APPROVED FOR PUBLIC RELEASE

VERTMPED UNCLASSHTED

LA REPORT-362

October 2, 1945
This dooument contains \qquad pages

JULY l6th NUCLEAR EXPLOSION:
NEUTRON MEASUREMENTS WITH GOLD-FOIL DETECTORS

HORK DONE BY:
T/4 Lyrda Speck
Ernest D。Klema

WRITTEN BY:

Ernest D. Klema

UNCLASSMED

UNCLASSHIME

ABSTRACT

The number of neutrons per square centimeter per unit logarithmio energy interval vas measured as a function of distance froin the gadjet end was measured by means of the aotivation cadmium-covered gold foils the absolute sensitivity of the gold foils was measured by calibrating them in a graphite block with a known Ra-Be source

APPROVED FOR PUBLIC RELEASE

The sold－foil deteotors used at Trinity were 2－mil foils， $4 \times 6.5 \mathrm{~cm}$ in area． They were made by clamping sold sheet in a press betiveen an accurately ground steel block and a block of lucite and outting around the steel block with a sharp scalpel． The ioils were rolled loosely and placed inside of cylinders 1 inch in diameter and 4 om long made of 30 mil cadnium，with an inner telescoping wall of aluminum for mechanical streñth。 One and of the cylinders was closed by soft－soldering on a disk of $30-m i l$ cadnium sheet，and the other end was covered by a spun cedmium lid．The lids fitted snugly，and a strip of sootch tape was used to make the oylinders nearly dust－ tight．The caduium cylinders were placed in containers made of 3 minch lengths of 1－1／4－inch aluminum pipe with standard aluminum pipe caps on either end．These con－ tainers were sealed with a small amount of glyptal。

The aluminum containers were fastened with iron wire near the ends of l－inoh iron pipes 30 inches long which telescoped into $1-1 / 4$ minch iron pipes，also 30 inches long，which had been driven 24 inches into the ground．The pipes were held together by means of a bolt through the common section．In each case the axis of the aluminum cylinder was perpendicular to the iron pipe and to the line from zero，and the oylinder was between the tower and the pipe．Foils were plased at a distance of 50 meters and then at even 100 －meter intervals out to 1000 meters in two lines at an angle of 180° with each other．

The absolute sensitivity of the foils was determined by measuring their saturation activity as a funotion of the distance to the source in a graphite block with a known Ra－Be source．In every case the foils were counted on each of the 3 glass－ walled Gैeizer counter setups in building＂ $\mathrm{G}^{\prime \prime}$ 。 The foila were placed between sheets of 32 mil cadraium for the oalibration。 Counting oylindors of brass were made for each veiger counter which hold the roils close the eze inside watoof the oylinder and made the

counting geometry reproducible．Beoause the thickness of the foils varied by as much as 17 percent，one of the thickest and one of the thinnest were measured in the same slot of the graphite block．The saturation activity was found to be the same for the two roils．The calibration value obtained ${ }^{\text {l }}$ was

$$
\left.\frac{n v}{\text { unit locarithanic enersy interval }}=0.0463 \text { (saturation activity of } \begin{array}{l}
\text { resonance detector in counts/min }
\end{array}\right) \text {. }
$$

Gold foils were also exposed in the liquid－air bath to determine the source strength ${ }^{2}$ ）。 Initially only those foils which were recovered still fastened to the iron pipes ware counted．At least one foil at each distance from 500 meters out satisfied this condition；and all such foils were counted on all 3 jeiger counters．The activities of the roils varied by a large factor，and it was impossible to oount the most active ones in the geometry used for the oalibration．A holder was made to hold the brass counting oylinders in a fixed geometry at as large a distance from the counter as possible，and tho holder was made in such a manner that only the gammas were counted．$A 11$ the foils were counted in this geometryo As a first approximation to the demultiplication for this geometry，a thin strip of the least active foil was counted in the standard geometry at three positions along the axis of each Geiger counter．Later one of the less active foils was counted in the standard geometry on each of the counters，and the demultiplication factor for each was determined accurately。

The curve of the initial activity of the foils as a function of distance from the gadget was obtained from the measurements described above．The point at 300 meters was obtained from a gold foil in the ground cellophane camera station。 Part of the aluminum cylinder from a detector which had been placed at 300 meters was found， and it showed the detector had been deasityoyeq̣， 1）IA 396

APPROVED FOR PUBLIC RELEASE

One of the containers with a foll originally at 400 meters was found about 700 yards from zero; the other was found about 800 yaxds from zeroo These foils were counted, and the initial activities obtained dif'fered by 12 percento Since the average value fell on the curve, it was assumed that only the prompt neutrons were important in producing the activity at this distance. The foils found near their starting paints were counted on only one of the Geiger counters, and the values obtained agreed with the ourve determined previously. The activities of foils at the same distance from zero in opposite directions differed on the averare by about 10 percant.

Fija 1 fives the initial activities of the gold foils as a function of their distance from zero。

From the calibration of the foils we have the followed expression for the steady state conditions in the sraphite block:

$$
\frac{n v}{\text { unit logarithmic energy interval }}=.0463\binom{\text { saturation activity of gold }}{\text { foil in counts/minute }}
$$

The factor .0463 relates the rate of disintegration of the active fold atoms present immediately after an infinite irradiation to the number of neutrons/sq. omo/sec。 passing throurh the foil. for a burst of neutrons whose duration is short compared to the half-life of the active atoms fomed, as was the case at frinity, this same factor relates the initial (in this case also total) number of active gold atoms (the time interral of the rate of disintegration of the active atoms) to the total number of neutrons which had passed through the foil. For this case we have the following expression:

APPROVED FOR PUBLIC RELEASE

$$
\begin{array}{r}
\int_{0}^{\infty} n \nabla d t=(0.0463 / \lambda)(\text { initial aotivity of } r 01 d \text { foil }) \\
\lambda \text { for zold }=00001783 / \mathrm{minute}
\end{array}
$$

∞
$\int_{0}^{n v d t}=260$ (initial activity of gold foil)
Tin. 2 fives the values of \int_{0}^{∞} nvdt as a function of the distance frou zero.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

[rC :TRCOM
pet. Faun Col

