LA REPORT 256

HORE DONE BY：
C．Bailey
D。Ho Prisch
D．Ürecne
R。Krohn
R。Perry
H．Richards

REPORT WHITTEN BY：
D。H。Frisch

APPROVED FOR PUBLIC RELEASE
 UNCLASSIFIED

ABSTRACT

The total oross sections of $U_{0} H$, and C have bcen measured at four onerzies; 35, 95, 265 and 490 Kev. The rosults for H are in very good agreoment with Richman's theoretical ourve. The U and C results agroe well with the Chiorigo γ © n data.

TOTAL CROSS SECTIONS OF U, H AND C FROS 35 TO 500 KEV 。

The total cross sections of nomal uranium, of hydrogen and of carton have been measured at neutron energies of $490,265,95$ and 35 Kov . The experico mental arrangement is shown in $\mathrm{Fis} . \mathrm{l}_{0}$ Neutrons radiatins at 0° to the diroction of the incident proton beam, from a spot $3 / 32^{\prime \prime}$ in diameter, woro scationed by uranium, zraphite and polythene (CH_{2}) discs $3 / 4^{\prime \prime}$ in diametor suspended at $a^{\prime \prime}$ from the tariset. The datector was a hydrozen-ifilled proportional counter oi approxio mately $1 / 2^{\prime \prime}$ cross seotion placed with its aotive volume at approximately $4^{\prime \prime}$ beyond the scatterers.

The monochromatic quality of the neutrons from the short electrostatic generator in T was ensured by control of the proton beam to $\pm 2 \mathrm{Kov}$ and by the evaporation of a lithium tariget so thin that the maximum fractional spread in neutron energy was less than 10 percent except at the 350 Kev point. Neutrons for the 350 Kev point were made by the "tickling throshold" technique, ioe. sotting the proton enersy just at the eharp threshold of the neutronoproducing reaotion. Although the neutron energies for this point sprcad betwoon 20 and 40 Kev , the moan value was taken to be $35 \pm 5 \mathrm{Kev}$ because of the changing sensitivity with energy of the biased reaoil detector in this region.

The soattering dises were supported by a single o008" piano wires and all parts of the counter and preamplifier lay within their shadowa A polythene shadow cone was insarted in order to measure room soattering and counter background. Background was never greater than 3 percent, and in data taken with highor counter biases was about 1 percent. It is probable that the room background was even leaso sinoe the transmission of the shadow cone was of the order of 1 percent.

The densities of the soatterers were computed from their dimensions and aureed with the expecied values. Polythene is considered to be pure CH_{2} to within less than ol porcent.

The geonetry was such that the maximun ansle of scattering into the detector was approxinately 10°. The conversion of 10° data to "porfoot ieanetry". in which no neutrons are scattered into the detector, is only about 1 peroent for carbon, but 4 percent for hydrojen and an estinated 6 percent for uranium. With the scattorer midway between source and detector, the fraotional oorreotion ta the scattering cross section is four times the fractional solid angle subtended by the scatterer at the (small) detector for the isotropic ease and 16 times the solid anjle in hydrogen-like soattering. The same corrections apply to total oross soction in H and C, for which $\sigma_{a} \ll \sigma_{8}$, if judged by the known thermal values and the $1 / v$ behavior of σ_{a}. While there is no detailed dota on the angular distris bution of uranium soattering in this small angular interral and at these energies, the correction has bcen estimated to be roubhly 6 percent Irom the large differences in the 500 -Iev rejion between the 10° and 30° cross sections.

In addition a correction for multiple scattering should be made. For nonisotropic scatitering and where there is a sharp dependence of eneray on anjle, the problem becones quite complicated. By keepinä transmissions in the range $.55 \leq T \leq .85$ this correction was minimized, since its maximum value is of the order (1-T) times the geomatric correction made in the preceding paragraph. No multiple scattoring correction has been mado here.

The observed and corrected data are given in Table l. The uranium cross section is plottod in Fiso 2 along with the recent Chioago data l) taken with $\gamma \omega \mathrm{n}$ sources. The carbon cross section is plotted along with the Chicajo 1) and the

[^0]
umassificd

- 5 -

Ifinnesota ${ }^{2)}$ data, the British ${ }^{3)}$ data, end the theoretical curve matched to these at higher onerjies and to the Chica;o epithormal value. The aseement with the work with r-n sources is jood except perhaps for the lanthanum-beryllium sourde, which fron the present arbon and uranium data rijint be assizned an eneray of around 400 Kev ratiner than 600 Rev.

Riohnan has recalculated the theoretioal hydrosen curve to the present best epithermal value, 20.3 barne. lhe agreement with the theoretical curve is very good.

TABLE I

E_{n}			$\sigma_{t}(C)$		$\sigma_{t}(U)$	
Kev	Data	Corrected	Data	Corrected	Data	Corrected
490	$6.19 \pm .15$	$6.4 \pm .2$	$3.24 \pm .07$	$3.3 \pm .1$	$8.77 \pm .19$	$9.3 \pm .5$
265	$8.37 \pm .15$	$9.2 \pm .2$	$3.32 \pm .05$	$3.9 \pm .1$	10,00 +.15	$10.6 \pm .6$
95	13.04 $\pm .26$	$13.6 \pm .4$	$4.62 \pm .09$	$4.7 \pm .2$	$12.47 \pm .25$	$13.2 \pm .7$
35	$16.15 \pm .25$	$16.8{ }^{\text {t }}$ t. 4	$4.60 \pm .14$	$4.7 \pm .2$	$13.60 \pm .30$	$11.4 \pm .8$

2) J. Ho Hilliams, ot ala, CFw $507, \mathrm{CF}-599$
3) E, Brotsoher, ot alo, Bl\{-62

unClassifico

FIG. 1

UNCLASSIFIED

[^0]: J) D. Sachs in CP-2638

