LA-UR- 74~ 7é¢ b THIT I~ - /

TITLE: BETHE-SALPETER EQUATION:
NUMERICAL EXPERIENCE WITH A HYDROGENLIKE ATOM

AUTHOR(S): J. L. Gammel and M. T. Menzel

SUBMITTED TO: Fourth International Conference on Atomic Physics
Universitat Heidelberg, Heidelberg, Germany
July 22 - 26, 1974

By acceptance of this article for publication, the publishar
recognizes the Government’s (license) rights In any copyrignt
ond the Government and its authorized representatives hyve
unrestricted right to reproduce in whole or in part said artic)y
under sny copyright sscured by the publisher.

The Los Alsmos Scientific Laboratory requests that the
publiisher identity this articie as work performed under the
auspices of the U, §. Atomic Energy Commission.

T

o s a a Ii' " s l Phin st s prep it e tovnnt ol \\.nul
! T I T LY R TL LY Y ) FE Vo tane it Nettheg

NI . N ' e
c .n ' c D e ek ks e B bl ahates b ! |.|
Sy vamanrisaey, an iy ab theh Carphiy e o

| l "'. 'abara'orv o n b e s b, o et canphonees

1)
thet TR T L PR LTI I S LI
"

L TR R DR IR N l
of the University of California e i g o |
Y TSN RN T LI L N Ll . . Worr gt s e Tk e e

LOS ALAMOS, NEW MEXICO #7544 B R U

cov b b by

NLEIN N
'm No. 838 UNITED BTAYER ({ 7

ATOMIC ENERGY CUMMISSION
;Jo. Bl CONTRACT W-7408-ENG 10


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


Bethe-Salpeter Equation: Numerical Experience with a Hydrogenlike Atom®

J. L. Gammel and M. T. Menzel
Los Alamos Scientific Laboratory, University of California

Los Alamos, New Mexico 87544

Abstract

The eigenvalue A of the Bethe-~Salpeter equation,

A¢-—1-2-GS¢ .
™

with the value of Eb calculated from the Sommerfeld expression,

g =L <1- L ) :

/1 + (1/137.03802)2

substituted into the propagator S, and only the one-photon-exchange term

included in G, is, for the 18 state,

0

The difference between A and 137.038C2 is due to the appearance of &

logarithmic term in

Eb-%mczaz(l-ltn,—azn%"'oao) ’

which is valid for the Bethe-Salpater equation, 1So state, one photon
exchange. The crossed two photon exchange contribution brings A up to

A= 136.5 t (0.17) ’

so that this contritution cancels the logarithmic term, but not exactly.

-]l-



I. INTRODUCTION

In a paper in Physical Review with this same title,1 we reported

that the binding energy Eb of an equal mass m hydrogen atom resulting
from the Bethe-Salpeter equation with one photon exchange differs from the

Eb resulting from the Dirac equation with a Coulomb potential in that

logaritiimic terms occur:

o
The numerical results substantiating the analytic work were expressed in

the following way. The Bethe-Salpeter equation 1is

e (2)
m

wvhere ¢ 18 the Bethe-Salpeter ampl;tude, G the sum of all two particle
irreducible graphs (in these calculatioqs only the one photon exchange term
is included), S the direct product of the fermion propaga-ors, and

A= 4“/02 = 1/00 is a factor removed from the one photon exchange graph
(for more details see reference 1). S antains Eb’ and we put in the

value calculated from the Sommerfeld expression

1 2 1
Eb--imc <1-—-—> ’ (3)
v’1+c:;i

with the accaepted value a = 1/137.03802. Were there no difference between
the Batheo~Salpater Eb and the Dirac Eb wa should then find the eigen-
value A = 137,03802. We do not find agreement because of the logarithmic
term in Eq. (1).

In ref. 1 wa reported A = 134.18 ¢ 0.01, and in this work we find

A2 133.9963 + 0.0003 ULy the use of improvad numerical techniquaes. Our
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motivation for making this improvement is the fact that should we want to
calculate the Lamb shift by these techniques, such accuracy 1s required.
Our general method, which is a sfraightforward solution of the Bethe-
Salpeter equation, 1is conceptually simpler than the usual methods,2 bnt
not yet nearly so accurate or complete.

We would like to explain a little more our motivation. We have
calculated A with the crossed two photon exchange graph included in G.
We f:lnd3 A = 136.5. Thus our results underscore Salpeter's remark4 that
the calculation done in a straightforward manner converges very slowly as
more and more graphs are included in G. In calculating the Lamb shift it
i3 not necessary to include the crossed two photon exchange graph and similar
graphs because the ladder approximation yields a spectrum with the same
degeneracy as the Dirac equation with a Coulomb potential.5 Only the level
splitting resulting from the self energy graph shown in Fig. 1 is desired,
and this splitting may be calculated by including in G the one photon
exchange granh and the self energy graph. The matrix elements of the self
eneily graph may be read from the book by Jauch and Rohrlich6 since they
give the full off-shell matrix elements required (Jauch and Rohrlich give
the part arising from the bubble in the fermion line and this has to be
nltiplied by the one photon exchange part which is edsily calculated by
the methods of reference 1). Our interest in doing the calculation in thi:
vay arises from our belie¢f that the infrared problem does not arise. We
believe this because the bound ntate problem is off-shell and it uay be
observed that Jauch and Rohrlich's result has nn divergence off shell. As
the binding energy goes to zero, the problem movesa toward the on-shell case,
so terms like log (1/a) stould occur. We wonder how these logarithmic terms
cancel against the one shown in Eq. (1), which according to the rasult

A = 136.3 is only partially cuncelled by the crpossed two photou wxcliange
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part, and it is hard to see how the crossed three photon exchange parts will
make up the difference. Perhaps it is precisely the self energy graph which
makes up the difference (the phoion self energy graph also has a part to
play). We hasten to add in conclusion that we have not yet done the cal-
culations, but the calculaticns are possible (Jochem Fleischer has done
similar calculations in e strong interaction case7’8). We may hope not

to remain forever ignorant of the facts. Many9 are aware of just how awkward
the usual treatment of the infrared problem is, and 1if it is true that it

does not really arise in a full but straightforward approach, it would be a

matter of interest.

II. THE IMPROVED NUMERICAL TECHNIQUES

We restrict the calculation to the positive energy states, so that

Bq. (3) of reference 1 becomes

M(ei1p,) = =5 I 4] dg, Ktpgpaitey) Sy o(ta) - @)

The numerical approach to any such equation is to replace the integrations

by finite eums over a mesh. Symbolically,

Jdq qu& - L+ [ff-L/+Lf-LIL ’

]

«a L+ (-0 S +I(-1) . (3)



(/ - L)/ may be referred to as a correction for the q 1integration and
L(f - L) as a correction for the q, integration. In these corrections,
we do not need to use the exact '¢(q,iq4), which is unknown anyhow, but we
must keep the equations homogeneous. As proposed in reference 1, we make
use of the fact that ¢(Q,iq4) is nearly independent of Qs and in the
correction we use

9

¢(q,1q,) = 6(q,0) . (6)

In the q correction, we make use of this fact and the fact that we know
approximately how ¢(q,0) depends on q; namely, it must depend on q in
the same way that the nonrelativistic ¢(q) does. Thus in the q correction

we use

¢(p,0) . (7)

¢(q.iq4) - SE. ) ;
2m +'5 Eb A

In detail, our finite sum approximation to Eq. (4) is

nzx¢(p.ip4) = I K(p,1p,»9,1q,) "S(q,1q,) ¢(q,1q,)
qQ q, (8)

+ T(p.pa) ¢(p,0) + L R(p.pa.q) ¢(q,0) ’

q
wvhere
(- -]
R(p.pa.q) =[S dq4 - I ] K(p.ip4.q.iq4> S(q.iqa) ’
0 q
4 9)
"R, =Ry ’
and



Rl(Popayq) ’
(10)

The integrals can be done analytically (oiherwise there would be no point

in writing them down) provided we use some nonrelativistic kinematics in K
and S, namely

@+l+ o, +a)? G+ol+ @, -’

1
K(Poipatqoiqa) - A In 2 ’

-+, +a)’ G-+ @, -q)

5(2,19,) = —— - — | (11)
Gtz R *e,

Of course we use these 'monrelativistic" approximations only in corrections

"shich vanish as the mesh size is refined. We find

q- 4 1 2 2
G-+ Eb+p+q) +p,

2

R, (p,p,,q) = L —2L—— gp—20 2 :
17774 b ¢ 1 .1 2 2
Ledn Grinep-aien,



2 [

f(p.i\@, w75 F(ﬁ""i@) - F(%0,-1 - v’<T>)

1p,) = 137.03802 -21’- 2m
i T
ivT + 1+ V(1)

fpoa¥)- o (20 - )
1@- 1+ /()

P(Toex 2 y3) g (P o

B to
]
=
|
:},
I
o’
Nn”

F(Pu::x. ﬁ,i %) F(B":Ta’i, E._l,,_ /(—1-)-)




F(x,,X z)=llo w2+(z-z*)) ? 2 *
2°%1° 2 o8 21 o - ztz
] 1 2
.
z + z
*2 2
+ 1 arc tan — * * ’
zZ -~ 2 x -2tz
21 1 2
T T
2>arct:ar_1>--2- ’
T =g1-2GE +p+1p)
‘/ m ‘2 Eb 4 ’

= largest value of ‘p. used in the Presh *
Methods by which these formulaze were derived arc outlined in Appendix I.

We transform everything to the u,v meshes fiom the p,p4 meshes
as in reference 1. The various L need.to have their correct weight
factors and the Jacobians of the transformations as described ir reference 1.

Because the corrections are not exact, the results will still depend
on mesh size and the parameters a and b 1int.oduced as corrections to
integration schemes in reference 1 (see Eq. (20) of reference 1).

We have, of course, wondered why our error in the calculation
reported in reference 1 is about 20 times larger than we thought. To find
out, we have repeated the calculation of reference 1 with still finer mesh
sizes. We see that d)A/d (mesh size) = 0 for the a,b and the finest

mesh sizes used in reference 1, and this led to the illusion that A was
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independent of mesh size to the stated accuracy for these meshes. But as
the calculations with still finer meshes show, it 1is only an 1llusion.
This danger always exists and can never be completely eliminated by

numerical means; 1t still exists for this improved calculation.

III. RESULTS

All results are gather=d in Fig. 2 and Table I. The best extrapolated

value 1is
A = 133.9963 + 0.0003 .
The danger referred to just above is reduced by the fact t.hat we have

results approaching this limit from below and above, as shown in Fig. 2.

IV, * CONCLUSION

We believe that we have shown that it is possible to solve the Bethe-
Salpater equation by the use of straigﬁﬁforward numerical techniques to an

accuracy required by the precision measurement of atomic physics.



APFENDIX 1.

To evaluate P‘l’ expand the argument of the logarithm in Eq. (11) thusly:

2, .2 2,2 2 2
(p+ )" +p, +4q,) =-dp, q,
( 1= ) ’

2 2 2,2 2 2
((p=-q) +p, *+4q,) =bp, 3,

(q42 - rl)(q,,2 - T,)

(q42 - r3)(q42 - ra)

where Tis Tys T and r, depend on p, q, and Py Using ¢n (AB/CD) =

fn A+20 B =-4nC - 2n D leads to integrals of the form

2 2 m
f—i_a_f ln(q4+c)=-a-£n(a+c) .

0a+q4

The evaluation of S1 requires the evaluation of

¢ .1 2 2
1 ® q dq 2(2m+-2-Eb+p+q)+p4
w G 7, \2 “{ 2 | X 2 5
<€ .1 ) .1 ; )
(2m *7 K \amtz B tle-al) +p,
q sﬁ 1 2
m P dq (2m+'2-Eb+p+q) +p4
.« f 2n
LU L2 1 2 513 1 2
(B+1e) (L+in+r-a)+p,
a &, 1 2
n dq (2m+'£Eb+p+q) t P,
+— 7 2n .
lmp



ry7 2
fednere(ied
mz P dq (Zm + 2 Eb tpta m +1
-Té +ml 2 1 2
T [T PRVNN

where the last equality results from an integration by parts. We then
proceed by breakling various expressions into partial fractions; for example,

in the first term on the right of the priceding equation,

X .1 1 . 1
2 2 2 ’
x° + A x + 1A x-iAJ
@, 1
x=FtIntPra

A-P4 ’

1 | 1 __1
2 2 2iB|x - iB x + iB ’




and in this way we arrive at the expression for S1 given in the text in

terms of four f functions, where

i
- 3 m2 fp dq %+1
e, ‘™ lo q-wkE [ L1 Lo, Ly
2T 2B TPYaAY I,

£

q -
-
- m
e, 1
2m + E'Eb tP-a+ ip4d
r
P 14+
+ f max dq m
— 2
0 q = i/m q .1
% 2 t2 B tPYatip,
14+
- m
¢ .1
2m 2 Epta-p+ 1p4-

The four denominators quadratic in q have roots which depend on p, Py

rymr, e (=12 /AD 1

tz'lliv’(_lylm ’

r, " [=12/(2) | m

vhere V(1) and v(2) are given in the text. Further reduction by partial

fractions leads to



1 L
..t.n.._l_.)f dﬂ - 1 1
V Eb 4mi 0 (m) o Eb
1-;—+1+/(1)

9.1 42 241 +/7D.
m m m

1 1 1

_%-1‘13:; -%-1+/Ti')'4 1@-1+ vﬁTJ

Prax g b
m
+ f d(ﬂ) 1 - 1 1
o Eb B
o _%—i =2 §+1+f('1"41-7;-1+f('1')'
)
_ 1 - 1 1 <
3-1@ 3+1+.’('2—.1J5+1+/(2_)
-m m m, n o
.

+ a sinilar expression with = v(l) and - V(2) , which explains the source

of the sixtcen F functions in the text. The F are all of the form

*2
Pxgox,2) = [ =S,
1

and the result broken into obviously real and obviously imaginary parts is

- glven in the text.



APPENDIX II

In this appendix we documgnt the very complicated calculations
including the crossed two Photon exchange graph.

The crossed two pion exchange graph for nucleon-nucleon scattering
has been evaluated independently by at least two grOups,lo and the algebra
has been checked by use of the algebraic manipulating code REDUCE.8 The

result is that the positive energy-positive energy part of G 1ig

1 1-x lex;-x
i I e P
dxl xz o dx3 (xlixzixaipiab’qiqo) L

- 0 —PL___
G(Ppoqqo) a E(P)E(q) o o

One fector of @ has been removed to include in the eigenvalue A. We have

) L ¢ T, + 1 T

0,2 1712 T*1

T

2 0,1 °3 ’

Tt B PR+ ey, - B (0P 0B) - By (nPEY pRaT)

+ mz(p2 + qz) + Paz,
T, = pa(- w’ + PP, + 6, + 2nf - E(Q)b” - E(pla” + £, B :

12 3

T, = 2E(p)E(Q) - m®

Pl = E(1l - x, = xz) + (xz + x3) qo + (1 - X, - x3)po ’

Pz = B(l - X, = xz) - (1 - X, = x3)q0 - (x1 + x3)Po ’

B = E(p)E(Q) - w2
t' . EpIE(Q) + 0P
+

P e Pl + Pz ’

a = E(l - xl - xz) - (1 - xl - xz - 2‘3)Q0 ’



b = E(] - X, - xz) + (1 - X, =X, - 2x3)po ]

1 1 2

2 2
2, ™ (x1 + x3)(l -x - xa)p. + (x, + x3)(1 -x, - x3)q ’

2y = PQ [(x1 + xg)(x2 + x3) + (1 - X, = x3)(1 -x - x3)] ’

11’1---};%(3) for A¥O, §=0,1 |,

--1- = -
10.1 B 11.1 0 for A= Q ?

A
Ij.z - i‘[ 2s 1 = J Qo (8)] for A * ol J - 001 »
8 -
1 -l 1 w0 for A=0Q
0,2 BZ " 74,2 '
s = -% »

A= qu [x3(1 - X <Xy = x3) - xlle ’

B= x 2 . pz} + %, (1 - x,) {(E - q0)2 - qz}

L1 - x) {(E + Po)

+ x3(1 - x3){(po - qo)2 - pz - qz} - 2[x1x2(E + py) (E - qo)

+ X%y {(E + Po) (Pg = 9p) - pz} + X%, (E = q5)(py = q) - qz]

2
el 0tl
Qo(.) 2 108 s ~ 1 »

Ql(.) .8 Qo(.) -1 »
m = fermion mass,
H = boson mass .

When the Ys'l appropriate to the pseudoscalar case are replaced by

YN'. appropriate tu the vector case, one would think that the above
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expression is without relevance. However, the main part of the Yu ‘vertex
is 1b (this is the nonrelativistic limit and constitutes a very accurate
approximation when we restrict ourselves to the positive-energy states).
Now consider a fermion line in the crossed two photon exchange graph (see
Fig. 3). One of the Yb's may be brought through the propagator (as may
one of the Ys's in the pseudoscalar case), and use made of Yoz =1 or

2
YS = 1. Since

‘ - Yopo - 1.2 »

bringing through the YO or YS is the same except that the sign of Po
is changed in the YS cate and not in the YO case: that is, the two
cases differ only in the sign of po. In the calculations in Ref. 7 above,

the cxternpl energy is carried by the nucleon line,

Po " ko t E ’

where ko is a variable integrated over in the S dak required for the
crossed two photon exchange graph. But the sign of ko does not matter
since it is integrated over. One concludes that the pseudoscalar and
vector cases (restricted to the Yo part) are the same except for the sign

of E. Therefore,
E= -0,511000698682 ,
m = 0.51100410 ,
ue=0.

For the rest, we make a number of transformations of the variables

X1» Xq» Xqe First,



xl-zy ’

xz'Z(l-y) ’

Xy " (1 - 2)x ’
transforms
1 1-x 1-xy=x2 1 1 1
/ dxl / dx, i dx31 w [ Jdx [ dy S dzz(1-2)1 .
0 0 0 0 0 0
Then we transform
z w
z = max .
l-2z .~ (1- ZZmBX)W
which transforms the integral to
1 1 1 z(l -2)z (L-2 )
[ aw [ dx [ dyI X =,
0 0 0 {1~ 2 ax - (1 - szax)w]

in which 2z 1is a function of w of course.

For each p, Pos 9 qo ve adjustgd 2 ax so that the maximum value

3 S -7
—_— € ==
of the integrand occurred for g <w<g-. 2z varied from 2x10 ° to

0.5 depending on the values of p, po, q, qo. 2 ax 2 % 10-7 reflects how
close to the boundary the peak of the integrand may occur. We use about 20
mesh points in the w integration and 5 each in the x and y integration.
This calculation has to be joined to the calculation described in Ref.

1. Everything is quite straightforward, and we believe that the above details
sufficiently document the entire calculation leading to A = 136.5. It was
only possible to use the crudest 9 9, mesh (with a = 1,377, b = 1,168),
which means already that 10,000 integrals of the above form have to be cal=-

culated, and the accuracy has to be judged from Fig. 2, plus worries about
-17-



the w, x, and y meshes. We believe A = 136.5 1s good to % 0.}, but
perhaps in the future with still faster computing machines it will be

possible to verify this assertion.
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6.0
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(a)

134-.15343

134.17475
134.17630
134.17725

134.18707

134.06512

Table I.
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Data plotted in Fig. 2.
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134.02835
134.04619

134.08744
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133.99214
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133.98691
133.98180
133.97708

133.96871

133.94970



Figure Captions

1, The self energy graph.

2. X vs. q-mesh size. 192/x = number of points in gq-integration.
(a) Results reported in Ref. 1. a = 1.377, b = 1.168, 16 point
Gaussian 9, integration.
(b) qa-correction applied to (2). Eight points used in Gaussian q,
integration.
(c) Both corrections applied. a = 1.5, b = 0, 8 point Gaussian q,
integration.

(d) Roth corrections applied. a = 1.377, b = 1.168, 8 point Gaussian

q, integration.

3. A portion of the two photon exchange graph.



Figure 1



L XA

i o T 5 e 7 0 1 4

134.20

134.15

134.10

(b)




_ . s
13405 -/

i (c)
13400 |—

i (d)
'3395 | 1 1 I : ] { | |

5
X

Fieure 2



% P2-m? %
~ —
-~ ”
SQ Pl
~ ,/

- 7’

Xv
// oS

~
~” -
P o
/’ \\
Pl ~
Figure 3



