APPROVED FOR PUBLIC RELEASE
Copy 3

UNCLASSIFIED

FISSION GROSS SECTION OF TRAMIUM 235 FROM 20 TO 500 KEV
Publicly releasable LANL Classification Growp

LONG-COUNTMR DATA. BY:
U. L. Esilay

T/ís S.L. Friedman
Rolf Poterson

GEOSS SECTION GURVE COMPILED BY:
O. L. Briley
D. H. Frisch

P: G. Koontz
L. W. Seagondoliar
R.F. Faschelt
O. Mo Turnor

J。 H . Willesars

ABSTRACT

With a redesigned and calibrated lons counter, relative acesurenents of the "ission cross section of 25 between bio and 30 Kev have beon niade。 Usiriz triese dota, ará also all the available data obtainec in other investigations, a curve hes been draw which represents the best knowledge concernin; tee 25 fission cross section to arte bstiveen 20 und 500 Kov. This curve is meant to supersede the curve found in LA-150.

FISSIOA CROSS SEETION OF URANIUM 235 FROM 20 TO 300 KEV

The fission oross section of 25 as a function of neutron onergy has beon reported in La-150. Since then, howeverg several experimonts have beon 2)2) 3) performed In the enorgy region bolow 500 Kev whioh do not agreo with the published valueto These latter experimonts all give rosults in the neighborkood 9f 20\% Lowor than tho LA-150 cross sectiono

Tho La-150 exoss section pras basod principally on comparison of 25 fiskion rato with counting rate of a long counter, whose sonsitivity as a funotion of noutron energy mes thought to be constanto Moasurements with a oomponsated hydrogenorecoil ioniation ohambor ${ }^{4)}$ confirmod the long-countor data, and two points by Hall. Kontan and Rossi ${ }^{5)}$ at 340 and 4,60 Kev were in gonoral agreument, although somewhat higho

In viow of the discropancies the sensitivity of the long counter (the " $5 \times 5^{\prime \prime}$) which had beon usod, was roooxaminod, using various dograded and unm dograded natural neutron sourceso The sources used were: Mook fission ${ }^{6 \text {) }}$ No. 3 . avorage enorgy about and Mev, mock fisbion No. 3 immersed in $\mathrm{D}_{2} \mathrm{O}_{9}$ about 400 Kev a RaBo source ${ }_{0}$ about 5 MeV ; and an $\mathrm{Sb}-\mathrm{Bo}\left(\mathrm{r}_{8} \mathrm{n}\right)$ source about 22 Kevo the response of tho 5×5 long counter to these sources was compared to the response of Fanson's $15^{\text {" }}$ long counters, which, as elsewhera described ${ }^{6}$ had already boon calibrated with the same sources. It was found that the sonsitivity of tho 5×5 fell off quite rapidly (about 20%) botween 500 and 30 fovo
J) Ro Fo Tascher., Co Mo Iurners LA= 1445
2) Ao Do Hanson and Lo Wo Scagondollar, IA fortheoming
3) Do He Frisch: LA fortheoming
4) C. Lo Basioy: If forthcoming, also LAol50.
5) Po Go Loontz : LA-128
 0f 25 and 49 Spheres (iA fortheoming)

Since in LA-150 a 1 lat response was assumed for this countor, one was led to anderestimate the neutron flux at low ener;ies and thus overestimate the fission crose section. Therefore it seans mell indicated that the LA-150 cross section nust indeed be too hith in the lower-energy regiono

The $5 x 5$ long counter was thorerore rebuilt. Its active element was made a BF_{3} - filled proportional counter, and its sonsitivity for low eniorgy noutrons was ircreased by drilling several holes, $51 / 2^{\prime \prime}$ deap, and l" diameter,in the parserin surrounding the Br_{3} counter. The present bx5 design is shom in FES: 1.

The response of the new 5×5 to neutrons of verious energies wes nexi measured in the same way as just describeds it was now lound that the counter was much more nearly flat at low energies. The sensitivity as a function of neutron onergy of the new counter is glotted in Fig. 2. This sensitivity curve was taken into accuunt in evaluating the observations with the new counter.

Using the rebuilt 5×5, mowsurements of the 25 I'ission cross sece tion were then made. The bx5, axd a 3 mall fission counter, were exposed to the $\mathrm{Li}(\mathrm{p}, \mathrm{n})$ neutrons from a Li taryet of 5 to 20 Kev stojpins power for protoris, on the short electrostatic sererator. The geometry is shown in irig. 4。 Wata at the following energios were taken at 450: 500, 550, 200, 150 , and 1.00 Kev 。 At 120°, measurements wers made at $200,150,100,60$, and 30 Kev . The procedure wes to measure the relative counting rates oi the 25 counter and the 5×5 at the קarious neutron emergies, under the assumption that the two jotectors reacive noutrons of the same mean energy. In overy case enough counts were recorded to reduce the statistical orror to about $20 / 0$.

The observed ratios are fiven in Table I，ajinst the mean noutron eneryy as eiven by the argular spread of the detectors and the tar．et thickness．＂or 45° ，the crose section was normalized to 1.42 barrs at 500 Kevo This choice of nolinalization value sems the most reasonable when all tho available data in the réi ri above and around 500 Kev irt talsen ints accounto for 120° values，the normalication was to tho value observed at 450．The normalization could not adl be to 500 KeV ，because the cumaters had to be placed at somowhat dif＇erent dietances at the two ansles．The＂overlap＂observations at 150 and 100 key，as taken at the two angles，are in gocd agreancrit。

Backgrond netitrons winch would areat the ratio of 25 to $5 x 5$ mi ht de of three ininds：reutrons scattered ：＇ron the walls of the room，scattored lron the taryct naterial，or scattered from one detector into the other Tcsts were nade for all theso erfects，und it tirned out that although some backsrcund of each kind was present，the ef＇rect on the ratio as function of eneriy was in jeneral riegligiblo，mostly because only relative measurements oit the cross sec－ tion were mede。 A small vosrection of a raction oi one percent（seo Table I）for room neutrons were nade in the 45° data．

The cross sections as finally listed in lable include a sorrecion for tho sensitivity of the sx5，as taxen fro：rigo 2。 The values are plotted in Gign zo The errors arc larisely due to the uncertainty in the calibration of the $5 x 5$

These results are first $\because \mathrm{S}$ all to be congared nith those in LA－150．The lacter wre cortajinly too high at last as ar as the loar－oounter data are cone ：Erraed，or the reazons alresdy siten；the compensited ionization chani：er results， sirce they ayree with the old longwounter data，must also be too ingigo

The reson ra..: ferhips be tound in the cieurease or the energy ass of protion rocoils per ion pajr with cecretiain; neutron eneryyo Tho point of Hall, Koontz, sad Rossi ${ }^{5}$ at 340 Kev seems to be hi gh, but tineip values at 460 and bo ker were fiven wei, int in uraming the curve thro in $5 j 0:$ ev.

Ine ot:er desuredeuts to te comparea are the :ollowing:
A. 0^{7}-evtivity method oi deteraining noutron ilux ly points at zto and 24 Kev .
B. inn-batn inet, od ${ }^{l / 2}$ pojnt at 250 Kcv 。
C. Determinetion with an sbote (γ, r_{i}) neutron source ${ }^{2}$ point at 22 Kavo
D. ,ieasuranent with a proton-recoil proportional counter by the "thresh. Id ticklo" technique ${ }^{3}$: point at 34 Kevo These points are all included in dranins the earve betwecn 500 and 30 Kev since there seens to re ro reasons to focl that any of thom are invalida The data 'rom Agh, CgD, are recorded $1 r$. lable I and plotted in fig. 3. It is seen that in feneral the sracorerit kotween these and tho new 5xy data is fairly bood.

The 25 cross section as :iven in Li-150 is therefore deoned obsolete relow 500 Keva fis curve which is olt to represent tho prisent best value oi
 the yeonlo whowe wark hms boin iferitined here。

Mide :

FIG. 1
PRESEINT 5×5 DESIGN

REC. FROA A O-..
DATE - - HOY 22^{3-1945}.-.. REC. MO. REC. .-.

