LOS ALAMOS
SCIENTIFIC LABORATORY

OF THE UNIVERSITY OF CALIFORNIA
LOS ALAMOS, NEW MEXICO

LOS ALAMOS NATL. LAB. UBS.

NOT TO BE TAKEN FROM THIS ROOM

CAT. NO. 1935
tieRARY GuRLAy







LOS ALAMOS SCIENTIFIC LABORATORY
of the
UNIVERSITY OF CALIFORNIA

Report written:
September 27, 1954

Report distributed: MAR 2 8 1955 ’

LA-1867

A METHOD FOR THE NUMERICAL SOLUTION
OF TRANSIENT HYDRODYNAMIC SHOCK PROBLEMS
IN TWO SPACE DIMENSIONS

by
Harwood G. Kolsky

|

PHYSICS

ST

I

UM

3 9338 003

53 5456

LOS ALAMOS NATIONAL LABORATORY

i



ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



ABSTRACT

A method for numerically solving hydrodynemic problems involving two
space dimensions and time is developed based on the von Neumann-Richtmyer
method of treating shocks. Finite difference equations for the system
are constructed from the basic differential equations of hydrodynamics.
Difference formulas are also given for checking the stability of the space-
time mesh, and for checking the total energy of the system. The results
of four sampie shock problems are presented. The requirements imposed
on electronic coumputers by problems of this type, and possible extensions

of the method to other types of physical problems, are discussed briefly.
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I. INTRODUCTION

During the past five years there have been two major developments
which have made the detailed numerical step-wise solution of transient
hydrodynamic problems involving shocks feasible. One was the theoreti-
cal development by von Neumann and Richtmyer (Ref. 1) of a method for
greatly simplifying the computation of hydrodynamic shocks. The other was
the engineering development of high speed electronic computers, which have
made truly astonishing progress in speed and capability during this period.
(Rer. 2)

Although it has always been possible in principle to calculate numeri-
cally the motion of shocks in transient problems by solving the Rankine-
Hugoniot conservation equations step-wise in time, in practice this becomes
extremely difficult if more than one shock is present or if there are com-
plicated boundaries in the problem. The von Neumann-Richtmyer method uses
a pseudo-viscosity term added to the pressure which has the effect of broad-
ening a shock in space and time so that it need no longer be treated as a
discontinuity. Yet the final values of volume, pressure, velocity, etc.,
of the fluid after the passage of the artificially broadened shock are
those which satisfy the Rankine-Hugoniot conditions for a true sharp shock.
It is hard to overemphasize the importance for computing, particularly on
automatic machines, of not having to worry ahead of time about all cases
of shocks interacting with boundaries, rarefactions and other shocks which

may arise in a given problem and to make special allowances for each.




Concerning electronic computers, not much need be said here except
that without the existence of machines such as the IBM 701, one would
never attempt calculations of the type described here except under real
energency conditions. The future of the numerical solution of partial
differential equations in general, wvhich require the error-free execution
of millions of arithmetic steps, is very closely tied to the future develop-
ment of faster and larger couputers. (See Sect. V)

From time to time,a number of people have worked on different phases
of the problem of extending the von Neumann-Richtmyer method to transient
problems and to more dimensions. (Ref. 3) Roughly speaking the method
described in this paper is more specialized than those sought by others;
however, for problems to which it can be applied, it has a considerable advan-

tage in simplicity and speed over more general procedures.




II. THE BASIC EQUATIONS OF HYDRODYNAMICS

A. The Equation of Continuity (Ref. 4)

Considering fluid mbtion in three dimensions, one may represent the
original lagrangian coordinates of a fluid element as (x,y,z) and the
Eulerian coordinates as (X,Y,Z). The Eulerian coordinates which may be
considered as functions, X = X(x,y,%,t), give the positions at time t
of fluid elements which were originally at (x,y,z). (Ref. 5) The law of

conservation of mass in such a system becomes

v aiX,Y,Z}
- = independent of time 1
vo alx,y,z pe (1)

vwhere V = 1/~ is the specific volume of the fluid element
(volume/unit mass), V, is the original specific volume in
the lagrangian system, and the right hand term is the
Jacobian of the transformation from the original coordinate
system to the one given by (X,Y,Z).

In one space dimension this reduces to

Q
>

\')

v; = 5% (2)
In two space dimensions, in rectangular coordinates, it is

v . ax‘ar_ oX oY (3)

Vo 9% 3y dVY ox




B. The Equation of Motion

Using the von Neumann-Richtmyer method, the equation of motion for a

fluid may be written

3%

5 = - VGrad(p + q) = - V Grad P (4)
ot

vhere R 1is the position vector of point (X,Y,Z), t is time,
P 1is the fluid pressure due to its state equation, and q 1is
the pseudo-viscosity pressure term. For convenience, capital P
will be used for the sum of p and q for the remainder of this
report.

In one space dimension, this equation becomes

2% __,.2¢® . (5)

If one uses the equation of continuity, Eq.. 2, it may be written

8% ., 2P
ata vo ox (6)

This form is usually preferable for numerical work because the quantities

V° and Ox are independent of time.

In two space dimensions, the equations of motion may be written as

o% _ _y 2r

<5 =-vEs |

ot 1)
.a_ézY..-v_QE |

ot S




In this case,using the equation of continuity (Eq. 3) results in equations

3% _ 3P Y _OP aY
5 “'o(ax 3y " By ax)

ot

(8)
3% .y (aza_xxa_x)
3¢¢  °\3y dx ~ 5% By

Although the quantities 29 x, 3y, and Vo are independent of time as in
the one dimensional case, the equations have become considerably more com-
plicated by the transformation. In the present calculations it was found
to be easier to work with the original equations (7) directly.
C. The Equation of Energy Conservation

Assuming no heat source terms in the fluid, the von Neumann-Richtmyer

form of the energy conservation equation is
dE = - (p + q) AV = -« P 4V (9)

where E 1s the specific internal energy of the fluid

(energy/unit mass)
Since the energy is a point function, not depending on space gradients,

this equation has the same form regardless of the number of dimensions

considered.

D. The Equation of State
In addition to the above three fundamental conservation equations, oune

needs the state equation for the fluid being used, preferably in the form

9




p = p(V,E) since E occurs directly in Eq. 9 . For a gamma law gas,

this form is quite simple.

p=(¥ -1)F (10)

E. The Conservation or Increase of Eutropy

The law of conservation or increase of entropy is automatically satis-
fied by the energy equation (Eq. 9), provided the equation of state for
p satisfies certain physically realistic conditions (Ref. 4), which are
certainly satisfied by the gamma law gas assumed here. Note that the term
- q AV corresponds to fhe usual T dS in Eq. 9. This helps emphasize
the fact that entropy increases occur only in shocks where q 18 signifie

cant and is constant elsewhere.

F. Definition of the Pseudo-viscosity Term

One would expect the pseudo-viscosity pressure to be a point function
like the energy and true pressure,and thus independent of the number of
dimensions being considered. However, it may or may not be,depending on

the definition used in the problem. The usual definition is

v( £, 1)2 (8V)2

Vv
q= v 3t for 3t L0
(11)
Vv
q=0 for -é—E 7/0

The latter equation is to prevent unnecessary smearing of rarefaction

waves.

10




For some calculations it is more convenient to use a definition based

on material veloecity.

q = —— (div v)2 for div v £ O
' (12)

q=0 for divv > 0

vhere v 1s the velocity of the fluid, 1 1is a characteristic
length for the finite difference scheme being used--usually fhe
mesh size, and b 1is called the "shock width constant” since it
determines the number of lengths 1 the broadened shock will
cover in the calculation.

Although the two definitions are equivalent differentially, in finite
differences Eq. 11 1is the same in one or two dimensions, whereas Eq. 12
changes form since the div Vv term involves special derivatives. Equation 12
is usually more convenient when the Eulerian form of the equation of cone
tinuity is used in the calculation, since the term div v is then already

available; otherwise, Eq. 11 1is the easier to compute.

G. The Total Energy Check

When accompanied by proper initial conditions, the above equations
are sufficient to describe the behavior of a compressible fluid system as
a function of time. It is often convenient to calculate other quantities
which are not necessary to the calculation, but which are very useful in

interpreting results or in guarding against numerical errors. The total
11




energy check has been particularly useful in this connection.

T = f (3 v2 + E)PaT . (13)
vol
If the total energy of the system is changing because of work being
done on it from the outside (e.g. the piston in Prob. A described below),
this work done may be computed and compared with the change in T as a

check.

t
w:-}j Pv .ddgdt
]

surf (14)
§T= T(t) - T(0) - W(t)

vhere (T is the error due to the inexactness of the numerical
calculation.
As long as 6!rremains small and does not change rapidly from one time step
to the next, one may be fairly confident that no random machine error has
occurred, although there are certainly types of errors which will not be

caught in this manner.

H. The Stability Condition Check

Another quantity oprarticular interest to the numerical solution of
hyperbolic differential equations is the criterion for stability of a
finite difference mesh. (Ref. 6) In the present calculations a stability

criterion derived by George N. White, Jr., (Ref. 7) especially for the

12




von Neumann-Richtmyer equations was used.

5 3
v ={(Ef}> + 4o J_A_vll.} £ 1 for stability (15)
R .

vhere c is the sound speed in the fluid, A-}; and At are
space and time mesh spacings respectively, and AV 1is the change
in volume from one time cycle to the next.

The second term in the expression will ordinarily dominate in the viciuity

of a shock, while the first term will dominate elsewhere.

13




ITI. THE DIFFERENCE EQUATIONS

Although most workers involved in computing problems of this type can
agree on the differential equations to be solved, there is considerable
divergence of opinion as soon as one begins to discuss difference equation
formulations. In the absence of any reliable theoretical norm by which
one can predict the accuracy and convenience of a finite difference method,

the best criterion gstill seems to be experimentation.

Fig. 1 shows a schematic of the two dimensional space mesh used here.

Fig. la 1is the original lagrangian mesh, which may be taken rectangular

as shown or may be some other quadrilateral, such as combinations of paral-

lelograms or trapezoids, if these are more convenient. Fig. lb shows the
same mesh as it might appear at a later time in the problem.

Quantities denoting spacial positions and velocities are calculated

as belonging to mass points located at the intersections of the mesh lines.

The mass associated with the mass point is taken to be one-quarter of the
mass of fluid enclosed by its four neighboring quadrilaterals. The mass
points and the quantities associated with them are labeled by subscripts
(1,3), which refer respectively to the column and row of the mesh where
the point is found.

Quantities such as volumes, pressures, and energits are considered
as being situated at the centroids of the areas between the mesh lines.
These locations are denoted by subscripts (i+4, j# ). The time steps
at wvhich the above quantities are calculated are denoted by superscripts
.n, n+l, etc., vwhere n+l means n+An.

14
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Figure 1
Schematic of the finite difference space mesh, where (a) shows
the original lagrangian mesh at time t = O and (b) shows the same mesh
as it might appear at a later time (Fulerian). The mass points are
located at the intersections of the mesh lines and are labeled i, j.
Quantities related to volumes, pressures, and energies are located at
the centroids of the quadrilaterals and are labeled i+3, j+5, marked

with X's above.
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All the difference equations are designed to be correct to first order
approximations only. For example, note in Fig. 1b <that the curves con-
necting the mass points are taken as straight lines. Using the true curves
given by the Jacobian of the transformation (assuming it were known)
instead of the straight lines would result in second order changes in the
volumes calculated. These and all other second order effects are assumed
to be negligible, provided the fluid is reasonably continuous over distances
the order of two or three mesh spacings. Since the shock width constant
b in Eq. 11 1is chosen such that a true discontinuous shock is spread
over about three mesh spaces, this gives a sort of "limit of resolution”
of the method consistent with using only first order terms in the differ-

ence equations.

A. The Equation of Continuity

The relative specific volumes (V/Vo) are taken as being the ratios
of the areas of the distorted quadrilaterals of Fig. 1lb to their original
areas, Fig. la. This is done in preference to devising an approximate
difference equation for the Jacobian of Eq. 3 directly because the exact
formula for the area of a quadrilateral whose corners are known turns out
to be easier to compute, particularly if the original areas, A: _&’ 3 +§,
of each of the quadrilaterals are carried as problem constants. The equa-

tion of continuity then becomes in the notation described above:
(16)

n = n - n n - n - n - n n - n (o]
Vied, j4d (x1+1.3 x1,3+1> (Yi+l,J+l Yi,a) (Ym,a Yi,a+1) (x1+1,a+1 xi,a)}/ 2ha3, 54k

16




vhere the X's and Y's are the coordinates of the mass points
on the four corners of the quadrilateral.
For convenience from here on, V with subscripts and superscripts will

be understood to mean V/Vo.

B. The Equation of Motion

Evaluating the pressure gradients in two space dimensions has been one
of the more difficult questions of technique to be answered. The difficulty
becomes apparent when one tries to extend the simple but very successful
method usually used in one dimension directly to two dimensions.

In one dimension we can consider the mass points as lying on a line
with the pressures situated at the centroids between them. For a given
point, 1, at time n, there are two neighboring pressures, P:+é- and
P:_%. If the pressure profile is continuous, as has been assumed, we can
get a first order approximation to the gradient by taking the difference
of the pressures divided by the difference in their locations. More exactly,
we can express the value of the pressure at xi+§ in terms of a Taylor's

geries

2
(x.,1 = x )-+§i§—g
1 Vhi+d i ax2

2 s, (17)

(x1+1 =X

= oF
Pied =Py * 5x . Fied

This and a similar expression for xi_% may be considered as two equations
from which one may solve for the two unknowns, P, and %%% Ii° The

i
result for the latter may be written

(P,,1 - P,_3) 3 (x. 4 - x, )2
P _ itk "i-¥ 5% _9o°p ith 1-¥ 2
17




where 5, a measure of the asymmetry of the mesh, is defined as
6= By g+ 2y ) =%y (19)

The second derivative term is thus zero if the mass points are equally
spaced. The third derivative term represents the error inherent in taking
only a linear average for the gradient.

Applying this method directly to the rectangular case in two dimen-

sions, the Taylor's series will give four equations of the form

e L3R .BE .., 0%,
Pi"'i’d"‘é P + 3x Ax + ay Ay + %ax
(20)
2 2
oP 2 g°P
+5———ay2Ay +é6x6y

LHxAy ...

Considering first derivatives only, there are but three unknowns, Pi’J
%—E, %, to be found. This overdeterminacy seems to be fundamental fa
the rectangular mesh. Trying to take more neighboring poinis and solve
for higher derivatives always results in an unsymmetrical mesh. A con-
siderable amount of effort has gone into devising schemes to avoid this
problem. (Ref. 3) The solutions usually suggested arxe: (1) use some
type of least squares calculation, based on from 4 to 10 neighboring pres=-
sures, or (2) use a mesh based on triangles or hexagons which will give
three neighbors naturally. Methods based on (1) have the disadvantage
of being very time-consuming and difficult logically, as well as being

susceptible to instability. Meshes based on triangular symmetry have the

18




disadvantage of not fitting together nor to the boundaries easily. Usually
one needs a number of alternative difference schemes which make the code
complicated and the interpretation of results difficult, although the cal-
culational speed is much better than using least sqﬁares.

The method proposed here is an attempt to salvage the best features
of both the above. The overdeterminacy is removed by first solving for

two gradients diagonally across the mass point, then solving these together

gP 2F
to get 3% and ay

The pressure differences across the diagonals are of the form

(Pl-P3)=-g—g(x -x3)+%§( )+ax2P(x "‘3)6"13
(21)
3% 3%
Py (v, - ¥3) 8313+ Fpy 2%y - %) Svy3 *+ Gy - y3)6"13]+

vhere for convenience we substitute the quadrant numbers about
i,J for the subscripta: 1 for i+,j#, 2 for 1-4,j4, etc.
The asymmetry terms are defined as in Eq. 19.

Solving Eq. 21 with the similar one for P2 - Ph » the gradients

become

'é':?li,j .{(Pl - P3)(y2 - y,) - (B - P )(y, - y3)} /a + Rx

o)lo)
<o

lij .{.(pl - P3)(x2 - "h) + (P2 - Ph)(xl - xs)} /a + Ry (22)
d = (x) = x3)(yy = y) + (%, - x)(y; - ¥3)

19




The error'terms represented by Rx and Ry are lengthy expressions
involving second and higher derivatives, however, they can easily be shown
to have the same order as the error terms in the one dimensional case,
that is, Rx = (2nd derivs.) { + (3rd derivs.) AXE + ..

These formulas for the gradients are the same either for the original
lagrangian mesh or for the Eulerian mesh at a later time. If the spacing
of the original mesh is uniform, they become considerably simpler, how-
ever this simplicity 1s bought at the price of having to evaluate numeri-
cally the other terms of the Jacobian in Eq. 8. If one wishes to retain
the generality of being able to use somewhat non-uniform spacing in the
original mesh, then it appears to be simpler to work with Eulerian gradi-
ents in Eq. 7 directly.

The specific volume at point 1i,j needed in Eq. 7 1is taken as the
average of the volumes of the four neighboring quadrilaterals. The exact
formula for the centroid of a quadrilateral was deemed too lengthy, so the
average of the locations of the four corners was substituted as a good
first order approximation. Finally, the time derivative in the equation
of motion was evaluated, using ordinary centered differences to yield the
coordinates of point 1i,j at time n+l in terms of quantities known at

time n or n-l. The equations of motion as calculated then become

20




x'i’:]]' - x;l,d + Ax‘fi‘:.jé + B:i’J

Y;‘ﬁ =Y] Ay;‘:dé + B;i’d

X e -

AY::}= Yril,J - Yrilj fl (YVY‘{I (23)

2
n -(At
Bxi’d = d {Vl + V2 + V3 + Vh} {(Pl - P3)(Y2 - Yh) - (P2 - Ph)(Yl - Y3)}

(o]
2
By1,s = 54 {Vl *Vp Vgt Vh}{‘(l’l - P)(Xy = X)) + (By - B)(X, - x3)}
’ o

d = (xl - X3)(Y2 - Yh) + (xh - x2)(1tl - Y3)

C. The Equation of Energy Conservation and the Equation of State
Since the energy equation contains only simple time derivatives, it

may be written in centered difference form as
E® = En-l - ﬁ(pn-l + qn-l + pn + qn)(vn - vn-l) (24)

All the quantities are for i+},j+4. In keeping with the con-
vention that V with subscripts and superscripts actually means
V/Vo, E with subscripts‘and superscripts will mean E/Vo, i.e.,

energy per original unit volume.

21




Since pn depends on E® as well as Vn, the above equation must
be solved simultaneously with the equation of state. For the ideal gas,
Eq. 10, the difference equations for P" and E® become (all quanti-

ties at 1+, j+3) !

@ 2B o Avett s g
2+ (Y -1)Avy®

P" = ® + (¥ - 1) EBND (25)
AV = vn - vn-l

D. Definition of the Pseudo-viscosity Term

The definition based on Qlt'-, Eq. 11, is used in the form

o)
P. bA° 2
qn’_g_?_<%) for AV £ 0
\'4
(26)
Q" =0 for AV >0

Again all quantities are for 1+3,j+i. The term 1° has been

o
replaced, rather arbitrarily, by Ai*%,.j*’i' A value of b

vhich works well with this choice of l2 is 1.44,

E. The Total Energy Check

The toté.l energy of the fluid contained in one quadrilateral may be

written in finite difference form as

22



2
Ti"’f’d"’i =3 A° { A (vn'i) + EP°L 4 R

(27)
2
(v“‘é) (At Z{(A xn‘%) <AY“'§>

The latter is summed over the four corners of the quedrilat-

eral. The total energy is taken centered at time n-ﬁ for con-

venience since the AX, AY terms are centered at that time.

If one is interested in the energy balance in only one region which

is bounded by a mesh line i = I, the above expression for T is summed
for quadrilaterals I £ 1 <4 iL -1, Jo <L J £ JL -l, where the sub-
scripts o and L refer to the first and last mesh lines respectively.
Similarly the work-done expression will then have to be computed only for
the points on the mesh line 1 = I. This allows one to use much simpler
expressions for the P and v.do of Eq. 14 than would otherwise be posg-
sible. In particular

J1

SR R

(Pn-l

n-3 +P )I+ + (F%°" + p )I
where PI,J+% 5+ 5r ﬂ_é + 3 +2/,}.l_é

(28)

T A3z A4, 503

n- % n n-1 n -1 n -1 n n-l
AV 5= 3 {("Ia - xI,J+l)(YI,J+l - th,a) - (YI,J - Y;,J+l)(x1,d+l - xI,J)}




The discrepancy between the total energy in the region being checked and

the work which has been done on it through surface i = I, is then

i i n-1
§ =5 X (T?Ii 3+§> 4»%Aw‘I“é + 2 Aw‘I“"L - 7° (29)
T ST N oy

Note that only bne-half the second term is added in since the
total energy is centered at n-ﬁ, whereas the AW term repre-
sénts the work done from cycle n-l1 to n.
Extending the above formulas to two or more surfaces, or to surfaces
vhich fall on more than one mesh line, presents no difficulty in principle

although the coding can become rather involved.

F. The Stability Condition Check
The calculation of w, Eq. 15, 1is made quite simple if one is willing
to use an approximate value for the sound speed c¢ based on the pressure

from one cycle to the next, that is
2>p . Ap (30)

where Ap and AV now represent changes from one time step
to the next. This is a good approximation if the q terms are
not dominating in Eq. 24.
2.2 . v2 o
If one assumes (AR)® = VA~ in Eq. 15, and agrees to compute the
stability condition only when the fluid is compressing, AV < 0, the

sound speed term may be written

24




2

(& - (22)an):
AR 1

which gives a formula for w independent of the form of the equation of

state or any of the space dimensions:

T = {E6 -42))

In the calculations, w was used to give an automatic indication of
when the size of the time step, At, should be changed. The criterion
used was that if two mesh volumes had w's greater than 0.9 on a given

cycle, At would be cut automatically.

G. Boundﬁry Conditions

Bach problem usually has its own peculiar boundary conditions which
must be specially coded, so only a few generalities can be mentioned here.

The boundary conditions are included in the calculation by having
special eqpatioqs for the B terms in Eq. 23 for boundary points. If
the points are immobile, as the cormers in Prob. D below, the B's are
set to zero. If the points can slide along a wall but not leave it (e.g.,
the bottom points in Prob. D) then By is gero and Bx is calculated
by a simplified formula. Points which remain on a slanting line, as in
Prob. B, have B's which are related by the tangent of the angle of the

slope, etc.

25




IV. SAMPLE PROBLEMS

The following problems were done using the difference equations of
Sect. III coded for the IBM 70l Electronic Computer. An interpretive
sub-routine known as 'Dual Coding" (Ref. 8) was used, which is very use-
ful for exploratory calculations. This routine performs all arithmetic
steps in '"floating point" (i.e., numbers are in the form A x lOB), 8o
that most questions of scaling and precision of intermediate steps in the
calculation are handled automatically. One pays for this convenience by
increased calculation time; however, if the total computing time for the
problem is not excessive, the convenience still results in a net gain in

total time from inception to completion of the problem.

A. A One-dimensional Shock Problem

The first problem tried was that of a plane steady shock formed
by a constant velocity piston (Ref. 4) in a tube of finite length. This
proved to be quite a good problem for testing the method on known ground
for which exact solutions were available.

The piston was started in a gradual manner so that the von Neumann-
Richtmyer shock would be formed with only small initial transient effects.
The graphs in Fig. 2 show some of the results of this problem. The
upper curve shows the pressures of some of the mesh points as functions of
time. The lower shows the relative specific volumes of the same points.
The agreement with the theoretical curves is typical for the von Neumann-
Richtmyer method. The small oscillations after the shock could be damped

out by taking a larger value of b. However,this would result in a loss
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Figure 2

Problem A. A one dimensional shock reflected from a rigid wall.
The upper curve gives the total pressure, p+g , versus time for three
of the mesh points: The lower gives the relative specific volumes of
the points versus time. The dotted curves give the theoretical values

from the Rarkine-Hugoniot equations.
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of resolution since the whole shock would be widened.
The problem was stopped when the reflected shock from the fixed end

of the tube collided with the piston.

B. An Oblique Shock Problem

For the second problem, it was desired to try a case which had true
two dimensional character, yet which also possessed an exact solution in
reasonably simple form. The case of steady supersonic flow past a wedge
seemed ideal for the purpose. (Ref. 9)

Values of material velocity, etc., were chosen to give the theoretical
pattern shown in Fig. 3a. The angle of the wedge was approximately 10°,
chosen to give an angle of the shock of 30°. The exact solution is time
independent. However, since the present numerical method must solve tran-
sient problems, one can expect the time independent solution to be reached
only in some average sense. The method chosen for mocking-up the steady
boundary conditions was to hold the right and left boundaries of the region
on their theoretical paths as a function of time and allow the rest of the
points to be computed by the difference equations.

Fig. 32 and 3b show '"snapshots ' of the positions of the mass points
and the values of the pressures at two times in the problem. Note that all
the quantities show evidences of the typical oscillations mentioned in
Prob. A. The upper numbers give the total pressure, P, of the mesh vol-
ume, the lower numbe:s give the viscosity term, q, only. The positions
of the viscosity terms do indeed cluster about the theoretical shock posi-

tion. The scattered small terms elsewhere indicate oscillations, and are
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Figure 3
Problem B. /n oblique shock problem where (2) gives the theor-
etical configuration of typical masg points and Pressures. The initial
velocity is from left to right at Mach 2. The initial bressure is 1.0
in arbitrary units, the final bressure to the right of the shock is 4.0.
Parts (b) and (c) give the mass point positions and pressures at dif-
ferent times during the problem. The upper numbers are the total pres-

sure, p + q, the lower are the dissipative Pressures, g , only.
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negligible for the most part. The shape of the flow pattern is also con-

sidered quite gratifying.

C. An Oblique Shock and Rarefaction Problem

Making a relative minor change in the right-hand boundary condition
of Prob. B made it possible to try a true transient problem--a sort of
idealized collapsing cone problem. The right boundary was ailoved to be
a free surface which could be accelerated by the pressure differences
appearing across it.

An exact solution of this problem was not available. However quali-
tatively one would expect (a) the pressures and particle velocities to
approach the theoretical values of Prob. B near the wedge as time
advanced, and (b) a material jet (Ref. 10) to form along the lower
edge. The latter was not expected to be very well represented since the
resolution of the space mesh is rather coarse.

Fig. 4 shows the results of this calculation at various times. The
qualitative behavior expected was indeed observed. The rarefaction from
the free surface managed to keep the stationary shock from atteining
its final value by the time the problem was stopped, although the pres-
sures near the wedge were rising steadily in time. The formation of the
Jet was clearer than expected. Figs. 4c and 4b show the maximum mesh
distortion seen in any of the problems. The position of the points on the
upper bound;ry are not realistic since they were constrained in the prob-
lem to remain on the 10o line. A relatively minor change in the code

could permit them to separate and flow down into the jet.
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Problem C. An oblique shock with a rarefaction from a free surface.
rositions and pressures are plotted at different times during the problem.

of a material jet is indicated.
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D. An Explosion Problem

Another two dimensional problem about which much qpaliﬁative informs-
tion is known is the interaction of a diverging shock from a point explo-
sion with the ground. (Ref. 11) The pressure profile is in the form of
a peak followed by a trough which usually exhibits a negative phase, i.e.,
pressure below the original atmospheric pressure. When a shock strikes
the ground the pressure is approximately doubled in a reflected shock. As
the intersection of the first shock and the ground becomes more oblique,

a Mach stem is eventually formed. (Ref. 4)

. One question which this calculation was expected to ansvwer concerning
the method was, will the calculated shock travel with the same speed at an
angle with respect to the mesh as it does parallel to it?

For convenience the problem was started with all the mass points at
rest but with high pressures in the four rectangles in the upper left
corner. These pressures were chosen gso as to approximate the distribution
expected a short time after a point explosion at the corner. Fig. 5
shows the positions and pressures at later times. The shaded regions are
bounded by the 5% pressure disturbance line and the peak pressure line
for each shock. The actual shock position is about midway between them.

Again the qualitative results were most gratifying, even though the
present problem represents an explosion along an infinite line rather than
at a point. The shock does travel with uniform speed at a;l angles with
respect to the mesh, and the reflected shock behaves much ag it should.
Because of the coarse resolution, one cannot state with any certainty that
a Mach stem is being formed in the last picture, although the results are

at least not inconsistent with there being one.
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Problem D. The shock wave from an infinite line explosion is

shown interacting with rigid ground. The mass point positions and
pressures are plotted at three different times during the problem.
The shaded regions are bounded by the 5% pressure disturbance and

the peak pressure lines for each shock.
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V. DISCUSSION OF RESULTS AND FUTURE POSSIBILITIES

One fact is apparent throughout all the above froblems; the mesh size
determining the space and time resolution of the quantities calculated is
too coarse for detailed study of any but large-scale results. This was
in part intentional in the present problems, but for the most part the
limitation is one of computer speed and storage capacity.

The difference equations of Sect. III assume that seven quantities
are stored for each mass point from one time step to the next:

X, AX, ¥, AY, P, E, and A°., The last quantity, A°, the original area
of the qpadrilatera;, need not be stored separately for each point if the
mesh i8 regular. However, one sacrifices much flexibility by making this
stipulation. The storage block needed for the above seven quantities is
called "permanent storage" and will be equal to 3(R-1)(C-1) + 4RC words
of storage, where R 1is the number of rows and C is the number of
columns in the wmesh.

One also always needs the additional quantities (V’X’Y’P)1+é,3+é
for the points in the column next to the one being computed at a given
time. This block is called "intermediate storage' and is equal to 8(R-1)
words. Finally one needs space for the problem code itself and the tem-
porary storage which it uses during the calculation. The size of this
'code storage" is not a sensitive function of the size of the mesh being
used, although the code will tend to be longer and more involved ag the
mesh gets larger.

The total storage required in the computer may thus be expressed as
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S =85, + 3(R-1)(C-1) + 4RC + 8(R-1)

The total time necessary to do a calculation may be given approximately
by
T = NRC(t_ + rt_)
c P

where N 1is the total number of time cycles in the problem,
tc is the time required to calculate all the difference equations
for one mass point for one time step, tp is the time needed to
print the quantities for one mass point, and r 1is the ratio
of the number of time cycles for which guantities are printed to
the total number of cycles calculated..
In Prob. D, the numbers were approximately: R = 9 rows, C = 16 columns,
N =112 cycles, Sc‘n 1168 words (including "Dual"), t, = 0.3 sec, tp = 1.2 sec,
and r = 0.25. This ylelds the total storage S = 2048 words (the capacity
of the 7Ol memory), and the total time = 9677 sec or about 24 hours.
Experience has shown that to do a problem with good resolution in one
dimension requires at least 50 to 100 wmass points. If one takes this
many rows and columns in a two dimensional problem, the total number of
points will be 2,500 to 10,000! Also, from stability arguments, if one
cuts the size of the space mesh by 10, he will also have to cut the size
of the time mesh by at least as much, so the number of time cycles in this
hypothetical case will be in the vicinity of 500. On the other hand, by
giving up the luxury of floating point Dual operations one can cut tc
from 0.3 sec to about 0.06 sec. Similarly,by using more specialized

printing procedures (fewer significant figures, etc.), one can easily cut
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tp from 1.2 sec to 0.4 sec. The finer time steps in the calculatién
mean that one need not print as often, so r can be made 0,03 or less,

Using these numbers, one arrives at figures for the total storage of
20,000 to 70,000 +words, and for times of calculation, 25 to 100
hours per problem: On machines which are presently available it is pro-
bably foolish to consider problems of this magnitude, although there are
certainly a great many useful two dimensional problems which one can do
with one-tenth the above storage and time, which is practical on existing
wachines.

There are a number of ways in which the present method may be gen-
eraligzed to other physical cases. For example, it could be altered to
include: (a) two or more different materials, (b) other equations of

state (c) coordinate systems other than rectangular, (d) energy release

terms, (e) shear viscosity and rigidity terms, and also (f) more elaborate

boundary conditions which can allow for movement of the boundary walls,
slippage along moving boundaries, separation and intersection of moving
boundaries, etc. It is hoped to be able to report on some such extensions
at & later time.

The main limitation of the method is expressed in the stipulation
made in the introduction to Sect. III, that the fluid must be continuous
over distances the order of the mesh size. This certainly will limit its
usefulness in fluid problems involving turbulence and mixing, or extensive

shearing and slipping.
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