LA--358
 Copy 2

+14

 UnCLASAnca

 UnCLASAnca}

PUBLICLY ROLBASNBLE Per MJAIN. Fss- 18 Date: By -qyDela: cic-14 Dati $\frac{4-8-96}{}$

VERIFIED UNCLASSIFIED

ancussifieo

LA - 358

January 7, 1946
This document contains 31 pages

JULY 1GTH NUCLEAR EXPLOSION:
SOIL CORRECTICN, ABSORPTION OF NEUTRONS IN SOIL, AND TIKE D BPENDEHCE OF SLON-NEUTRON INTENSITY

Ro Bollman
So Cohen
R. Eo Marshak

Eo Ostrow
M! Wixag

APPROVED FOR PUBLIC RELEASE

ABSTRACT

This paper contains the solution of some theoretical problems which are of interest in connection with the Trinity Testo Section A is a continuation of LA-257 and solves rigorously the case, D, a, P and z arbitary (for notation cf. La-257)。 In Seotion B a fairly accurate expression for the absorption of the prompt neutrons in the earth as a function of time is derived, these prompt neutrons give rise to γ orays which must be distinguished from the Y -rays coming directiy from the gadgeto Finally in section C_{g} the problem of the timemecay of the slowneutron intensity (averaged over all space) due to a puise of fast neutrons is worked out to a good approximationg Fig. 3 contains the results for afro

QHCLLESPIEE

APPROVED FOR PUBLIC RELEASE

CUULXIFJE
$-3=$

JULY 16TH NCCLEAR EXPLOSION: SOIL CORRECTION, ABSORPTION OF NETERONS IN SOIL, AMD TIVE DEPEND NCE OF SLOKONETTRON INTENSITY

$\operatorname{SECTION} A$

Soil Corrections for Neutron Neasurements
In 1n-257, the slowingodown density of neutrons, duc to a monoo onergetic point source of fast neutrons located between two diffenent slowing down media, was obtained as a function of age for the following three cases:
(I) $a=1, z=0, D$ and P arbitrary
(II) $D=\infty, z=0, a$ and ρ arbitrary
(III) $D=\infty, a=1, \rho$ and z arbitrary

In the above, ρ and z are the radial and lengthwige coordinetes (cf LA-257),

and

$$
a=\frac{\left(1-b_{2}\right)}{\left(1-b_{1}\right)} / \frac{a_{2}}{a_{1}}
$$

where λ, a, b are the mean free path, average logarithmic energy loss, and average cosine of the angle of deflection in a collision respectivelyf the subscript 2 denotes the medium with larger mean free path while 1 denotes the one with smaller mean free patho fie have since worked out the case D, a, ρ and z arbitrary;
 emount of hydrogen, and to the mgik opperjments which were necessary to interpret

APPROVED FOR PUBLIC RELEASE

the Trinity results
We found in 19-257 that the Laplace transform (with respect to the age τ) of the slowing down density in the medium with larger mean free path is:

$$
\begin{equation*}
\phi\left(p_{i}, n\right)=\frac{\sqrt{D}}{2 \pi} \int_{0}^{\infty} \frac{J_{0}(\lambda p) e^{-3 \sqrt{\lambda^{2}+n}} \lambda d \lambda}{\left[\sqrt{\alpha\left(\lambda^{2}+D \eta\right)}+\sqrt{D\left(\lambda^{2}+n\right)}\right]} \tag{1}
\end{equation*}
$$

To obtain the Laplace inverse of (1) we write:

$$
\begin{equation*}
\frac{e^{-z \sqrt{\lambda^{2}+n}}}{Q}=\int_{0}^{\infty} e^{-W Q-z \sqrt{\lambda^{2}+\eta}} d W \tag{2}
\end{equation*}
$$

where

$$
Q=\sqrt{\alpha\left(\lambda^{2}+D \eta\right)}+\sqrt{D\left(\lambda^{2}+\eta\right)}
$$

Substituting into (1) and interchanging the order of integration, we get: -

$$
\begin{equation*}
\mathcal{L}_{\eta}^{-1} \phi=\frac{\sqrt{D}}{2 \pi} \int_{0}^{\infty} J_{0}(\lambda p) \lambda d \lambda \int_{0}^{\infty} \mathcal{L}_{\eta}^{-1}\left[e^{-w Q-z \sqrt{\lambda^{2}+n}}\right] d w \tag{3}
\end{equation*}
$$

We may find the Laplace inverse of the exponential expression by taking the Laplace inverse of the component parts and using the convolution theorem o Thus: $\mathcal{L}_{\eta}^{-1} e^{-(w \sqrt{D}+z) \sqrt{\lambda^{2}+n}}=\left[\frac{w \sqrt{D}+z}{\sqrt{4 \pi}}\right] \frac{e^{-\left[\frac{(w \sqrt{5}+3)^{2}}{4 \tau}+\lambda^{2} \tau\right]}}{\tau^{3 / 2}}$

$$
\begin{equation*}
\mathcal{L}_{\eta}^{-1} e^{-w \sqrt{\alpha\left(\lambda^{2}+D \eta\right)}}=\frac{w \sqrt{D \alpha}}{\sqrt{4 \pi}} \frac{e^{-\left(\frac{\lambda^{2} \tau}{D}+\frac{w^{2} D \alpha}{4 \tau}\right)}}{\tau \sqrt{3 / 2}} \tag{5}
\end{equation*}
$$

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

$\infty 50$
and

Inserting (6) into (3) and interchanging the order of integration gives:

$$
\begin{gather*}
\mathscr{L}_{n}^{-1} \phi=\frac{D \sqrt{\alpha}}{8 \pi^{2}} \int_{0}^{\tau} \frac{d u}{u^{3 / 2}(\tau-u)^{3 / 2}} \int_{0}^{\infty} w(w \sqrt{D}+z) d w e^{-\left[\frac{w^{2} D \alpha}{4 u}+\frac{(w \sqrt{D}+z)^{2}}{4(\tau-u)}\right]} \tag{7}\\
\int_{0}^{\infty} J_{0}(\lambda p) e^{-\lambda^{2}\left(\frac{u}{D}+\tau-u\right)} \lambda d \lambda
\end{gather*}
$$

Evaluation of the integral over λ yields:

$$
\begin{equation*}
\int_{0}^{\infty} J_{0}(\lambda \rho) e^{-2 / \nu_{\lambda}} \lambda \alpha \lambda=\left(\frac{s}{2}\right) e^{-0 / 2 S} \tag{8}
\end{equation*}
$$

where

$$
S=\frac{1}{(u / D+\tau-u)}
$$

The evaluation of the integral over w is also straightforward and finally
loads to: $\int_{0}^{\infty} w(w \sqrt{D}+z) e^{-\left[\frac{w^{2} D \alpha}{4 u}+\frac{(w \sqrt{\delta}+z)^{2}}{4(\tau-u)}\right]} d w=$

$$
\begin{align*}
& \frac{2 T^{k} e^{-\frac{z^{2} k T}{2} \sqrt{u(\tau-u)}}}{D}\left\{e^{-\frac{z^{2} u T}{4(\tau-u)}} z \alpha \sqrt{T \mu}(\tau-u)^{3 / 2}\right. \tag{9}\\
&\left.+\frac{\sqrt{\pi}}{2}\left[1-\ln f\left(\frac{z \sqrt{T u}}{2 \sqrt{\tau-u}}\right)\right]\left[u(\tau-u)\left(2-\xi^{2} \alpha T\right)\right]\right\}
\end{align*}
$$

where

$$
T=\frac{1}{[\alpha(v-u)+u]}
$$

Combining results we get as the foul express for for the slowing down density, $q,:$

$$
\begin{align*}
& \text { ! ! ! !. ! • :.. ! : ! ! : } \\
& \begin{array}{ccc:c}
\bullet \bullet & \bullet \bullet \bullet & \bullet \bullet & \bullet \bullet \\
\bullet & \vdots & \vdots & \vdots \\
\bullet & \vdots & \ddots & \vdots \\
\bullet & \vdots
\end{array} \\
& -6 \circ \\
& q(\rho, z, \tau) \equiv \alpha_{\eta}^{-1} \phi=\frac{\sqrt{a}}{8 \pi^{2}} \int_{0}^{\tau} d u e^{-\left[\frac{\rho^{2} 5}{4}+\frac{z^{2} \alpha T}{4}\right]} \frac{S T^{3 / 2}}{u^{\gamma_{2}}} \tag{10}\\
& \left\{z \alpha(\tau-u)^{1 / 2} e^{-\frac{z^{2} u T}{4(\tau-u)}} T^{2}+\frac{\sqrt{\pi} u}{2}\left[1-\alpha \sigma^{2}\left(\frac{子 \sqrt{T u}}{2 \sqrt{\tau-u}}\right)\right]\left[2-z^{2} \alpha T\right]\right\}
\end{align*}
$$

In limiting case $D=\infty,(10)$ can be replaced by a simpler expression． namely：

$$
\begin{align*}
& q(p, z, \tau)=\frac{1}{4(\pi \tau)^{3}}\left\{e^{-\frac{\left(p^{2}+3^{2}\right)}{4 \tau^{2}}}+\sqrt{\alpha} \int_{z}^{\infty} \frac{1}{\sqrt{\rho^{2}+w^{2}}}\left[1-\frac{\left(\sqrt{a}(w-z)+\sqrt{p^{2}+w^{2}}\right)^{2}}{2 \sigma^{2}}\right] .\right. \\
& \left.e^{-\frac{\left[\sqrt{a}(w-子)+\sqrt{\beta^{2}+w}\right]^{2}}{42^{2}}} d w\right\} \tag{11}
\end{align*}
$$

The derivation of（Il）hes some mathematical interest and we shall give it briefly Then $D=\infty$ ，（1）reduces to：

$$
\begin{equation*}
\Phi=\frac{1}{i \pi} \int_{0}^{\infty} \frac{J_{0}(\lambda \rho) e^{-\sqrt{\lambda^{2}+\eta} z}}{\left[\sqrt{\alpha \eta}+\sqrt{\left(\lambda^{2}+\eta\right)}\right]} d \lambda \tag{12}
\end{equation*}
$$

To obtain the Laplace inverse of（1），we rewrite（12）in another form， namely：

$$
\begin{equation*}
\phi=\frac{1}{2 \pi}\left\{\frac{e^{-\sqrt{\eta} \cdot \sqrt{\rho^{2}+z^{2}}}}{\sqrt{\rho^{2}+z^{2}}}-\sqrt{\alpha \eta} e^{\sqrt{\alpha \eta} z} \int_{z}^{\infty} \frac{e^{-\sqrt{\eta}\left[w \sqrt{\alpha}+\sqrt{\rho^{2}+w^{2}}\right]}}{\sqrt{\rho^{2}+w^{2}}} d w\right. \tag{13}
\end{equation*}
$$

Wo show that（13）is equivalent to（12）as follows：for $\sqrt{\alpha}<1$ ， $\eta, \lambda>0$ ，the right hand side of equation（12）can be expressed in

uncusence

$$
\phi=\frac{1}{2 \pi} \int_{0}^{\infty} \frac{J_{0}(\lambda \rho)}{\sqrt{\lambda^{2}+\eta}} e^{-z \sqrt{\lambda^{2}+\eta}}\left\{\sum_{j=0}^{\infty}(-1)^{j}\left(\frac{\sqrt{\alpha \eta}}{\sqrt{\lambda^{2}+\eta}}\right)^{\eta}\right\} \lambda d \lambda
$$

The integration over λ of oach term in the infinite series can be performod and leads to the result:
$I_{j}=\int_{0}^{\infty} \frac{J_{0}(\lambda \rho) e^{-z \sqrt{\lambda^{2}+n}}}{\left(\sqrt{\lambda^{2}+\eta}\right)^{j+1}} \lambda d \lambda=\int_{z^{2}}^{\infty} d z_{j} \int_{z_{1}}^{\infty} d z_{z} \cdots-\int_{z_{j-1}}^{\infty} d z_{j} \frac{e^{-\sqrt{\eta} \sqrt{\rho^{2}+z_{j}{ }^{2}}}}{\sqrt{\rho^{2}+z_{j}{ }^{2}}}$

For $j=0$, we get:

$$
I_{0}=\frac{e^{-\sqrt{n} \sqrt{\rho^{2}+z^{2}}}}{\sqrt{\rho^{2}+z^{2}}}
$$

Therefore:

$$
\begin{equation*}
\phi=\frac{1}{2 \pi} \sum_{j=0}^{\infty}(-1)^{j}(\sqrt{\alpha \eta})^{j} I_{j} . \tag{16}
\end{equation*}
$$

Now it is easy to prove - through successive integration by parts - that

$$
\begin{equation*}
\int_{z}^{\infty} \frac{e^{-\left[\sqrt{\eta} \sqrt{\rho^{2}+w^{2}}+w \sqrt{\alpha \eta}\right]}}{\sqrt{\rho^{2}+w^{2}}} d w=-\frac{e^{-\sqrt{a \eta} z}}{\sqrt{\alpha \eta}} \sum_{j=1}^{\infty}(-1)^{j}(\sqrt{\alpha \eta})^{j} I_{j} \tag{17}
\end{equation*}
$$

Substitution of (15a) and (17) into (16) Ieads to (13). Now (17) is valid for $\sqrt{a}>0$ while the series expansion (14) is only valid for $\sqrt{2} a<1 j$ however, since (12) is an analytio function of \sqrt{a} and since there is a finite interval of overlap, by: tige jrocise of tnalytic continuation wo can

use (17) for $\sqrt{a}>1$ which is the case we are interested in The Laplace inverse of (13) is easy to find and wo get (11).

It is fairly simple to derive the three spocial cases treated in LA-257 from either (10) or (11) o As is evident from (10) or (11), one numerioal integration is required to obtain number which can be used. such numerical integrations have been performad for various values of $D_{p} a, \rho_{s}$ and \mathcal{Z} and we present the results in Tables $I \propto I I I j R$ is always the ratio of the neutron intensity at the given point for the spocified values of D and a to the neutron intensity at the same point for $D=a=1$ 。

TABLE II ($D=\infty, a=2.25$)		
$P / 2 \sqrt{\tau}$	$3 / 2 \sqrt{2}$	\underline{R}
0	0.5	1033
0	1.0	-987
0	105	$\bigcirc 893$
0.5	0.5	10026
0.5	100	$\bigcirc 912$
0.5	1.5	- 862
100	0.71	- 715
1.0	1.00	$\bigcirc 765$
100	2.73	- 792
1. 5	0.5	-480
I. 5	1.0	-628
1.5	1. 5	- 700

PABLE III $(D=0$,	$a=4.5)$	
$P / 2 \sqrt{\tau}$	$3 / 2 \sqrt{\tau}$	2
0	0.5	1.165
0	1.0	0818
0	1.5	0727
0.5	0.5	0847
0.5	1.0	0744
0.5	1.5	0699
1.0	0.71	0570
1.0	1.0	0602
1.0	1.73	0628
1.0	3.18	0640
1.5	0.5	0351
1.5	1.0	0481
105	1.5	0538

It is seen from Tables II and III that R approaohes an asymptotio value - independent of f as z bocoms largeo This value depends on a and can ba found directly from (11)j it turns out to be $2 /(1+\sqrt{\omega})$.

 ABSORPTION OF NEUTRONS IN SOIL AS FUNCTION OF TILE

SECTION B

When the neutrons emitted by the nuclear bomb strike the ground, they are capturse by the nuclei contained in the ground, giving rise to Yorayso Each neutron captured leads to at least on roray emitted. The Yorays produced as a result of this ground absorption of neutrons give an apprecialile background to measurements of γ-rays coming directly from the gadget and must bo corrected foro Once the absorption of noutrons by the ground is lnown as a function of time, it is possible to determine the number of Yorays by multiplying by the average number of Y-rays produced per noutron oaptured and by taking into consideration the absorption of rorays in the soil (cf La-250).

We troat the problem of the absorption of neutrons in the ground by a method of successive approximationso In first approximation we solve the timeo dependent age equation for air with capture assuming that the soil is black, ioeo completely absorbing this overestimates the number of captured neutronso In the second approrimation, the current ${ }^{1)}$ flowing into the earth a as given by the "first approximation" solution - is regarded as a source for a stationary age problem with capture (since slowing dow occurs almost instantaneously in the soil as measured in units of the air time scalel and the returning current is found. Tho net current flowing into the soil integrated over all ages rapresents the absorption as a function of time. This method con bo continued to yield more and more accurate results but the second approximation is sufficientiy good for most purposes:

I) In defining the current and and Iree paths are identioal; this is a pood approxination for large mess of the scattering nucleus (the cofse:8if intertet . : However, the difference betweon the two mean free paths can esaity ie.tiscio. into accounta

To obtain the first approximation, we write down the timseciependont age equation with capture for airg wo work with constant an free peth although the generalization to variable mean free path is also possible:

$$
\begin{equation*}
\frac{\partial^{2} \delta}{\partial z^{2}}-\frac{3}{l v} \frac{\partial q}{\partial t}-\frac{3}{l l_{c}(\tau)} q=\frac{\partial \delta}{\partial \tau}-\delta(\tau) \delta\left(z-z_{0}\right) \delta(t) \tag{18}
\end{equation*}
$$

In equation (18) q is the slowing down censity, τ the age, t the time, v the velocity of the neutrond the total mean path (which is essentialiy the scattering mean Eree path since the capture is assumed small, fo the capture mean free path, Which is a function of τ_{0} and finally z_{0} is the position of the plene source (cf. Figo I) a It ray appear strange that the age equation is written down for plane symmetry and not for spherical symmetry since the source of neutrons is a point source The reason for this is that we are interasted in the pointsource solution integrated over a plen perpendiculer to the zodirection iaoo the interface between air and soil. It is easy to show that $q_{p l o}=\int_{0}^{\infty} 2 \pi p q_{p t} d p$ Where $g_{p t a}$ is the point source sclution and $q_{p, 0}$ the plane-source solution of equation (18)

Equation (18) is to be solved subjeot, to the condition that the medium adjacent to $z=0$ (i.ou soil) is completely absorbing; this implies that the backgoing ourrent is zero, ioeo:

$$
\begin{equation*}
q-\frac{2}{3} l \frac{\partial q}{\partial z}=0 \quad \text { at } \quad z=0 \tag{19}
\end{equation*}
$$

The solution of equation (18) subject to the boundary condition (19) is:

Fig" 1

$$
\begin{align*}
& q=\left\{\frac{e^{-\frac{\left(z-z_{0}\right)^{2}}{4 \tau}}}{\sqrt{4 \pi \tau}}+\frac{e^{-\frac{\left(z+z_{0}\right)^{2}}{4 \tau}}}{\sqrt{4 \pi \tau}}-\frac{3}{2 l} e^{\frac{9 \tau}{4 l^{2}}+\frac{3\left(z+z_{0}\right)}{2 l}} \cdot\right. \tag{20}\\
& {\left[1-\ln \left\{\left(\frac{3 \sqrt{\tau}}{2 l}+\frac{\left(z+z_{0}\right)}{2 \sqrt{\tau})}\right]\right\} e^{-\left(\frac{3}{l}\right) \int_{0}^{\tau} \frac{d \tau}{\operatorname{le}(\tau)}} \cdot \delta\left[t-\frac{2 l}{a V(0)}\left(e^{\frac{3 a \tau}{2 l}}-1\right)\right]\right.}
\end{align*}
$$

The solution (20) is arrived at by the use of areen's funotion or by means of Leplace transformso The latter method of deriving (20) seems sufficiently interesting to justify giving tho details of the derivation (ef Appondix I) 。 The rate psr second at which neutrons are being absorbed by the soil (in this "black approximation) is given by:

APPROVED FOR PUBLIC RELEASE

where

$$
\begin{equation*}
\bar{\tau}=\frac{2 e^{2}}{3 a}, \log _{e}\left[1+\frac{a t v(0)}{2 l}\right] \tag{21a}
\end{equation*}
$$

The fraction of neutrons absorbed by the ground up to the time t is $\int_{0}^{t} A(t) d$,$t ，$ The quantity $\int_{0}^{t} A(t 0) d t$ ，is plotted up for air in Figs 2 （curve I）as a function of t for $z_{0}=1=25$ meters and an initial neutron energy of 200 av（cf will 250）。 In this calculation we have neglected the capture of neutrons（ion．we have set be $=\infty$ 。

The solution given in equation（21）is a fist approximation to the correct answer．To improve our result we treat the＂black＂current $\left.\frac{e}{3} \frac{\partial g(\tau)}{\partial z}\right|_{0} \quad 8.8$ the source of neutrons slowed down in the earth Since the soil density is so large compared to air，the mean time between two slowing down collisions in the soil is so much shorter than in air that we can－ in good approximation use the stationary ere equation for the soil 。 This equation is：

$$
\begin{equation*}
\frac{\partial^{2} \delta_{s}}{\partial z^{2}}-\frac{3}{l_{s} l_{s c}\left(T_{s}\right)} \delta_{s}=\frac{\partial \delta_{s}}{\partial \tau_{s}} \tag{22}
\end{equation*}
$$

In equation（22），q_{s} is the slowing down density in the soil，ℓ_{8} the soil man free path（assumed constant） $\mathcal{l}_{\text {go }}$ the capture mean free path in the soil（which may Vary and τ_{s} the ago of neutrons in the soils since $\quad \tau_{s}=\frac{e_{s}^{2}}{l^{2}} \tau$ We rewrite（22）：

To write dow the solution of (23) with $\left.\frac{2}{3} \frac{\partial 8}{\partial z}\right|_{0}$ as the source, wo note first that equation (23) can be transformed into an ordinary heat equation by mons of the substitution:

$$
a_{s}=Q_{s} e^{-\frac{3}{l_{s}} \int_{0}^{\tau} \frac{d \tau}{e_{s}(\tau)}}
$$

In terms of $\varepsilon_{s},(23)$ thus becomes:

$$
\begin{equation*}
\frac{\partial^{2} Q_{s}}{\partial z^{2}}=\frac{e^{2}}{e_{s}^{2}} \frac{\partial Q_{s}}{\partial \tau} \tag{24}
\end{equation*}
$$

Secondly, wo note that the incoming current from the air into the soil is

$$
\left.\frac{e}{3} \frac{\partial g(z)}{\partial z}\right|_{0}
$$

(with
 given by
differentiating (20), whereas, expressed in terns of g_{g} it is

$$
\begin{equation*}
\frac{\ell_{s}}{2 \Omega}\left[\left.\frac{\ell_{s}}{3} \frac{\partial \ell_{s}(\tau)}{\partial z}\right|_{0}+\frac{8_{s}(\tau)}{2}\right] \tag{*}
\end{equation*}
$$

Equating the two expressions for the incoming current and rewriting in terms of Q_{g} yields:

$$
\begin{equation*}
\left.\frac{\partial Q_{s}(\tau)}{\partial z}\right|_{0}+\frac{3}{2 l_{s}} Q_{s}(\tau)=\left.\frac{2 e^{2}}{l_{5}^{2}} \frac{\partial q(\tau)}{\partial z}\right|_{0} e^{-\frac{3}{l_{s}} \int_{0}^{\tau} \frac{d \tau}{l_{s c}(\tau)}} \tag{25}
\end{equation*}
$$

(*) Wo assume that the average, hgeagitigice ergogy loss per collision is the same in air and soil, and that. the serereg :af the cosine of the angle of deflection per collision is zero foremoriz thee ©astaptions, however, are not essential to the subsequent argumegto

Equation (24) is to be solved subject to the boundary condition:

$$
\begin{equation*}
-\left.\frac{\partial Q_{s}}{\partial z}\right|_{0}+\left.h Q_{s}\right|_{0}=h \phi(\tau) \tag{26}
\end{equation*}
$$

whore $\quad h=-\frac{3}{2 l_{s}}$

$$
\begin{equation*}
h \phi(\tau)=-\left.\frac{2 e^{2}}{l_{s}^{2}} \frac{\partial \delta(\tau)}{\partial z}\right|_{0} e^{\frac{3}{l_{s}} \int_{0}^{\tau} \frac{d \tau}{l_{s c}(\tau)}} \tag{26b}
\end{equation*}
$$

The solution of (24) with boundary condition (26) is: 3)

$$
\begin{equation*}
Q_{s}(\eta, \tau)=\frac{(-h)}{\sqrt{\pi}} \cdot \frac{l_{s}}{l} \int_{0}^{\tau}\left[e^{-\frac{z^{2} l^{2}}{4 l_{s}^{2}(\tau-u)}}+h \int_{0}^{\infty} e^{h \xi-\frac{(-z+\xi)^{2} l^{2}}{4 l_{s}^{2}(\tau-u)}} d \xi\right] \frac{\phi(u) d u}{\sqrt{\tau-u}} \tag{27}
\end{equation*}
$$

and hence:

$$
\begin{aligned}
q_{s}(z, \tau)= & \frac{2 l}{\sqrt{\pi l_{s}}} e^{-\frac{3}{\ell_{s}} \int_{0}^{\tau} \frac{d \tau}{\ell_{s c}(\tau)}} \int_{0}^{\tau}\left[e^{-\left(\frac{z l}{2 \ell_{3}}\right)^{2} \frac{1}{(\tau-u)}}-\frac{3}{2 \ell_{s}} \int_{0}^{\infty} e^{\left.-\frac{3 \pi}{2 \ell_{s}-\frac{(-z+\xi)^{2} e^{2}}{4 \ell_{3}(\tau-u)}} d \xi\right]}\right. \\
& \left.\frac{\partial q(u)}{\partial z}\right|_{0} \frac{e^{\frac{3}{\ell_{s}} \int_{0}^{u} \frac{d \tau}{l_{s}(u)}}}{\sqrt{\tau-u}} d u
\end{aligned}
$$

3). Cf. Cursiaw, "Conduction of Heat". Sector 83; the integral depending on the
 replaces h becausozis negitiys !.

APPROVED FOR PUBLIC RELEASE

$$
\begin{aligned}
& \text { : : : ...:. : :..: : : •: }
\end{aligned}
$$

$$
\begin{aligned}
& -16{ }^{\circ}
\end{aligned}
$$

$$
\begin{align*}
& e^{-\frac{3}{\xi} \int_{0}^{\bar{\tau}} \frac{d \tau}{l_{c}(\tau)}} \cdot\left\{\frac{e^{-\frac{z^{2}}{4 \tau \varepsilon}}}{\sqrt{\pi \bar{\tau}}}-\frac{3}{2 l} e^{\frac{4 \bar{\tau}}{4 \ell^{2}}+\frac{3 z_{0}}{2 \ell}}\left[1-\operatorname{erf}\left(\frac{3 \sqrt{\tau}}{2 l}+\frac{z_{0}}{2 \sqrt{\tau}}\right)\right]\right\} \text { for } \tau>\bar{\tau} \tag{28a}\\
& =0 \text { for } \tau \leq \bar{\tau}
\end{align*}
$$

with $\bar{\tau}$ defined by (RIa)
To determine the rate at which neutrons are absorived in the soil, wo must evaluate:

$$
\begin{align*}
B(\tau) & =\left.\int_{0}^{\infty} \frac{\partial \delta_{s}}{\partial z}\right|_{0} d \tau=\int_{0}^{\infty} d \tau\left[\left.\frac{2 l^{2}}{l_{s}{ }^{2}} \frac{\partial g(\tau)}{\partial z}\right|_{0}-\frac{3}{2 l_{s}} q_{s}(0, \tau)\right] \tag{29}\\
& =\frac{3 l}{l_{s}^{2}} q(0, \tau)-\frac{3}{2 l_{s}} \int_{\tau}^{\infty} f_{s}(0, \tau) d \tau
\end{align*}
$$

where:

$$
\begin{equation*}
g(0, \bar{\tau})=\left\{\frac{e^{-\frac{\xi^{2}}{4 \tau}}}{\sqrt{\pi \tau}}-\frac{3}{2 l} e^{\frac{9 \bar{z}}{4 R^{2}}+\frac{3 z_{0}}{2 l}}\left[1-\operatorname{erf}\left(\frac{3 \sqrt{\bar{z}}}{2 l}+\frac{\frac{子}{0}}{2 \sqrt{\bar{z}}}\right)\right]\right\} e^{-\frac{3}{k} \int_{0}^{\bar{\varepsilon}} \frac{\alpha \tau}{R_{c}(\tau)}} \tag{29a}
\end{equation*}
$$

$$
\begin{equation*}
q_{s}(0 . \tau)=\frac{3}{\sqrt{\pi} l_{s}} e^{-\frac{3}{l_{s}} \int_{\tau}^{\tau} \frac{d \tau}{l_{s}(\tau)}}\left\{\frac{1}{\sqrt{\tau-\tau}}-\frac{3 \sqrt{\pi}}{2 l}\left[1-\operatorname{eng}\left(\frac{3 \sqrt{\tau-\tau}}{2 l}\right)\right]\right\} \tag{29b}
\end{equation*}
$$

-170

In equation (29), (29a). (29b) $\bar{\tau}$ is foum from (21a). The fraction of neutrons absorbed by the ground up the time t is $\int_{0}^{t} B\left(t^{0}\right) d t^{\circ}$ 。 The integral $\int_{0}^{t} B\left(t^{0}\right) d t^{0}$ has been computed for air for several γ flues of t and the results are given in Curt II of Figo 20 The distance of the source from the interface between air and soil was again chosen as 25 meters (ioco $z_{0}=\ell=25$ meters)。 The capture mean free paths in air and soil were assumed to be proportional to the velocities with the lifetime in air taken as 007 seconds and that in soil, twice as large (for donsity oqual to that of air).

Formula (29) was used to compute points on Curlt II up to $t=001$ secondso Beyond this time, the "secoad" approximation (29) gives too high is value for the neutrons absorbed by the prounc and it is more sensible to caloulato the point $t=0$ and to interpolate for the remaining timese The caloulation of tho point $t: \infty$ is equivaleat to solving the stationary problem for the absorption of neutrons in one semioinfinite capturing medium due to a plane source of neutrons in an adjacent semioinfinite cepturing mediumo If the Iffotimes in the two media are idantios, (we assunc capture orossosections varying inversely with the velocity and normalization to oqual densityd the problem can bo solved rigorously with the following result for the absorption in the medium which does not contaje tho sourco:

$$
\begin{equation*}
\frac{z_{0}}{4 \sqrt{\pi}} \int_{0}^{\infty} \frac{\exp \cdot\left[-\frac{z_{0}^{2}}{4 \tau}-\frac{3}{e} \int_{0}^{\tau} \frac{d \tau^{0}}{e_{0}\left(\tau^{\prime}\right)}\right]}{\tau / 2} d \tau \tag{30}
\end{equation*}
$$

All quantitios in (30) have their usual sigrasfioance the value of (30) for $Z_{0}=l=25$ moters and the airolifotise

-180

It is possible to contimue our schem of approximation by treating the current returnizg to the air as a new source for equation (18) and so ono Howevers for our purposes the "second" 2pproximation is sufficiently accurateo

APPROVED FOR PUBLIC RELEASE

TIME DECAY OF SLOHONEUTRON INTENSITY DUE TO A PULSE OF FAST NEUTRONS,

 SECTION CIn this section wa treat the problem of the time decay of the slowneutron intensity due to a pulse of fast neutrons This problem is of interest in connection with the delayedeneutron measurements at Trinity (cf. Lars 250) where it is necessary to know how soon the prompt neutrons from the bomb die outdo Lot us consider a plane source of monoenergetic fast neutrons in an infinite slowing down medium; if the pulse of fast neutrons occurs at time $t=0$, the transport equation becomes:

$$
\begin{array}{r}
\frac{\partial N}{\partial t}(z, \mu, u, t)+V \mu \frac{\partial N}{\partial z}+\frac{N_{v}}{\ell(v)}=\int_{0} d u^{\prime} \int d \Omega^{\prime} \frac{N\left(z, \mu^{\prime}, u^{\prime}, t\right) v^{\prime}}{\ell(v)} f\left(\mu_{0}, u-u^{\prime}\right) \tag{31}\\
\\
+\frac{\delta(z) \delta(u) \delta(t)}{4 \pi}
\end{array}
$$

where

$$
f(\mu, u)=\frac{(M+1)^{2}}{\delta \pi M} e^{-u} \delta\left\{\mu-\frac{1}{2}\left[(M+1) e^{-\frac{u}{2}}-(M-1) e^{\frac{u}{2}}\right]\right\}
$$

In equation (31), $N(z, H, u, t) d z$ d $d u d t$ is the number of neutrons between z and $z+d z, \mu$ and $\mu+d \mu$, eton $u=\log \left(E_{o} / E\right.$ where E_{o} is the primary energy and E the energy of interest, v is the velocity of the neutron and $\mathcal{l}(\nabla)$ the mean free path for scattering corresponding to the velocity vo_{o} If we take the zeros moment (with respect to μ) of equation (31) and integrate over all space, wo get:

-20
where

$$
\begin{aligned}
& q=g_{\infty}\left(\frac{M+1}{M-1}\right)^{2} \\
& f_{0}(u)=\frac{(M+1)^{2}}{4 M} e^{-u} \\
& M_{0}(u, t)=\int_{-\infty}^{\infty} d z \int N(z, \mu, u, t) d \Omega
\end{aligned}
$$

If the mass, M, of the scattering nuc?eus is large compared to one and ke are interested in the velue of $M_{0}(u, t)$ for large u (siow neutron intensity) we cen neglect the first of equaticns (32).

Wo now take the laplace transform of the second of equations (32) to obtain:

$$
\begin{equation*}
\psi(u, s)\left(s+\frac{v}{R}\right)=\int_{u-q}^{u} d \psi^{\prime} \psi \frac{\left(u^{\prime}, s\right)}{l\left(v^{\prime}\right)} v^{\prime} f_{0}\left(u-u^{\prime}\right) \tag{33}
\end{equation*}
$$

whers

$$
\psi(u, s)=\int_{0}^{\infty} e^{-s t} M_{0}(u, t) d t
$$

Assuming that the mean free path is constant and using essentially the reciprocal velocity as the independent variable, enables us to rewrite (33) as:

$$
\begin{equation*}
\phi(w)=\frac{2}{\left(1-\Lambda^{2}\right) w^{2}} \int_{w^{w}}^{w} \frac{w^{\prime} \phi\left(w^{\prime}\right)}{1+w^{\prime}} d w^{\prime} \tag{34}
\end{equation*}
$$

-21
where

$$
\begin{aligned}
& \phi(w)=\frac{S w}{w}(u, s) \quad(1+w) \\
& w=\frac{\ell S}{V}, \quad \mu=\left(\frac{M-1}{M+1}\right)
\end{aligned}
$$

Placzek has solved equation (34) in the form of a power series ${ }^{4}$, namely:

$$
\begin{equation*}
\phi(w)=\sum_{m=0}^{\infty} \beta_{m} w^{m}, \quad \beta_{0}=1 \tag{35}
\end{equation*}
$$

where

$$
\beta_{n}=(-1)^{n} \lambda_{m} \prod_{k=1}^{n}\left(1-\lambda_{k}\right)^{-1}
$$

with

$$
\lambda_{n}=\frac{2}{n+2}\left[\frac{1-\mu^{n+2}}{1-\mu^{2}}\right]
$$

The desired solution is the Laplace inverse of $w(w) / s(2+W)$ 。
Since it is impossible to find any analytic expression for the
Laplace inverse, we have recourse to the following approximation method. We observe that: $\left(t^{n}\right)_{o v e}=\left.(-1)^{m} \frac{j^{m} \psi(u, s)}{d s^{m}}\right|_{s=0}$
where $\left(t^{n}\right)_{\text {an }}=\int_{0}^{\infty} t^{m} M_{0}(u, t) d t$

But $\quad \psi(u, s)=\frac{w \phi(w)}{s(1+w)}=\frac{e}{v} \frac{\phi(w)}{(1+w)}$

APPROVED FOR PUBLIC RELEASE

flaczes ${ }^{\text {5) }}$ has also calculated

$$
\left.\frac{\partial^{m}}{\partial w^{n}}\left[\frac{\phi(w)}{1+w}\right]\right|_{w=0}
$$

using his result, we get:

$$
\begin{equation*}
\left(t^{n}\right)_{\text {av }}=\left(\frac{e}{v}\right)^{n+1} m!\prod_{s=1}^{n}(1-\lambda,)^{-1} \tag{36}
\end{equation*}
$$

Since the moments determine the generating funstion it is clear that

$$
\left.u_{0}\left(u_{0}, t\right)=(l / v) / f(x) \quad \quad \text { where } x=v t / l\right)_{0}
$$

We must now obriqin an approximate expression for $f(x)$. We first notice from the moments that for large $x_{s} f(x)$ behaves like $e^{-x} x^{2 /\left(1=x^{2}\right)}$. This follows from the fact that:

$$
\begin{aligned}
& \operatorname{lig}_{k=1} \prod_{k=1}^{n}\left(1-\lambda_{A}\right)^{-1}=\sum_{k=1}^{m} \log \left(1-\lambda_{k}\right) \approx \sum_{k=1}^{n} \log \left[1-\frac{2}{(k+2)\left(1-\lambda^{2}\right)}\right]^{-1} \\
& \approx \sum_{k=1}^{n} \frac{2}{(k+2)\left(1-\Omega^{2}\right)} \approx \frac{2}{\left(1-\Omega^{2}\right)} \cdot \log n=\log m^{\frac{2}{1-\Omega^{2}}}
\end{aligned}
$$

and

$$
\left(x^{n}\right)_{\text {and }} \approx \int_{0}^{\infty} e^{-n} x^{\frac{2}{\left(1-r^{2}\right)}} x^{n} d x=\Gamma\left(\frac{2}{1-r^{2}}+n+1\right) \approx m!n^{\frac{2}{\left(1-r^{2}\right)}}
$$

Secondiy, we notice that the integral equation (34) is equivalent to a differential equation with an essential singulerityo The simplest essential singularity (at least for integration purposes) is exhibited by $e^{m b / x}$ (b a constant). We therefore try:

APPROVED FOR PUBLIC RELEASE

where A is a normalization constants The advantage of (37) is that integrals of the form

$$
\int_{0}^{\infty} e^{-\left(\frac{8}{x}+x\right)} x^{m+\frac{1}{2}} d x
$$

(n an integer) are readily ovaluable.
He now specialize the above to the case $1 f=15$ (air) although the procedure is capable of obvious generalization v In this case $\left.2 /(10)^{2}\right)=80533$ so that we choose $n=80$ To detarmine b_{0} we maximize $f_{E}(x)$ at tho point $x=x_{a v}=160364 ;$ we find $b=1280132$. Computing the higher moments by recurrence relations, wo find empirically:

$$
\begin{equation*}
\frac{\int_{0}^{\infty} f_{E}(x) x^{n} d x}{\int_{0}^{\infty} \&(x) x^{n} d x}=1+a-(n+1) \tag{38}
\end{equation*}
$$

where a varies monotonically from 0054 to 0063 as $n=1,2,00 m 30$. Wherefores choosing $A=058$, we can rewrite (38) after integrating by parts):

$$
\begin{equation*}
\int_{0}^{\infty} f_{E}(x) x^{m} d x=\int_{0}^{\infty} f(x) x^{n} d x-a \int_{0}^{\infty} x^{n+1} f^{\prime}(x) d x \tag{39}
\end{equation*}
$$

we can satisfy (39) if $f(x)$ satisfies the differential equation:

$$
f-a x f^{\prime}=f^{2} E
$$

with the boundary condition $f(\infty)=0$. The solution of (40) is:

APPROVED FOR PUBLIC RELEASE

$-24=$

If (41) is normalized, we obtain for the final result:

$$
\begin{equation*}
f(x)=17.241 x^{17.241} \int_{x}^{\infty} x^{1-9,741} e^{-x^{\prime}-\frac{128.132}{x^{\prime}}} d x^{\prime} \tag{42}
\end{equation*}
$$

It is ciear that the value of $f(x)$ at $x=x_{g r}$ is equal to thet of $f_{E}(x) g^{\prime}$ this follows from (40) since $f^{l}\left(x_{a \nabla}\right)=0$ If further accuracy is desired, one can express:

$$
\frac{\int_{0}^{\infty} f_{E}(x) x^{n} d x}{\int_{0}^{\infty} f f(x) x^{n} d x}=1+a_{1}(n+1)+a_{2}(n+1)(n+2)+\cdots
$$

end obtein higher order differential equationse These higher order equetions become increasingly laborious although they are alweys of Cauchy type and thus solublea

The ratio, x_{n}, of the $n^{\text {th }}$ moment obtained by means of (42) to the $n^{\text {ti }}$ insont defined by $n!\prod_{\beta=1}^{m}\left(1-\lambda_{k}\right)^{-1}$ (cfu(36)) is given in Table IV for the first thirty momentsc It is seen that the deviation from one is never greater than 0066 The distribution function given by (42) should therefore be quite accurate up to fairly large values of x ofigo 3 contains a logolog plot of $f(x)$ as a function of x up to $x=35$ 。

APPROVED FOR PUBLIC RELEASE

-250

TABLE IV

RATIO OF I:OLENTS OF EEPIRICAL FUNCTION TO :OUENTS OF ACTUAL. DISTKIBUTION FUNCTIOH

n	r_{12}
0	1
1	- 999
2	-998
3	- 997
4	-996
5	-996
6	-996
7	- 996
8	-996
9	- 997
10	-999
11	1.000
12	1.002
13	10008
14	1.006
15	1.008
16	1.011
17	1.013
18	1.016
19	1.018
20	10021
21	1.024
22	1.026
23	1.029
24	1.032
25	1.034
26	1.037
27	1.039
28	1.042
29	1.044
30	1.046

$=26^{\circ}$

SOLUTION OF AGE EQUATION FOR SEXIDINFINTAE IGEDIOF ITIH PIANE SOURCE AND "BLGCK" BOUNDERY CONDITTON:

APPENDIX I

The time-dependent and capture terms in equation (18) merely introduced into the solution (20) the factors

$$
e^{-\frac{3}{l} \int_{0}^{\tau} \frac{d \tau}{l c(\tau)}} \delta\left[t-\frac{2 Q}{a v(0)}\left(e^{\frac{3 a \tau}{2 l}}-1\right)\right]
$$

The essential features of a laplace transform solution of the problem of a semioinfinite medium with plane source may therefore be seen from the stationary age equation without captureo The latter equation is:

$$
\begin{equation*}
\frac{\partial^{2} q}{\partial z^{2}}=\frac{\partial q}{\partial \tau}-\delta(z-z) \delta(\tau) \tag{44}
\end{equation*}
$$

We must solve (44) subject to the boundary condition-

$$
8-\frac{2}{3} d \frac{d g}{\partial z}=0 \quad a+\quad 3=0
$$

We take the Laplace transform of both sides of (44) and of the bomadary conditiono We assume constant man free path and measure lengths in terms of ite we get:
subject to:

We distingquish two regions, $z>z_{0}$ and $z<z_{0}(z=0$ is the edge of the semi-infinite medium; we have:

$$
\begin{equation*}
\phi_{I}=C(\eta) e^{-\left(z-z_{0}\right) \sqrt{\eta}} \quad z>z_{0} \tag{q}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{\text {II }}=A(\eta) e^{-\left(z-z_{0}\right) \sqrt{n}}+B(\eta) e^{\left(z-z_{0}\right) \sqrt{n}} \quad z<z_{0} \tag{4~Gb}
\end{equation*}
$$

$\therefore t 2=s_{0}:$

$$
\begin{align*}
& \phi_{I}=\phi_{\text {II }} \\
& \frac{\partial \phi_{I}}{\partial z}-\frac{\partial \phi_{I I}}{\partial z}=-1 \tag{17}
\end{align*}
$$

fit $x=0$:

$$
\begin{equation*}
\phi_{\pi}-\frac{2}{3} \frac{\partial \phi_{\pi}}{\partial z}=0 \tag{48}
\end{equation*}
$$

Substituting (46a) and (46D) into (47) and (48) yields:

$$
\begin{equation*}
\phi_{I}=-\frac{1}{2 \sqrt{\eta}}\left[\left(\frac{1-\frac{2}{3} \sqrt{\eta}}{1+\frac{2}{3} \sqrt{n}}\right) e^{-2 z_{0} \sqrt{\eta}}-1\right] e^{-\left(z-z_{0}\right) \sqrt{\eta}} \tag{4.9c}
\end{equation*}
$$

$$
\phi_{1}=\frac{1}{2 \sqrt{n}} e^{+(z) ?}
$$

The Laplace inverse of $A_{\text {II }}$ (required for Section B) is obtained most. simply by nuking use of the theorem ${ }^{6}$ that if $\mathcal{Z}^{\prime}(\Omega)=E(\%)$, then

$$
\rho\left[\frac{1}{\sqrt{\pi \tau}} \int_{0}^{\infty} e^{-\frac{x^{2}}{4 \tau}} f^{2}(x) d x\right]=\frac{g-(\sqrt{n})}{\sqrt{n}}
$$

Int us write

$$
\phi_{I I}=\frac{7(\sqrt{2})}{\sqrt{n}}
$$

3. therefore:

$$
y(\eta)=-\frac{1}{2} e^{\left(z-z_{0}\right) \eta}-\frac{1}{2}\left(\frac{3 / 2-\eta}{3 / 2+\eta}\right) e^{-\left(z+z_{0}\right) \eta}
$$

The Laplace inverse of $5(\gamma)$, namely $\hat{x}(\tau)$, is:

$$
\begin{aligned}
f(\tau)= & \frac{1}{2} \delta\left[\tau-\left(z_{0}-z\right)\right]-\frac{3}{4} e^{-\frac{3}{2}\left[\tau-\left(z_{0}+z\right)\right]} \\
& +\frac{1}{2} \delta\left[\tau-\left(z_{0}+z\right)\right]-\frac{3}{4} e^{-\frac{3}{2}\left[\tau-\left(z_{0}+z\right)\right]}
\end{aligned}
$$

$$
\text { bor } \quad \tau \leq\left(z_{0}+z\right)
$$

$$
\begin{equation*}
\eta(\tau)=0 \tag{602}
\end{equation*}
$$

$\tan \tau>(30+3)$

Equations (50w) ard (50b) are derived by making uss of the two simple identitins:

$$
\begin{aligned}
& \alpha^{-1} e^{-b \eta}=\delta(2-k) \\
& \alpha^{-1}\left[\frac{1}{a+n}\right]=e^{-a z}
\end{aligned}
$$

APPROVED FOR PUBLIC RELEASE

and of the convolution theoremo Now $q_{I I}=\mathcal{L}_{\eta}^{-1} \phi_{I I}$ and hence

$$
\begin{equation*}
q_{I I}=\frac{1}{\sqrt{\pi \tau}} \int_{0}^{\infty} e^{-\frac{x^{2}}{4 \tau}} f(x) d x \tag{51}
\end{equation*}
$$

Substituting for $f(x)$ into (51) yields:

$$
\begin{equation*}
q_{\text {II }}=\frac{e^{-\frac{\left(z-z_{0}\right)^{2}}{4 \tau}}}{\sqrt{4 \pi \tau}}+\frac{e^{-\frac{\left(z+z_{0}\right)^{2}}{4 \tau}}}{\sqrt{4 \pi \tau}}-\frac{3}{2} e^{\frac{3}{2}\left(z+z_{c}\right)+\frac{9}{4} \tau}\left[1-\ln f\left(\frac{z+z_{0}}{2 \sqrt{\tau}}+\frac{3 \sqrt{\tau}}{2}\right)\right] \tag{52}
\end{equation*}
$$

Equation (52) is the desired result (cro squationo (20).
It is interesting to note that the usual relation between the
plane-source solution and the pointesource solution, io eo

$$
q_{\mu l}(z, \tau)=\int_{0}^{\infty} 2 \pi \rho g_{\mu \tau}(z, \rho, \tau) d \rho
$$

holds for a semi-infinite medium with "bleck" boundary condition as an illustration of this point and for some arplicetions, we have evaluated the pointoscurce solution due to a pointosource of fedt neutrons located at $z=00$ Using equation (9) of LA-25\% and the boundary condition $q(2 / 3) q / \partial z=0(z=0$, we obtain by methods discussed in Section A :

$$
\begin{gathered}
q(z, p, \tau)=\frac{e^{\frac{3}{2} z}-\frac{\rho^{2}}{4 \tau}+\frac{9 \tau}{4}}{(4 \pi \tau)^{3 / 2}}\left\{\frac{3 \sqrt{\pi \tau}}{2}\left[1-\operatorname{erf}\left(\frac{z}{2 \sqrt{\tau}}+\frac{3 \sqrt{\tau}}{2}\right)\right]\right. \\
\left.\cdot-e^{-\frac{(z+3 \tau)^{2}}{4 \tau}}\right\}
\end{gathered}
$$

Substitution of (53) into the intsgrav: foom lends immodately to (52) Hithy ${ }_{8}^{\circ}=0$

UnCLASIREE

