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CALCULATION OF FISSION BARRIERS®

P. MOLLER and J. R. NIX
Los Alamos Scientific Laboratory, 1miversity of Califorria
Los Alamos, New Mexico, Uinited States of America

ABSTRACT

We review recent advances in the calculation of the nuclear potential
energy of deformation, including both selfconsistent microscopic methods and
the macroscopic-microscopic method. Particular attcntion is pald to the
steps that are involved in calculating the potential energy according to the
latter method. These steps include specifying the nuclear shape, calculat-
ing the macroscopic (liquid-drop) encrgy, generating the single-particle
potential, solving the Schrodinger equation, and calculating ‘he microscopic
(shell and pairing) corrections.

In the second part of the paper we present and compare the results of
two new calculations that we have performed recently at Los Alamos. 1In the
first calculation, the nuclear shapes are specified in terms of smoothly
joined portions of three quadratlc surfaces of revolution, which permits us
to calculate the potentlal energy all the way to the scisslon point. The
extrema in the potential--energy surfoces arc determined by varying independ-
ently threce of the coordinates In this parametrization; the ground-state
encrgy 1s determined also by usce of arr alternative parametrization. The
macroscoplc encergy ls calculated from the droplet modcl of Mycrs and
Swiatceckl, which includes higher-order terms in AT 173 and in [ (N=2)/A]? thun
are rvlnined in the liquld=drop model. The microscopic shell and pairing
corrcctlons are calenlated by means of Strutinsky's method from the single-
particle levels of a diffusc-surface folded Yukawa single-partilcle potential.
We nse a new set of potential parameters obtalned from adjustments to exper-
Tmental wingle-particle levels in heavy deformed nuclel and from statistical
calenlations,  The sceond new calaeulatdon 18 perforwed with the modificd os-
clllator potential smd {s simllar to a previons calculation with this poten-

rlal except that we now use the droplet model in place of the llquid=drop
nodel,

These and carller ealenlations provide an underatanding and wiFicatfon
of many Vlrltd phcnumcn1 nnnn(lnl(d wlth nuclear ghape chanpoes: nncelear

i mas w o nem e = ey

This wnlk Wil anpnltvd hy the U, 8. Atomice Energy Commlasxion and the
Swed lsh Atomie Research Comell,
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ground-state masses and deformations, sccond minima in the fission barriers
of actinide nuclei, fisslon-barrier heights, and fisslon-fragment mass dis-
tributions. TFor the lighter actinide nuclei the asymmetric sccond saddle
point is split into two individual saddle points scparated by an asymmetric
third minimum, which possibly resolves the thorium anomaly. The calculated
energies of the local minima and saddle points in the potential-cnergy sur-
faces reprudiuce the experimental values to within an accuracy of about 1 MeV,
although larger systcmatic errors are still present In some cases. The cal-
culated properties of the saddle points also reproduce qualitatively the
main featurcs of experimental fission-fragment mass distributions.

1. INTRODUCTION

You probably have followed the renaissance that has taken place in our
understanding of fission since the first IAEA fission symposium in Salzburg
eight ycars ago. At that symposium we still thought that the fission bar-
rier of a nucleus was a monotonically increasing function of deformation
until it reached its maximum valuc and then a monotonically decreasing func-
tion of deformation. But it soon became clear that instead cf this smooth
behavior the fission barrier contains large fluctuations as ¢ function of
both nuclear shape and particle numbers. For some nuclei, these fluctua-
tions lead to a fission barrier that contains two pcaks separated by a
second minimum, as illustrated in Fig. 1 for 240py,

By the time of the second TAEA fission symposium in Vlienna four years
ago, we were able to calculate such a barrler for symmctric deformutions in
terms of nonuniformities in the single-particle levels near the Fermi sur-
face. We could also understand thrce new experimental discoveries--sponta-
neously fissioring isomers, broad resonances in fission cross sections, and
narrow intermediate structure in fissloa cross scctlons---in terme of this
sccond minimum,

But three major puzzles remained. First, for most actinide nueclei the
calculated height of either the first peak or thae sccond peak was several
MeV higher than the experimental value. Sccond, the caleulated fission bar-
riers were all stable with respect to mass-asymmetric deformations, which
violated the well-cstabllshed preference of heavy nuclei to divide asynnet-
rically at low cxcitatlon cnergy. And third, the calculated helghts of the
firet peak and second minimm for isgotopes of thorium were substantially
lower than the cxperimental values.,

Since Vicuna two of these puzzles have larpgely disappeared. We now
know that in moant actinide nuclei the sccond peak 1g unstabloe with respact
to mass asymnetry and that In the heavier actilnide nnceled the Flrat peak 1s
unstable wlith respecet to avial asymmetry (gomma deformations).  Instablll-
ties of thian type lower the calenlated barrvler helghts and also provide a
mechanlem for an asymumetrle mass dlvislon,  These bastalkllitles arlse bhe=
canne of ninple-psrtlele elffects slmllar to thone reppongltble Tor a deformaed
ground-atate mIntmm and second mintmom In the Claston barcler. The thired
puzzle 1o not definltely solved, but we supgent later a posndble renolat lon
In terms of alngle-partlele effects near the psynmetrle secand naddle polnt.

O plan Is { hret to review the varlons approachen that are taken In

the calenTat tore of laslon havviers and scecond to preasent some new rennltas
that we have obtalned at Lon Alimos,. Wo do not have space here to review
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everyone's contributions but instead concentratce on recent results that hest
i1lustrate the physical principles involyed. Exhaustive references to other
work, as well as to the mathematical details, can he found in four recent
review articles [2-5]. We then compare the calculated cnergies of the local
minima and saddle points in the barriers with experimental results, some of
which are described in this symposium by Britt, Vandenbosch, and others
[6,7]. We also discuss the extent to which e:perimental fission-fragment
mass distributions can be nnderstood in terms of the calculated properties
of the saddle-point shapes. We conclude with an assessment of our presert
ability to calcnlate fission barriers.

2. SELFCONSISTENT MICROSCOPIC METHODS

There are two general approaches for calculating the nuclear potential
cncrgy of deformation--selfconsistent microscopic methods and the
macroscopic-microscopic method. In the microscopic methods, one usually
starts with a given nucleon-nucleon potential and solves the many-body
Schrodinger equation by means of the Hartree-Fock approximation. This can
be Jone either with a realistic potential that is adjusted to reproduce
fundauiental data such as two-nucleon scattering data, or with an effective
interaction that is adjusted to reproduce gross nuclear properties.

The realistic potentials of course lead to equations that are more dif-
ficult to solve. If the potential has a hard core, then the infinities
associated with it must be removed by means of the approximations introduced
by Brueckner. The resulting Brueckner-Hartrce~-Fock equations are so compli-
cated that they have been solved so far only for spherical nuclei [8,9].

The equations are simpler for a soft-core potential, where the ordinary
Hartrece-Fock method can be applied. At deformations away from a local mini-
mum the potential energy is calculated by applying an external field and
solving the resulting constrained Hartree-Fock equations. In this way the
potential energy has now becen computed as a function of the quadrupole
moment for some medium-weight nuclei such as 108py [10]. ‘lYlowever, computa-
tional difficultices have prevented the extenslon of these calculations to
heavy nuclel. For heavy spherical nuclei the calculated total binding ener-
gles are substantially smaller than the experimental values [11]. Although
the agreement would be improved somewhat by including the second-order cor-
rection to the llartree-Fock cnergy [12], this correction has not yet becn
calenlated for deformed nucled.

A major difficulty associated with the use of rcalistic potentials is
the necessity to calculate the exchange terms in the llartree~Fock equationas.
This difficulty can be ellmlnated by choosing en cffective interaction for
which the exchanpe terms are casy to calculate. Or alternatlively, the ex-
change effects can be abnorbed Into the effeetive intcervaction [13,14]. With
c¢ither approach the hlgher-order corrccetlons to the [Irst-order energy are
abuorhed into the tnteractlon through a readjustment. of 1ty parameters.

Although several effectlve Interactions have boeen proposcd, tho only
one that 18 usced In practlcee for the calculation of fisgloa barriers 1a
Skyrme's Interact fon [15] an slupliTled by Vautherin and Brink [16].  This
interactlon 1a cany to nye beeonae most of it termn contain delta functions
and becaune satwratfon In achleved by means of a three-body terme  The nix
adjustable parameters of the Interaction arve related loowely to the coeffi-
clentn of the five domlnant terms du tha semlemplirical nueloar mang formula
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(corresponding to the yolume, surface, Coulomb, volumc-asymmetry, and
surface-asymmetry energies) and to the spin-orbit interaction strength.

The Skyrme interaction has now bee.. used by Flocard, Quentin, Kerman,
and Vautherin to computec the potential enexrgy as a function of the 3uadrupole
moment for several isotopes of cerium [17] and more recently for 2"°%pu [18];
ve will learn about such calculations later in this scssion from Quentin
[19]. The calculated height of the sccond peak in the barrier for 240py ig
19 MeV, which is substantially higher than the experimental value of 5.35
MeV [20]. This large discrepancy probably arises from a combination of
threce factors: (1) The results have not converged as a function of the basis
size. (2) The parameters of the Skyrme interaction yield a surface cnergy
that is too large compared to the Coulomb energy. (3) Mass-asymmetric da-~
formations arc not included. When these three points are taken care of we
can expect such calculations to reproduce experimental fission barriers witi
satisfactory accuracy. This is the most promising of the microscopic ap-
proaches, and perhaps four years from now at the fourth IAEA fission sympo-
sium a substantial fraction of the fission barriers discussed will be com-
puted selfconsistently in terms of such an effective interaction.

3. MACROSCOPIC-MICROSCOPIC METHOD

But at present nearly all fission barriers are calculated by means of
the second approach--thec macroscopic-microscopic method. This method syn-
thesizes the best features of two complementary approaches: The smooth
trends of the potential energy (with respect to particle numbers and deforma-
tion) are taken from a macroscopic model, and the local fluctuations are
taken from a microscopic model. The method in its present form was developed
in 1966 by Strutinsky [21] and has since revolutionized the calculation of
fission barriers. The idea of a macroscopic-microscopic method had been in-
troduced earlier by Swilatecki [22] and others.

In this mecthod, which is suitable for treating nuclear systems that
contain a large number of particles, the total nuclear potential encigy of
deformation is written as the sum of two terms,

=V + AV
macrosicopic microscoplic

The firat term 1s a smoothly varying macroscoplce energy that reprodices the
broad trends of the potentlal energy. In a heavy nuecleus it accounts for
about 99.5% of the 2000 McV total binding cnergy and for about 95% of the
200 McV variation in cnergy durlng flssion. The second term contalons ou-
cillating mleroscopic corrcctions that arlee because of the discreteness of
the Individual partleles. ‘The mont dmportant of these purely microscopic
contributionn arce the shell and palring correctlons. For a tiphtly bound
nuclens In It ground state the total mievoscopic correct lon In over 10 MeV
in magnitwle, but In ether adtuatlons [t 18 vsunlly somewhat leas.

The nuclear porentlal encerpy of deformatlon Is caleulated by means of
the macroscople-mlerascople method In flve ateps: (1) The averall peomet-
rical sahape of the uncelean s Hhrat wpeellled, snd (2) the macroncople part
of the cuerpy Ia calenlated for thls shape.  (3)  The slnple=part)ele potoen-
tinl fcelt by a neutron or proton I pencrataed, and (4) the Schrodinger
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equation is solved for the single-particle encrgies. (5) These energies
are then used to calculate the microscopic (shell and pairing) corrections.
The total potential encrgy is gilven finally by the sum of the macroscopic
encrgy calculated in step 2 and the microscopic corrcctions calculated in
step 5. These steps have received considerable study, and several methods
have evolved for handling each of them.

3.1. Nuclear shapes

In fission, as well as in the related areas of heavy-ion reactions and
nuclear ground-state masses and deformations, at least four collective coor-
dinates are required to describe the most important shapes that arise. These
are (1) a separation coordinate, which specifies the overall separation of
the mass centers of the two nascent or separated fragments or colliding ions,
(2) a mass-asymmetry coordinate, which specifies the amount of mass in one
fragment relative to the other, (3) a fragment elongation coordinate, which
specifies the overall elongation of the fragments, or alt.ernatively the
radius of the neck between them, and (4) an axial-asymmetry (gamma) coordi-
nate, which specifies the flattening of the shape about its symmetry axis.
Because of computational difficulties the latter coordinate is not included
in most studies in fission. Our discussion is therefore sometimes restricted
to axial symmctry, but the generalization to axially asymmetric shapes is
straightforward.

The methods for describing such shapes fall into two major classes. The
first class is an expansion about some bagsic shape, such as a sphere, a
spheroild, or a Cassinian oval. For example, shapes close to a sphcre are
described conveniently by expanding the radius vector to the nuclear surface
in a series of spherical harmonics. 1f the shape is eiongated it is better
to absorb some of the deformation into the basic shape and expand about a
spheroid (ellipsoid of revolution). This can be done either by means of the
coordinates €4 used by Nilsson and others [1, 2, 23-29], or by writing p?
as a polynomlial in 2, which is . he method used by Lawrence, Hasse,
Strutinsky, Pauli and others [3, 5, 30-35]. If the shape has alrecady devel-
oped an appreciable neck 1t is somctimes advantagecous to expand about a
Cassinian oval, which can absorb some of the necking as well as elongation
into the basic shape; this method is used by Cherdantsev and coworkers [36]
and by Pashkevitch [37].

The second class of methods descvibes the shape in terms of two bodics
rather than a single body. In these two-center parametrizations each end of
the nucleus is wsnally represented by a portion of a spheroid. In the most
simple version the two spheroids intersect in an undesirahle cusp [38], but
this cusp may be removed by connecting portions of the two end spheroids
smoothly with a third function that describes tLhe neck reglon. In the
mathod used by CGrelner, Mosel, and thelr coworkers [39-43), precisely one-
hall of cach end spherold is used in forming the shape, which unfortunately
prevents the deneription of dinwond=Llike nucloar ground-state deformations
and same Important shapes that arlse in heavy-lon reactions.  In another
method [44=52], arhitrary portlons of the two end spheroids are connected
smoothly by a quadratic nceck fanct lon,

Beconne an expanslon method {n usually botter for dencribing nuelear
promd-ntate deformationn and the early stapen ol {1sslon, whercas a Lwo-
center method Is unually required for describing the later ntages of fiuafon
and heavy-ion react lond, it s deajrable to deflne the collective coordinates
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in some parametrization-independent way that permits a conncction to be made
between the various mcthods. Of course the idcal choice would be to define
the coordinates so that the resulting Inertia matrix is everywhere diagonal
and constant. This 18 in general impossiblc to accomplish, and the best
that we can achieve at prescent is to define the coordinates in terms of
physically mcasurable quantities.

For synmetric shapes a good choice involves the use of successive
central moments of one-half of the shape distribution [53]. Theu the separa-
tion coordinate is simply the distance between the centers of mass of the two
nascent or ¢ parated fragments, 2nd the fragment elongation coordinate is the
root-mean-square extension of a fragment about its center of mass. As Sierk
will discuss later in the symposium, this choice has alrcady proved useful
for displaying dynamical paths in fissicn and heavy-ion reactions [51]. The
mass-asymmetry coordinatc may be defined conveniently (and unambigucusly) as
the difference between the masses to either side of the point midway between
the ends of the shape [3, 5, 33]. For shapes with a well-defined neck a more
pleasant choice would involve the mamsses to either side of the neck, but in
practice the two definitions are approximately equivalent because in such
cases the volume in the neck region is small.

3.2. Macroscopic energy

Once the nuclear shape is spccified, the macroscopl:c energy must be
calculated for this shag?. This usually is done by expanding the nuclear
energy }n powers of A~''? and [(N-Z)/A)2. Truncating the expansion at
the A2'3[(N-2)/A)> term leads to the liquid-drop model, where the two
shape-dependent terms are the cohesive surface cnergy and the disruptive
Coulomb energy.

The inclusion of higher-order terms in the expansion leads to the drop-
let model, which takes into account cffects that are assoclated with the
firite size of nuclei, such as niuclear compressibility [54-56]. Myers and
Swiatecki have now determined a preliminary set of constants for the droplet
model [56] from adjustments to nuclear ground-state massces and fisslon-
barrier heights and fcom statistlcal calculations. The resulting curvature-
energy constant 1s zero. The effectlve surfice-asymmetiy constant, which
regulates how rapidly fission barriers arc lowered with the additlon of
ncuktrons, is signiflcantly larger for heavy nuclei than the value in their
earlicer liquid-drop modcel [57]. As lloward will describe in the next paper
[50], this makes it unlikely that superhcavy nuclei can be formed by multi-
ple neutron capture.

The condition that must be satisflied in order for the nuclear encrgy
to be expanded in this way 1s thal the surface diffusecncess be small comparad
to the extension of the nelghboring volume region. This condition breaks
down for light nuclel and for shapes with small necks, for example near the
scleslon polnt In fisslon and near the polnt of firat contact In heavy-lon
reactions.  When casculating the energy of such shapen (t 1s necessary to
take Into accomnt the finfte range of the nuclear forco.

This could be done by treating an effect Ive nneleon=nmeleon Interact fon
In some statistical approximation such as the Themas-Foerml method |54, 58,
59]. lHowever, in practlee such ealealations bave heen Thmlted elther to
small deformat fons [60] or ta two 1ight apherleal nuelael apecificd by a
gingle separatlon coordinate [61, 62].
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A simpler mcthod has heen developed recently for including finite-range
effects. In this method the nuclear macroscopic energy is calculated in
terms of a double volume integral over a Yukawa function. As Krappe will
discuss later in thils session [63], this leads to several important conse-
quences, such as a reduction In the stiffness of light nuclei with respect to
deformation. This lowers the fission barriers of nuclei near sillver by about
10 MeV relative to those calculated with the liquid-drop model and shifts the
critical Buainaro—Gallonc point (wherc stability against mass asymmetry is
lost) to 2%/A = 23, in approximate agreement with recent experimental evi-
dence. The reduccd stiffness alsc leads to a secondary minimum in the poten-
tial encrgy of “%ca and certain other light nuclei, which provides a natural
interpretation of the rotational states ubserved in these nuclei. In addi-
tion, exg;rimenta] interaction-barrier heiEhts for systems ranging from
“%ca + '*0 and %Pb + "He to Kr are reproduced to within 5%
accuracy. This method also provides a way to calculate the nuclear macro-
scopic energy corresponding to the inner surface of a bubble nucieus [64].

3.3. Single-particle potential

Once the nuclear shape is specified and thc macroscopic energy is cal-
culated, the next step is to generate the single-particle potential for this
shape. We know of course that the true potential is nonlocal and that it
would require a selfconsistent calculation for its determination. But the
great virtue of the macroscopic-microscopic method is that single-particle
effects can be extracted approximately from a local static potential that is
not generated selfconsistently.

Figure 2 illustrates our qnalitative expectations concerning the spin-
independent part of the nuclear potentinl. Because the single-particle po-
tential arises from the interaction of a nucleon with its close neighbors,
it is roughly constant in the nuclear interior and rises to zero within a
surface region whose thickness is approximately independent of nuclear size
and position on the surface. For separated nuclcei the potential has similar
featurcs concentrated in each of the individual nuclei. This means that near
the scisslon point in fission, or near the point of first touching in heavy-
ion rcactions, the potential is roughly constant in the interior of each
nuclcus and is clevated somewhat in the neck region. The overall geometrical
shape of the potential follows closely that of the nuclens.

The potentials that have been developed for approximating this behavior
fall into two general classes: modiflced oscillator potentials that rise to
infinity at large distances, and diffuge-surfacn potentials that go to zero
at large distunces. Modified oscillator potentials are usually obtained by
starting with a potential that rises parabolically to infinity from either,
one or two conters.  An angular-momentum correction term proportional to L2
is then added, which in effect makes the potentlal rise more slowly near the
center and faster near the nuclear surface. In an ordinary {one-center) po-
tential, which has been studicd cxtensively by Nilsson and others [1, 2, 21,
23-2Y, 32, 65, 66], the minfmum of the orlgilnal oscillator potential always
occurs at the nuclear center. llowever, for sufficlently large deformations
1t 1is possIble that the $2 correction term leads Lo a potential that in ef-
fect has twa centers [67]).  Tn rhe potential commonly referrad to ag a two-
centoer potentlal, which has been wned by Cherdantsev, Greiner, Mosel, and
others [36, 3943, 52], two scparate wminfma occur in the orlginal oscillator
potuntial dtuelf. At flrst slght thls may scem clearly preferable. llowever,
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when the fragment centers separate, the two—center potential rises several
times as rapidly in the neck region as would be oxpected from fundamental
considcrations. This leads to the possibility that some of the conclusions
based on this potential are associated with this spurious feature.

There are also two major types of diffusc-surface potentlals. The first
type is obtained by generalizing a spherical Woods-Saxon potential to de-
formed shapes. In the generalization used by Pashkevitch, Strutinsky, Paulil,
and others [3, 5, 32-35, 37, 68], the potential's normal diffuseness is to
first order constant over the surface. The resulting generalized Woods-Saxon
potential is satisfactory for most shapes, but contains unphysical featurcs
when the neck radius is smaller than the diffuseness parameter. It therefore
cannot be used to describe shapes ncar the scission point in fission or near
the point of first touching in hcavy-ion reactions.

The second type of diffuse-surface potential is generated by folding a
Yukawa function over a uniform sharp-surface generating potential whose shape
corresponds to the given nuclear shape [45-50]. In other words, a finite
square~well potential of the appropriate depth and geometrical shape is con-
verted into a diffuse-surface potential by folding a Yukawa function over it;
the range of this function is chosen to reproduce the desired surface diffuse-
ness. For small deformations the resnlting potential is very close to a
generalized Woods~Saxon poteniial. The major advantage of this folding pro-
cedure is that it can be used to generate easily a potential for any con-
ceivable shape, including the transition for shapes with small necks to a
potential concentrated in each of two indlvidual nuclei, or vice versa. The
potentials shown in Fig. 2 were generatced in this way.

Besides the spin-independent part of the potential, there 1s an addi-
tional potential arising from the interaction between the nuclcon spin and
orbital angular momentum. Finally, protons feel a Coulomb potential, which
is calculated casily by assuming that the nuclcar charge is distributed uni-
formly within the nuclcar surface or within the nuclcar generating potential.,
However, in studies with oscillator potentials the Coulomb potentlal usually
is not included explicitly, but its cffects are absorbed by readjusting the
parameters of the nuclear part of the potential.

Irrespective of how it is generated, the final potential usually con-
tains about six parameters that effectively describe the depth, radius, dif-
fuscness, and spin-orbit strength of the potentials for neutrons and protons.
In studics with oscillator potentials these parameters are usually determilned
from adjustments to experimental single-~particle levels in heavy deformed
nuclei. For dlifusc-surface potentlals some of the parameters can be ob-
tained from stotistlcal calculatlons [69]; the remainder are usually deter-
mined from adjustments to cxperlimental single-particle levels in cither
heavy spherical or hcavy deformed nuclel.,

3.4. Solution of Schrodinger equation

Once the potenilal approprilate to a piven shape 13 penerated, the next
step 18 to solve the Schrodinger cquatlon for the singlo-particle energles.
There are two genceral methods for doing this: expanslon In bausts functions
and finite-difference methods.  The exponslon methods are nsually neveral
times as fast as the Clnlte~dIfforence methods for calculatlng single-partlele
cnergloes wlth comparahle aceuracy |46, 47]. TFor most applicatlons In fiusslon
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the preferred choice is to cxpand the wave function in a sct of deformed
harmonic-oscillator basis functions.

3.5. Microscopic corrections

Once the single-particle energy levels are solved for, the microscopic
corrections to the potential encrgy must be extracted from them. The two
most important of these corrections are the shell correction and the pairirg
correction,

AVmicroscopic = & henn t AVpairing

They arise because of fluctuations in the actual distribution of levels rela-
tive to a smooth distribution.

These fluctuations are especially dramatic for a pure harmonic-oscillator
potential, as shown in Fig. 3. For a shape of high symmetry, such as a sphere
or a spheroid whose major axis to minor axis is in the ratio of two small
integers, the levels group intc highly degenerate shells [70]). For such a
shape, the energy of the system is relatively lower for particle numbers that
complete a shell than for intermediate particle numbers. At other deiorma-
tions, the levels are distributed more uniformly. In an actual nucleus simi-
lar flnctuations in the single-particle levels give rise to microscopic cor-
rections that oscillate with deformation and parti:le numbers. These are the
oscillations that are responsible for deformed ground states, s=cond minima
in fission barriers, and asymmetric sadcle~point shapes.

The primary theoretical justificatlon “or extracting the shell correc-
tion from single-particle energies is proviued by the stationary property of
the Hartree-Fock solution: To first ocder in the deviation of the actual
nuclear density from a smooth density, the total lartree-Fock energv is equal
to the sum of single~particle energies

N
n=1l

calculated from a smooth single-particic potentic?, plus a smoothly varying
term [3, 5, 9, 10, 65, 71, 72]. Therefore, to first vrder in nuclear density
deviations, the fluctuations that we want to isolate are contained ir this

sum of single-particle encrgices. As Brack will discuss later in this ses-

sion [71], second-order eifccts in the shell correction [72] arc expected in
general to be about 1 MeV in magnitude, but could ba somewhat larger for spher-
ical nuclel. These second-order offects are probally responsihle for some of
the remaining discrepancies between calculated auad experimental nesults,

The extraction of the shell correction from the single-particle enerples
has a simple geometrice interpretation, as {llustrated In Fig, 4. Flrst piot
the energies € at a given deformation ve the single-particle number n.
For a macroscople system wlthout gingle-particle effects all the energioes
wonld lle on a smooth cnrve, but the discretencss of the single particles
causcy some fluctuations about a monotonteally increasing function of n.

The discrete energles ¢ can be repgarded as a stadrcease fuaction formed by
horizontal and vertical Tines through the polnts. Next remove the local
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fluctuations of the stalrcase function whilce retaining Its long-range be-
havior by passing a smaoth curve ©(n) through it. Then the shell correction
for a specificd number of particles N 1s gplven simply by the difference be-
tween the arcas under the staircase curve and the smooth curve up to N; that
is,

N N
-: € -f c(n) dn 5
n=1 = 0

A varicty of methods have been proposed for determining the smooth
curve €(n). Uufortunatcly, most of these ma2thoda work only for certain
simple potentlals and cannot be used, for example, with potentials that con-
tain a spin-orbit term. +For realistic potentials of arbitrary shape, the
most satisfactory way at present to determine €(n) is by usec of Strutinsky's
method [21], which was described to us at the second TAEA fission symposium
by Strutinsky himseclf [32]. We necd not repcat the technical details of his
method here.

An alternative method has been studied for calculating the shell cor-
rection from the high-temperaturc dependence of the entropy of the single-
particle system on excitation energy [73-77]. For heavy nuclel the recults
obtained by use of this method agree with those obtained by use of Strutinsky's
method to within about 0.5 MeV. TYerhaps this method will be discussed during
the session on thermodynamic propertics of nuclel.

The sccond type of single-particle correction--the palring correction--
arisee from the short-range interaction of correlated pairs of nuclcons moving
in time-reversed orblis. This is the most important an:d easily treated of the
many residuval Interactlons felt by a nucleon., Relative to the energy without
palring, thls interaction always lowers the cnergy. But relative toe the pair-
ing cnergy of a smooth distributlon of levels representlng an average nucleus,
the palring correctlon can have cither sign. The lowering in euncrgy is larger
when more pairs of nuclecons are uble to interact, which occurs when the level
density near the Ferml surface 1s high. This is opposilte to the behavior of
the shell corrcectiden, and this leads to a partial cancellation of the two cor-
recttons.  Rrcause the shell correction is larger, it determines the maln
trends of the total single-partilele corrcection.

The eascentidal features of the pairing corvrection can be deseribed In
terms of a conutint palving Intceractlon between a glven namber of palrs of
particles.  ‘Then a standoard palving calculation In the BCS approximition
gives the lowerlep In enerpy for the actnal levels. A shnllar calenlatyon
for the same number of partleles dintributed smoothly accovding to @ (n), or
In practlcee distribated andformly, gives the Towerlag for an averapge nuclens.
The difference between the Towsring for the actual levels and the loveriag
For the mmooth lTeveln s the palring correctlo, .

Onee the Clactuatng shell and palrlng corvaeetlons are caleulated, the
final ntep In to add them ta the amooth meerorcoplc enerpy calenlated In
atep 2 to obtaln the total potentlal cnerpy.

These methoda have now been used by several gronps to ealeniate the [ ls-

nlon hivvlers tor dozens ol anelel [1=b, 2428, 32247, Al-473, 47=H0, K2, ),
66, O8],  In most Inataneen the resulta obtaloed by the dil ferent gronps are

~-10-



qualitatively similar, although some differcnces exist. Rather than trying
to roeview all of this work, we would like to descrilbe instcad some new re-
sults that we have obtained rccently at Los Alamos.

4. NEW CALCULATIONS

We have performed two separate new calculations: one with the folded
Yukawa potential and the other with the modified oscillator potential. Both
of these calculations are limited to cven nuclei. In the former calculation,
there arc threz maln differences compared te previous studics with this
potential. First, we now usc the droplet model in place of the liquid-drop
model for caiculating the macroscopic energy. The constants of the droplet
model are a preliminary set determined by Myers and Swlatecki in January 1973
[56]. We may thercfore regard the present results as one step in the complex
iteration that is required for a final dctermination of these constants.

Second, we now investipate a larger part of the deformation space when
determining the extrema of the potential-energy surfaces. Our exact procedure
is described in the appendix, but the idea is that in the region that includes
the first and recond saddle points and the second minimum we inimize the po-
tential energy calculated in the three-quadratic-surface parametrization with
respect to a necking ccordinate. During this minimization the eccentricitics
of the two ends of the nucleus and the distance between the centcers of mass
of the two nascent fragments arc held fixed at the values corresponding to the
y family of shapes [45, 47]. 1In the region of the ground state a somewhat
different constraint on the three-quadratic-surface parametrization 1s used.
The pround-statc cnergy is also calculated by use of the two coordinates ¢
and €, in Nilsson's perturbed-sphercid parametrization [1, 2, 23-29], which
for most deformed auclei ylelds a lower encrgy. In the region somewhat beyond
the scecond saddle polnt down to scission the potentlal energy is no longer
minimized (because the nucleus is on the side of a steep hill), but is cal-
culatad instead for shapes along the most probuble idecnlized liquid-drop-modcl
dynamical path for fissllity parameter x = 0.8 [44, 5] and for asymmectric
perturbations about these shapes. The flssility parameter 1s defined as the
ratio of the Coulomb cnergy of a spherical sharp-surface drop to twice the
spherical nurfacoe cnergy.

In all reglons the final potential cnergy is displayed in terms of a
flasion coordinate r defined as the distance between the mass centers of
the twa halves of the dividing nucleus and a mags-asynmetry coardinate
(Ml - M,)/M defined ag the difference hetweon the masses to elther egide of
the palnt m?dwny between the ends of the shape. TFor computational convenlence
the {inslon coordlnate for an anymmetric shape is chosen equal to the fisslon
coordinate for the corresponding symmetric shape.

The thivd difFerence Is that we are now using a new set of paramceters
for the single=partlele potential.  Onr orlploal set of paramctoers wag de-
termined from statiatieal calculatfons and {from adjustmentn to expoerhnent al
shaple=partlcele Tevels dn the heavy spherieal nuclceus 2001y, [47]. 1n the
new set, whileh hasg heen determined In collaboration with Nilason, we have ro-
determined the range of the Yukawa folding function (which repulates thoe
nurface dIFfmencen of the potential) and the apln=orblt Interactlon strengthy
For neutronn and protons From odjnstmentn to experlmental swingle-partleleo
Leveln In heavy detormed nuelels  The reaulting valuea ol theae constants are
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a=0.8 fm ’

A = 36 ’
n

and
A= 34 ;
P

the well depths for neutrons and protons and the radius of the spherilcal
generating potential remain unchanged [47]. The potential's surface is now
11%Z thinner than previously, and the spin-orbit interactions for nentrons and
protons arc now stronger by 12% and 6%, rcspectively. These diffcerences a-
rise mainly from requiring the calculated single-particle levels to reproduce
the observad gap at N = 152 in the experimental ncutron levels. With these
new parameters, the experimental levels in 2%8Pb are reproduced slightly less
accurately than before. It appears cxtremely difficult to find a slugle sct
of paramcters that reproduces satisfactorily the experimental levels in both
spherical and deformed nucled.

In the new calculation with the modified oscillator potential, the only
difference compared to a previons study with this potential [28] is the re-
placement of the liquid-drop model by the droplet model; we therefore omit
the Intermediate resxults cnlculated with this potential and present only the
final comparison with cxperimental data.

We show in TFig. 5 the barriers that are calculated with the folded Yukawa
potential for a group of actinlide nuclei. The dashed curves glve ihe poten-
tial encrgy for symmetric deformations and illustrate what we belleved about
fission barriers fouur years ago in Viecnna., At that time we thought that a
second minimum cxisted between two peaks in the harrier and that it wao re-
sponsible ior shape isomars and intermedlate structure In fisslon cross scec-
tions.

This sccond minimum occurs because of speciol degencracles in the ringle:-
particle energles for shapes of high symmetry. In particnlar, when the un-
cleus 1s approximatcly twlee as long as It s wide, the cnergy s Joweroed
substantinlly far particle numbers that corrcespond to actlnide nuelel,  Be-
cauge of thils--and boecouse the wmacroscople contrlbutlon to the enerpy 1s
clase to Its saddle polnt and hence rvelatively flot at thie delformation--
the resulting fisalon barrices of most acstinlde nuclel contaln a wecond
min hnum,

But. in Viema we st conld not underatand why the calenlated barrler
helghts reproduced the experlmental valuea wo poorly, or why actinlde melel
usually dlivide asymmetrieatly.  Shortly thercalter several caleulatlonn [2=5,
20::28, 3337, 42, 47, 49] Indlcated that the second saddle polnt In the [ls-
gian barrlers of the Hghter actiubde nnelel  ld Jowersd by several MeV when
masee-anymmet rice deformat. lons arve Introduced, as Indicatoed here by the anolld
curved.  For the heavier actlolde nnelel the enerpy of the gecond saddle
polnt In reducod mnch leas by mass- anywmety e delormat Fone,

The fleat peak s Tomud to be atable wlith reapect to maag aaymmetry,
However , studles by Larvsson, Pachkevich, Panliy, and othera [ 1, 66, (8] have
demonsitrated Lhat lor the heavier actInlde anelel the [lheat peak s unstable
with respect to axial anymmetry (pamma deformat lons); thlhn lowers the enerpy
by over 2 MeV In some canen,
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The variation of the calculated heights of the cqullibrium polnts with
neutron number arises primarily from single-particle cffects. Howoever, the
variation of the heights with proton number is associated also with large
changea in the macroscoplce energy. 1Increasing the proton number Z pulls in
the muximum of the macroscopic energy to make the filrst peak higher than the
second. Conversely, decrecasing Z pushes out the macroscopic maximum to make
the second peak higher than the first.

Ve come finally tn a new observation that is apparent in Fig. £: For
small neutron numbers (below about 146 in these calculations), the asymmetric
second saddlc point 1s actually split into two indivldual saddle poiunts
separated by a third minimum! Such a splitting is possibly responsible for
the broad resonance observed in the fission cross sections of the ccmpound
nucled 23'Th, ?3?rh, and 2%“Th [78, 79]). These data have always bcen inter-
preted as Implying that the first saddle point and second minimum in the bar-
rier are substantially higher than the calculated values. But it now appears
likely that thesc experimental values refer instcead to the middle saddle point
and third minimum in the barrier, which offers a simple resolution of the
thorium anomaly. These third minima are associated with a shift in the loca-
tion of the asymmetric sccond saddle point from a large distortion r to a
smaller distortion as the ncutron number increasces. Similar third minima are
also present In some previous calculations for thorium isotopes with both the
generalilzed Woods=-Saxon potential [37] and the wodifiled oscillator potential
[28], but the possible significance of these minima was not realized until
now. It is conceilvable that such third minima arc a spurioue feature of
limited shape paramcetrizations, but this can be checked through further work.
The posslbility of this additional complexity in the vicinity of the asym-
metric sccond saddle point means that great care should be taken when deter-
mining barrvier hedghts from fission cross sections [6], when calculating
spontuncous-figseion halflilves [35, 80, 81], and when correlating the proper-
ties of flseslon lsomers [7].

Some of these points are appreciated batter i1, a contour map where the
miss-nsynmetry coordinate 1s included explicitly. 7Two such maps are shown
in Flg. 6: one for 2%%U, where the experimental mest prohable mass division
Iw asymmetrle at low excitatlon cnergy, and the other for 258, where the
most probable mass divislon ls symmetric. We may think of the ground states
of thete naclel as lakes that are separated from the regions to the right by
mountaln rangen.  Each range contalns one or more peaks, additionnl lakoes,
and patsen (saddle polntr), although in other respects they are differcunt in
chavacter.  For cxample, the >°%pm ranpge s slgnificantly narrower tham the
23t range; this avlaes becaune of the larger Coulomb force in 250pm,

For cach nuclens the Flrst laka, flrat pass, and socond lake occur for
symmet:r e nhapen.s (Axtally anymmetele dlstort lons, which are not conslderad
hvrv,'wnuld Tower the flrat paus by about 0.3 MeV for #3%y and by about 2 MaV
for “""Fm [11.)  Beeause of Itn high ¢levatlon the symmetrle peak far 2300 1n
timw ccapped, llawever, T fs not necesnary to go over thin forbidding peak In
order to flaslond the asymmet vle ronte around thig mountaln In 3.7 MeV lower,
In addTtiony the auvametr e Take that saparstes the tvo anymmet rie panses
provides a convenlent vest hng place,  Beyond this lake, the anymmetrle ronte
for 20 divides,  One braneh Teads over an anymnetrle pasa down into another
smal 1 Take In the nymuictrle valley.,  The socond branch Teada over a slliphtly
higher and wore asymmetrle pana Into an asymmetrle valloy.  Theso two valleys
are separiated by an asymmetrie mow-capped peak.  We have not yot hnvent Igated
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these valleys in detail, but if a similar topology occurs for nuclcl near
radium ft could possibly be responsible for the experimentally observed three-
pcaked mass distributions for these nuclei. In contrast, the symmctric pceak
for 25%m is relatively low in elevation, and only 1.2 McV is gained by tak-
ing the asymmetric routc around this mountain.

Apart from the equilibrium points, such potential-energy surfaces are
not invariant under a change of coordinates. It is well known that valleys
can be transformed into ridges, and vice versa, by coordinate trunsformations
[82]. We therefore do not attach a great deal of significance to the appar-
ent valleys or ridges on the steep hillslde between the saddle and sciss:ion
regions. The answer to the motion in this region must awvait a proper dynam-
ical calculation; some aspects of dynamics will be discussed later in the
symposium by Paull, Slerk, and others [35, 51].

We do note, however, that becyond the last saddle point: the apparent
gtability shifts between symmetric and asymmetrilc shapes. Such shifts arise
from oscillations in the single-particle corrections. Irom fundamental con-
sidcrations one expects thesc oscillations to continue well past the saddle-
point region provided that the nucleus continues to elongate as it does along
the path closen here.

llowever, the oppositc result was obtainad recently by Mustafe, Mosel,
and Schmitt fn some calculations with the modifled two-center osciilator
potential [41-43]. Tigure 7 shows their calculated potential-cnergy surface
for 236y, which 1s obtained by minimizing the potentiul energy with respect
to overall clongation and with respect to the difference in the transverse
semiaxes of th~ nascent fragments. Note the apparcent valley that extends
from the scission region all the way back te the second saddle point.

Part of the diffcrence between these two results for 23U stoeng
use of diffcrent single-particle potentials, as lllustrated In Fig.
as the folded Yukawa potential is practically constant along the sywnm
is, the two-canter osclillator potentinl is 5 MeV higher in the middle t
the center of elther nascent fragment, even though this particular two--co
saddle--point ghape does not contaln an Indented neek! This carly risce of th
two-center potentinl in the neck region contributen somewhat to an cuarly
formatio of shell structure asusoclanted with the fragmenta.

from thao

But the main diffevence avises becanne different shapes are conslderoed.
In our calcnlationa the distance between the fragment mass centers Inercasoen
continuously, whercas Mustafa, Moscl, and Schmltt minimblze the potential
encrpy with respect to thisa coordinatae.  ‘This makes It poaslble for the nu-
cleus to adjust St Jength as 1tn neck radlug 1s decrcased in order Lo remain
in a local asymmetric valley.  Shnllar locenl valleys are cevident In the
patent lal=encrpy surfaces calenlated by Pauld w'th a peneralized Woods- Saxon
potent lal and the 1lquld- drop model 5] These valleys are allgned approxe-
dmately along {Ixed valner of the diatonee between mang centers ro With 1n-
creasing  r o the nueleus passes from one valley Into another, which Ia the
sltuntfon tn Flg. 60 When the anelens adjusta Tt lenpgth to vemaln In an
asymmotrlce valley, It arrvlves ot the neleslon veplan wlith a more compact
phapey this parvtlalty explalun why the nelsnlon encipy In higher In Flg, 7
than In Fip. 06,
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5. FNERGILS OF THE 1.0CAI, MINTMA AND SADDLE TOINTS

We turn now to a comparicon between calculataed and experimental energies
of the cquilibrium points in the potential-encrgy surfaces.

5.1. Folded Yukawa potentinl

Figure 9 compares the calculated and cxpcrimcntal ground-statc masses
of heavy even nuclei; both spherical nuclei near ®»b and deformed actinide
nuclel are included. The calculations reproduce the gencral trunds of the
experimental results, but some systematic discrepuncices rcmain, as shown in
the lower portion of the flgurc., Similar discrepancles have been observed
previously [2-5, 24, 28, 29, 57]. When viewed over a broad region of nucleti,
the discrepancy in the ground qtate masscs oscillates with particle number.
The maximum error occurs for ’??Th, where it is 2.6 MeV in magnitude. For
the isotopes of a given actinlde element, the miaimum in the calculated
ground-state single~particle correction is always at neutron number N = 152.
This i& because the paramcters of the single-particle potentlal are adjusted
to reproduce the gap at N = 152 in the experimental single-particle levels
of ground-state nuclel. However, this minimum in the ground-state single-
particle correctlon is observed experimentally only for the hcavier actinide
nuclel (Z @ 100). For the isotopes of a given actinide element, the dif-
ference between the experimental and calculated massce is an increasing func-
tion of neutron number.

Provided that it docs not affect the potential encrgy at larger deforma-
tions in the same way, such an error in the calculated ground--statc mass can
propagate into the culculated heights of the seddle points and remaining
minima in the potential-encrgy surface. 7This is illustraied Ln Fig. 10 for
cven actinide nucled between thorium and fermium. YThe solld curves give the
appropriante theoretical hedght relative to the calculated ground-state cnergy,
and the dashed curves gilve the corrcsponding height relative to the erperi-
mental ground-state energy. The differcnce between the solid and dashed
curves 1n therefore simply the crror In the caleulated ground-state cnergy.

On the other hand, an crror in a term that is independent of deformationm,

such as the volume enerpy [28), would not affcect the calculated heights of
the remaining extrema.

The firnt column of Filg. 10 comparces the theorctical and experlimental
heights for the flrst saddle point. 7The theoretical resnlts do not include
the effects of axially asymmetrie deformationg, which would lower somewhat
the calenlated helphtn for the heavier nucled [1]. When allowance is made
for thin lowerlng, the theoretical hedghta (relotlive to either the calculated
expoer lmental pgromd=state encregles) are alightly lower than the experi-
hedphta, The second colum iu a slmllar comparison for the height of
d whnlmmm,  Apart from thae resnlis for tharfmu, the theoretical and
oxper hmen values are in approximate agreement, although both the solid and
dashed theorad™Ngeal enrves show a stronger dependenee on neutron number than
Is obherved expe™gentally.

men
the ngd

For Isotopen of thdsJum the caleulated gecond minlma are about 3 MeV
lower than the experbmentaT valnes commonly nttributed to thils minfmm, ‘This
Tavpe digcrepaney-<topether with a slmllar dlncrepaney at the vt saddle
polnt-cont ltnten the thortum anomaly [, /8, 79]. We sugpest Lthae a
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possible resolution of this anomaly is the third asymmetric minimum in the
barricr, whose calculated heights agrcee with the experirental values to with-
in 0.5 MeV. The discrepancies for thorium that are evident in the first
column are reduced somewhat when the exporimental heiphts that are commonly
attributed to the flrst saddle point arce compared irstead with the calculated
helghts for the lower of the two asymmetrle saddle points that surround the
asymmetric third mirimum. But these calculated heights are still lower thin
the experimental ones by about 2 MeV.,

For plutonium the experimental heights of the second minimum are sysitem-
atically lower by about 0.2 MeV for odd-ncutron isotopes than for aven iso-
topes. As pointed out by Nilsson [67], this implies that the pairing gap is
smallcer by this amommt at the sccond minimum tlim at the ground state. 'This
ariscs because the single-particle levels have a larpger shell at the second
minimum--where the shape has a ratio of axes of approximately 2/1--than at
the ground state. Such odd-particle fluctuations in the heidght of the second
minimum arc evident in the calculations of Ref. |20].

The third column of Fig. 10 comparcs the thecoretical and experimental
heights of the sccond saddle point. TFor thorium and uranium both the solid
and dashed theoretical curves are somewhat lower than the experimental values
and show a morc rapid variation with ncutron number. For plutonlum and curlum
the dashed curves are in approximate agrecment with the experimental valnes,
but the solid curves vary too rapldly with neutroan number.

In some calculations of fission-barrier heiplhts [34, 80, 86], the values
of two constants in the liquid=drop model are adjusted In order to reproduce
optimally the cxpervimental helghts of the nccond saddle point.  Because the
calculated heights are affected to an unkunown extent by the poorly understood
systematic error in the calculated ground-state cnergles, groeat care must be
exercisced when attempting to determine liquid-drop-model constants in this way.
As an cxtremce cxomple, had experimental rather than calenlated ground-state
encrgies becn uscd in the previons studies |34, 80, 86], the resulting values
of the surface~asymmetry constant K would have bheen subsatantlally lower.

At present we are calceunlating the (lsslon barrlers for a broad region of
lighter nucled. The calculated barrier hoelght for 2100 1s 23.3 MeV relative
to the canlenlated ground--state energy, and is 22.0 McV relatlve to the experl-
mental ground-state cenergy.  Thesce theorctical helghta are to be compared with
21.4 and 20.5 MoV obtalned In two different oxperimcats [87], and wlkth the
value of 24.7 McV calealated by Mosel with the modlfled two-ceonter osclllator
potentlal and the Liquid-=drop model [4)].

5.2, ModIfled onclllator potent knl

In the next three fipgnres we present some analogons reanlts obtalned
with the modif led onclllator patentlal,  In Flge 11 we tee the ef feet of
axtelly asymmetrie (pamma) distortlons at the fivst saddle polnty thin will be
dincunsed In pgreater detall later In thlg scuxlon by Larieon Jt)e We note the
excellent apreement with experlmental resnlty that s achleved for the heavier
nuelel by Ineludlug axlally anymmetyie dintort fons.  lowever, there are nome
sipalfleant deviat lonn between the caleulated mud experbmental resnlta lor the
Yighter eotopen ol thorvdum aad uran hm,

The resulta shown In Flpgne 12 and 173 for the asccond mlulmm and the
noecoml nadd e paluty renpectlvely, are caleulated In the name way an thone of
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Ref. [28] wlth two cxceptions: We now use the droplet model for the macro--
scopic cnergy and Include a zero-point cnergy of 0.5 McV at the ground state
and second minimun. The strength of the pairing intceraction is taken to he
independent of deformiation. In Fig, 12 we see that although the cxperimental
and calculated heighis of the second minimum are in approximate agreement, the
calculated values depend more strongly on neutron number than do the ckperi-
mental values. In particular, the calculated valuea contain a minimun at

N = 144 and a maximum at N = 152, whercas the experimental valucs are approxi-
mately independent of necutron number (apart from the odd-particle fluctuations
discussed carlier).

As secn in Fig. 13, the calculated heights of the second saddle point for
uranium and plutonium are fairly constant as functions of neutron number and
are in excellent agreement with the experimental results. The agrecment 1is
also very good for curium, whercas for thorium the calculated values are about
1 MeV higher than the experimental values and vary somewhat too rapidly with
neutron number.

For the hcavier actinide nuclei there are no experimental measurcments on
the height of the siccond saddle point. However, the spontancous-filssion half-
life for baI"m is unexpectedly short compared to that of the ncighboring
nucleus 256vm, In particular. the halflife of 380 Ua for 2°°Fm is onJ
4 x 10™° times that for 25%pm [88, 89]. This may indicate that for 25%FPm the
second saddle point is lower than the ground state [80]. This could also be
true for ”“"Fm, which has a short spontaneous-fission halflife of 3.3 ms
[90]. This indirect evldencc therefore suggests that the heights of the
second suddle points for 2'%m and ?°°Fm arc about zero. This 1w reproduced
approximatcely by the calculations shown in Fig. 13,

5.3. Comparison of folded Yukawa and modified oscillator potentials

For both the folded Yukawa potential and the modificd oscillator poten-
tial, the present calculations agrec better with experimental results than
prov]oun calculations with these potentilals [20, 28, 47, 49]. O©Of particular
importance, the rapld variation of the height of the second saddle point with
necutron number that waa predlceted by the old calculations but i1s not obscrved
experimentally 1s reduced substantially. For the modificd oscillator potoen-
tinl thia lwproved agreement stems from the use of the droplet: model for the
macroscople enerpy. For the folded Yukawa potentlJal the introduction of addi-
tional shape coordinates and the use of different parametern for the single-
particle potential also contrihute. Unfortunately wi are not able to answer
the dellcate question of whether the improvaed agrecement arlses because of the
higher-order terms In the draplet modol or silmply because af a better set of
constantan for the leading terms.

In carrying out this ntudy we have come to approeclate the remarkabla
slmilarity In the remnlta caleulated for actlulde nuelel by use of potentialn
Lhat. at flrat sight veem radleally different, Stmllardtlen near the gromd
atate arce underatood canlly becaune we adjuat the parameters of cach potentlal
to reproduce the name experlmental single-parcticle leveln In heavy deformed
nuclel. Bot In additlon the two calceutat lons yleld almllar reunlts at the
sccond sadille polnt for detalled queat fonn: For oxample, FTor which sotope
doers the waxhnam devreane In energy dine to anymmetrle dlatort lonn occur? Aud,
far whileh Iaotope does the loeat lon of the anymmetrvie nccond nadd le polat
shift froma larpe distortion r to a mmaller dlstortion? The two
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calculatlons answer both these questions in the same way to within an aceuracy
of 2 nentrons for all even uuclei between thorimm and fermium., This suppgestao
that the dependence of single-particle effects on deformation arisces primarily
from the overall geomatrical shape of the potentilal rather than from fine de-
taills associated with 1t. This agrecs with the conclusions obtained by Balian
and Bloch on the basis of closed statlonary paths in potentials [91].

But of course there are some differences In the results calculated with
the two potentials., For cxample, comparce the rapid increase in the height of
the sceond saddle point with incrceasing ncutron nmober just below 152 in the
folded Yukawa calculations wlith the relatively constant behavior in the modi-
fiod onclllator calculations., 7This difference comes about from effects both
at the ground state and at the second saddle polnt. As an cxample, for plu-
tonium the ground-state cnergy calculated with the folded Yulkawa potential
decrcasecs by 1.1 MeV between N = 144 and N = 152 and the saddle-point cnergy
increases by 1.0 McV, which increases the height of the sccond saddle point
by 2.1 MeV. 1In the modificd osclllatar calculations the corresponding values
arc 0.19 McV and 0.02 McV, which increasce the height by only 0.21 MeV. At
the ground stnte the diffcrences arise because the single-particle level den-
gity near neutron number N = 144 is slightly higher for the foldad Yukawa
potential than for the modified oscillator potcatlal (even though both poten-
tiuls are meant. to reproduce the same experimental levels).

We find that the lcvels at the sccond saddle point arce much less sensi-
tive to changes in the parameters of the single-particle potentianl than are
those near the ground state. The major differencen at the second saddle
point secm to arlse because In the folded Yukawa caleulations we vary the
necking coordinate 0, Zndependently of the separation and asymnetry coordi-
nates, wherean In tha modifled oscillater calculations the neckirg conrdinate
€, has a prescribed dependence on the other coordinates.

Another dlfference is that the heights of the sccond naddle point do not
decrease as rapidly with Increasing proton number In the folded Yukawa cal-
culations as In the modificed oscillator calcutatlons. This arlsces primarlly
beecause the sccond saddle point for heavy nuelel near 2“’Fm, for example, oc-
curs near the macroscople saddle polnt with the folded Youkawa potentlal,
whereas with the modlfled osclllaior potential 1t occurs at a somewhat larger
deformat fon, where the macroscopfe contilbution s abont. 2 MeV lower.  The
main recason that the snccond saddle occurs at a emaller deformation with the
folded Yukawa potential Is that the slpple particle levels cross carvlicer,

In order to permlt a better cholee between the avallable singlecparticle
potentials, and In order to determine the constiants of thene potent lals more
preclsely, wo need more direct experimental Infoimat lon at larpe deformatlons,
This Includes the determbnatlon of the nuclear shape ond the Ldentilfleatton
of the slegle-partlele states at the gecond winhman, for whilch some notable
flrat utepns have boeen taken |92-94],

Wa agaln dtress that, desplte these minor differences, the two poten-
tlaln ylold remarkably slmblar vesnlts For the Hieslon barviers of act lalde
nuclel, Tt Iy therofore dlisconcert Ing to note the aclatlvely Tavpe difTer-
cnees In the prodiettona Tar superheavy anecel haxad on the two poteutrltaly
[24, 25, A7-h9).  In part Ladar, the mod I TGl oseillator potent bal predilets
that the castern vhde of the Tsland of superheavy nnelel (Foeo, the alde with
nentron numhey preater than 134) In more ntable than the western slde, wherean
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the folded Yukawa potential (as well as the Woods-Saxon potential) predicts
that the western side 1s more stable.

We had orilginally thought that part of chis difference was caused by
having uscd experimental single-particle levels in 208%pp to determine the
parameters of the folded Yukawa potential and single-partlcle levels in heavy
deformed nuclel to determine the parameters of the modificed oscillator poten-
tial. But now that we use levels in heavy deformed nuclei for both potentials
the differences are even greater [50]! This comes about because the surface-
diffuscness parameter for the folded Yukawa potential is now smaller, which
makes this potential more like a square-well potential. We conclude that al-
though satisfactory :agrecement with experimental results may he achicved for a
limited region of nnclel through the adjustment of parameters in the single-
particle potential, great care must be exercised when extrapolating the poten-
tlal to new regions of nuclel.

b. FISSION-FRAGMENT MASS DISTRIBUTIONS

We come finally to the puzzle that has intrigued physicists ever since
the discovery of fission: the preference of most actinide nuclei at low ex-
cltation encrpgy to divide asymmetrically. We now understand this preference--
as well as the preference in other siltuatlons for nuclei to divide symmetri-
cally--~in terms of single-particle effects superimposed on a smooth macro-
scopic background.

6.1. Crigin of asymmetric instabilitles o

Let us oxamine these two contributions individually. As illustrated in
Flg. 14, the saddle-point shapes for the macroscopic portion of the energy are
stalle against nass-asymmetric deformations for nuclei heavier than zbout sil-
ver and are unstable for lighter nuclei. Because the quantity plotted is
cqual to the stiffness aganilnst mass asynmetry divided by the corresponding
Inertla, the effective macroscople stiffness agalnst mass asymmetry increnses
sharply for hcavier nuclel, In order for an asymmetric mass division to oc-
cur, a posslble single-particle preference for asymmetry must be sufficlently
strong to overcome th!s microscopic preference for stablllity. Because the
magnitnde of slnple-particle cffaect: vemains approximately constant with in-
croaging mass number, thils !ncresse Ju the stiffness of the macroacopic con-
tribution sngpests that sufficlently heavy nucled will always prefer to divide
symmetrically., Some recent ealenlations with the modified two-center os-
clllator potential support thls observation [43].

We have already scen that the addition of siugle-particle cffocts to the
mcroscople enerpy can lead to a high end sharp peak in the total potentlal
enerpy as a functjon ol the symmetrle flsslon coordinate. Thls penk s
canned by an imnsually hiph single-particle lTevel density near the Ferml sur-
face for 1thils partlceular shape.  Any type of deformat lon that reduces thils
high Jevel denslty lTeads to a decreane in the alngle=particle correctlon.
Whercas the slapgle-part lele levels depend lTincarly upon nymnetric deformia=-
tiomn, they are to flrst order fndependent of asymmetrle deformations.  For
large asymmetrle deformat lons many levels remadn practleally cenntant, whereas
nome apecllle Tovels vary stronply |27]. When these spectlle levels ave near
the Ferml sm face, anymmetrie deformat lons can reduce the shiyle=particle cor-
rection.  Then, provided that the macroascople enerpy does not Incrveasne 10o
raphdly, the total potentlal energy should have an asymmatrle path of lower
energy leading, around the symmetrle peak [27, 906).
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Two near-lying lcvels are affected stronply by an asymmetric perturbation
vhen the matrix element of the perturbation between tham is large. ‘Yhe matrix
clement of a mass—-asymmetric perturbation is large between two states of op-
posite parity that have similar transverse and azimuthal wave functions and
that have 0 and 1 node, respectively, in their wave functions aleng the sym-
metry axis z. This is illustrated in Fig. 15, where the neutron levels near
the second saddle point of an actinide nuclcus are shown as functions of mass
asymmetry. These results are calculated with the modificd oscillator poten-
tial. In terms of the asymptotic quantum numbers [Nn,AR], the levels that are
affected most by mass asymmetry are [40AR] and [51AQ). Four orbitals of
each type occur between neutron number 130 and 170 at the second saddle point;
it is the presence of these cight mass-asyrmetry-favoring orbitals: near the
Fermi surface that leads to mass-asymmetric sccond saddle points in actinlde
nuclei. These same orbitals are also responsible for mass asymmetric saddle
points in calculations with the folded Yukawa potential and with the general-
ized Woods—-Saxon potential [5].

As the nucleus continues to deform past the saddle point, the development
of the neck and ultimatecly the rise of the potential in the neck cause all
levels to group into ncarly degeneratce pairs of levels of opposite parity.
This occurs becausc the squeezing at the neck ralses the energy of a state
without a2 node at 2z = 0 more thar it raises the energy of a state with a
node. As stressed by Andersen [97], these pairs of levels finally becowe the
levels in the twe individual fragments after scission. In this 1limit every
level is affcected by a change in mass asymmetry. However, becausce of the dif-
ficulty of mass transfer near sclssion, the mass split mmst be decided some-
vhat before this point. But in this way we sce the connection between the ef-
fects of shell structure ir the {ragments and at the saddle point.

At the first symmetric saddle point of actinide nucleil the sinple-particle
level density near the Fermi surface 1s also high, but such shapes are stable
against mass asymmetry because tlie mase-asymmetry-Lavoring orbitals are not as
close to eiach other there. On the other hand, axial-asymmetry-favorlng orbi-
tals are present ncar the Ferml surface at the first saddle point of the
heavler actinide nnclel, which lcads to axfally asynmetvic first saddle points
in these nuclei.

6.2. Saddle-point properties

Although a few mysteries still remain, the main features of cxperlmental
fission-fragment mass distributlon: arce now understood in terms of the cal--
culuted propertics of the saddle poliuts. At low cexciltation encrgy, most hcavy
nucled (7 = 90) divide primarily iInto one large fragment and one small frug-
ment.  For these nucled, the sccond saddle poinl is caleulated to be
reflection-asynmetrde In shape. PFlpgure 16 shows for actinide nnelel the cor-
relation that existd hetween the expoerloentazl most probable mass asymmety Los
and the values caleulated at the siccond saddice polnt with the foldad Yukawn
potential.

1£ the mana distreibntlon Js detormined ot the sccond saddle point, then
the experimental peak=to-valley ratlo should he related exponentlally to the
differcice hetween the cnergles ol the sceond symmet ric saddle poloe and Lhe
sccond anymmetyie saddle polnt [101]. Such o corvelatton s preaented In Flg.
17 For actinbde melety the folded Yukawa potentlal In used to calenlate the
differences In the enerples ol the saddle polntsa,
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What happens to the nucleus after it passcs over the asymmetvic second
saddle point? It has two main choices: It can adjust its overall length fn
order to remain in an asymmetric valley of low potential energy created by
the singlc-particle effects [5, 42, 43]. Or alternatively, it can iucverse
its overall length in nccordance with the preference of the mocvoscople part
af the energy., If this occurs, it moves out of the asyvmmetric vallay of low
potent.ial energy onto another part of the multidimensicnai deformislion
space [5]. Thesc two possible alternstives are illustrated by the potentinl-
cnergy maps in Figs. 7 and 6, respectively. Perhaps come information on
which alternative a nucleus chowses could be obtalre:d from a careful examina-
tion of experimental fission-fragment Kkinetic erergies. But it dis more likely
that we will have to wait for a proper dynaanical calculation to provide the
answer to thls importamrt question.

Experimcental fission-fragment mass distrilutions for nucleil in the
vicinity of radium (84 < Z < 90) have three pzaks; one corresponds to
division into equal fragments and the othcras correspond to division into un-
cqual fragments. Still lighter nuclel (Z < 84) divide primarily into two
equal fragments at all e¢xcitation encrgies for vhich the mass distributione
are known. DMore recent experiments show that the mass asymmetry also de-—
creases strongly for very heavy nuclei [102, 10%]. 1In particular, the most
probable mass split in the thermal--neutron-induced fission of 257I‘m (7Z = 100)
1s symmetric [103].

In our new calculations with the folded Yakowa potential, the saddle
point for 2?2CPRy isg elizhtly asymmetric [(M, - M,)/M, = 0.075] and 1s 2.3 MeV
lower in energy than thae corresponding symmctxic ,addle point; this agrees
qualitatively with most of the other calceunlations for radium isotopes |5, 28,
336 47, 49]. We have nct yet investigrted the potential-cnergy su=face for

Ra for large distortions beyond the saddle point or for large nass asym-
metry, but it js poss]blo that an asymmetcic valley simllar to the oune shown
in Fig. 6 for U will apperar. If so, the prasence of such an additional
valley may be responsible for the three-peaked mass distributions observed
expertmeiutally for nuclei ncar radfum. On the other hand, odd--particle ef-
fects may be parvially responsible, becanse the exgorlmontn] nass distribu-
tions are for compound nuclel such as 227p¢ ana *® Ac, which contain one or
more odd partilcles [104, 105].

For 2!%06 we flnd in our new calculations with the folded Yukawa poten~
tial that the potentilal cnerpy is extremcly flat near the saddle point. Al-
though the small diffcereaces in potentilal energy In this repion are comarable
to the mmerical accuracy of the calculations, the resulti taken at face volue
yleld an asymmetric saddle point [at (M, - M,) /M, = 0.092] that 1s 0.25 McV
lower than the symmetrie saddle point. The peak that sceparates them 1s only
0.25 MeV higher than the aymmetrle saddle point. Althouph the total potent ial
encrpy Is flat near the saddle point, the singloe-particle loevels themselves
vary sitrongly with deformation. Because the single-particle levels at the
saddle point Influence such qumtities as flsclon=Tragment anpular distribu-
tions, the proper measurceent. and analysls of these quant tties provide val-
uable Infoemation concernlng the saddle=point shape [106]).

For heavlcer actinlde nuclel, the sceend saddle polnt decreases In height
relative to the flrsat, and these nucled bepln thely descent with a shape cor-
vesponding to the flrst vaddle polnt, which s relfecetlon symmety leo  In o=
dit lon, the asymmet rle sccond naddle polut 1g only allghtly lower than the
corvespoiding symmetrle one and occurs at a velatbvely small mass anynectry
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({er 2581 these values are 1.2 MeV and 0.050, respectively, ia our folded
Yukawn calculatfons). This 1s at least partially responzible for the tiansi-
tion to symmctric divisions in the thermal-nentron-induced fission of 2°71m,

As Lthe excitatlon encrpgy increasces, the probability for division into
two cqual fragments increases, untll at high ecnergies the experimental mass
dlstribution for uall nuclei 1s peaked about a division into two cqual frag-
ments.  This transitlon is probably associated with the decreasce 1n relative
Importance of siugle-partlele effects at high exclitation energics, where the
nucleons are distribnted randomly over a large number oi single-particle
levels.  This effectively destroys the Inflonence of the shells, and--in a
loose mamar of speaklng—--the system divides 1in accordance with the smooth
macroscople contrilbution to the cnergy, vwhlch prefers an eoqual-mass split.
This wlll be discussied later in the sympozinm by Jensen [107].

The phenomena that we are able to understand quualitatively in terms of
the calculated saddle-polnt synnctry properties are thus the muss asymmetry
in the low-encrgy flssion of most actinide nucledi, and the transitions to
symuetrlic divisions for beth lightcer and liciivier nuclel and at hipgh exceitation
cuergy.  The calculated saddle=-polut propertices do not renroduce the exact
locatlons of the trimsitions to symmcetric divisions and do not reproduce the
expect.ad symmetric and asymmetvic saddle points for nuclel nuch «s radium in
the tromsitlon region, A more quantitative study of {lsston-{ragment mass
distrlibut Llons would regqnire a dyaamical calculation te determine the motion
hayond the sccond saddle point.,

7. CORNCLULING COMMiNTS

We have dlocustned recent advancees In the culceulation of the nuclear po-
tentlal cnergy of deiormatlon, with primary cuphaslts on the macroscople-
microscopic wethod,  As spectfic exanples of thls method we have presentoed
gome nuw vesnlte ebtained recently at Los Alamns wlth the folded Yukava and
mod{{icd osclllator single=partlcle potentlals; the macroscaple energy ds cal-
culated by use of the droplet mods1,

A virdety of phenomenan associated with nucelear shape changes con be
underatood on The baslts of thla tvo-part approach,  The macroscopic pmrt given
the smooth trends, and the wleroscopic part glves the fTuctnatlons that arise
from slupte-particele effects. In thisg way tuch varlaed phenomcan as nnelear
gromd-state masses and deformat tons, sccond mintma In the fluslon barricers of
act Inlde nueltel, Fisston-borrler heights, and flaslon-fragment maste distr Lba-
tiona arce scen Lo have a common orlgin,

From comparizons with expervinental rernlts we have seen that the present
accuraecy wlith whleh we e able to catenlate the nuelear potent Inl enerygy of
deformat lom ez abont 1 HeV, althongh Larper sveatemat e ervorn ave st present
n pome carry, Some of these orvors mre associated with Imperfect deterulna -
tlomn ol the constante ot bhoth the macrotscepie enerpy aad Lhe shaple-partlele
potent Inle  Numorlead Toaccuracles arlse Trone calenlat ing shell and pal Ing
corvectlons for o repglon of une el Tram shnplespartbele Tevels Tor one central
nucelensy nmmer boal biaccarae bes are also preszont In the exteaet fon ol the
shell correction Trom a plven set of shapgle-partlele Tevels, Some of the ere
roran conld arvfse Trom o hniadeguan e treatent ot wero poid enervples, Per-
haps we e g, the vrong Tancetional Torm Tor eleher the meroncople cnorpy
or the ninglesparvt lele potenticl.  But probably the major crrors stem Irom an
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Inherent limitation of the macroscopic-microscoplc method Itscll, such as

the neplect of terms that are sccond ovder in the deviation of the actual nn=
clear density from a smooth density.  These second-order effects will be dis-
cusscd later In this session by Brack [71].

When thesoe same general methods arce applied to superheavy nuelei, we
find the result shown in Fig. 18: An island of nuclel in the vicinity of
114 protons and 184 nceutrons is expected to he relatilvely stable agalnst spon-
tancous fisslon, alpha decay, and beta decay. As (s true for any island,
there are two genceral ways by which the island of superhcavy nuclel may con-
celvably be reachoed-=by sca and by air. In the next talk Howard wlll discuss
the approach by sca, where one would rceach the sontheastern, or ncutron~rich
shorc of the islind through the multiple capture of neutrons [50].

APPFNDTX. SHAPE CNONSIRATNT'S

The ground-state encrpy 18 determined by minimlzing the potential cuerpy
with respect to an elongation coordinate and a necking coordinate in two dif-
ferent shape parametrizations. We use flrst a conctrained verzion of the
three-quadratic~surface parametrization, which contains the six deformacion
coordinatas Uyy O,y O,y Oy @, and @, [44--51]. The first thvoee coordinatcs
describe symmetric doformatlunb, ind thc Last three deseribe asymmetrice de-
formatlons.  For specifylug ground-stote deformatlona, we eliminute one of the
three symmetric coordinates by relating the ceccentrleity of the middle sphe-
roid to that of the two end spheroids. Thin 1s done by requiring that the
relative quadrupole moment of the middle spheroid be cequal in magnitude but of
opposlte sign to the relative quadirnpole moment of clther end spheroid. The
two remaining symmcetrie coordinutesn are chosen to bhe the quadrupole moment
Q, and hexadecapole moment  Q,,  of the shape [50].  We find that this parame-
trizatlon desceribes very poorly the shapes of nuclel with larpe positive hexa-
decapole moments (Light isotopes of thorlum, uranluwm, and plutonlum). In
particular, the pencrated srhapes have a large curvature near 2z o 0, which
results Io an wnphysleally large surfoce enorpy.  For this remon ve also
study the potent Inl energy acar the proand atate as a fimetion of the coordl-
naten  voand Ao NElason s perturbed-ipherold parametrlzation [1, 2,
23=-29). PFor moat nucled the use of this pnrnmvtll/nllun resmiton In a lower
pround-state enerpy (by up to 1.2 MeV for 27*m). lowever, for several nnelel
with nentron namber N clone to 152 the encepy caleulated In the eonstrained
veralon of the thrcv squadrat le-garfare parametrlzatrion 1o lower (by up to
04 MeV roe U0 (l) For each mmelews we uke the Tower ground-state encerpy
caleniated with thene two parametrizat lona,

The remalalng I lanlon barvler extrema are determlned by nse ol the three-
quadrat lesam tace parametvizaf lon nnly. (For compm inon we are currentjy re-
determintng them by une ol NllTeson's perturbed- spherold parametrlzat lon.)  In
thitn determhnat fon three coovdnatoen are var b Independent lys the dlstaneo
between maie: centers ey the necking coordinate o, and the anymmetry coordl-
miate o The coordinate  wy  In always set equa I ta 0, and  «, 18 uned to
keep the conter ol mann fixed at the orlpln.  When o, I varled, the coordl-
mate  a,p whileh apeceltlen the neparat foa ol the end-gpherobd centers s
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detormined so that the dlIstance v between the actual nascent=fragment mass
centers remalns fixed. Thoe {ragment-cccentriclty coordinate o, 1s taken
equnal to its value for the y-famlly shape |45, 47] that has the same value of
Y. For asymmctric shapes (u, # 0, r is chosen to be the same as for the
correspondIng evamotric shape. Becanse a large chaope in a, sometlmes leads
to a small change In the actnal shape, we define the mass-asymmetry coordinate
as (M1 - M?)/(M) -+ M?) = (M, - Mz)/Mo' Here M, Isa the mass on one slde of
the point mldway between the ends of the shape, and M2 is the mass on the
other side.

The asymmetrle saddle points arce determined in the followlng way: We
consider sieven valnes of r  dIn the vicluity of the sccond saddle point.  With
r fixed we vary (¢, and the mass—asymmetry coordinatce fndependently; we use
five values for vncﬁ of the last two coordinates, which makaes a total of 25
grild points. TFor cach mass asynmetry we mindmize the encrav with roespoect to
g, In thls way we obtaln for cach value of r the encrpy a8 a functlon of
mass asymnnetry; these encrgices are then used to coustruct contour maps as
functions of r and mass asymmctry. From these contour maps the asymmetyic
saddlce polnte are then determined. In omr contour maps all dilstortion coor-
dinates (Gl, O, Oyy @, G,, ) arce continuour functions of r and maes
asymmetry, thus insuring that we do not "tunncl through" a mountain ridgpc
when minimizing with respect to ¢, and conscquently obtaln a spurious
saddle polnt of lower cnergy.

When determinbng the flrst saddle point and second mlpimam, only r  and
0, darc varled because In this reglon the potential energy 1 stable apninst
mags-nsymuetrle distortioas (or dn a fow cases only @1lghtly unstable),
Therefore, in the two contaar dlagrams displeayed In Flgo 6 the patentilal
eneryy for asymactric shapos s minimized with respect to o, only du the
vicinity of the siecond goddle polnt.  In other reglons asymectrle dintort ions
arc penerated from the corrceaponding syemetrle shape by moking o, ¥ 0. In
the region preceding the aevond saddle point thete symuictrde shapes are those
for the ground state, first saddle polut, and scecend winlmur Ffor the
part lcular nuelens under considerat ton,  Leyond Lhe sccond saddle polnt the
symmet rlice shapes corretpond to those along the most probable ddealt; od
liguld-drop-mode¢l dynamleal path from saddle to nelsslon J45,511 tox Fie-
allity parameter x = 0.8,
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F1GURE CAPTTONS

Effecct of axial asymmetry and mass asymmetry on the fission barrlor
of >*"Pu., Ihe dashed curve (which sometimesn caincides with the rnolid
curve) gives the potential energy for symmetric deforma.dons as a
function of the distance r between the conters of mass of the two
nascent fragments. The solld cuwrve pives the potential cenergy along
a path that leads over the axlially asymmetric first saddle point and
over the mass-asynmetrle second saddle point.. The lower portion of
the figure shows the nurclear shapes corresponding to sclectad points
along this path, namely the sphere, four cqullibrium points, and the
point of cmergence from the barrier In spontancous fisslon., The
resnlts for axially symmetric shapes are calculataed wlth the foldaed
Yukawa potentlal and the droplet model Ly use of methods to be de-
scrihed later. The reduction in cenergy at the flrst saddle point is
taken from Ref. [1].

Nnclear shapes deucribed by the flssion coordinate vy, and the cor-
responding spln-independent nucleaxy single--particle potentials for a
diffusc~-gsurface folded Yukawa potential [45, 47, 49]. The cquipoten-
tial curves are shown for 10, 30, 50, 70, and Y0% of the well depth.

Energy levels of a harmonic-osclllator potential for prolatre sphe-
roldal deformations [49]). The particle numbers of the closed shells
are indicated for a gphere and for a spherold wvhose major axis 1is
twice ite minor axis.

Fxtraction of the shell carrectioa from single-pavticle cnergles

[47, 49]. The ncutron levels in a spherical 00y nueleus are shown
by solid points and define a staivcoane function Cypaiy (M) The
smooth curve ¢'(n) raeoves the local rluctuations o? the solid
points but retains thelr long-rance behuavior. The Fermi surface A
of the smooth distributlon of levels 1s 11lustrated for 120 ncutrons.
The corrcespondling shell correctlon 18 given by the differ nee be-
tween the arcas under the stalrcosce curve and the smooth curve up to
n = 126,

Fisslon barriers for actinide nuelel, calculated wlith the folded
Yukawa potentilal and the dvoplet models  The danshed curves (whilch
samet fmes colneide with the golld carves) plve the potential encrgy
for symmetric deformat lons as a fuanet lon of Lhe dintance v boetweon
the centern of mass of the two nascent. fragmentss  The solld curven
glve the potential cnerpy along a path that leads over the mass-
asymmetrle necond gaddle polnts ‘Fhils path Js usunlly determined by
mintmizing the potent tal encergy with respest to mann asymmetry lor
fixed values ol ve Nowever, whea such g path Jompn dlscont inuounly
from one valley to another withont passing over the anymmety e sadd e
point, the path In thias reglon Ian determlined by the method ol ateep-
et descents Thls explalng why the solld emven gsomet hme:st e above
the danbed carves The patent Ial encrpy for each nneleus Is cal--

: LR
culated with siaple=partiele levels for Gf.
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YIG.

FI1G.

l.‘IG.
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6.

7.

8.

9.

10,

Potential cnergy of 23%U and ?5%Pm, calculated with the felded Yukawa
potential and the droplet model. Yor cach nucleus contours of con-
stant potential energy are plotted as functions of the distance be-
tween mass centers 1 and the wass-asymmetry coordinate (M, - My)/Mo'
The contours are labelled by the energy (in MeV) relative to the
spherical droplet-model energy. The solid curves are spaced at in-
tervals of 2 McV; dashed curves are used for iIntermediate values.

The diastortions included vary from a sphere (at r = 0.75 R_) all the
way to scission, which 1s iIndicatcd by the slightly curved dot-dashed
linc. ‘The potential encrgy for cach nucleus is calculated with
single-particle levels for 23°Cf,

Potential ecnergy of 237U, calenlated by Mustafa, Mosel, and Schmitt
with a wodified two-center oscillator porential [42]). Contours of
constant potential cnergy are plotted as functions of the neck radlus
D and the masses of the two nascent fragments. The contours are
spacad at intervals of 1 MeV and are labelled by the energy (in McV)
relative to the ground-state minimum potentianl cnergy; an additional
contour is inclnded ncar each saddle point. The dashed lines rep-
rcesent Interpolated or extrapolated values.

Comparison of the folded Yukawa potential with the two-center oscil-
lator potential at the asynmetric second saddle point for 23U, The
upper portion of the figure shows the saddle-point shapes, and the
lower portion shows the corresponding potentials along tie symmctry
axis. The folded Yukawa potential 1s 0.19 MceV higher in the neck
than in the center of the larger nascent fragment and is 0.04 MeV
higher In the neck than in the center of the smaller nascent frag-
ment. The two-center oscillator potential [42] 1s 5 MeV higher in
tho middle than in the center of cither nascent fragment.

Comparison of cxperimental ground-state single-particle corrections
for even nuclel with values caleidlated by nse of the folded Yukawa
potential and the droplet model., The ground-state single-partiele
correction Is the nnelear ground-state mass relative to the spherical
macroscople enerpy, whilch 18 calculatad here from the 1973 dvoplet
model of Mycers and Swlatecki [50, 55, 56]. The experimentul masses
are taken from Ref. |83]. The calculated manses are obtalned by
minimizing the potentinl energy wlith respect to a separatlon coordl-
nate and a necklng coordinate in two different shape parometrlzo-
tlong, an dlacussad in the appendix.  Slngle-particele levels for
20810 ?22%Ra, and ?P%CF are uwsed to ealculate the potential enargy
for cach melens In the left=hand, mkldle, and right-hand regianm,
reapect lvely; these replons are Indleated by the dashed vertlenl
1hhens A constant pround=state zero-polnt enerpy of 0.5 MeV s in-
clided for cach nucdens, The Tower portlon of the flgure pives the
dincrepaney between the esperlaental and caleulated mannod.,

Melphta of the Fleat naddle polnt, second winlmm, and asymmetrle
necond saddle point, an finet JTonn of nentron nomber - N The solld
curven plve the helphin catealated with the folded Yukawa potentlial
and cheadveplet model aelative to the ealenloted grounl-state energpy,
and the dached curvers plve the corvesponding helpht velatlve to the
experlmental gronnd-etate enerpgy. The Tightwelpht dot-dashed Tnen
fn the Hhret cobmm pive the helpht of the Tower of the two asymmet -
rlc anddie polntu that gurround tha anymmetrie thlrd minlnm

=29..



(relative to the calculated ground-state cenergy). To the left or the
wavy vertical line the lower saddle point occurs before the minimum,
and to the right it occurs after the minimum. The height of this
third minimmm is given in the sccond column hy the lightwelght dot-
dashed lines. A constant zero--point cunergy of 0.5 MeV is included
for cach nuclcus at 1ts ground state, second minimum, and third
minimum. 'The potential energy for cach nucleus 18 calculated with
single-particle levels for “°"Cf. The calenlations are performed for
even nuclei only, but odd-neutron nucleil are also included in the
experimental data, which ave given by solid clreles [20], open cilr-
cles [84], solid squares [79], open squares [78], solid upward-
pointlng triangles [G], and a solid downward-pointing triangle [85].

FIG. 11. Reductlon in the height of the first saddle point duc to axially
asymmetric deformations, as a function of mass number A. The open
circles connected by the dashed lines give the hedights calculated
with a modiflud oscillator potential and the liquid--drop model for
shapes that arce restricted to axlal symmoetry [28]; the open circles
connected by the solid limes give the corrvesponding heiphts calculat-
ed by Larsson and lLeander for axially asymmetric shapes [1]. The
gtrenpgth of the pairing Interaction ls assumed to be proportlonal to
the surface arrma; the lianld=drop-modcl conriants are taken from
Ref. [57]. No zero-point e¢nergy is included at the ground state.

The colculations are performed for cven nucled only, but odd--ncutren
nuclei are also Included In the experimental data, which are given by
the solid squinres |84].

F1G. 12. Height of the second minimun, as & finction of neutron nmmber N,
The curves arce calenlated with the wodlfled osclllator poteatlal and
the droplet model For even nacled. The experimental data are given
by circles [20] and a tylangle [85). Solid symbols are uscd for cven
nucled, and open symhols ore usced for odd-nentroo nuclet.

F1G. 13. Neight of the asymmetric sceond soddle polnt, ns a fuinctfon of neutren
number  No  The cuvves arve caleulatoed with the modifled osctllator
potential and the droplet model for even nuclel. A constant gromd-
state zevo=-polnt energy of 0.5 MeVl ly included for cach nueleua.  The
experimental data are plvea by squares [84], chreles [201, ond trian-
glen [6].  Solld symboli arve used for even nuclel, and open symbolr
arc nsed for odd=ncutran nueled.

FIG. 14, Sqnuarce of the Nequency of manu-oasymmctrice oaclllat tons of an ideal-
1z¢d 1iquid drop about Its saddle-pofat shape, as o funetion of flg-
alllty poramcter xX.o  The rexsults are shown lor nuelel along the
valley of betn utablllity [44).  The eritlcal heilnaro-Gallone point
195] 1o denoted by the arrewe o the right of this polat the Liguld-
drap-model naddle-polnt shape Fs o otahle apolnst mans npywet ey, and
tee the Jott by e wnntable,

FlG. 15. Shwle-nentron Tevels newr 1he gecond aaddle polnt of an actinlde
nclenyg, anu et tons of Che maga-asymactry coordinpte € oo The
Tovels are calealated with the wod H Ted ose T Lidor potential for
anyometvle distont Tows dey hosd by v 0 and g, 0.4h 1.,
J2/7). The levetn are ladael Led by the anymptot b guantum nambers

INnxhul and by the pravlty For the correaponding eymmet rle shape.
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FTG. 16. Correlation of cxperimental most probable flssion-fragment mass

FICG.

FIG.

17-

18.

asymnetries with values calenlated at the asymmetrvic sccond saddle
point by usc of the folded Yukawa potential and the droplet wmodel,
for cven actinide compound nuclei. The cexperimental data are given
by circles [98], triangles [99], and squaves [100]. Solid symbols
are used for spontanecous fission, and open symbols are used for
neutron-indnced fission,

Correclation of the peak-to-valley ratio in experimental fission-
fragment mass distributions with the di{fcrence between the energies
of the symmetric and asymmetric sccond saddle points, for cvea
actinide compound nuclei. The energy diffoercnces are calculated with
the folded Yukawa potential and the droplet model. The experimental
data are given by circles [98] and triangles [99]. Solid symhols are
used for spontaneous fission, and open symbols are used for neutron-
induced fission.

Location of the predicted island of superheavy nuclei relative to the
peninsule of obscrved nuclei. The nuclei included in the Island have
calcnlated total halflives longer than about 5 min [48].
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