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● ABSTRACT

a

A detailed

along a channel

point is given.

of a shock by a

theoretical treatment of the passage of a shockwave

possessing a constriction or area reduction at one

The purpose is to furnish a theory of the diffraction

flat plate which has upon it a regular array of perpen-

dicular spikes or wedges. This type of diffraction has been studied

experimentallyby the shock tube laboratory of the University of

Michigan and a report on this work is being issued at the present time.

The pressures, densities and temperatures encountered are calcu-

lated assuming a monatomic gas and ideal gas law. Two entirely dif-

ferent treatments have to be employed according as the Mach number at

the constriction is less or greater than unity. Numerical results are

presented for constriction ratios 2:1, 5:1}and cu :1. Of interest to

experimental investigators are quantitative predictions on the possibility

of attaining greater shock strengths in this way and of, therefore, ex-

ceeding the inherent limitations of a shock tube.

.2.



M

●

.

. I. INTRODUCTION

About a year ago, the shock tube laboratory of the Physics Depart-

ment of the University of Michigan began the study of the reflection of

shock waves by stacks of plates or prongs arranged upon a base plate so

as to form a regular array. The ratio of plate thickness to the width

of the interstices as well as the wedge angle of the plates was varied.

.

.

A report containing many schlieren pictures and a few interferograms

1)
being put out by the University of Michigan . In brief, the events

Fig. 1

“Report on the Reflection of Shock Waves
Hunting, Otto Laporte, and Eugene Turner.
of the University of .Michigan,Report No.

is

from Stacks of Wedges, by Alfred
Engineering Research Institute
2183-1-FjJuly, 1954.

.

●
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studied can be described as follows: As the shock strikes the tips of

the wedges, a complicated interaction takes place which, however, after

some time results in the formation of a reflected shock. However, a

shock is transmitted down the interstices as well, is reflected at

the end and upon emergence from the flaring ends forms a second shock

following the first.

The quantitative account of this process can, therefore, be di-

vided into two parts of which the second, the amalgamation of two

shocks is, thanks to the work of von Neumann, Courant and Friedrichs,

well understood. The first earlier part of the process, i. e., the

formation of the two reflected shocks, the prediction of their strengths,

of all pressures and densities outside as well as inside the inter-

stices is a rather cmplex problem of fluid dynamics. This is the

problem which is treated in the following pages.

This work was carried out during the author’s stay at Los Alamos

in the summer of 1954. For generous and understanding help with the

lengthy and often involved numerical work the author is glad to express

his indebtedness to Max Goldstein and Josephine E. Powers.

-4-
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. II. DESCRIPTION OF EVENTS
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If two planes are laid, one through the median lines

the other through

is reduced to the

tion, followed by

sider the channel

the median lines of the interstices, then

passage of a shock through a channel with

of the wedges,

the problem

a constric-

reflection and ultimate emergence. Let us first con-

extended toward infinity in both directions.

The problem of a channel possessing a constriction through which a

shock passes has received some attention, especially by F. Schultz-

Grunow2), 3))4),,5); 6)
and by Kahane, Warren, Griffith, and Marino . All

of these authors consider only the case of such weak shocks that all

waves, although of finite amplitude,may still be regarded as isentropic.

It is intended to treat the problem for incident and reflected shocks of

arbitrary strengths.

Let us consider what happens as the incident shock, defined by

the pressure ratio

%
Yo=~

o

-passesthrough the constriction (Figs. 1 and 2).

2
‘Forschung Ingenieur Wesen, Vol. 13,p. 125, 1942.—

3)Ingenieur - Archiv., vol. @ p. 21, 1943.

4)
Zeitschrift f. Angewandte Math. and Mech., Vol. 24, p. 2b4,1944.

5)ibidem, Vol. 29, p. 257, 1949.

(1)

6)
Rpt. Princeton University 1954. See also: Journ. Aeronaut. Sciences ~,
p. 505,1954.

.
.

-5-
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4
Yo= P, / Po

BEFORE

1

YI= P4/P[

As the photographs

fleeted shock Y1

continues down the

primary shock with

extended region of

Y+= P(/P*

AFTER

Fig. 2

of the Michigan report show, after some time a re-

travels to the left while a transmitted shock yt

narrowed channel. But the interaction of the

the constriction will give rise to a more or less

changing entropy, an interface region as it were.

It is for this reason that in the above diagram the flow variables on

the two sides of the cross-hatched interface region possesa different

.

.
-6-



sound velocities (and, of course, also different densities a%d texnpera-

.
.
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tures) c
3

and

are continuous.

As for the

field (P3C3U3),

correct as long

‘2
while the pressure p2 and the flow velocity U2

transition from the flow field (P4C4U4) to the flow

it is assumed to be adiabatic which we believe to be

as (a) the wedge angle is nou too near to ~“, and (b)

as long as the calculated Mach number u /c
33

is less than unity.

Concerning (a) it is clear that if the transition from the wide to the

narrow part of the channel is too abrupt, the entire flow in the narrow

part will be turbulent. And concerning (b), it should be remembered

that the flow from region (p4c4u4) to (p3c3u3) can at best be accelerated

to sonic conditions, and that for production of supersonic flow in

the narrow channel, a throat (Laval nozzle) would be necessary. But

this we do not have with the present typi?of wedge system.

Assuming, for the present, a subsonic region at both sides of the

constriction, we have a gradually lengthening region p c u333
since

the (cross-hatched)interface region moves with the fluid, and also a

lengthening region P2c2u2~ since the speed of the transmitted shock

is, of course, greater than U2. When this shock of strength yt

strikes the end of the interstice, it is reflected as a shock of strength

Y; given by

which formula shows that the strength of a

never rise beyond 6. Before emerging from

(2)

reflected shock can, for argon}

the model as a second plane

-7-
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shock,

(1) it

emerge

the reflected interstitial shock y+ encounters two hurdles:

has to pass through the interface region, and (2) it has to

past the wedge tips, into the

At the interaction of the shock

modified shock is transmitted and at

wider region at very left of Fig. 2.

with the interface, a slightly

the same time a shock is reflected.

The slightly strengthened transmitted shock then passes through the di-

vergent part of the channel. This second process is more important

than the former one; it may be regarded as the converse of the process

the primary shock

What happens

Huygens wavelets,

while at the same

undergoes as it first meets the wedge tips.

is that the emerging shock becomes, with the aid of

and by Mach stem formation, a transmitted shock yll,

time a rarefaction is sent back into the interstices.

But also a more or less extended interface region (which

existence to the temporary presence of curved shocks) is

because of the almost vanishing fluid speed behind yll,

hover about the tips of the wedges.

owes its

created which,

continues to

the

Fig. 3 is an x-t plot of the interactions dealt with in this and

next section.

-8-
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(U4, C4, P4)

Y1

(U1,CI,PI)

. FIG.3

Position of Model in Flow

.
. -9-



9

.

III. CALCULATION OF y., Y. FOR mK SHWKS

#

b

●

✎

The primary shock is defined by its pressure ratio

The fluid velocity and the sound speed behind y. are given by:

(1)

(3)

where co and p. are the ambient quantities ahead of yo. Some time

after y. has been diffracted by the wedge tips, the reflected shock

of as yet unknown pressure ratio y. recedes, the

is

The fluid and sound speeds

_!!!=L 1

co~~

?==
o 0

Densities, entropies, etc.,

are not necessary just now.

J.

P4 = YIP~ = YOYIPO*

‘4
and c

b
are given

pressure behind which

(4)

by

i

(
YO-l-(Y1 -“ml

(5)

can, of course, also be written down, but

.
.

.
.

-1o-
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Now the essential hypothesis

the regions (u~chph) and (U3C3P3)

of the adiabatic connection between

is used. Let the area in the wider

7).part of the duct be A4> that in the narrower part A
3

Then the

continuity equation together with the adiabatic law states that

Akukch3
= ‘3U3C33

and the energy law

)

(6)

+ 3C + 3C
~42 42= U32 32”

Introducing Mach numbers in regions

‘3
and M4 may be found, which is

(Mh2 +

3 and 4 a single equation connecting

often convenient:

3)2 (M32+ 3)2
=

AbMh
‘3”3 “

(7)

For a given srea ratio this or the previous pair of equations relate the

‘ariables‘3U3C3P3P3
to the flow variables in the sub-four region.

Across the interface i, velocity and pressure are continuous

=u,p2‘2 3
= p3 (8)

and these latter quantities in turn are related to the ambient state

po, co, U. = O via the shock yt with equations similar to (3).

Equations (4) to (8)make it possible to determine the shock strengths

Yt and yl for a given yo.

The following essential point was brought out by George Carrier

with whom the author had several stimulating discussions. While

equating the u and p according to (8),to require the same continuity

of ~ would mean to overdetermine the situation. The P’S in the two

7‘Consequentlyone has for the ratio

wedge thickness
Ah - A3

width of inters= =
‘3 ●

.

..
-11-
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regions, ~2 and PI, are not equal, a fact which proves the existence

of the interface region.

Equations (4) and (8)can be interpreted graphically in a u, p

plane, using a procedure generalizing the almost classical procedure

for shock and rarefaction interaction. However, a direct numerical

evaluation was carried out, using the facilities of the hand calcu-

lation group of T Division. The area ratio chosen was 2:1 which cor-

responds to the models that were investigated most thoroughly.

6

.

.
t

●

✎✎
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Iv. NUMERICAL RESULTS FOR WEAK SHOCKS AND AREA RATIO 1:2

The following table gives the values of the flow variables in

the various regions as functions of the independentvariable yo, the

strength of the incident shock. The first five columns contain the

variables for region 4 (see Fig. 2), i. e.,

reflected shock, the speeds and Mach number

of ambient pressure po.

They

much

Y. =

The next four columns display the same

show in particular that the local Mach

the strength of the first

and the pressure in terms

information for region 3.

numbers M= are always
J

great than the corresponding M4’s and that somewhere between

6 and y. = 10, Mach unity is reached. This all important fact

is reflected by the behavior of M4 which reaches a

As is well known to the aerodynamicist, this heralds

8)condition known as “choking” of the duct . It is a

maximum for M3 = 1.

the beginning of a

proven fact that

the steady flow in a duct with narrowing cross section is only able to

reach supersonic Mach numbers if there is a throat, i. e., a non-

monotonic change in cross section. Of course, it is problematic whether

our problem still permits a steady state treatment, but the experi-

ments would seem to indicate that it does.

In view of this circumstance it is proposed to employ the theory

contained inEqs. (3)to (8)and, therefore, the data in the foregoing

‘)See, for instance, the presentation in A. H. Shapiro’s Compressible
Flow, p. &9 (Ronald Press, New York, 1953).

-13-
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. only as long as M3 + 1 which will be as long as

YO<-7 ●

After that a different approach, to be presented in the next section,

will have to be used.

Returning to the numerical table, it should be noticed that the

interface region which travels with velocity u~ does not represent

a particularly violent change in density or temperature. In fact the

column labelled f!!/P2 shows the percentage change to 1.5X

at y
o
= 3 rising to about h% at Yo= 7. Further the Pres-

sures to which the model is subjected at these comparatively weak

incident shocks are worth noticing: the pressure p~ behind the re-

flected tip shock

the pressures p2

but little higher

Y. = 3 to 7.35

rises from 4 to 13 times ambient values at y. = 6;

behind the shock which runs down the interstices are

than the pi’s, ranging as they do, from 3.58 at

at y. = 6. But upon return from the end of the inter-

stice there is a real pressure increase, as the last column for p;

shows, namely from 9.65P0 at y. = 3 to27.g3poat yo= 6.

e
,

●

1-

-15-
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v. STRONGER INCIDENT SHOCK. CALCULATION FOR CHOKED FLOW

Assuming then M
3
= 1 as maximum Mach number near the entrance of

the channel, the maximum Mach number in region 4 is obtained from Eq.

(7):
Ah

(M42+3)2=16Z M4. (9)

Assuming the area ratio equal to 2, one calculates for this limiting

Mach number:

M* = .298168, (9’)

while for a constriction to one fifth the value

M* = .11347 (9”)

is obtained.

This number we now regard as fixed for a given area ratio, no matter

how strong the incident shock may be. Division of the two relations (~)

by one another leads to another expression for this Mach number, which

after some elementary changes can be written:

M6
* ~ {Y~T+Y1-l Ye-$

= .h (lo)
44y1 + 1

In this way yl shows

from that expressed by

of course, connect with

for area ratio 2:1, the

region 3.

/(YOYO+ 4)

a functional dependence on y.

the earlier system of formulae,

which is different

but which will,

the earlier value Y1~2.3 near YO%7 wheres

unchoked flow approaches sonic conditions in

-16-
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Assuming then yl to be this new function of y. we reenter

formulae (5) and calculate Uq and Ch. Since M = 1, formulae (6)
3

will immediately give the values for the speeds in region 3:

;’Z&m=$F~”
3==3
c c
o

Also, using the

P3

<
= YOY1

and with (9)

adiabatic law:

5

()
2; >=

kyo.+ 1 4y1 + 1 3

()
2

‘4 ~ y1+4 C4
o

(11)

To connect P3 and u
3

with the ambient state p., U. = O via

a shock is generally not possible since region 3 is subject to the

stringent condition of sonic flow. We are, therefore, forced to inter-

pose a rarefaction wave whose high pressure head remains at the sonic

region 3 and whose low pressure foot moves gradually into the interstice.

From this low pressure side the fluid emerges with pressure p2 and

velocity ~u , which two values will then be connectable to the zero

region via a shock. To be sure, there is nothing to assure the con-

tinuity of P or c, so that one has to interpose an interface as well.

But using solely u and p one can, of course, disregard its existence

for the nonce.

Figs. 4 and 5 illustrate those rather involved wave interactions

and indicate the notation used for the variables of the various regions.

-17-
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To work through a rarefaction, one

Riemann invariant u + 3C is constant.

netting c and p> this gives rise to

the fluid velocity

shock:

‘2

remembers that the so-called

Using the adiabatic law con-

the following expression for

‘2
between the rarefaction and the transmitted

where p , and
3 ‘3= C3

are known. To determine p2, region 2 is

connected to region O via the transmitted shock yt:

P* = Yt p.

so that the equation for yt becomes:

yt-l
.?

5-0

(12)

(13)

(14)

It is possible to eliminate all variables referring to region 3 by means

of (n) and (5) with the result:

(Yt - 1)2
201?+3)

YO(YO+4) YJY1 +4) \l - 3 ~ (
yt 1/52

4yt + 1 =~(* 4yo + 1
4’1+’ ( ~~% !“

(15)

In this relation, one regards yl as a known function of yo, on account,

of having solved (10). Then the above is an equation for yt. The fluid

*,

●

✍✎
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speed U2 may then be obtained from the second formula (13)and also

the two densities, namely the one between the transmitted shock and the

interface

and the density between the interface and the rarefaction:

(16’)

Fig. 4

*.

.

.

-19-
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VI. NUMERICAL RESULTS FOR CHOKED FLOW AND
AREA RATIOS 2:1 AND 5:1

Tables 2 and 3 exhibit,for choked flow, the valuea of the hydro-

dynamic variables as functions of the incident shock strength yo.

Just aa in Table 1, for the unchoked flow, a row of values, viz.,

for y. = 10, was included in order to demonstrate a case where the

method in question no longer applies, so do Tables 2 and 3 begin for

Y. which are too low for choking. This can be seen in Table 2 for

Y. = 6, because p3 is less than p2, while for y. = 7, the proper

pressure gradient is established, although the expansion fan is still

weak. Similarly for the area ratio 5:1, Table 3 shows that for y. = 4

the flow is as yet unchoked, but already for y. = 6, p3 >p2 an up-

stream facing expansion fan arises. As the incident shock becomes

stronger, the two quantities of principal interest, namely yl and yt,

behave in quite a different manner. It is seen that yT ficreases but

slowly and approaches a finite value,

strength yt continues to increase.

standable when one remembers that the

J.

while the transmitted shock

The behavior of yl is under-

strength of a shock reflected from

a blank wall follows formula (2), according to which this quantity rises

only slowly with 6 as ultimate limit. As for pressures, the tables

show that the p4 values, i. e., those in front of the model are

appreciable although naturally not as high as they would be for a blank

wall. Compared with p4 the pressures p3 and P2 further down the

narrow channel are not especially remarkable until one canes to consider

-21-
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P; the pressure behind the reflected interstitial shock. These

values constitute a really significant increase. (Of course, for fairly

large ye’s the pressures and temperatures attained are so high as to

make the continued use of the ideal equation of state quite unjustifi-

able~ The interface region whose strength is given by the column

labelled P~/P2 represents only an insignificant density change, vary-

ing between h and 12 percent; it will, therefore, be justified to

neglect its influence upon the returning shock.

Of interest is the aforementioned fact that the transmitted shock

is always stronger than the incident shock, and that the increase in

strength becomes more significant as the constriction beccxuesmore

pronounced. That this would

tube workers and it has been

natural limitations of their

be so has often been conjectured by shock

proposed as a means of overcoming the

instrument. However, the increase which

an area reduction makes possible is by no means tremendous, being

always less than 25 percent for the 2:1 and 50 percent for 5:1 case.

About this more will be said in a later section.

-*

v -24-
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VII. APPROXIMATE FORMULAE FOR INFINITE AREA CHANGE

The last mentioned result, namely the possibility of enhancing

the shock strength by letting it travel into a constriction, the

amount of the strengthening being 25 percent to 50 percent for area

ratio 2 and 5, respectively, serves as an Inducement to Investigate

the case when

A4
— >> 1,

‘3

that is to say when the ultimate channel is mere crack. Since now

Eq. (9) gives

.
Eq. (10)

+*

.
d

which is

M*=O

contains explicit solutions for the reflected shock

the law for the reflection from a solid wall. (king this,

Y~ may be eliminated

‘3 ‘3 1—= —= -
c c 2
0 0

from the three formulae (11), to give:

rj; (6yo - 1)(2YO+ 3)

kyo + 1

P3

()
_= y5y %-1

3

()

5% 4yo + 1
5=q —

P. OYO+ ; P. 2YO+3 ~“

The equation, which determines YtY the strength of the transmitted

shock, becomes:

(C)IS,)

(2’)

(17)

(Yt - 1)2 1/5 2
b (6Y0 - l)(2yo + 3j

! , w “ ’24=- -—

I
)

(

4yt + 1 3 4yo + 1
i

2 yo(6yo - 1) ‘t “
~ (18)

.

.
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I

After having obtained yt(yo) the densities P2 and P; are cal-

culated according to (16) and (16’) with (2~).

Table 4 contains the flow variables for this limiting case. In

agreement with one’s expectation the values of yt run consistently

higher than for A4/’A3= 5, but the-increase is not very considerable.

Besides wishing to indicate the trend the flow variables show as

A4/A5 iS ~creased? the main reason for the inclusion of th$s case is the

hope that it will ultimately account for a certain model which was

studied in the University of Michigan report.
1)
This model consisted

of a stack of wedges possessing no straight sections at all, so that

its cross section was of pure zigzag shape. (“V-Wedge Model;’see page

10 of that report.)

.
J

,0

.

-26-
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VIII. THE CASE OF VERY STRONG INCIDENT SHOCKS AND
REMARKS ON THE PRODUCTION OF INTENSIFIED TRANSMITTED SHWKS

In the limiting case of

Yo+ -

Eq. (10) has the roots:

Y1 = 3.8202 for Ab/A3 = 2

Y~ = 5.0231 for A4/A3 = 5

yI = 6.0 for Ab/A3 =-.

While u
3

and c
3

go to infinity as the squsre root of yo,

P3 approaches finite values which can immediately be calculated with

the above y= values. The transmitted shock yt will go to infinity

with yo, the proportionality factor being of special interest. Putting

Yt =kyo+ ... (19)

where the dots indicate terms of lower order in y. than the first~

the following equation for k results:

Simultaneously with yl the proper values of M* as given by (9’),

(9’8) and (9’”) have to be used. The density ~~ approaches the

finite value

P; 4y1 + 1 ~ 3/5

()
—=4.- y~
P.

(21)

4

1*

The numerical values are summarized in the following Table 5.
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TABLE 5
ASYMPTOTIC VALUES OF FLOW VARIABLES FOR INFINITE INCIDENT SHOCK

STRENGTHS AND VARIOUS AREA RATIOS

A4/A3

3.8;02

5.6512

1.2602

4.2808

4.0

I .0702

5
5.0231

6.1124

1.4924

4.5142

4.0

1.1285

m
6.o

6.4$353

1.7061

4.7023

4.0

1.1756

It can be seen from this table that the strengthening of a shock

by a converging channel can never exceed about 70 percent. It appears

at first quite disappointing until one remembers that what ia calculated

here is not the focussing effect of a wedge shaped region on a cylindri-

cal shock but the value of the ultimate plane shock emerging from the

vertex of the wedge shaped region. To obtain stronger enhancement

one needs only to employ two or more constrictions in series, separated

to be sure, by a suitable length of straight channel. For instance, in

a shock tube of 50 cm height the use

the previous area would result in an

channel height of 2 cm or the

2.52 at channel height of 3.1

well, this result can even be

use of

of two reductions to one fifth of

amplification factor of 2.22 at a

four 2:1 reducticma in a factor of

cm. By reducing the width of the tube as

bettered.
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XI. CONCLUDING REMARXS

The tables of the previous sections take us,

of p~~ just past the moment

from

this

out,

the end of the channel.

time, although it would

to obtain the strength

be of lesser interest here.

The amalgamation of yl

University of Michigan shock

in agreement with the theory

when the transmitted

with the calculation

shock is reflected

No further calculations are presented at

offer no great difficulty to carry them

yll after emergence. It was thought to

and yll is being studied by the

tube groupg) and has been found to be

which goes back to von Neumann.

Interferometricmeasurements of densities inside the narrowed

channel have been.carried out also. They have up to now not been too

successful since the space limitations of the complicated wedge stsck

model have made fringe observations difficult. These measurements are

currently being repeated with a larger model. For schlieren pictures

of the flow reference is made to the University of Michigan report.

9) Otto Iaporte and E. B. Turner, “On the intemctions of Two Plane
Shocks Facing in the Same Direction,” J Applied Phys, 25, 678 (1954).—
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