UNCLASSIFIED

LA REPOKT 103

June 30, 1944
This document contains 13 pages
the ratio of the fission cross sections of 49 and 25 fok thermal neutrons and LHE Ratio $[1+\alpha(49)] /[1+\alpha(25)]$

WORX DONE BY:
J. Wo Dewire
R. R. Wilson
W. M. Woodward

PUBLICLY RELEASABLE
$\frac{\text { LANL Clasehtioation Grqup }}{\text { Alahans }} 4$

UNCLASSIFIED

-2-

ABSTRACT

The ratio of the fission cross sections of 49 and 25 has been measured, using the highly thermalized neutrons in a graphito block, irradiated by neutrons from tho Be + d rastion in the cyclatron. The ratio has boen found to be $1.40 \pm 0,02$. By use of the energy dependence of the cross bections as found by the ms iulation experiments, the ratio of cros8 sections at energy $K T$ (neutron ve ocity $=2200 \mathrm{~m} / 30 c$) has been calo culated and is 2.28. This number toget eer with total absorption cross sections of 640 barns for 25 and 1056 berns for 49 heads to a value of $[1+\alpha(49)] /[1 \div \alpha(25)]=1.29$.

THS RATIO OF THE FISSION CROSS SECTIONS OF 49 AND 25 FOR THERZAL NEURRONS AND THE RATIO $[1+\alpha(49)] /[1+\alpha(25)]$

The ratio of the fission oross sections of 49 and 25 has been moasured by a comparison method, using the highly thermalized noutrons in the graphite block at the oyclotron. The value obtained is in disagreement with previous determinations, , 2) due to the uss of more completely thermalized neutrons in this work. From this ratio, the ratio of crose sections for neutrons of velocity $2200 \mathrm{~m} / \mathrm{sec}$ has been calculated. This ratio, together with the beat known values for the total capture cross sections of 49 and 25 , leads to a detormination of the quantity $[1+\alpha(49)] /[1+\alpha(25)]$ where α is the ratio of the radiative capture cross section to the fission cross section.

EXPPRRTMENTAL METHOD
Six foils of 25 and four foils of 49 were used in the experiment. They were compared by counting the fissions produced in two of the foils at a time in a comparison chamber which was exposed to a thermalized neutron flux of about 2×10^{5} neutrons $/ \mathrm{cm}^{2} / \mathrm{sec}$ at the center of the $11^{1} \times 7^{\prime} \times 6^{\prime \prime} 8^{\prime \prime}$ graphite block at the cyclotron. The primary neutrons impinging on one face of the block were produced by the Betd reaction. The degrec of thermaiization of the neutrons can be noted from the fact that covering the chamber with $C d$ reduced the counting rates to 0.01 percent of their former values.

The comparison chamber consisted of two parailel plate ionization

[^0]chambers having a common high voltage eleatrode, on which the samples were placed. The three olectrodes were 8.6 cm in diameter and 0.16 cm thick; the spacing between them was 1 cm. The fission particles wore detected by electron collection in air at atmospheric pressure (59 cm Hg), at a field strength of 1000 volts/em. The chamber was constructed of aluminum, except for the insulating posts, which wore of $3 / 16^{n}$ polystyrone rod.

The procedure followed in making the comparisons was to use the 25 foil E-10-Hol as a monitor, comparing all other foils to it. In all cases several points were taken at different biases to determine the shape of the plateaus. Extrapolation of the plateaus to zero bias gave corrections of the order of 1 percent. The statistical probable errors from the fission counting were 0.5 percent or loss, except for the counts on $A-12-B-1$, which had a probable orror of 1 percent.

In order to find any systematic errors in counting, a 49 foil and a 25 foil were compared under conditions obtained by asparately interchanging scalars, amplifiers, and foils, and by moving the chamber within the block. No significant ohange in the counting ratio was detected.

FOILS
Tables I and II give the pertinent data on the 25 and 49 foils. The diameters given refer to the doposits of active material. All the foils ware deposited on 1 or 2 mil Pt . The notes in the tables describe the various methods of determining the weights. In Table I, R_{w} is the ratio of the woight of 28 to tho woight of 25 .

Tsbles III and IV contain a sumpary of the comparison measurements. The two values of each the counting ratios are given, obtained from different runs taken a day or so apart. In Table III column A contains weights of the monitor computed from the weight of the sample from its α count and from the fission counting ratio obtained in this experiment; the weights in column B were computed in the same way but by using the woighta of the samplea given by Chamberlain. The weights determined by weighing were not used, sinoe past experience has shown these weights to be less reliable than the others. In Table IV the ratios of cross sections in column A were obtained by using the average monitor weight of column A, Table III, and give an average ratio of 1.40 . The ration in column B were computed by using the average monitor woight of column B, Table III, and give an average ratio of 1.47. These data lead to a value of 1.40 ± 0.02 for $\sigma_{\mathrm{f}}(49) / \sigma_{\mathrm{f}}(25)$ for the neutrons in the graphite block.

DISCUSSION
This ratio of cross seotions applies to the offective oross sections for the thermalized neutrons in the graphite block. The modulation work in this laboratory has shown that 49 and 25 differ in the onergy dependence of their cross aections in the thermal rogion. 3) Thus it is essential to calculate from the result of this experiment the ratio of cross sections at a particular energy. To do this it has been assumed that the noutrons in the
3) Anderson, Lavatelli, MoDaniel, Sutton, LA-82.
4) Anderson, Lavatelli, MoDaniel, Sutton, LA-91.

blook have a Maxwellian distribution 5) with a temperature of $20^{\circ} \mathrm{C}$. Then the number of fissions produced per second in a thin 25 foil is

$$
N_{25} \int_{0}^{\infty} \frac{\operatorname{dn}(v)}{d v}{\underset{i}{i}}_{0_{\mathrm{f}}}(25) v d v
$$

where N_{25} ia the number of 25 atoms in the foil, $n(v)$ is the neutron density above the noutron velooity, v, and $\sigma_{f}(25)$ the fission oxoss soction for 25. A similar expression holds for 49. The effective value of $f_{f}(25) v$ is then

$$
\frac{1}{n} \int_{0}^{\infty} \frac{d n}{d v} \sigma_{f}(25) v d v
$$

where n is the neutron density.
Fig. 1 shows plota of $(1 / n)(\mathrm{dn} / \mathrm{dv})$. $(1 / n)(d n / d v) \sigma_{f}(25) v$, and $(1 / n)(d n / d v) \sigma_{a}(49) v$, assuming a Maxwollian distribution of noutrons and the values of $\sigma_{f}(25) v$ and $\sigma_{a}(49) v$ obtained by the modulation experiments, normalized to unity at KT (neutron velocity $=$ $2200 \mathrm{~m} / \mathrm{sec}$). The total capture cross section of $49,{ }^{5}$ (49) was used in this plot since the energy dependence of $\sigma_{f}(49)$ has not as yot been measured. This substitution is good if α_{49} is constant in the thermal region. Somo oxporimental evidence that h_{49} is roughly constant has beon obtained by a Cd difforence experiment, which showed that the 0.3 v resonance was at least
5) This assumption is possibly incorrect sinoe the scattering aross section of carbon has large discontinuities in the thersal region. However, no more exact noutron distribution has been calculated as yet, and it is thought that for this application a Naxwellian diatribution is not in orror sufficiently to change the results significantly.

$1-7=$

partly due to the fission procoss.
By a numerioal integration of the 49 and 25 curves, one obtains

$$
\begin{aligned}
& \frac{\dot{\sigma}_{\mathrm{P}}(25)_{\text {eff }}}{\sigma_{f}(25)_{\mathrm{KT}}}=0.975 \\
& \frac{\sigma_{2}(49)_{\text {eff }}}{\sigma_{\mathrm{Q}}(49)_{\mathrm{XI}}}=1.064_{4}
\end{aligned}
$$

and thus

$$
\left.\frac{\sigma_{\mathrm{f}}(49)}{\sigma_{f}(25)}\right|_{E T}=1.40 \times \frac{0.975}{1.064}=1.28
$$

This vaiue should be considered tentative since more experiments on the energy dependence of $\sigma_{f}(25)$ and $\sigma_{f}(49)$ are being planned and will probabiy change the effective values of the cross sections.

From the ratio of fission cross sections at KT and the total abo sorption cross sections of 49 and 25 at the same energy, one can obtain a value of $[1+\alpha(49)] /[1+\alpha(25)]$ by using the relation

$$
\frac{1+\alpha(49)}{1+\alpha(25)}=\frac{\sigma_{a}(49)}{\sigma_{a}(25)} \cdot \frac{\sigma_{P}(25)}{\sigma_{f}(49)}
$$

 one gets

$$
\frac{1+\alpha(49)}{1+\alpha(25)}=1.29
$$

6) Formi. CPa-1389.

Using the value of $\alpha(25)=0.16$) this gives $\alpha(49)=0.50$. The values of $\left.\sigma_{\mathrm{f}}(49) \sigma_{\mathrm{f}}(25)\right|_{\text {thermal }}$ found by provious experimoniers when corrected to the present half-iife of 49 ($2 L_{4} 300$ years) are:

```
Williams
\(-1.62\)
Chamberlaia et al - 1.66
```

The disorepancies betwaen these numbers and ours can be axplained by the lind of neutrona used. The first measurement was made in parafilin where the Cd ratio for a 25 detector was 100 ; the second in a water shiold with a Cd ratio of 7. This indicates the neutron energies were higher than ours since our CC ratio was 10,000 . While the effective $\sigma_{f}(25) v$ would not change very much for slightly higher neutron energies, the effective $\sigma_{f}(49) v$ would inorease quite rapidly. This effect hes been noticed in this laboratory where comparisons of a 49 foil and a 25 foil in paraffin and in the graphite block gave a 10 percent increase in $\sigma_{f}(49) / \sigma_{f}(25)$ in the paraffin.

In conclusion, our experiment measures $\sigma_{f}(49) / \sigma_{\mathcal{P}}(25)$ for thermalized neutrons in a graphite block giving 1.40 ± 0.02 and indicates that on the basis of the present knowledge about the behavior of 49 and 25 in the thermal region $\sigma_{f}(49) /\left.\sigma_{f}(25)\right|_{X T}=1.28$ for $T=293^{\circ} \mathrm{K}$ and $[1+\alpha(49)] /[1+\alpha(25)]=1.29$.
7) Bailey, Blair and Russell, LA-90.

Sample	Diameter (cm)	Amount of 25			$\mathrm{R}_{\mathbf{w}}$
		(A) By woighing $\underset{(\mathrm{mg})}{ }$	(B) By $\underset{(\mathrm{mg})}{\alpha \text { mounting }}$	(c) By fission counting	
E-30-H-4	3.1	0.109 ± 0.001	0.106 ± 0.001 0.107 ± 0.001	0.110 ± 0.002	8.15
8-10-H-14	3.1	0.139 ± 0.001	0.138 ± 0.001 0.139 ± 0.001	0.240 ± 0.002	8.15
E-10-H-16	3.1	0.139 ± 0.001	$\begin{aligned} & 0.138 \pm 0.001 \\ & 0.136 \pm 0,001 \end{aligned}$	0.340 ± 0.002	8.15
E-5-D	3.1	-.---	\cdots	0.760 ± 0.011	0.33
FXS-20	3.1	-----	- - - ---	0.686 ± 0.013	0.3
E-N-1		$\begin{aligned} & 0.00473 \\ & \pm 0.00005 \end{aligned}$	$\begin{aligned} & 0.00456 \\ & \pm 0,00005 \\ & 0.00460 \\ & \pm 0.00004 \end{aligned}$	--->0	3/42

(A) Determined by Dr. Miller (Group Col4) by weighing the amount of oxide on the foil. The woight of 25 depends on the assumption that the material is all $\mathrm{U}_{3} \mathrm{O}_{8}$ and that R_{m} for $\mathrm{E}-10$ is 8.15 and for the normal alloy is 341.
(B) Obtained by Dr. Miller by counting the α activity in a 2π counter. The first Pigures are the reaults of measurements taken bofore the comparisons were made; the second, the results obtained after the comparisons. The specific activities assumed were 6110 counts $/ \mathrm{min} / \mathrm{mg}$ for $\mathrm{E}-10$ and 770 counts $/ \mathrm{min} / \mathrm{mg}$ of normal ailay.
(c) Moasured by Chamberlain (Group Po5) by comparing the fission rate to that of a standard foil in a thermal neutron flux (Ra-Be+ paraffin). The standard, E-10-H-10, was calibrated by comparing by the same method with several foils of E-19 and normal alloy.

TABLE II

Sample	Diamater	Amount of 49	
		(A) By α ooounting (μ_{g})	(B) By woighing $(\mu \mathrm{g})$
$C-7-B=A$	5.8	19.8 ± 0.2	
A-12-B-1	<1	0.397 ± 0.009	0.916 ± 0.009
C-6-Bus-1	2.5	$\begin{aligned} & 25.3 \pm 0.25 \\ & 25.2 \pm 0.25 \\ & 25.1 \pm 0.25 \end{aligned}$	
C-6-8-B-2	2.5	$\begin{aligned} & 25.3 \pm 0.25 \\ & 25.3 \pm 0.25 \\ & 25.5 \pm 0.25 \end{aligned}$	

(A) Counted by Dodson. The count on $C-7-B-A$ was made before the comparisons; The count on $A-12-B-1$ after the comparisons. The first figures given for the last two foils were obtained by counting a smallar aliquot in a 2π charmber. The second figures come from a direct cout of the foils, using a domultiplier. The third figures are a chook on the second, taken after the comparisons were made. All the weights given are based on a halfe 2ife for 49 of 24,400 years.
(B) This foil was made by Wahl from an aliquot of a solution of PuO2 whioh had been woighed direotly before being dissolvod. The woight is based on the assumption that the oompound is pure PuO_{2}.

TABLE III

Sample	$\left(\frac{\text { Counts from sample }}{\text { Countr }}\right.$ from monitor $)$	Weight of monitor (mg)	
		A	B
E-10-H-14	$\left.\begin{array}{l}1.34 \\ 1.33\end{array}\right\} \begin{aligned} & \text { a }\end{aligned}$	0.1037	0.1048
E-10-5-16	$\left.\begin{array}{l} 1.305 \\ 1.29 \end{array}\right\} 1.30$	0.1054	0.1076
E-5-D	$\left.\begin{array}{l} 7.30 \\ 7.35 \end{array}\right\} \quad 7.32$	--om	0.1038
PXS-20	$\left.\begin{array}{l} 6.80 \\ 6.65 \end{array}\right\} \quad 6.72$	--*	0.2021
R-N-1	$\left.\begin{array}{l} 0.445 \\ 0.445 \end{array}\right\} 0.450$	0.1020	--0*
-	Average	0.1037	0.1046

TABLE IV

Sample	$\left(\frac{\text { Counts from sanple }}{\text { Counts from monitor }}\right.$)	$\sigma_{49} / \sigma_{25}$	
		A	B
c-7-8-A	$\left.\begin{array}{l}0.253 \\ 0.249\end{array}\right\} 0.251$	1.338	1.348
A-12-8-1	$\left.\begin{array}{l} 0.0126 \\ 0.0120 \end{array}\right\} 0.0123$	1.427	1.440
$C-6-3 \sim B \sim 1$	$\left.\begin{array}{l} 0.335 \\ 0.334 \end{array}\right\} \quad 0.335$	1.403	1.424
C-6aB-B-2	$\left.\begin{array}{l} 0.3444 \\ 0.340 \end{array}\right\} \quad 0.342$	1.421	1.433
	Average	1.397	1.409

[^0]: 1) Chamberlain, Kennedy, Segre and Mahl, CNol469.
 2) Williams, J. H., LA-25.
