

UNCLASSIFIED

CIC-14 REPORT COLLECTION REPRODUCTION COPY

See LA 183 A

December 8, 1944

This document contains 43 pages

CRITICALITY OF THE WATeR BOILER, NUMBER OF DELAY ED NEUTRONS ${ }^{\text {a }}$ and DISPERSION OF THE NEUTRON EMISSION PER FISSION

WORK DONE BY
F. L. Bentzen
J. Bridge
E. Fermi
R. Po Feynman
F. de Hoffman
D. W. Kerst

L。D. P. King

PUBLICLY RELEASABLE

The calibration of the water boiler is made in such a way as to refer eventually to the multiplication of the primaryoneutron sourcea The effective number $y f$ of delayed neutrons in the water boiler is found to be 0.79 per cento Here f is the fraction of delayed neutrons emitted on fission, and γ is the relative effectiveness of delayed and prompt noutrons in leading to further fissions This gives a value of $\bar{v} \mathbf{v} v$ equal to 404 , where y is the number of neutrons emitted per fissione The average time in the water boiler between fissions due to prompt neutrons is found to be $122 \mu \mathrm{~s}$.

UNCLASSIFIED

I. INTRODUCTION

It shom in report lamlol that in order to determine the quantity $\overline{v^{2}}-\bar{y}_{\text {, }}$ (ioe., the average of the square of the number of neutrons minus the arerage number of neutrons per fission, a knowledge of the quantity $\boldsymbol{r f}$, the effective number of neutrons delayed in the water boiler, mas needed.

In the following both theory and experiments leading to a value of pf are described. The absolute calibration of the control rod on the water boiler is described and a value for the quantity τ_{p}, the average time between fissions due to prompt neutrons in the water boiler, is obtained. A slight correction to the value of Y (a measure of the filuctuation of the boiler) as obtained in lá-101 is reported and a value for the quantity $\overline{v^{2}}-\bar{v}$ is giveno Some further discussion on the interpretation of the value of $\overline{v^{2}}-\bar{v}$ is presented.

The report throughout is divided into Sections A and B dealing, with the determination of absolute criticality, and the determination of γf and τ_{p} rospectivoly:

A table of notation is appended for the convenience of the reader

II。THEORY

Before discussing the theory underlying these experimentsp it was folt that a clarifioation of the quantities K and $K p$ as used in connection with the water bailer was well advisedo

Let us consider the water boiler in a subcritical state with referenee to all neutrons, i.00, thbse promptly eraitted plus those which are enftted delayed. Let us, for the time being, lump all delayed neutrons Into one group with an average delay periodo Let \bar{v} be the average number of neutrons emitted per fission, that is, let it be the sum of those emitted promptly per fission, which we shall call $\bar{v}_{p} 1$, and those emitted delayed per fission, which we shall call \bar{v}_{d} ? Further let us define the conditionsl probability P_{p} as the average probsbility which a neutron when born promptly hes of eventually producing a fission ${ }^{2)}$. Also let us define a corresponding conditional probability P_{d} for those which are born delayedo It is likely that P_{d} will be different from P_{p} sinoe delays are born at a different energy. The ratio P_{d} / p_{p} shall be denoted by $\gamma \circ$

Now let us inveatigate what happens whon we have a primary source of S fissions (or the equivalent of S primary fissions due to the insertion of a source of neutrons) and we ask ourselves what is the number of fissions

1) The reader should bo careful to distinguish between the use of the symbol \bar{v}_{p} as here defined and the symbol y_{p} (ioe., unbarred) denoting the quameity 1 - K_{p}, as was used in our previous report LAol01.
2) We shail negleat the effect of spatial distribution of fisgions since if the boiler is running very near to oritical a generation of fissions born will on the average have the same spatial distribution as the generation that preceeded it。

that inl occur in the boiler promptly. The number of fissions will first of all consiat of the S fissions themselves; these in turn will produce $S \bar{y}_{p}$ prompt neutrons or $S \bar{v}_{p} P_{p}$ fissions; these in turn produce $S\left(\bar{\nu}_{p} P_{p}\right)^{2}$ fissions and so on Fence the number of fissions produced by prompt neutrons is

$$
\begin{equation*}
S\left(1+\bar{v}_{p} p_{p}+\left(\bar{v}_{p} p_{p}\right)^{2}+\left(\bar{v}_{p} P_{p}\right)^{3}-\cdots \infty\right) \tag{1}
\end{equation*}
$$

Clearly the quantity in brackets is what is usually spoken of as the prompt. multiplication since the boiler is subcritical, $\bar{v}_{p} P_{p}$ must be less than unity and we may write for the number of fissions produced by prompt noutrons the expression:

$$
\begin{equation*}
S /\left(1-\bar{v}_{p} P_{p}\right) \tag{2}
\end{equation*}
$$

It is usual to call the quantity $\bar{v}_{p} p_{p}$ by the notation K_{p}. Thus the prompt multiplicution becomes $1 /\left(1-K_{p}\right)$ 。

Next let us investigate what the multiplioation is when we consider all neutrons, i.e., we wait long enough so that delays oan take effect o the usual situation in the operation of the water boiler. let us consider what happens when S primary fissions occur in the boilere

Of these S fissions $S \bar{\nu}_{p}$ prompt neutrons are born producing $S \bar{v}_{p} p_{p}$ fissions and also $S \bar{v}_{d}$ delayed neutrons producing $S \bar{y}_{d} P_{d}$ fissionso Thus the total number of fissions in the second generation 3$)$ is $S\left(\bar{v}_{p} p_{p}+\bar{y}_{d} P_{d}\right)_{0}$ These in turn will produce $S\left(\bar{\nu}_{p} p_{p}+\bar{v}_{d} p_{d}\right) \bar{v}_{p} p_{p}$ fissions due to the prompt neutrons emitted and $S\left(\bar{v}_{p} P_{p}+{\overline{v_{d}}}_{d} P_{d} \bar{\nu}_{C} P_{d}\right.$ fissione due to the delayed neutrons emitted. Thus tho third generation of fissions is $S\left(\bar{v}_{p} P_{p}+\psi_{d} P_{d}\right)^{2}$ and so forth. The total number of fissions produced in the boiler is then

$$
\begin{equation*}
s\left(1+\left(P_{p} \bar{v}_{p}+P_{c} \bar{v}_{d}\right)+\left(P_{p} \bar{v}_{p}+P_{d} \bar{v}_{d}\right)^{2}+0000-00\right) \tag{3}
\end{equation*}
$$

3) Tho term generation as used in this cuse does not imply that all members of the $(n+1)$ st generation are later in time tran those of the nth generation netmerely refers to he completion of a cycle of reproduction.

FFrtynte -
Now since the boiler is subcritical, $\left(P_{p} \bar{v}_{p}+P_{d} \bar{v}_{d}\right)<1$; therefore the number of fissions produced in the boiler ia:

$$
\begin{equation*}
s\left(\frac{1}{10\left(P_{p} \bar{v}_{p}+P_{N} \bar{v}_{\mathrm{d}}\right.}\right)=S\left(\frac{1}{1-k}\right) \tag{4}
\end{equation*}
$$

Clearly then $1 /\left[1-\left(P_{p} \bar{v}_{p}+P_{d} \bar{v}_{d}\right)\right]$ is the multiplication of the boiler considering all neutronso It is conventional to write

$$
\begin{equation*}
K=P_{p} \bar{\nu}_{p}+P_{d} \bar{v}_{d} \tag{5}
\end{equation*}
$$

One might digress and note that we may if we wish alternately split up the delays into distinct groups each with a fraction $r_{i} \overline{v_{d}}$. and a probability $Y_{i} P_{p} ;$ then

$$
\begin{equation*}
P_{d} \bar{v}_{d}=P_{p} \bar{v}_{d} \sum_{i} r_{i} \gamma_{i} \tag{6}
\end{equation*}
$$

Our arguments atill hold using the method as outlined ${ }_{0}$ so that we may if wo wish write

$$
\begin{equation*}
K=P_{p} \bar{\psi}_{p}+P_{p} \bar{\gamma}_{d} \sum_{i} r_{i} \gamma_{i} \tag{7}
\end{equation*}
$$

Let us now return to equation (5) and find the relation between K and K_{p} o From equation (5) and since $K_{p}=P_{p} \bar{w}_{p}$

$$
\begin{equation*}
K_{p}=K\left[\bar{y}_{p} /\left(\bar{y}_{p}+r \bar{x}_{d}\right)\right] \text { me } \quad P_{d}=X P_{p} \tag{8}
\end{equation*}
$$

Let f denote the fraction delayed;

$$
\begin{align*}
& \text { then }\left\{\begin{array}{l}
\bar{x}_{d}=\bar{v} \mathrm{P} \\
\bar{\nu}_{p}=\bar{\psi}(1-f)
\end{array}\right. \tag{9}\\
& \text { hence } \bar{y}_{d}=\bar{\psi}_{p} \quad f(1-f) \tag{10}
\end{align*}
$$

Remombering that $P_{d}=\gamma P_{p}$.

$$
\begin{equation*}
K=K_{p}[1+f Y /(1-x)] \tag{11}
\end{equation*}
$$

Expanding and noglecting secondo and highersorder terms in f we obtain:

$$
\begin{equation*}
K_{p}=(1-\gamma f) K \tag{12}
\end{equation*}
$$

iovog the quantity $(1-\gamma)$ is a good approximation for the quantity $\bar{v}_{p} /\left(\bar{v}_{p}+\dot{\gamma} \bar{v}_{d}\right)$, It should be noted that the quantity $\left(1-K_{p}\right)$ at $K=1$ is just pfo

It is evident from the above discussion that in order to determine anything about the quantity K_{p} we should first endeavour to obtain the quantity K for each setting of the control rod.

In order to obtain this calibration the following experinent was suggested and carried out.
A. The Boronabubble Experiment:

Consider a mock solution that has the same absorption for neutrons as our real 25 solution but does not give rise to fission a Imegine that one uniformly replaces $1 / 2$ the volume of the boiler with this mock solutiono Clearly only half as many fissionable nuclei are left and the probability P_{p} as well as P_{d} is out in halfo $\operatorname{Since} K=P_{p} \bar{\nu}_{p}+P_{d} \bar{\nu}_{d} K$ also is halved。

Next consider the boiler running at critical for a certain controlrod setting (CR) A° Then a volumo ΔV of the mock solution is introduced uniformly for a like volume of 25 solution. The boiler is now subcritical and wo raise our control rod to the position $(C R)_{B}$ to make the boiler critical again. By use of Pig. 1^{4} we know that the raising of the control rod
4) This graph originally appeared in Report LAm134, where details of its construction may be found。

corresponds to the addition of a certain number of grams of 250 Now let us examine what Δy was produced by the addition of this mock solution before wo raised the control rode Originally $\mathbb{K}=1$; then we introduce ΔV mock solution leaving only $(V . \Delta V) / V$ as many fissionable nualei as before so that

$$
\begin{equation*}
\frac{\mathrm{K}_{\text {with mook solution }}}{\mathrm{K}_{\text {origine } 1}=1}=\frac{V-\Delta V}{V} \tag{13}
\end{equation*}
$$

Let

$$
\Delta K=1-K_{\text {with }} \text { mock solution }
$$

then

$$
\begin{equation*}
\Delta X=\Delta V / v \tag{14}
\end{equation*}
$$

Hence the conversion from ΔM in gms of 25 to units of absolute ΔK has been established near critical; if wo allow the assumption that in our experimental setup ΔK is proportional to ΔM_{0}

Experimentally, of course, it is undesirable to dissolve the mock solution uniformly - instead it is introduced as an enclosed bubble of volume ΔV 。 Its size is so chosen that it does not perturb the prevailing neutron intensity greatly。

We then move this bubble radially and observe its effective ΔM in gms of 25 at each position through the controlorodesetting method (seo Fig, 1). Then we take a volume average of ΔM and say that this average, $\overline{\Delta M}$, is the equivalent of dissolving the contents of the mock bubble completely:

$$
\begin{equation*}
\overline{\Delta \mathbb{M}}=\frac{\int_{0}^{r} r^{2} \Delta M d r}{\int_{0}^{r} r^{2} d r} \tag{15}
\end{equation*}
$$

Thus wo have a certain $\overline{\Delta M}$ for a certain ΔK, where
$\Delta K=V_{b u b b l} / V_{\text {boiler }}$ and have ostablished the conversion。 from now on, therefore, we may consider that wo can measure K of any setup on the boiler. We first measure the control-rod settings, then convert these into ΔM in grs of 25 and finally convert ΔM into ΔK 。

Bo The Determination of $y f$ and Tp
As we saw in IA-101, and as derived on page 7 of this report rie essentially want to know the quantity 1 - K_{p} at $K=1$ or f_{p} Perhaps the most obvious method that occurs to one is the following:

If the boiler is running at a known K and wo suddenly introduce an absorber of a known ΔK into $i t_{p}$ then the neutroneintensity curve should look somewhat as follows:

The ratio of a to b clearly depends in a simple manner on the effective fraotion of neutrons delayedo Thus $Y f$ can be calculated if we know the old and now K as well as the ratio of counts a and b. The K we know absolutely by means of the boronsbubble experiment, but it turns out that experimentally it is extremely difficult to establish accurately the ratio of a to b. for in practice with, say, a BF_{3} counter, it is impossible to count statistically
slgnillcant numberg inameajately aiter tne mink in tne ourve．if we remempex that a 0.7 －second delay period has been found at Chicago，it is clear that an extrapolation to find the intersection b from points further on in time is a rather dangerous procedure．Following the general procedure outlined above，several experiments were attempted by using straight counting mothods with existing BF_{3} equipinent，as well as some with osoillograph camera res cording，but all tests were inconclusive because of the uncerfainties of extrapolating back．They will therefore not be discussed further in this report。

Taking cognizance of the diffioulties of extrapolating from a single experiment，it was decided to try to examine the fast drop in neutron intensity due to the presence of a piese of absorber by jerking it in and out with a fairly ？ time to decay and there will be merely a steady background of delays with a rapidly changing promptoneutron intensity superimposed。

If wo examine the neutron curve as sketohed in Figa A ，we see that there should first be a sharp drop corresponding to the fast period and then a gradual one due to the emission of delayed neutronse This fast drop will have a period of the order of $10^{\circ 4}$ seconds as one can calculate from the concentration of the solution（neglecting tamper affects）If we run the repetition rate of the jerked absorber too high it is＇clear that the neutron level can not follow the absorber any more since there is a finite fast period whioh is sufficiently long so that it takes the boilor some time to take cognizancs of the change in absorbero At a nigh repetition rate the boiler will thus lag behind。

If, however, we are interested in a situation like this; Fig. B

where tho intensity hardly decays after the drop we must of necessity have not too low a repetition rate. If a repetition rate existed such that wo could fulfill the condition of hitting a sufficiently high repetition rate so that the delayed neutrons form an average background and yet run slowly enough so that no lag occurs, then the following simple considerations will lead us to some expression of a function of time.

He again consider a source of S primary fissions per unit timon $S i s$ independent of time. Let us denote by $F(t)$ the number of fissions per unit time actually occurring in the boiler at time t_{0} Lot there be N_{d} neutrons entering the boiler per unit time consisting of the delays being emitted from pregnant nuclei. In other words, our condition of a sufficiently high repetition rate means that the quantity N_{d} is approximately a constant with time. Thus the fission at time t consists of the S primary fissions multiplied up promptly plus the $N_{d} P_{d}$ fissions constantly being caused by delays also multiplied up promptly, i. eos

$$
\begin{equation*}
F(t)=\frac{S}{1-K_{p}(t)}+\frac{M_{d} P_{d}(t)}{1-K_{p}(t)} \tag{16}
\end{equation*}
$$

NOW

$$
P_{d}(t)=\gamma P_{p}(t)=\gamma \quad K_{p}(t) / /_{p}^{\prime}
$$

so that

$$
\begin{equation*}
F(t)=\frac{S+N_{\alpha_{1}} r / \nu_{p}}{1-\frac{r N \vec{Q}}{K_{p}(t)}} \frac{\bar{v}_{p}}{} \tag{17}
\end{equation*}
$$

Sinoe $K_{p}(t) \approx 1$, it is claar that the first term of this expression is much the bigger, even if $S=0$, so that

$$
\begin{equation*}
F(t) \cong \frac{S+N_{a \gamma} / \bar{y}_{p}}{2-K_{p}(t)} \tag{18}
\end{equation*}
$$

Now let us write expressions for C (out)/C(in), iocos the ratio of counts at the time whon the absorber is all the way out to counts at the time the absorber is all the way ino Since the efficiency of the counter is constant we get:

$$
\begin{equation*}
\frac{C(\text { out })}{C(\operatorname{In})}=\frac{1-K_{n}(\text { in })}{1-K_{p}(o u t)} \tag{19}
\end{equation*}
$$

Remembering equation (12) wo get

$$
\begin{equation*}
\gamma f=1-\frac{(c(o u t) / C(i n))-1}{(C(o u t) / C(i n)-1) \sum_{o u t}+\left(K_{o u t}-K_{i n}\right)} \tag{20}
\end{equation*}
$$

This equation (20), however, is only true if a repetition rate with the required properties exists, vinch physically is unfortunately not the oase although it is very closely so around 20 rpmo Let us now ereat the question of varying multiplication in greater detail.

Before considering the problem of varying multiplication let us first consider a stsady state in order to study more easily the quantities involved。 Let us call $F(t)$ the fission rate at time to This will depend on the fission rate at a previous time t'。 First let us consider what the

wo shall say as before that P_{p} is its probability of causing a fission at any later time。 If now we are interested to know what its chance is of producing a fission at time t we shall woigh this probability by the function $R\left(t-t^{p}\right) d t ;$ ioe．o $P_{p} \cdot R\left(t=t^{i}\right) d t$ is the probability which a noutron born promptly at time t^{\prime} has of producing a fission in the interval dt at time t_{9} so that $\int_{0}^{\infty} R\left(t-t^{\prime}\right) d t$ is normalised to ono．

Next let us consider a varying multiplication，ioen，the quantity $P_{p} \circ R\left(t-t^{\prime}\right)$ is a function of t and not only of $\left(t-t^{\prime}\right)$ O Considering P and R separately we first investigate P_{0} Ihis P will now be a function of some average time between t＇and t 。 Howeverg the fastest variation of our absorber was 384 rpm ；ioe．，one cycle lated 6.7×10^{-2} seconds or longer， Sinco it will be show that the average time between fissions is of the order of $10^{\infty 4}$ seconds，it is clear that it is immaterial what average timo within the range $t \rightarrow t '$ we chose since our absorber has moved a nogligible amount within this time。 For convenienco sake，we shall choose the time t itsolf； 1000 wo now consider $P_{p}(t)$ 。

Consider now the function $R\left(t-t^{\prime}\right)$ and its dependence on t_{0} It is true that this function may vary slightly over a whole cycle；but sinc＇e we are ruaning always very close to critical this quantity will not vary by more than perhaps a percent or lesa。 Since in all subsequent equations it daes not appear as a difference term this quantity $R\left(t-t^{\prime}\right)$ will be assumed independent of to It should be noted that such an argument could not be applied to n since this quantity does appear often as a difference tern， 1．000，we have occasion to subtract P from $K P$ ，so that a few percent
variation makes a largo differencoo
He have come now to a point where wo may examine the life story of a delayed neutrono Let us first study the steady state again and for the sako of mathematical simplicity let us consider the following model：

Fig。C

Note：t－t＂くくも＂－t『

We have our fission occurring at time t^{0} giving rise to some prompt neutrons emittod at to．In addition the excited fragments may givo rise to the emission of a dolayed neutron at time tio Such a delayed neutron has a probability P_{d} of causing a fission at any later time。 We shall again weigh It by some function $R^{P}\left(t-t^{\prime \prime}\right) d t$ such that $P_{d} \dot{d}^{\prime \prime}\left(t-t^{\prime \prime}\right)^{d t}$ is the probability which a delayed neutron when born at tine $t^{\prime \prime}$ hes of producing a fission at time to Now we know that the probability of emission at time f＂ due to a fission at time t^{\prime} may be expressed as $e^{-\left(t^{\prime \prime}-t^{\prime}\right) / \tau_{i}} \mathrm{~d} t^{\prime \prime} / \tau_{i}$ ， where τ_{i} is the delay period F four such periods τ_{i} and their relative fractions r_{i} of all those delayed are approximately known to us．The average delay period shall be \mathcal{F}_{d} ．Wo may therefore write that the probability
that a delayed neutron due to a fission at time t' will cause fission at time t is: $\left[0^{-\left(t^{\prime \prime}-t^{\prime}\right) / \tau_{i}} \quad d t^{\prime \prime} / \tau_{i}\right] P_{d} \circ R^{\prime}\left(t-t^{\prime \prime}\right) d t$, If we examino the relative magnitude of these quantities we iote that τ_{i} is on the average of the order of 10 seconds so that any extra effect due to the function R^{\prime} whose decay is in the 10^{-4} seconds is entirely negligible, ine.o for this purpose พจ set

$$
\left[\begin{array}{ll}
-\left(t^{\prime \prime}-t^{\prime}\right) \tau_{i} & d t^{\prime \prime} / \tau_{i} \tag{21}
\end{array}\right] P_{d} \circ R^{p}\left(t-t^{\prime \prime}\right) d t=\left[e^{-\left(t-t^{\prime}\right) / \tau_{i}} d t / \tau_{i}\right] P_{d}
$$

From now on y:e shall call $a_{i}=1 / \tau_{i}$ 。
For varying multiplication we go through the same reasoning concerning P_{d} as we did for the case of P_{p} so that we choose $P_{d}(t)$. We shall further assume that $P_{d}(t)$ is independent of the particular delay period that is s_{0} it is independent of i.

We are now ready to write down the equation governing the variation of $F(t)$ in the case of our experiment and under the limitations as explained: $F(t) d t=S d t+\int_{-\infty}^{t} F\left(t^{0}\right) d t^{1} \bar{v}_{p} P_{p}(t) R\left(t-t^{\prime}\right) d t+\sum_{i} \int_{-\alpha}^{t} F\left(t^{0}\right) d t^{\prime} \bar{v}_{d i} \theta^{-}\left(t_{-\infty} t^{\prime}\right) a_{i_{a_{i}}} d t P_{d}(t)$

The term on the left of equation (22) is the number of fissions ocourring at the time t in the interval dto This will be made up of the following three terms: I) the steady primary fissions Sdt; II) those fissions at time t which are initiated by prompt neutrons that have been born at thme i" jsince t' can occur at any previous time to t we shall integrate from $-\infty$ to t; III) those fissions at time t which are initiated by delayed neutrons which in turn are due to fissions at time t'o Again in order to
sum all such processes we integrato from oss to to If we divide through by dt, use equations (8) through (12), and call $\bar{\nu}_{\mathrm{ci}}=r_{i} \bar{v}_{\mathrm{d}}$ we get:
$F(t)=S+\left(1-\gamma^{\prime}\right) K(t) \int_{-\infty}^{t} F\left(t^{\prime}\right) R\left(t_{-\infty} t^{\prime}\right) d t^{\prime}+\gamma f K(t) \underset{i}{i} a_{i} r_{i} \int_{-\infty}^{t} F\left(t^{\prime}\right) e^{-\left(t_{-} t^{\prime}\right) a_{i}} d^{\prime \prime}$

Let us now examine the quantity $\int_{-\alpha}^{t} F\left(t^{\prime}\right) R\left(t-t^{\prime}\right) d t$ more closelys Set $t \infty t^{\prime}=x ;$ then the integral becomes

$$
\int_{0}^{\infty} F(t-x) R(x) d x
$$

expanding $F(t-x)$ in a Tayl or series around t we get
$\int_{-\infty}^{t} F\left(t^{\prime}\right) R\left(t-t^{0}\right) d t=F(t) \int_{0}^{\infty} R(x) d x-F^{\prime}(t) \int_{0}^{\infty} x R(x) d x+\frac{F^{\prime \prime}(t)}{2} \int_{0}^{\infty} x^{2} R(x) d x---$
By definition of the function R, the integral $\int_{0}^{\infty} R(x) d x$ is unity; it is also clear that the physical meaning of the next term, namely, $\int_{0}^{\infty} x R(x) d x$, is merely the average time from one fission to the next due to prompt neutronse

We shall denote it by the quantity τ_{p}. The next term, namoly, $\left[F^{\prime \prime}(t) / 2\right] \int_{0}^{\infty} x^{2} R(x) d x$ is of order $\left(T_{p}\right)^{2}$ and since from physical arguments we know that τ_{p} is of the order of $10^{\infty} 4$ seconds we shall neglect this second term and all nigher terms。 Collecting now the two terms in $F(t)$ we may write:
$F(c)\{1 \propto(1 \propto \gamma f) K(t)\}=S \propto(1-Y f) Y(t) F^{\circ}(t) \tau_{p}+K(t) Y f \sum_{i} a_{i} r_{i} \int_{-\infty}^{t} F\left(t^{\prime}\right) e^{-\left(t_{-} t^{\prime}\right) a_{i} d t^{8}}$

Tris equation (25) is essentially our fundamental equationo Let us now solve equation (25) considering various speeds of $F(t))_{0}$ which we shall consider as having an angular speed ω_{0} by two different methods, ioeog the reproduction mothod (case I and II) and the direct analysis.

TREATMENT OF EQUATION (25): REPRODUCTION METHOD

Case I: If $\omega \overline{\tilde{\tau}_{d}} \geqslant 1$, i.o., we run at a high repetition rate (e.g., our exporimental 884 rpm case) let us examine the various tarms on the right of equation (25). Term I, 100. , S, wll be a small constant term if we run near oritical. with terms II and III outweighing it by far since the number of primary fissions is very small compared to the number of fissions ocourring in the boiler. Term I denoting the contribution from promptly caused fissions cannot be simplified. In term III we note that if the function $F\left(t^{\prime}\right)$ has k high repetition rates the quantity $0^{-\left(t m t^{\prime}\right) a}$ has hardiy decayed during a cyole: thus, term III is essentially a constant which wo may call $S_{d}{ }^{\circ}$ 。 It expresses mathematically our physical siturtion of a steady background of delays. Combining $S_{d}{ }^{\text {P }}+S=S_{d}$ we make equation (25) read;

$$
\begin{equation*}
F(t)\{1-(1-Y f) K(t)\}=S_{d}-F^{g}(t) T_{p} K(t)(1 \propto Y f) \tag{26}
\end{equation*}
$$

Since $K(t)(1-P i) \approx 1$ we may write

$$
\begin{equation*}
F^{v}(t) \tau_{p}+F(t)\{1 o(1-\forall f) K(t)\}=s_{d} \tag{27}
\end{equation*}
$$

Since this is a linear differential equation of first order, it may be intea grated and yields, considering our periodicity conditions:
$F(t)=\left(S_{d} / \tau_{p}\right) \cdot-\int_{0}^{t} \frac{1-(1-x f) K(\xi)}{\tau_{p}} d \xi \quad \int_{-\infty}^{t}+\int_{0}^{t} \frac{1-(1-\alpha f) K(\xi)}{\hat{\sigma}_{p}} d_{F}^{t} d t$
Now let us mention that experimontally as discussed on page 27 , we really moasure the quantity $F(t) / F(t+n)$ and are thus not interested in absolute values of $F(t)$ o Our lack of knowledge of the quantity S_{d} is therefore no handicapo If we ohoose the correct of and τ_{p} we should be able to reproduce ．．winod of reproducing $F(t) / F(t+\pi)$ is thus one way of establishing $r f$ and τ_{p} from the 884 mpm data。

Case II：ω 呮 is comparable to one and delay terms can no longer be set． constant；also，$w \tau_{p} \ll 1$ o Such cases are givon experinentally by our 20 and 1550 pm cases．Since we are very near oritical we set $S=0$ ．Since $\omega \tau_{p} \ll 1$ we may as a first approximation sot $F^{\prime}(t) T_{p}=0$ so that equation（ \mathcal{C}^{\prime} 万） becomes

$$
\begin{equation*}
F(t)\left\{1 \circ\left(1-Y Y^{\prime}\right) Z(t)\right\}=K(t) Y f \sum a_{i} a_{i} \int_{-\infty}^{t} F\left(t^{\prime}\right) e^{-\left(t-t^{\prime}\right) a_{i}} d t^{\prime} \tag{29}
\end{equation*}
$$

Let $H(t)=K(t) Y f /\left[1 \sim\left(1 \sim P f^{\prime}\right) K(t)\right]$
thon

$$
\begin{equation*}
F(t)=H(t) \sum_{i} a_{i} r_{i} \int_{-\infty}^{t} F\left(t^{\prime}\right) e^{-\left(t-t^{i}\right) a_{i}} d t^{0} \tag{30}
\end{equation*}
$$

so that if we choose an aporopriate $\boldsymbol{P f}_{\mathrm{p}} \mathrm{i}_{\circ} \theta_{0}$ ，the right $H(t)_{0}$ we can reiterate $P\left(t^{\eta}\right)$ which converges rapidly if we assume the values of a_{i} and 5_{i} known from previous measurements at Chicagoc

Note that if we simplify $H(t)$ by setting $K(t)$ in the numerator equal to 1 ，und in the denominator if we write $K(t)$ is equel to $1+c_{1} \Delta K$ then we get

$$
\begin{equation*}
H(t)=\frac{Y f}{I-\left(1+c_{1} \Delta M\right)(I-Y I)} \tag{31}
\end{equation*}
$$

where c_{1} is the conversion factor from ΔM in ges of 25 to ΔK supposedly know from the boron－bubble axperiment。 Since both o_{1} and fi are small we may write

$$
H(t)=\frac{\gamma f}{\gamma f-C_{1} \Delta Y}
$$

thus if we express γf in terms of gms of 25 the function $H(t)$ becomes independent of o_{1}. The whole iteration process thus becomes independent of c_{1}. If we wish to improve on equation (30) let us carry out a few iterations of $F_{n}(t)$ and write for $F(t)$ by using equation (2 setting $S=0$ again.

1.000.
$F(t)=\{-H(t) / \varphi f+H(t)\} F_{n}^{\prime}(t) \tau_{p}+H(t) \Sigma_{i} a_{i} r_{i} \int_{-\infty}^{t} F_{n_{-1}}\left(t^{\prime}\right) e^{-\left(t o t^{\prime}\right) a_{i}} d t^{\prime}$
so that

$$
\begin{equation*}
F(t)=\{-H(t) / Y f+H(t)\} F_{n}^{\prime}(t) \tau_{p}+F_{n}(t) \tag{34}
\end{equation*}
$$

Since γf is of the order of 10^{-2} and $H(t)$ of the order 1

$$
\begin{equation*}
F(t)=-(H(t) / r f) F_{n}^{\prime}(t) \tau_{p}+F_{n}(t) \tag{35}
\end{equation*}
$$

Thus

$$
\begin{equation*}
F(t)=F_{n}\left(t \quad o \cdot H(t) \tau_{p} / Y i\right) \tag{36}
\end{equation*}
$$

as can be verified by expanding the right side of this equation (36) in a Taylor series and neglecting higher terms。 In other words, we apply a small phase shift to the curve obtained by reiterating $F(t)$ without the correction。 It is permissible to apply this correction at this late stage; applying it throughout would, of course, only yield an additional second-order correctione This method may be used to reproduce the correct $F(t) / F(t+n)$

Lor a particular value of γf and T_{p}, and this theoretical curve may bo compared with the experimental curve。 This, theng is a method of determini :g rf from the 20 and 155 mpm curve by trial and orror of a particular value of Pfo It is clear that sinco \mathcal{F}_{p} enters only as a correctiong tinis metiod will not detormine the value of $\tilde{\zeta}_{p}$ sinco it is entiroly insensitive to ito

TRTARMENT OF EQUATIOi (25): DIRECT ANALYSIS OF EXPERIMENTAL CURVES

Absume for a moment that the experimental curves for $F(t)$ at a known ω are given。

Recalling our fundamental equation (25) which reade:

Now set $S=0$ since we are at crifical, and remite as

Nexif express $F(t)$ as a Fourier serieas foeco

$$
\text { let } \quad F(t)=\sum_{n} a_{n} e^{\text {miwnt }}
$$

Hence

Thus if we call $D(\omega n)=\sum_{i} \quad a_{i} r_{i} /\left(a_{i}+i \omega n\right)=\sum_{i} \quad r_{i} /\left(1+i \omega n \tau_{i}\right)$
and apply Fourier's theorem to equation (39) and change sign on both sides we get

$$
\begin{equation*}
\frac{\int_{0}^{\infty}\{K(t)-1\} F(t) e^{-i \omega n t} d t}{\int_{0}^{\infty} K(t) F(t) e^{-i \omega_{n} t} d t}=\gamma f+(1-\gamma f) i \omega n t_{p}-\gamma f \sum_{n}^{\infty}(\omega n) \tag{40}
\end{equation*}
$$

Thus a complete knowledge of $F(t)$ and $D(\omega n)$ would enable us to find γf and τ_{p} 。 An additional simplification is to set $K(t)=1$ in tho lower integral and to set $K(t)=1+c_{1} \Delta M(t)$ in the upser one where c_{1} again is the conversion factor from ΔM in $g m$ of 25 to ΔK, sup; osedly known from the boronobubble exporiment. Equation (36) then becomes:
$\frac{o_{1} \int_{0}^{\infty} \Delta^{M(t) F(t) e^{-i \omega n t} d t}}{\int_{0}^{\infty} F(t) e^{\infty i \omega n t} d t}=\gamma r+(1-\gamma f) i \omega n \tau_{p} \operatorname{orfD}(\omega n)$
Now oxpressing both $\Delta M(t) F(t)$ and $F^{\prime}(t)$ as:

$$
\begin{align*}
\Delta M(t) F(t) & =\sum_{n} \quad\left(A_{n} \cos n \omega t+B_{n} \sin n \omega t\right) \tag{42}\\
F(t) & =\sum_{n}\left(M_{n} \cos n \omega t+I_{n} \sin n \omega t\right) \tag{43}
\end{align*}
$$

we get

$$
\begin{equation*}
a_{I}\left\{\frac{M_{n}-i I_{n}}{A_{n}-i B_{n}}\right\}=r f+(I-r f) i \omega n r_{p} \quad \operatorname{orf}(\omega n) \tag{42}
\end{equation*}
$$

Separating into real and imaginary parts and setting $D(\omega n)=d_{r}(\omega n)+i a_{s}(\omega n)$ we get from the real part:

$$
\begin{equation*}
c_{1}\left(\frac{M_{0} A_{n}+I_{n} B_{n}}{A_{n}^{2}+B_{n}^{2}}\right)=\gamma f \circ \gamma f d_{r}(\omega n) \tag{45}
\end{equation*}
$$

and from the imaginary part.

$$
\begin{equation*}
c_{1}\left(\frac{n_{m} B_{n}-I_{n} A_{n}}{A_{n}^{2}+B_{n}^{2}}\right)=(1-\gamma f) \omega n \tau_{p}-\gamma \Gamma d_{8}(\omega n) \tag{46}
\end{equation*}
$$

This method has the added advantage that the final equations contain θ_{1} as a dirset factor and thus any orror that may bo made in o_{1} shovis up as a direct factor in γf or $\tilde{\tau}_{p}$; thus both can be expressed 0.8 gram equivalents of 25 independent of the value of a_{1} 。

The only drawback to this method is that exporimentally $F(t) / F(t+\pi)$ is knowa and not $F(t)$ o If wo call $F(t) / F(t+n)=X(t)$ it can however be verified that it is a good approximation to sa.y that:

$$
\begin{equation*}
\frac{\int_{0}^{\infty} \Delta M(t) F(t) e^{-j \omega n t} d t}{\int_{0}^{\infty} F(t) 0^{-i \omega n t} d t}=\frac{\int_{0}^{\infty} \Delta M(t) \sqrt{X(t)} e^{-i \omega n t} d t}{\int_{0}^{\infty} \sqrt{X(t)} 0^{-i \omega n t} d t} \tag{47}
\end{equation*}
$$

provided the modulation of $F(t)$ is shallowo By means of using $\sqrt{x(t)}$
in this method wo can thus get very nearly correct values of γf and $\tau^{\prime} p$ from different speeds of ω_{0} ithis will give a good starting point for the assumption of a γf and τ_{p} in the more complete reproduction method as described in cases I and II。

A The Boron-Bubble Experiment

The mock solution consisting of an appropriate mixture of depleted 28 sulfate and $\mathrm{H}_{3} \mathrm{BO}_{3}$ in water was prepared by Go Friediandero Our thanks aro due to him for carrying out this chemical work and also for his kind assistance in the exporimental work itselfo

In Table I will be found a tabulation of the composition of the mock solution as well as the regular 25 solution and the cross sections used. This composition of 25 solutfon was the same as that used when the measurements on fluotuations as reported in La- 101 were maden

The bubble itself mas made by joining the hemispherical ends of two oontrifuge tubes by means of Duce cement and by filling then with normal or mock soup respectively by the use of a syringe after which the small hole was again sealed by the use of Duceo This bubble was attached to a long Iucite rod so that the bubble could be submerged into the actual sphere and 80 its position from the center of the sphere was known accuratelyo The bubble oould be moved along the entire vertical diameter of the sphereo

First a bubble of valume 14073 oc containing 19,85 gas of normal 25 solution was moved along the radius and the control rod adjusted at each position such that the wiler uas running oritical againo Then this prooedure was repeated with a bubble of volume 15017 oc containing 19.80 gme of mock solution. The volume of the sphere proper was known to be 15 liters from pievious measuremonts.
B.The γf and T_{p} Experiment:

The conoentration of 25 solution in the boiler when this experiment

was carried out was identioal with that at the time the boron-bubble experimont was carried out.

Fig. 2 shows the setupe The absorber, a piece of Cd, labelled A in Fig. 2 moved horizontally in and out of a slot in the tamper. It was moved back and forth by means of the connooting rod attached to wheel B. The wheel was driven by a motor which could drive the wheel at several prec determined apeeds. The control rod was so adjusted that the boiler wes criticial when the absorber wes moving back and fortho

Counts were taken by means of a BF_{3} chamber (active volume, 520 co and pressure 60.1 cm of Hg) which was located outside the tamper and was sursounded by paraffin。 It was connected to the discriminator through a preamplifier. The disoriminator was permanently hooked up to scalor No. 3. which thus counted total number of pulses from the BF_{3} chamber.

In addition, a mechanism for recording counts from the same chambor cover only a 12° interval of the cycle was available as follows: the light sourco $L_{o} S$. was focused through a lens and mirror at a point just in front of each of the two phototubes so that a shutter fixed to the rim of the wheol B could cut off the light sharply for 12° of the cyole.

Let us consider what happens for instance to phototube 1 when the shutter passes. When the light is cut off in phototube 2 it actuates the gate cirouit No. 1 which lets pulses from the discriminator pass through to scaler No. 1 as long as the light is off. ioeos for 12°. The equivalent happens 180° later with oircuit No. 20

The shutter could be moved along the rim of the wheel so that the circuits were actuated with a certain phase lag or lead with raspect to tho motion of the cadmiumo Tubes 1 and 2, howover, were still actuated 180° apart.

Scaler No. 4 served to count the number of revolutions the wheel B had made i i.e., how many cycjes of motion the cadmium had completed.

IV．EXPEHIEENTAL RESUTS

A。 Boron＠Bubblo Experiment
When the bubble containing normal 25 eolution was mored along the radial position no change in criticality could be detectedo Tho oontrolarod reading as noted in Table II was 7.130 inches．This showed that the lucite rod and the shell of the bubble presanted negligible absorptiono Thus the fact that the volume of the mock bubble was not exactily that of the normal 25 bubble did not affect our work．

The effect of the mockssolution bubble on the control position for criticality is tabulated in Table II and the convarsion to Δ gm of 25 carried out．The results are plotted on Fig． 30 wo note that the curve is very symmetrical．From this curve wo compute by means of oquation number（15）

$$
\begin{equation*}
\overline{\Delta I X}=\frac{\int_{0}^{r} \Delta M r^{2} d r}{\int_{0}^{x^{2}} d r}=1.98 \text { gms of } 25 \tag{15}
\end{equation*}
$$

It is to be considered that we assume that the volume of the boiler is just 15 literso Actually of course，there are an additional 400 co or 80 of solution in the pipes leading to the sphere。 How active this amount of solution is，ls somewhat doubtful；measurements of criticalness versus solution level in the larger pipe indicate that less than a percent of this volume might effectively be adried to the 15 liters．

We have assumed so far that our mock solution really matches perfectly y_{0} but let us examine this question in more detaile In order to see how well the absorption of the mock solution matched that of the normal 25 solution we turn now to an examination of the composition of the two solutions as given
seations as indicated except for the boron oross sectiono Let ue examine the effectiveness of boron as a substitute for 25 and let us assume that wo have a spectrum that follows the $e^{-3 / 2}$ law and then joins onto a constant thermal one. That the $\mathrm{E}^{-3 / 2}$ Law is valid comes from the fact that we deal with TH_{500} and can almost consider the higheroenergy speotrun to be ono of pure hydrogen. To test the assumption of a constant spactrum at thermal energies we calculated what the offect of assuming a Maxwellian distribution with peaks at $200^{\circ} \mathrm{K}, 300^{\circ} \mathrm{K}$, and $400^{\circ} \mathrm{K}$ welghed by the or of B would doo Ihis gave only a change of 4 per cent over the whole range from $200^{\circ} \mathrm{K}$ to $400^{\circ} \mathrm{K}$ since the of of B has too shallow a slope at thermal energies to give any marked effect ${ }^{5}$). This gave confidence in the assumptiona made wich resulted in an answer stating that the effective B cross section as compared to that of 25 vould have to be raised by 2.5 per cent because of the highoenergy effeots. In this way the term "effective cross section" for boron in Table I is explained.

Using these crosa sections one obtains the following results: -

5) See IA-140. graph 50

APPROVED FOR PUBLIC RELEASE

We see that the scattering cross section is almost the same, and any effects due to it may be neglected. As far as absorption goes, our bubblo Wes less effective than it should have been; consequently it gave lower ralues of ΔM. Hence

$$
\overline{\Delta M}_{\text {corrected }}=1.98 / 0.997=2.00 \mathrm{gms} \text { of } 25
$$

The ΔK by equation (14) is

$$
\Delta K=\frac{\text { Jolurne of bubbia }}{\text { Volume of boilar }}=\frac{15.17 \mathrm{~cm}^{3}}{15 \times 10^{3} \mathrm{~cm}^{3}}=1.01 \times 10^{-3}
$$

with the same uncertainty in the volume of the boiler.
Thus wo get that:
1 gin of 25 is equivalent to $1.01 \times 10^{-3 / 2.00 ~ u n i t s ~ o f ~} \Delta K$
1 gin of $25=5.05 \times 10^{04} \Delta K$
1.0ag calling the conversion factor 0_{1} :

$$
c_{1}=5005 \times 20^{-4} \Delta K / \mathrm{gm}
$$

Bo The r^{f} and τ_{p} Experiment
Fig. 4 shows the effect of the ca at various static positions in gms of 25 equivalent。 This enables us, using the conversion factor oge te establish K for sach position of the Cd sheet.

The actual quantity measured during a run was the ratio of counts on scal er 2 to those on scaler I which re denote by x_{3} The gite circuits mere calibrater by a pulse generator before and after each run to check the ratio of gite 2 to gato I. All data were corrected by the average of the correction factor befor and after the runo Note that by caking the ratio X over only 180°
tho oyolo we could obtain the X＇s for the rest of the oycle by using tho measured value and plotting the reciprocal 180° further ono

On Figs．5， 6 and 7 results for speeds of 20，155，and 884 rpm respectively are plotted．The probable error was calculated from the statistical Poisson error which was multiplied by the appropriate quantity $i^{6)}$ to allow for fluctuations．The curves are the best curves through the experimental pcints。

A simple evaluation according to formula（20）assuming that 20 rpm is the necessary ideal speed，yielde $p f=0.0076$ ．

Next，all data were first evaluated according to the direct experie mental harmoniceanalysis mothod．A l2－point analysis according to the schome of Runge ${ }^{7 \text { ）}}$ was performed throughout。 Only the first harmonics were found to be of use sinse the experimental rosults were not accurate enough te yield significant reaults from the higher oneso The function $D(\omega n)$ was computed in two ways：1）by using tho data of Snel1 8）ard 2）by using the data of Nagle ${ }^{9)}$ conoerning the period T_{i} and relative fraction r_{i} of the delayed neutrons as follows：

$$
\text { Snell }=S
$$

$$
\text { Ragle }=\mathrm{F}
$$

τ_{i}		r_{1}	τ_{1}		r_{1}
0.7	soconds	0.167	1.6 seo onds		0.414
6.5	＂	0.620	6.5	＂	0.310
34	＂	0.188	32．5	\％	0.340
83	＂	0．025	79.3	＂	0.036
		$1-000$			1.060

6）See LAal 101 for explanation and evaluation of Y 。
7）See Scarborough，Mumerical Mathematical inalysib，pago 396
8）Communication from fermi
9）See CPه 2317

This yields the following values:

Speed in rpm	20	155	884
pf in gms	$\begin{array}{c:c}5 & X \\ 15.52 & 14086\end{array}$	$\begin{array}{c:c}\text { S } & N \\ 25.22 & 15.15\end{array}$	S N 13.27 13.27

Lat us first examine the 20. and 1.55 -rpm cases. In order to seo how much of a correotion ticis mothod needed an arbitrary value (y $=14075 \mathrm{gms}$) was ohoson and the reproductionmethod Case II applied. This yielded the cur ves shom in Figsc 5 and 6 using the Snell and kaglo delay data, respectivelyo These curves were then subjected to the direct harmonicmanalysis method and
a ff extracted as follows:

Speod in rpm	20		155	
	S	N	S	N
rfextracted	14.76	14.44	14.11	14.12
corroction factor	1.0	1.022	1.045	1.045

It is seen that the off obtained by the harmonic sinalysis is too 10 or too high; the correction factor is then obtained in the 20 rpm Nagle case for instance by saying that the rf should be multiplied by $14075 / 14044=1.022$ thus obtaining an appropriata correotion factor。 Any finer correction would have been out of place since for instance our resolution is only 12° of a cyole. This gives the following corrected pf values:

Speed in rpra	20		155	
	S	N	S	N
Corrected $Y P$ in gma	15.52	15019	15090	15.83

For the 884 rpm case，application of the reproduction－method Case I showed that the curve was yery insensitive to the value of Yf o A yf of 13 c 27 gms as obtained from the direct analysis of the experimental curvo as well as a fi of 14075 were tried。 Both 1 ie well within experimental error， as shown on Fig．7，（both curves are calculated with $\tau_{p}=122$ microseconds and $\left.0_{1}=5005 \times 10^{m 4} \Delta K / g^{m s}\right)$ showing that at this high speed the curves are very insensitive to yf；we shall，therefore，not weigh in this resulto

The τ_{p} on the other hand can be obtained from the $88 l_{4 m}$ rpm curve with some accuracy since the phase lag is large giving

$$
\tau_{p}=122 \text { microseconds }
$$

The curves for both 20 and 155 rpm are extremely insensitive to the value of τ_{p} ，as is physically el ear fiom the small phase shift，and thus rive no useful results for τ_{p} 。

The rf as averaged from the 20 and 1550 pm data using both Fioll and Nagle delayed－neutron data is

$$
\begin{array}{r}
\gamma f=15.6 \mathrm{gms} \text { oquivalent。 } \\
\text { iocos }_{0} \text { if } c_{1}=0.000505 \Delta \mathrm{~K} / \mathrm{gm}_{\partial} \varphi \mathrm{f}=0.0079
\end{array}
$$

The value of c_{1} should bo fairly good and applicable to the case of the $Y \mathbb{T}$ and τ_{p} experiment since the concontration of 25 in the boiler was identical。 Thus no change in c_{1} due to that offect is expected. The cross sootions used are known to within a few percont and bettex.

In the $y f$ and τ_{p} experiment it oan be seen that larger errors must bo expected. If, however, wo take the value of $\gamma f=0.79$ per cont at face value we may draw the following conclucions:

Assuming $\gamma=1.3^{\text {R }} \boldsymbol{r}$) $v o$ get $f=0.61$ per cent which is in geod agreom ment with values previously measured at Chicagoo

From La-101 we see that

$$
\overline{v^{2}}-\bar{v}=\Psi\left(\bar{\psi}_{p}\right)^{2}(v f)^{2} / \varepsilon
$$

Y was found to be $4.170 \cdot A$ preliminary value of $\varepsilon=3.69 \times 10^{-4}$ was given in LAn101. Since then a better value of the efficiency of the 25 chamber ${ }^{11}$ hes beon obtained giving the BF_{3}-chamber effioiency as $e=3051 \times 10^{-4}$ 。 If wa

$$
\overline{v^{2}}=\vec{v}=404
$$

It would bo a mistake to infer anything very definite regaraing the actual number of neutrons emitted from each fragmento Surely the limit of error is large enough so as not to exclude the possibility $\overline{v^{2}} \sim \bar{y}=L_{j} i_{0} e_{0}$, an even split between two and three giving a v of 2.5.
10) Obtained by using Chicago data on the age in water
11) Seo IA-101, page 11, where $e=2 \circ 54 \times 10-7$ counts/fission was giveno The value should be 2.42×10^{-7} counts/fission.

It is alsa not fair to doduce anything regarding the question of immediate versus evuporatod emission of neutrons on fissiono It can be shown that if one assumes theit noutrons evaporato from each fragment, iocog 1.25 neutrons per fragmeat on the average, wo get values of $\bar{v}-\bar{v}$ very clase to those expected from direct splittingo

The value of \bar{y} - \bar{y} should thas be used only $0 . s$ an entity in itself for such calculations as the probability of predetonation where it is noeded.

The value of $T_{p}=122$ microseconds is interesting as a differential quantity of the partioular water boilor sinse it confirns theoretical calculations as to $i t s$ order of magnitude。

TABLE I.

A. BoronoBubble Experiment

Composition of Mock Solution and of Normal 25 Solution at

$$
39^{\circ} \mathrm{C}
$$

Elemont	No. of $\mathrm{gm} / \mathrm{cm}^{3}$ in normel 25 solution	No. of $\mathrm{gm} / \mathrm{om}^{3}$ in mock solution	Absorption Crose section used barns	Scattering Cross section used baras
25	0,03878	0.0000933	$653^{12)}$	8.2
28	0.2256	0.2257	2.56	-
B	none	0.001591	$721^{13)}$	-
H	0.1172	0.1168	0.3	42
0	0.9307	0.9308	0.0015	4.2
S	0.0357	0.0304	0.45	1.5

12) Sco LAo 158
13) Effective cross section including offect of highonergy neutrons, page 26。

APPROVED FOR PUBLIC RELEASE

TABLE II
A. BoronaBubble Experimont

Vertical Radial Position of Bubble from Center of Sphere inches	ControleRod Position for Criticality with Bubblo at Indicated Position 14) inches	Equivel ent ΔM of $25^{15)}$ grama
-5.25	90317	-1.56
-4.75	90760	-1.93
-3.75	10.468	-2.53
-2.75	11.112	-3.10
-1.75	11.652	-3.58
- e 75	11.965	-3.87
+ 625	12.000	-3.90
+1.25	11.765	-3.69
+2.25	11.309	-3.28
+3.25	20.683	-2.73
+4.25	10.074	02.19
+5.25	9.270	-1.53

14) Control-rod position for criticality without bubble: 7.130 inches.
15) Computed from difference in controlorod setting by uee of Fig. 1.

```
An}=\mp@code{cosine coerficients in tho expansion of \Delta M (t) F(t)
Bn}=\mathrm{ Bine coofficients in the expansion of }\DeltaM(t)F(t
C(out) = counting rate at time when the abosrber is all the way out
c1 = \DeltaK/gm of 25
D(\omegan)= & i < rim
dr =real part of D(\omegan)
ds}=\mp@code{imaginary part of D(us n)
f = fraction of neutrons delayed
F(t)= number of fissions per unit time occurring in the boiler at time t
H(t)= }\frac{K(t)\gammaf}{1-K(t)(I-YI)
K}=\mp@subsup{P}{p}{}\mp@subsup{\overline{\nu}}{p}{}+\mp@subsup{P}{\mp@subsup{e}{e}{}}{}\mp@subsup{\overline{\nu}}{d}{
K
L}\mp@subsup{L}{n}{}=\mathrm{ sine coefficients in the expansion of }F(t
M}=\mathrm{ cosine coefficients in the expansion of F(t)
\DeltaW = average grams of PS equivalent of boron bubble
N
        consisting of the delays being emitted from pregnant nucloi.
Pe = average probability whioh a niutron when born delayed has of oventually
        producing a fission
P
R(t - t') is definod so that Pp
    neutron born promptly at timo t' has of producing a fission at
    time t.
```


APPROVED FOR PUBLIC RELEASE

A!: $\because:$.

暑
\vdots
\vdots
\vdots

