$$
\begin{gathered}
\cos 6 \\
\cos
\end{gathered}
$$

For Reference

NOT TO BE TAKĖN FROM THIS ROOM CAT. NO. 1935

Classification changed to UNCLASSIFIED by authority of the U. S, Atomic Energy Compiggiged. Per 7 Causer $3-2-56($ lath
By REPORT
LIBRARY
 $4-2-5$
PUBLICLY RELEASABLE LANL Classification Group
$L A-603$

August 27. 1946
This document contains 20 pages.

NEUTRON DIFFUSION IN A SPACE LATTICE OF FISSIONABLE AND
ABSORBING MATERIALS.

WORK. DONE BY:
R. P. Feynman
T.A. \%el ton

REPORT FATTEN BY:
T. A. Melton

UNCLASSIFIED

ABSTRACT

Methods are developed for estimating the ofreot on a oritioal assembly of fabricating it as a latticerather than in the more simply interpreted homogeneous manner.

NEUTRON DIFfuSION IN A SPACE LatTICE OF FISSIONABLE

AND ABSORBING MATERIALS．

In experiments with oritioal assemblies it is often convenient to fabricato aotive material，tampor material and absorbing matorial，such as boron，in the form of blocks or slabs and then to assemble these blocks or slabs in the form of some regular space lattice．From the point of viow of a thoratical treatment it would，of ourse，be preferable if the assembly were composed of a homogeneous oore and a homogeneous tamper．If the dimensions of a unit cell of the lattice are small compared with a neutron mean free path the assambly may be considered as practically homogeneous and so treated．It is the purpose of this report to develop methods for deciding how big the lattice size can be bofore a serious departure from homogeneity is introduoed．

We propose to discuss the following idealized case in son detail．
Suppoce wo bave an infinite medium in whish fission，elastic scattering and absorption can ocour．Suppose that neutrons of only one velocity are present in the system and that the neutron mean free path is independent of position， it being equal to unity with the unit of longth used．We then assume that $f(x)$ ． the average number of extra neutrons emitted per oollision，is a function of position whioh varies periodically throughout the medium．Specifically，$I+f(x)$ will have the form：

$$
1+f(\underline{x})=\frac{\mu(x)}{\lambda}
$$

The function $\mu(\underline{x})$ is assumed to have a space average value of unity so that $1 / \lambda$ is the space average of the total number of noutrons emitted on the average per collision．Wo define unit cell of the lattice by three vectors，a，and

UNCLASSIFIED

A and make the statenent of periodicity, thet:

$$
\begin{equation*}
\mu(\underline{x}+1 \underline{a}+m b+n o)=\mu(\underline{x}) \tag{2}
\end{equation*}
$$

where l, m, n, are integers. Nith these assumptions wo can then write the fulluwing integral equation for the neutron density $Y(\underline{x})$:

$$
\begin{equation*}
\lambda F(\underline{x})=(1 / 4 \pi) \int d \underline{x} \frac{0^{-\left|x-x^{*}\right|}}{\left|\underline{x}-x^{\prime}\right|^{2}} \quad \mu\left(x^{0}\right) \quad \psi\left(\underline{x}^{\prime}\right) \tag{3}
\end{equation*}
$$

If \underline{R} is any displasement winich keeps the valus of μ (x) unohanged then wo can rowrite $\mathrm{Eq} .(3)$ as:

$$
\begin{equation*}
\lambda \psi(\underline{x}+\underline{R})=(1 / 4 \pi) \int d x^{0} \frac{e^{-\mid x+2-2}-\underline{x}^{n} \mid}{|\underline{x}+\underline{R}-\underline{x}|^{2}} \mu\left(\underline{x}^{\prime}\right) Y\left(\underline{x}^{\prime}\right) \tag{4}
\end{equation*}
$$

If we now displaoe the origin of x by an amount R and use the periodicity of $\mu_{\text {, }}$ ws can rewrite Eq. (4) in the following way:

$$
\begin{equation*}
\lambda \psi(\underline{x}+R)=(1,4 \pi) \int d x^{0} \frac{e^{-\left|x-x^{\prime}\right|}}{\left|x-x^{\prime}\right|^{2}} \mu\left(\underline{x}^{\prime}\right) y\left(\underline{x}^{\prime}+R\right) \tag{5}
\end{equation*}
$$

Comparing Eqs. (3) and (5) we see that if $Y(x)$ is a solution of the integral equation. $\psi(\underline{x}+R)$ will also be a solution.

If, as is usual in the tieory of metals, we properly choose the elemen tary solutions of the integral equation (3). it will be true that for some k:

$$
\begin{equation*}
Y(\underline{x}+\underline{R})=0^{1} \underline{\underline{k}} \cdot \underline{R} \quad Y(\underline{x}) \tag{6}
\end{equation*}
$$

So that:

$$
\eta(x)=e^{i k} \cdot \underline{x} \quad \varnothing_{k}(\underline{x})
$$

where

$$
\begin{equation*}
\phi_{k}(\underline{x}+\underline{R})=\oint_{k}(\underline{x}) \tag{7}
\end{equation*}
$$

UNCLASSIFIED

A general solution of the integral equation can of course be built up by superposing solutions of the form (7).

The vector \underline{k} is of oourse analagous to the wave number of the asymptotic infinite mediun solution of the integra) equation (3) in the elementary case whers $\mu(\underline{x})$ is constant. In that case $\varnothing_{k}(\underline{x})$ is of course constant also. Wo shall find it conveniont to doal directily with the perfadic function \varnothing_{k} rather than with the coutron density itsolf. To a occrplish this wo substitute Eq. (7) ir. Eq. (3) and cobtain:

$$
\begin{equation*}
\lambda \phi_{k}(x) e^{i k \cdot y}=(1 / 4 \pi) \int d x^{i} \frac{e^{-1 x-x^{\prime}}}{\left|x-x^{\prime}\right|^{2}} \mu\left(x^{0}\right) e^{i \underline{x} \cdot x^{\prime}} \phi_{k}\left(x^{0}\right) \tag{8}
\end{equation*}
$$

which $\&$: ∞ nyonientiy rewritton:

$$
\begin{equation*}
\lambda \phi_{k}(\underline{x})=\left.(1 / 4 \pi) \int d x^{n} \frac{0^{-\left|\underline{x}-x^{\prime}\right|}}{\left|\underline{x}-\underline{x}^{\prime}\right|}\right|^{i k}\left(\underline{x}^{n}-x\right) \mu\left(x^{\prime}\right) \phi_{k}^{\prime}\left(x^{\prime}\right) \tag{9}
\end{equation*}
$$

This equation is seen to be an integral conation for the function $\phi_{\mathbf{k}}$ (\underline{x}), the kernel of the integral equation contiraing the overell wave-vector of the solutirn axplicitily and being Mernitian, if the propagation vector \underline{k} is rual.

In order to illustrate the genaral nethod of procedure, and for use in investigeting the approximate methods to be developed. we will solve a simple protion exactly. We ascume for $\mu(\underline{x})$ the following:

$$
\begin{equation*}
\mu(\underline{x})=1+a \cos (2 \pi x / a)=1+(a / 2) e^{2 \pi i x / a}+(a / 2) e^{-2 \pi i x / a} \tag{10}
\end{equation*}
$$

It is aleo convenient: but not essential, toassume $k=0$. Wo then wish to find the value of λ required for criticality as a funotion of and of an As ustal in a plane problem, we aimplify the irtegral oquation to the following:

$$
\lambda \phi(x)=(1 / 2) \int_{-\infty}^{\infty} d x^{\prime} E\left(\left|x-x^{\prime}\right|\right) \mu\left(x^{\prime}\right) \varnothing\left(x^{1}\right)
$$

果

We now exparid $\varnothing(x)$ in a Fourior series and obtain:

$$
\begin{equation*}
\emptyset(x)=\sum_{n=-\infty}^{\infty} \phi_{n} e^{2 \pi i n x / a} \tag{12}
\end{equation*}
$$

We aubstitute the expression (12) in the Eq. (11) and obtain:

$$
\begin{align*}
& \lambda \sum_{n} \phi_{n} e^{2 n i n x / a}=\sum_{n} \phi_{n}(1 / 2) \int_{-\infty}^{\infty} d x \cdot E(\mid x-x \|) 0^{2 n i n x 1 / a} \\
& +(a / 2) \sum_{n} \emptyset_{n}(1 / 2) \int_{-\infty}^{\infty} d x^{\prime} E\left(\left|x-x^{\prime}\right|\right) e^{2 n i(n+1) x / a} \\
& +(a / 2) \sum_{n} \emptyset_{n}(1 / 2) \int_{-\infty}^{\infty} d x \cdot E(\mid x-x / 1) e^{2 \pi i(n-1) x / a} \tag{13}
\end{align*}
$$

The integrals appearing in Eq. (13) can easily be done and we obtain, by ahifting the tumnation index n :

$$
\begin{equation*}
\sum_{n} \lambda_{D_{D}} e^{2 n i n x / a}=\sum_{n} \lambda_{n}\left[\phi_{n}+(a / 2) \emptyset_{n-1}+(a / 2) \phi_{n+1}\right] e^{2 n_{i} n x / a} \tag{14}
\end{equation*}
$$

where:

$$
\begin{equation*}
\lambda_{n}=\frac{\tan ^{-12 \pi n / a}}{2 \pi n / 2} \tag{15}
\end{equation*}
$$

From Eq. (1F) we finally get the following rocursion relations for the \varnothing_{n} :

$$
\begin{equation*}
\lambda \phi_{n}=\lambda_{n}\left[\phi_{n}+(a / 2) \phi_{n-1}+(a / 2) \phi_{n+1}\right] \tag{26}
\end{equation*}
$$

If two of the noighboring \varnothing_{n} are specified it is clear that wo oan aolve for all of the \emptyset_{n}. In general, as the magnitude of n gets very large \emptyset_{n} will increase without limit. If the value of λ is properly chosen, howsver, then ϕ_{n} will converge to zero. Since tho \varnothing_{n} are the Fourier oo-efficients of a smooth function $\phi(x)$ the \varnothing_{n} must converge to zero for large n if we are to have a real solution of the integral equation. We can therofore proceed by assuming trat \varnothing_{n}
is zero for sufficiently large n and determining λ from this requirement. We notice that Eg. (16) is unchanged by the substitution of an for n. and wo can therefore argue that the solutions of (16) must be either even or od in n. The odd solution can be ruled out because it would require that \varnothing_{0} be zero, which implies that the neutron density averages to 2 ore. Wo therefore lose nothing by assuming that ϕ_{n} is equal to ϕ_{-n}. Consideration of Eq. (16) with n get equal to zero yields the condition:

$$
\begin{align*}
\lambda \varnothing_{0} & =\lambda_{0} \varnothing_{0}+a \lambda_{0} \phi_{1} \\
\text { or }\left(\lambda-\lambda_{0}\right) \phi_{0} & =a \lambda_{0} \phi_{1} \\
\phi_{1} i \phi_{0} & =\left(\lambda-\lambda_{0}\right) / a \lambda_{0} \tag{17}
\end{align*}
$$

We then write the remaining equations (1G) in the following fora:

$$
\begin{align*}
& \phi_{1}=\frac{\lambda_{1}}{\lambda-\lambda_{1}} \frac{a}{2} \phi_{0}+\frac{\lambda_{1}}{\lambda-\lambda_{1}} \frac{a}{2} \phi_{2} \\
& \phi_{2}=\frac{\lambda_{2}}{\lambda-\lambda_{2}}-\frac{a}{2} \phi_{1}+\frac{\lambda_{2}}{\lambda_{2} \lambda_{2}} \frac{a}{2} \phi_{3}
\end{align*}
$$

For convenience we abbreviate the coefficients as follows:

$$
\begin{gather*}
\phi_{1}=a_{1} \phi_{0}+b_{1} \phi_{2} \\
\phi_{2}=a_{2} \phi_{1}+b_{2} \phi_{3} \\
\text { etc. } \tag{19}
\end{gather*}
$$

We than divide all of the equations by ϕ_{0} and call the ratio $\mathscr{P}_{n} / \mathscr{L}_{0} \sim \mathrm{R}_{\mathrm{n}}$. where
R_{0} equale unity.
Wo now sclve these equations for R_{1} by assuming that all the \varnothing_{D} boyond a certain foint are equal to zero and then taking into account more and more of the ℓ_{n}. If we first deaide to neglect R_{2} and all R_{n} beyond, wo obtain:

$$
\begin{equation*}
R_{1}=a_{1} \tag{20}
\end{equation*}
$$

If wo now neglect all R_{n} except R_{1} and R_{2} we olearly ottain:

$$
\begin{aligned}
& R_{1}=a_{1}+b_{1} R_{2} \\
& R_{2}=m_{2} R_{1}
\end{aligned}
$$

whence:

05

$$
\begin{align*}
& R_{1}=a_{1}+a_{1} b_{1}^{R_{1}} \tag{21}\\
& R_{1}=a_{1} /\left(1-a_{2} b_{1}\right)
\end{align*}
$$

It is then easily eeen that inclugion of higher end highor R_{n} will give values for R_{1} that are acocesaive approximations to the value of the oontinuod fraction

Wo now insert the values which wo have for and ${ }_{n}$ and aet the resulting continued frection equal to the value of R given in Eq. (17). We thus obtain the following seculs.r equation for λ :

$$
\frac{\lambda-\lambda_{0}}{a \lambda_{0}}=\frac{a}{2} \frac{\frac{\lambda_{1}}{\lambda-\lambda_{1}}}{\frac{1-\frac{a^{2}}{4} \frac{\lambda_{1}}{\lambda-\lambda_{1}} \frac{\lambda_{2}}{\lambda-\lambda_{2}}}{1-\frac{a^{2}}{4} \frac{\lambda_{2}}{\lambda_{2} \lambda_{2}} \frac{\lambda_{3}}{\lambda-\lambda_{3} \cdot}}}
$$

This may conveniently be rewirtion in the more symmetrical form:

$$
1-\frac{a^{2}}{4} \frac{\lambda_{0}}{\lambda-\lambda_{0}} \frac{\lambda_{1}}{\lambda-\lambda_{1}} 1-\frac{a^{2}}{4} \frac{\lambda_{1}}{\lambda-\lambda_{1}} \frac{\lambda_{2}}{\lambda-\lambda_{2}} \quad=\frac{1}{2}
$$

For a given value of the λ_{n} are determined. If the value of a is then given λ can be found by mall amount of trial and error. The continued face timon in Eq. (2L) fortunately converges exceedingly rapidly for reasonable value of a and a.

We should make sure that the Eq. (el) gives λ correctly in the limit $a=0$ or $a=0$. If either a or a approaches: zero tho medium approaches homogeneity and λ should approach unity. If a is very small λ_{0} will be equal to unity and all the higher λ_{a} will be zero. Equation (24) then reduces to:

$$
\begin{equation*}
\lambda=1+\left(\alpha^{2} / 2\right) \lambda_{1} /\left(\lambda-\lambda_{1}\right) \tag{25}
\end{equation*}
$$

From this we see that λ approaches unity as a approaches $2 e r o$. It is further-
more clear that if a appraches zero, Eq. (25) will again hold and λ must again apprcach unity so that we have verified that Eq. (2h) has the correot limiting behzvior.

We now wish to work out an approximato procedure for oaloulating $\lambda_{\text {. }}$ which will be reesonably acourate and simple for an arbitrary function $\mu(x)$. If the wave veotor k is real. $E q$. (9) can be arranged to have a fermitian kernel. We multiply each side of Eq. (9) by $\sqrt{\mu(\underline{x)}}$ and rewrite it as follows:

$$
\lambda \ell_{k}(\underline{x}) \sqrt{\mu(\underline{x})}=(1 / 4 \pi) \int d x^{\prime} \frac{e^{-\left|\underline{x}-x^{\prime}\right|}}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} e^{i \underline{k} \cdot\left(\underline{x}^{\prime}-x\right)} \sqrt{\mu(\underline{x}) \mu\left(\underline{x}^{\prime}\right)} \phi_{k}\left(x^{\prime}\right) \sqrt{\mu\left(x^{\prime}\right)}
$$

This oquation can be dorited from a simplo variational principle and λ can bo written as the maximum of the following expression:

$$
\begin{equation*}
0=\frac{\int d x \int d x^{\prime} \phi_{k}^{n}(x) \mu(x)(1 / 4 n) \frac{e^{-\left|\underline{x}-x^{\prime}\right|}}{\left|x-x^{\prime \prime}\right|^{i k}} e^{\left(x^{\prime}-x\right)} \phi_{k}\left(x^{\prime}\right) \mu(x)}{\int d x \phi_{k}^{*}(\underline{x}) \phi_{k}(\underline{x}) \mu(x)} \tag{27}
\end{equation*}
$$

The maximum will be reached when \varnothing_{k} is an actul solution of Eq. (9). If the veriation of $\mu(\underline{x})$ is not too violent. $\emptyset_{k}(x)$ will be approxinately constant. We, therefore, place, $\varnothing_{\underline{k}}(\underline{x})$ and $\phi_{k}(\underline{x})$ equal to unity and investigate the agrese ment between the value of U thus obtained and the correct value of λ. It is, of course, olear that the value of U thus obtained will alnays be lower than the correct value of λ. Ne write λ for thia approximate valuo and obtain:

$$
\begin{equation*}
\lambda=\frac{\int d x \int d x^{\prime}(1 / 4 \pi) \frac{e^{-\mid x}-x^{\prime} \mid}{1 x-x^{2}} e^{i k \cdot\left(x^{0}-x\right)} \mu(x) \mu\left(x^{\prime}\right)}{\int d x \mu(x)} \tag{28}
\end{equation*}
$$

Each integral in Eq. (28) is takon over all space. The result of the integra. tion over z^{\prime} in the numerator will be a function periodic with the periodicity
of the lattice. dhe integration over x in the numerator and denominator can then be extended over a unit cell of the lattico.

In order to obtain the expression (28) for λ in a somewhat more usable form, we expand $\mu(\underline{x})$ in a Fourier series:

$$
\begin{equation*}
\mu(\underline{x})=\sum_{K} \mu_{K} e^{1 K \cdot \underline{x}} \tag{29}
\end{equation*}
$$

Tho I form a denumerable sot and are of the form:

$$
\begin{equation*}
\underline{X}=2 \pi(p \underline{a}+q \underline{\beta}+r \underline{Y}) \tag{30}
\end{equation*}
$$

Here p, q, r, are integers and a, B, \underline{Y} are the dofining vectors of a lattice in K space. This new lattice is reciprocal to the lattice defined by a, b. in the x space in the following sense:

$$
\begin{equation*}
\underline{a} \cdot \underline{b}=\underline{a} \cdot \underline{c}=0 \quad \underline{a} \cdot \underline{a}=1 \tag{31}
\end{equation*}
$$

and cyclically for β. Y. Tho conditions (31) are obviously satisfied by the choice:

$$
\begin{equation*}
\underline{a}=\frac{\underline{b} \times \underline{a}}{\underline{a} \cdot(\underline{b} \times \underline{c})} \tag{32}
\end{equation*}
$$

and similarly for $\underline{\beta}$, and Y. Any E satisfying Eq. (30) has the proporty t hat:

$$
\begin{equation*}
\underline{K} \cdot(1 \underline{a}+m b+n c)=2 \pi \quad x \text { (an integer) } \tag{33}
\end{equation*}
$$

Therefore, every term in the expansion (29) is periodis with a periodicity which is that of $\mu(\underline{x})$.

We now insert the expansion (29) in the Eq. (28) for λ. It is nesosas ry to remember that:

$$
(1, \dot{4} \pi) \int \underline{x}^{\prime} \frac{e^{-\left|\underline{x}-\underline{x}^{\prime}\right|}}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} \cdot \frac{i \underline{k} \cdot x^{\prime}}{|\underline{k}|}=\frac{\tan ^{-1}|\underline{k}|}{\underline{i} \underline{\underline{k}} \cdot \underline{x}}
$$

and also that $\mu_{K}^{*}=\mu_{-K}$, since $\mu(\underline{x})$ is reni. We obtain:

$$
\begin{equation*}
\lambda=\frac{\int d \underline{x} \sum_{K} \sum_{K^{\prime}} H_{K}^{*} e^{-i \underline{K}} \underline{x}_{\theta^{-i \underline{k}} \cdot \underline{x}}^{N} \alpha_{K} \cdot 0^{i \underline{K}} \cdot \underline{\underline{x}} 0^{i \underline{k} \cdot \underline{x}} \frac{\tan ^{-1}\left|\underline{K}^{\prime}+\underline{\underline{k}}\right|}{\left|K^{\prime}+\underline{\underline{k}}\right|}}{\int d \underline{x} \mu(\underline{x})} \tag{35}
\end{equation*}
$$

We all the volume of the unit coll V and remember that tho average of $\mu(x)$ is unity. Also we have:

$$
\begin{array}{rlrl}
\left.\int a^{i\left(\underline{K}^{\prime}\right.}-\underline{K}\right) \cdot \underline{x} d \underline{x} & =0 & \underline{K} \not \underline{K}^{\prime} \\
& =V & \underline{x} & =\underline{K}^{\prime} \tag{36}
\end{array}
$$

Equation (3ij) then becomes:

$$
\lambda=\sum_{K} \sum_{K}, \mu_{K}^{*} \mu_{K} \frac{\tan ^{-1}\left|\underline{K}^{\prime}+\underline{\underline{x}}\right|}{\left|\underline{K}^{\prime}+\underline{\underline{k}}\right|} \quad V \int_{\underline{K} \underline{K}^{\prime}}
$$

$$
\nabla
$$

$$
\begin{equation*}
\text { or. } \lambda=\sum_{K}\left|\mu_{K}\right|^{2} \frac{\tan ^{-1}|\underline{K}+\underline{k}|}{|\underline{k}+\underline{k}|} \tag{37}
\end{equation*}
$$

Since the average of $\mu(\underline{x})$ is unity, μ_{0} is also equal to unity. We san then write (37) as:

$$
\begin{equation*}
x=\frac{\tan ^{-1}|\underline{k}|}{|\underline{k}|}+\sum_{\underline{K} \neq 0}\left|\mu_{K}\right|^{2} \frac{\tan ^{-1}|\underline{k}+\underline{k}|}{|\underline{k}+\underline{k}|} \tag{38}
\end{equation*}
$$

Tho quantity λ is, therefore equal to the value whish it would have for
hanogenenus system plus positive corrsction, due to the inhomogenity. This says, in other words, that $1 /(1+f)$ is greater for oriticality in the inhomogeneous case, or that $1+f$ is less, which implies that makiag the material non-aniform inoreases its actifity. It can be seon in the following way that this statement is correct. Consider a homogenoous mixture of fissionable and absorbing materials oombined in such proportions that the mixture noithor absorbs nor reproduces. If we take the sime materials in the same proportions, but in the form of an inhomogeneous lattive rather than a mixture, we can make the size of a single pioso of the fissionable material such that this piece will be super-oritical. Thls is, of courso, an extreme arse. The slightest disturbance of the homogenity will increase the activity of the systom. This will be so since in the homogeneous arrangement the absorption of one noutron ylelds one noutron on the aversge. In any inhomogeneous arrangement the neutron density would be higher in the places rioh in fissionable material than in the absorbing ragions. This moans that a larger frastion of noutrons will be absorbed in fiasion than proviously and the systom will be suporiritisal.

The exprassion (38) gives a value of λ. whish is too low. Thersforo the sorrection to the homogeneous value of λ is certainly positive but somewhat largor than gigen by E_{q}. (38).

The expresision (38) is convoniont but has, thus far, no rigorous foundstion if \underline{k} is not resi. We proceed tp derivethis equation in such a way that the restriciion to roal values of \underline{x} can be removed. We can write equation (9) as follows :

$$
\begin{equation*}
\phi(\underline{x})=(1 / 4 n) \int d \underline{x^{\prime}} \frac{0^{-\left|\underline{x}-\underline{x}^{\prime}\right|}}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} \quad i \underline{k} \cdot\left(\underline{x}^{\prime}-\underline{x}\right) \frac{\mu\left(x^{0}\right)}{\lambda} \phi\left(\underline{x}^{\prime}\right) \tag{39}
\end{equation*}
$$

Wo also write the iategral equation for \varnothing_{n} in the oase where the vector kas the

$$
-\mu_{1}
$$

opposite direotion to that in Eq. (39) and $\mu(\underline{x})$ is equal to unity. We write $\phi=\varnothing_{0}$ and $\lambda=\lambda_{0}$ and obtain:

$$
\begin{equation*}
\sigma_{.,}(\underline{x})=(1 / 4 \pi) \int d \underline{x}^{\prime} \frac{0^{-\left|\underline{x}-\underline{x}^{0}\right|}}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} 0^{-i \underline{k} \cdot\left(\underline{x}^{\prime} \rightarrow \underline{x}\right)}\left(1 / \lambda_{0}\right) \emptyset_{0}\left(\underline{x}^{\prime}\right) \tag{40}
\end{equation*}
$$

We multiply Eq. (39) by (1/ג) $\varnothing_{0}(\underline{x})$ and Eq. (40) by $\frac{\mu(\underline{x})}{\lambda} \phi(\underline{x})$ and intograto over x. We intershange the dumay variables \underline{x} and x ' in the integrations on the right hand side of the first expression and note that the right hand sides of the two expressions aro now equal. We therefore obtain the exact equation

$$
\begin{equation*}
\int \mathrm{d} \underline{x}\left[\frac{1}{\lambda_{0}}-\frac{\mu(\underline{x})}{\lambda}\right] \sigma_{0}(\underline{x}) \sigma_{(\underline{x})}=0 \tag{4i}
\end{equation*}
$$

The function $\sigma_{0}(x)$ is really oonstant and can bo taicen equal to unlty. No obtain:

$$
\begin{equation*}
\lambda=\lambda_{0} \frac{\int d \underline{x} \mu(\underline{x}) \varnothing(\underline{x})}{\int d \underline{x} \not(\underline{x})} \tag{4?}
\end{equation*}
$$

This gives a simple expression for λ, excopt that an exact expression for $\phi(x)$ is necessary. We prosesd by a pproximating $\emptyset(\underline{x})$ by a mothod of iteration. We insort a constant for $\emptyset(\underline{x})$ on the right hand side of Eq. (39) and take tho rosult as an improved expression for \varnothing (x). This gives:

$$
\begin{equation*}
\emptyset(\underline{x})=\left(1 / 4 \square \int d x^{\prime} \frac{e^{-\left|\underline{x}-x^{\prime}\right|}}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} e^{i \underline{k} \cdot\left(\underline{x}^{\prime}-\underline{x}\right)} \mu\left(\underline{x}^{\prime}\right)\right. \tag{43}
\end{equation*}
$$

Wo then insere the Fourier expansion (29) for $\mu(x)$ and do the indiosted integratious. This yields:

$$
\begin{align*}
\phi(\underline{x}) & =\sum_{K} \mu_{K}(1 / 4 \pi) e^{-i \underline{k} \cdot \underline{x}} \int d \underline{x} x^{\prime} \frac{e^{-\left|\underline{x}-\underline{x}^{\prime}\right|}}{\left|\underline{x}-\underline{x}^{\prime}\right|^{2}} e^{i(\underline{k}+\underline{K}) \cdot \underline{x}} \\
& =\sum_{K} \mu_{K} e^{i \underline{K} \cdot \underline{x}} \frac{\tan ^{-1}|\underline{k}+\underline{K}|}{|\underline{k}+\underline{K}|}
\end{align*}
$$

We than insert this in Eq. (42), together with the Fourier expansion (29) for $\mu(\underline{x})$. This yields:

$$
\begin{equation*}
\lambda=\frac{\lambda_{0} \sum_{K} \sum_{K} \mu_{K}^{*} H_{K} \frac{\tan ^{-1}|\underline{k}+\underline{K}|}{|\underline{K}+\underline{K}|} \int d \underline{x} e^{i\left(\underline{K}-\underline{K}^{0}\right) \cdot \underline{x}}}{\sum_{K} H_{K} \frac{\tan ^{-1}|\underline{k}+\underline{K}|}{|\underline{k}+\underline{K}|} \int d x e^{1} \underline{K} \cdot \underline{x}} \tag{45}
\end{equation*}
$$

If the integrations are then extended over a unit col with V equal to the volume of the sell, we obtain:

$$
\begin{align*}
& \lambda=\frac{\lambda_{0} \sum_{K} \sum_{K} \mu_{K}^{*}+\mu_{K} \frac{\tan ^{-1} \mid \underline{k}+\underline{K}}{\underline{K}} \quad V \delta_{K K}}{\sum_{K} \mu_{K} \frac{\tan ^{-1}|\underline{k}+\underline{K}|}{|\underline{k}+\underline{K}|} V \delta_{K, O}} \\
& =\frac{\lambda_{0} \sum_{K}\left|\mu_{K}\right|^{2} \frac{\tan ^{-1} \underline{\underline{k}}+\underline{K} \mid}{|\underline{k}+\underline{K}|}}{\mu_{0} \frac{\tan ^{-1}|\underline{k}|}{|\underline{k}|}} \tag{46}
\end{align*}
$$

Remembering that $\lambda_{0}=\frac{\tan ^{-1}|\underline{k}|}{|\underline{k}|}$ and $\mu_{0}=1$, we finally obtain:

$$
\begin{equation*}
\left.\lambda=\left.\sum_{K}\right|_{\mu_{K}}\right\}^{2} \frac{\tan ^{-1}|\underline{k}+\underline{K}|}{|\underline{k}+\underline{K}|} \tag{47}
\end{equation*}
$$

This equation is formally identical with Eq. (37) but there is now no restric-
tion to real values of k. If $k i s$ imagiasry, however, it is not ciear that tho trus λ is higher than thet given by Eq. (47). If the accuracy of Eq. (47) 18 good for real k, however, we would expect it to be good for imaginary k. Suppose wo assume $\underline{k}=1 \underline{h}$ whore h is a real veotor. In Eq. (LT) $\mid \underline{K} \underline{\underline{k} \mid \text { means }}$ the square root of the scalar product of the veotor with itsolf, not with ite omplex conjagato. Remerbering, this, wo obtain:

$$
\begin{align*}
\lambda & =\sum_{K}\left|\mu_{K}\right|^{2} \frac{\tan ^{-1} \sqrt{(i \underline{h}+K) \cdot(i n+K)}}{\sqrt{(i h+K) \cdot(1 h+K)}} \\
& \left.=\sum_{K} \mid \mu_{K}\right\}^{2} \frac{\tan ^{-1} i \sqrt{(h-i K) \cdot(h-i K)}}{i \sqrt{(h-i K) \cdot(h-i K)}} \\
& =\sum_{K}\left|\mu_{K}\right|^{2} \frac{\tanh ^{-1} \sqrt{(h-1 K) \cdot(h-i K)}}{\sqrt{(h-i K) \cdot(h-i K)}} \tag{483}
\end{align*}
$$

This sum is obviousiy real sinco ${\underset{K}{K}}_{\mu}^{\mu}=\mu_{-x}$. It can be written :

$$
\begin{align*}
& \lambda=\frac{\tan h^{-1}|\underline{h}|}{|\underline{h}|}+\sum_{K} \neq 0_{K} F^{2}(1 / 2) \frac{\tan h^{-1} \sqrt{(h-i K) \cdot(h-i K)}}{\sqrt{(\underline{h}-i K) \cdot(h-i K)}}+\frac{\tanh ^{-1} \sqrt{(h+i K) \cdot(h+i K)}}{\sqrt{(h+i K) \cdot(\underline{h}+i K)}} \\
& \left.=\frac{\tanh ^{-1}|\underline{h}|}{|\underline{h}|}+\sum_{K \neq 0} \left\lvert\, \mu_{K}^{2} \quad R \quad \frac{\tanh ^{-1} \sqrt{(\underline{h}+1 \underline{x})^{2}}}{\sqrt{(\underline{h}+i K)} 2^{2}}\right.\right\} \tag{49}
\end{align*}
$$

In Eq. (49), $R\{w\}$ means the real part of we The princpal branch of the function canh^{-1} z is always requirod.

We now wish to check the accuraoy of Eq. (4\%) by comparing the value of A caloulated by the exact Eq. (24) with the approximate value of λ. Ne assume, as wo did in the derization of Eq. (2i4) that \underline{x} is equal to zero. The symbols usod in Eq. (47) now are specialized to the following:

-170

$\mu(\underline{x})=1+a \cos (2 \pi x / a)=1+(\alpha / 2) e^{2 \pi 1 x / a}+(\alpha / 2) e^{-2 \pi i x / a}$

$$
\begin{align*}
& \mu_{0}=1 \\
& \mu_{1}=a / 2 \quad\left|K_{2}\right|=2 \pi / a \\
& \mu_{-1}=a / 2 \quad|\underline{K}|=2 \pi / a \\
& \mu_{K}=0 \text { otherwise } \tag{50}
\end{align*}
$$

Equation (L7)tinerofore yields:

$$
\begin{equation*}
\lambda=1+2\left(a^{2} / 4\right) \frac{\tan ^{-1}(2 \pi / a)}{2 \pi / a}=1+\left(a^{2} / 2\right) \lambda_{1} \tag{51}
\end{equation*}
$$

If assump $\left(a^{2} / 4\right)\left[\lambda_{1} /\left(\lambda-\lambda_{1}\right)\right] \quad \lambda_{2} /\left(\lambda-\lambda_{2}\right) \ll 1$ in Eq. (24) wo ootain:

$$
\begin{equation*}
\lambda=1+\left(a^{2} / 2\right) \quad \lambda_{1} /\left(\lambda-\lambda_{1}\right) \tag{52}
\end{equation*}
$$

In this equation λ will be nearly unity, and if we assume that λ_{1} is much less than unity we obtain:

$$
\begin{equation*}
\lambda=1+\left(a^{2} / 2\right) \quad \lambda_{1} \tag{53}
\end{equation*}
$$

whioh agrees with (49). The validity of these approximations can be sean from the following examples. We writo $\lambda=1+\Delta \lambda$ and calculate $\Delta \lambda$ for various values of a and a by equation (47) (or equation (51) for this special case) and by the exact equation (24). Wo also give ($\Delta \lambda / a^{2}$). whioh is independent of a in the ape proximation leading to equation (47), and may be expected to be noarly independent nf a in reasonable cases with the use of the oxact equation (24).

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

It is to bo noticed that the approximate $\Delta \lambda$ is always less than the oxact $\Delta \lambda$, as expected. For a lattice with periodic length considerably lese than a mean froe path $(a=0.1), \mu(\underline{x})$ can cscillate between zero and two $(a=1.0)$ without introducixg any eppreciable error in the approximate value of $t \lambda$. Tre approzismate form gives a good idge of the size of the offect oven when the periodic length omes a mean freo path.

It might be expeoted that if $\mu(x)$ departa little from unity and has a short periodic longth, efirst-order perturbation calculation of λ should suffice. This ia not true and, ir, fact, several different values for λ can be obtained by doing the pertarbation calculation in several seemingly equivalont ways. It soomb, in fact, that the calculation is essentially seoond order and this can be seen from the following considerations. Write the equation whose kernel is adjoint to ther of equation (9):

$$
\begin{equation*}
\text { 2 } \bar{\phi}_{k}(\underline{x})=(1 / 1+n) \int d x^{0} \frac{0^{-\left|\underline{x}-\underline{x}^{\prime}\right|}}{|\underline{x}-\underline{x}|^{2}} e^{-i \underline{k} \cdot(\underline{x}-\underline{x})} \mu(\underline{x}) \bar{\varnothing}_{k}\left(\underline{x}^{\prime}\right) \tag{54}
\end{equation*}
$$

We conaicor first a case with $\mu(\underline{x})$ equal to unity (the unperturbed case) and then change $\mu(\underline{x})$ to $1+\Delta \mu(\underline{x})$. The eigenvalue will change to $\lambda+\Delta \lambda$ where $\Delta \lambda$ in given by the usual first. order perturbation calculation:

$$
\begin{equation*}
\Delta \lambda=\frac{\int d \underline{x} \int d x\left(\bar{\phi}_{k}(\underline{x})(1 / L x) \frac{e^{-1 \underline{x}-x^{\prime} \mid}}{1 x-x^{2}} 0^{i \underline{k}} \cdot\left(\underline{x}^{0}-\underline{x}\right) \Delta \mu\left(\underline{x}^{0}\right) \phi_{k}\left(\underline{x}^{0}\right)\right.}{\int d \underline{x} \bar{\phi}_{k}(\underline{x}) \varnothing_{k}(\underline{x})} \tag{55}
\end{equation*}
$$

Wo usa Eg. (fL) to do one integration and obtain:

$$
\begin{equation*}
\Delta \lambda=\frac{\lambda \int d \underline{x} \bar{\varnothing}_{k}(\underline{x}) \varnothing_{k}(\underline{x}) \Delta u(\underline{x})}{\int \mathrm{d} \underline{x} \Phi_{k}(\underline{x}) \varnothing_{k}(\underline{x})} \tag{56}
\end{equation*}
$$

We insert for \bar{X}_{k} and \varnothing_{k} the unperturbed $\bar{\phi}_{k}$ and \emptyset_{k} which are constanta, and wo obtain:

$$
\begin{equation*}
\frac{\Delta x}{\hbar}=\frac{\int d \underline{x} \wedge \mu(\underline{x})}{\int d \underline{x}} \quad \overline{\Delta \mu}=0 \tag{57}
\end{equation*}
$$

The result of the first-crder perturbation calculation is, therefore, that the oignavalue is unchanged. Wo must then go, other to a second order calculation or use one of the treatments which have been giver. It should be printed out that the first order calculation will give correct answers in problems where $\Delta \psi$ is not assumed to be zero on the average. It is only in oases where no change is made in the total amount of active material that a second order calculation may be necessary.

The treatment which we have developed is certainly not capable of giving
tye oritical massof a lattice assembly. It doos oratls us to estimato the appraximste offect of the inhomogenity. Yo san atate some obvicusly nacessary and obviously suffioiont conditions that a givan assembly be essentially homagenecue. We require that fer the given λ of the core or tampar that the propogation veotere of the infinite medium plane wave solutions should have magnitudes which are eseentially indeperdent of direction. We further require that this magnitude ohsil be different from that for the carresponding homogenoous medium by only a small frection of itself: ive can furthor argue that the effect on the oritical sizo produced by tho inhamogenity will to of the order of magnitudo of the offect on the maitude of the veotcr k.

If the inhomogeneities are not too large excollant apprcximetions to the critionl aass of an inhomogoneaus cors can be obtained by replacing the coro by an "equivalont" homogeneous one. Tho "equivalence" being determined by makirg the homogeneous material such that an infinite medium of it would havo tho samo λ for the imiportant K valuos as does an infinite medium of inhomogeneous material as developac by the methods of this report.
lnhomogeneities of moan free peth present problems which heve not boen alvod. Inhoncgeneities in a system in which many neutron velcoities are involvod present interesting problemis which have only been partly soived in a oms ospeoislly simple cases.

USCCASSFFED

DOCument mat

Ere rowi－ge
pure $9 / 6 / 46$

P9\％1
盟 野

UNCLASSIFIED

