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ABSTRACT

Recently a new diffusion-synthetic acceleration
scheme was developed for solving the 2-D Sp
Equations in x-y geometry with bilinear-discontinuous
finite element spatial discretization, using a bilinear-
discontinuous diffusion differencing scheme for the
diffusion acceleration equations. This method differs
from previous methods in that it is unconditionally
cfficient for problems with isotropic or nearly isotropic
scattering. Wc have used the samc bilincar-
discontinuous diffusion scheme, and associated solution
technique, to accelerate the x-y geometry Sy equations
with linear-bilincar nodal spatial differencing. We find
that this leads to an unconditionally efficicnt solution
method for problems with isotropic or nearly isotropic
scattering. Computational results are given which
demonstrate this property.

I. INTRODUCTION

It has been shown that nodal Sp transport
methods!:2 arc very accurate, especially for radiation
shiclding problems. For ¢xample, the 3-D transport
code, TORT3, uses nodal spatial differencing and is
usced extensively on many shielding applications.
However, the cfficicncy of nodal Sp mecthods in
multidimensional gecometrics can be csignificantly
incrcased by means of effective acceleration techniqucs.
The purpose of this work is (o introduce a new

diffusion-synthetic accelerated algorithm for solving the
x-y geometry Sy, equations with the linear-bilinear (L-
BL) nodal spatial differencing introduced by Azmy4.
Recently Morel, Dendy and Wareing> introduced a new
diffusion-synthetic acceleration (DSA) scheme for
solving the 2-D Sp equations in x-y geometry with
bilinear-discontinuous (BLD) finite-clement spatial
discretization. The method of Morel-Dendy-Wareing is
the first DSA method for the BLD S, equations that is
unconditionally efficient for problems with isotropic or
ncarly isotropic scattering. We have used the same
BLD diffusion acceleration equations, and associated
multilevel solution technique of Morel-Dendy-Warcing
to accelerate the x-y geometry Sy, equations with L-BL
nodal spatial differencing. We have Fouricr analyzed
and computationally tested the accclerated L-BL nodal
Sp solution method to find that it is unconditionally
efficient for problems with isotropic or nearly isotropic
scattering, and is just as cfficicnt as the associated BLD
Sn solution mcthod. To our knowledge, this is the
first DSA method for the L-BL nodal Sy, equa‘ions to
be unconditionally efficicnt for such prob'ems.

. THE DSA ALGORITHM

The DSA algorithin is csscntially the same as the
Morel-Dendy-Wareing racthod for the BLD Sp
cquations. This method is considcred as a multilevel
synthesis of the Adams-Martin® and Warcing-Larsen-
Adams’ methods, ncither of which are unconditionally
efficicnt. In particular, at the first level, the BLD Sy



equations are accelerated with a slightly modified
version of the Adams-Mantin BLD diffusion equation.
At the second level, the BLD diffusion iterations are
accelerated with a bilinear-continuous (BLC) diffusion
equation that is equivalent to the Warcing-Larsen-
Adams asymptotic diffusion equation. Finally at the
third level, the BLC diffusion itcrations are accelerated
with Dendy's blackbox multigrid algorithm8. In our
DSA method we simply replace the BLD Sp, equations,
in the multilevel DSA method of Morel-Dendy-
Wareing, with the L-BL nodal Sp, equations. We have
performed a homogeneous infinite-medium Fourier
analysis on the first level of the iteration process to find
a worst case spectral radius of about 0.5. Morel, Dendy
and Warein~ show a worst case spectral radius of about
0.5 1or the second level. Dendy's multizrid algorithm
has previously been shown to have a worst case speraal
radius of about 0.1. Unconditional efficicncy for the
overall DSA sckeme follows directly from the
unconditional efficiency achieved on each leve!.

There are two opcrational modes of our method.
Operating in the first mode, the BLD diffusion solution
and the BLC diffusion solution are iterated to
convergence. This mode is consistent with our Fourier
analysis for the first and sccond acceleration levels,
which assume that the acceleration cquations on these
levels are solved cxactly. Opcrating in the second mode,
a set number of iterations arc pcrformed. In particular,
the BLD diffusion solution is acrcpted after three
iterations, and thc BLC diffusion solution is accepted
after one iteradon. The sccond mode of operation is
more efficient than the first and recommended for
production usc.

Il. COMPUTATIONAL RESULTS

In this scction we give computational results that
demonstrate the cfficiency of our DSA mecthod for the
L-BL nodal Sy equations. We have performed three
scts of calculations. All calculations were performed on
a single-processor of a CRAY-YMP computer. The
scalar flux in cvery calculation was subject to a
pointwise rclative convergence criterion of 104,

The first set of calculations demonstrates the
cffectiveness of our DSA scheme in terms of error
reduction per iteration. The geometry for the first set
corresponds to a homogencous rectangular region
illustrated in Figure 1. This region has isotropic
scattering, a scattering ratio of unity, and a constant
isotropic distributed source. The rectangle has reflective
boundaries on the bottom and left sides and vacuum
boundaries on the top and right sides. There are 25
cells along the x-axis and 25 along the y-axis. In each
calculations there is a single x-axis cell width and a
single y-axis cell width, but these two widths are not
necessarily the same. These widths vary between
calculations. All of the calculations in this set were
performed with an S4 quadrature set.

The second set of calculations characterizes the
overall efficicncy of our scheme as a function of
scattering ratio. The geometry for this set is identical to
that of the first set. Both the x-axis and y-axis cell
widths are fixed 2t 1.0 mean-frec-paths, and an Sy
quadrature sct is used in all of the calculations in this
set. The scattering ratio is varied from 1.0 to 0.1 and
cach calculation is performed once without acceleration
and onc with acceleration.

25 Ay 8:11

25 Ax

Figure 1. Geometry lor Problem Sct |

The results for the first sct of calculations arc given
in Table 1. The information appcaring in this table
consists of the x-axis ccll width, the y-axis ccll width,
the total CPU time, the CPU time spent solving the
DSA cquations, thc number of itcrations required to



converge the Sy, solution, and the estimated spect.al
radius. It can be seen from Table 1 that our method
requires no more than 8 iterations for optically thick
problems with a scattering ratio of one, including
problems with high aspect-ratio spatial zoning.
Optically thick problems with a scattering ratio of one
cause difficulty for the Adams-Martin method, and
problems with high aspect-ratio spatial zoning cause
difficulty for the Wareing-Larsen-Adams method.
About onc-half of the total CPU time is spent solving
the DSA equations. This fraction will rapidly
approach zero as the quadrature order is increased.

Table 1. Results for Problem Set 1

Ax Ay Total DSA  Iters.  Spect.
(mfp) (mfp) CPU CPU Radius
(s) )

0.1 0.1 1.12 0.54 6 0.22
0.1 1.0 1.33 0.62 7 0358
0.1 5.0 0.95 0.45 5 0.21
0.1 10.0 0.95 0.45 5 0.16
0.1 100. 0.95 0.45 5 0.16
1.0 1.0 1.54 0.71 8 0.43
1.0 5.0 1.54 0.71 8 0.43
1.0 10.0 1.54 0.71 8 0.43
1.0 100. 1.54 0.71 8 0.43
5.0 50 1.09 0.54 6 0.26
50 10.0 1.09 0.54 6 0.26
5.0 100. 1.09 0.54 6 0.26
10.0 100 0.97 0.45 5 0.18
10.0 100. 0.97 0.45 5 0.18
100. 100. 097 0.45 5 0.18

The results for the sccond sct of calculations arc
given in Table 2. The information appearing in the
table consists of the scattering ratio, thc number of
itcrations required to converge the Sy, solution, and the
total CPU time required. Each problem is performed
once with acceleration and once without acceleration. It
can be scen from Table 2 that our DSA scheme is
extremely e.ficicnt for problems with scattcring ratios
ncar unity. For instance, when the scattering ratio is
unity, DSA reduces the total CPU time by a factor of
roughly 253. The scheme remains cfficient for all
scattering ratios greater than roughly 0.2, The scattering

ratio at which DSA becomes inefficient will rapidly
approach zero as the quadrature order is increased.

Table 2. Results of Problem Set 2

Scattering Iterations Total CPU (s)
Ratio
Unacc. Acc. Unacc. Acc.
1.0 3752 8 389.8 1.54
0.9 89 7 925 1.35
0.8 43 6 445 1.16
0.7 27 6 2.80 1.16
C.6 20 5 2.08 0.97
0.5 15 5 1.56 0.97
0.4 12 4 1.25 677
0.3 9 4 093 0.77
0.2 7 4 0.73 0.77
0.1 5 3 0.52 0.56

The final problem set demonstrates the cfficiency of
our DSA method for heterogenious problems and shows
the accuracy of the L-BL nodal mcthod. We have
performed a set of calculations on a onc group, isotropic
scattering, iron-water shicld problem shown in Figure
2. Our DSA mcthod was performed using the second
mode of opcration..

The results of the iron-water shicld problem arc
given in Table 1. Here we give, for a varicty of cell
widths, the number of iterations to conivergence, the
total CPU time, the CPU time spent for the DSA, the
average flux in the four regions, and the total leakage.
We sce that the number of accclerated iterations is
always lcss than 9. For a scattering ratio of 0.994, onc
would expect approximately 1500 unaccelerated
itcrations to converge to a convergence critcrion of 104,
Also, with acccleration onc would expect the CPU time
to be two orders of magnitudc less than the
unaccelerated CPU time for this problem. Finally, we
sce that the L-BL nodal method is very accurate. Here
we sce that the average flux in cach region and total
lcakage have nca'.y converged to the continuous
solution cven for a maximum cell width of about five
mean free paths.
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Figure 2. Geometry and Material Properites for
the Iron-Water Shicld Proble.n

IV. CONCLUSIONS

We have testcd our mcthod on a variety cf
problems in addition to those prescnted here. We have
found that our method is highly cfficient for problems
with scattering ratios near unity and modcrately
anisotropic scattering. To our knowledge, no previous
DSA scheme for the 2-D x-y gcometry Sy equations
with L-BL nodal spatial differncing has bcen
unconditionally cfficient. Also, th¢ L-BL nodal
method is very accurate cven for thick mesh cells and
highly suit2ble for shiclding applications.

Table 2. Results of Iron-Water Shi¢'d Problem

Number of
X-Y mesh
cells 8x8 16x16  32x32  64x64
Maximum
cell width
(mfp) 20.0 10.0 50 2.5
Number of
Iterations
9 9 9 8
Total
CPU (s)
0.504 0972 2.62 8.22
DSA CPU
O]
0410 0.577 1.04 2.65
Average
flux by
regions
(cm'l s")
1
2 40.09 40.73 40.90 4093
3 10.20 9.52 935 931
4 0.250 0234 0230 0.229
21283 1883 1913 1913
Total
Lcakage
D
202-4 545-4 6.00-4 6.04-4

a Recad as 1.28 x 10-3
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