reductionper iteration. The geometry for !* fmt set
corresponds to a homogeneous rectangular region
illustrated in Figure 1. This region has isotropic
scattering, a scattering ratio of unity, and a constant
isotxopicdistributedsource. The nmangle has reflective
boundaries on the bottom ad lefi sides and vacuum
boundaries on the top and tight sides. There are 25
cells along the x-axis and 25 atong the y-axis. In each
calculations there is a single x-axis cell width and a
single y-axis cell width, but these two widths are not
necessarily the same. These widths vary between
calculations. All of the calculations in this set were
performedwithan Sg quadratureset.

The second set of calculations characterizes the
overall efficiency of our scheme as a function of
scatteringratio. The geometryfor this set is identicalto
that of the first set. Both the x-axis and y-axis cell
widths are fixed ?t 1.0 mean-free-paths, and an S~
quadrature set is used in all of the calculations in this
set. The scattering ratio is varied from 1.0 to 0.1 and
each calculationis performedonce without acceleration
andone with acceleration

25 A)f

In this section wc give computational results that
demonstmtc the efficiency of our DSA method for the
L-BL nodal Sn equations. WChave performed three
sets of calculations. All calculationswere performedon
a single-processor of a CRAY-YMP computer. The
scalar flux in every calculation was subject to a
pointwiscrelativeconvcrgcncccritcrmnof 10-4.

—25Ax —
Figure 1. Geometry[or Problcm Set 1

The results for the first set of calculationsarc given
in Table 1, The information appearing in this tabk
consists of the x-axis CCIIwidth, the y-axis cell width,
the total CPU time, the CPU time spent solving the
DSA equations, the number of iterations required to



converge h Sn solution, and the estimated spect.al
radius. It can be seen from Table 1 that our method
requires no more than 8 iterations for optically thick
problems with a scattering ratio of one, including
problems with high aspect-ratio spatial zoning.
@pticallythick problems with a scattering mtio of ON
cause difficulty for the Adams-Mmtin methodj and
problems with high aspect-ratio spatial zoning cause
difficulty for the Wareing-Larsen-Adams method.
About em-half of the total CPU time is spent solving
the DSA equations. This fraction will rapidly
approachzeroas the quadmture orderis increased.

Table 1. Results for Problem set 1

c Ay Totat DSA Iters. Spcct.
(*) (mfP) Cpu CPU Radius

(s) (s)
0.1 0.1
0.1 1.0
0.1 5.0
0.1 10.0
0.1 100.
1,0 1,0
1.0 5.0
1.0 10.0
1.0 100.
5.0 5.0
5,0 10.0
5,0 100,
10.0 100
10,0 100.
100, 100.

1.12 0.54 6 0.22
1,33 0.62 7 ().35

0.95 0.45 5 0.21
0.95 0.45 5 0.16
0.95 0,45 5 0.16
1.54 0.71 8 0.43
1.54 0.71 8 0.43
1,54 0,71 8 0,43
1.54 0,71 8 0.43
1,09 0.54 6 0.26
1.09 0.54 6 0.26
1.09 0.54 6 0.26
0,97 0.45 5 0,18
0.97 0.45 5 0,18
0,97 0,45 5 0,18

The results for the second set of calculations arc
given in Table 2. The information appearing in the
table consists of the scattering ratio, the number of
hcrations required to convcrgc the Sn solution, and the
iota] CPU time required, Each problcm is performed
oncewith accelerationand oncewithoutacceleration. It
can be scco from Table 2 that our DSA scheme is
extremely e,llcicnt for problems with scattering ratios
near unity, For instimcc, when the scattering mtio is
unity, DSA reduces the total CPU time by a factor of
roughly 253, The schcmc remains efficient for all
scatteringmtios greater than roughly0.2, The scattering

mtio at which DSA becomes iwfftclent will rapidly
q.y.math zeroas tk quadmme order is increased.

Table 2. Results of Problem Set 2

Scattering
Ratio

1.0
0,9
0.8
0.7
C.6
0.5
0.4
0.3
0.2
0.1

Iterations

Unatx.

3752
89
43
27
20
15
12
9
7
5

Ace-
8
7
6
6
5
5
4
4
4
3

Total CPU (S)

Uniwe.

389.8
9.25

4.45
2.80
2.08
1,56
1.25
0.93
0.73
0.52

Acc-
1.54
1.35
1.16
1.16
0.97
0.97
~.77
0.77
0.77
(1.56

The finalproblemset demonstratesthe efficiencyof
our DSAmethod for heterogeneousproblemsand shows
the accuracy of the L-BL nodal method. We have
performeda set of calculationson a one group, isotropic
scattering, iron-water shield problem shown in Figure
2. Our DSA method was performed using the second
modeof operation,.

The results of the iron-water shield problem are
given in Table 1. Herr wc give, for a variety of cell
widths, the number of iterations to ccmvcrgcnce,the
total CPU time, the CPU time spent for the DSA, the
average flux in the four regions, and the total Ieakagc.
Wc scc that the number of accelerated iterations is
always less than 9. For a scattering ratio of 0.994, onc
wouid expect approximately 15{)0 unaccclcratcd
iterationsto convcrgcto a convcrgcncccriterionof 10-4.
Also, with accelerationone would expect tk CPU time
to bc two orders of magnitude ICSS than the
unaccelcratcdCPU time for this problcm. Finally, we
scc that the L-BL nodal method is very accurate, Here
wc see that the average flux in each region and total
leakage have nea:iy converged to the continuous
solution even for a maximum CCIIwidth of about five
meanfmcpaths.



I 12COI I 316c~19crnl
cm

~,ng Boundary

Zt Source

Composition (curl ) c (cm-3 s -1)——

1 (water) 3.33 0.994 1.0

2 (water) 3.33 0.994 0.0

3 (iron) 1.33 0.831 0.0

4 (water) 3.33 U.994 0.0

Figure 2, Geometryand MaterialProperitesfor
the Iron-WaterShield Problem

IV, CONCLUSIONS

We have tested our method on a variety cf
problems in addition to those presented here. We have
found that our method is highly eftlcient for problems
with scattering ratios near unity and moderately
anisotropicscattering, To our knowledge, no previous
DSA scheme for the 2-D x-y geometry Sn equations
with L-BL nodal spatial differncing has been
unconditionally efficient, Also, the L-BL nodal
method is very accurate even for thick mesh CCIISand
highlysuitatle for shieldingapplications,

Table 2. Resultsof Iron-WaterShk ‘d PmMem

Numberof
X-Ymesh
cells

Maximum
cell width
(*)

Numberof
Iterations

Total
CPU (s)

DSA CPU
(s)

Average
!hX by
regions
(cm-l S-l)

1
2
3
4

Total
bakagc
(s-1)

8xt?

20,0

9

o.5@4

0.410

40.09
10.20
0.250

al .28.J

16X16

lf).o

9

0.972

0.577

40.73
9.52

0.234
1.88-3

32x32

5.0

9

2.62

1.04

40.90
9.35
0.230
1,91-3

64x64

2.5

8

8.22

2.65

40.93
9.31

0.229
1.91-3

2.02-4 5.45-4 6.00-4 6,04-4.
a Readas 1,28x 10-5
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