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NEUTRON DIFFUSION IN A SPACE LATTICE OF FISSIONABLE

AND ABSORBING MATERIALS.
%.

-

In experiments with oritiecal assemblies it is often convenient to
fabricate active material, tamper material and absorbing material, such as
boron, in the form of blocks or slabs and then to assemble these blocks or
#labs in the form of some regular space lattice. From the point of view of a
thaoratical treatment it would, of course, be preferable if the assembly were
composed of a homogeneous core and a homogeneous tamper. If the dimensions of
a unit cell of the lattice are small compared with a neutron mean free path the
asssmbly may be considered as pracstically homogeneoué and so treated. 1t isa
the purpose of this report to develop methods for deciding how big the lattice
size can be before a serious departure from homogeneity is introduced.

We propose to discuss the following idealized case in s oms detail,
Supposs we have an infinite medium in whish fission, elastic scattering and
absorption can occur. Suppose that neutrons of only one vslocity are present
in the system and that the neutron mean free path is independent of position,
it being equal to unity with the unit of length used. We then assume that f(f),
the average number of extra neutrons emitted per collision, is a function of
position which varies periodically throughout the medium. Specifically, 1+-f(5)

will have the form:

1 + f(x) = _g_égl_.

(17

The function p(x) is assumed to have a space average value of unity so that 1/
15 the space average of the total number of nsutrons emitted on the averuage

per collision. We define a unit cell of the lattice by three vectors, a, b, and
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3 and make the statement of periodicity, thet:
#(x +1la tmd tne) = u (x) (2)

where 1,m,n, are integers. With these assumptions we can then write the fol-

lowing integral equation for the neutron density Y (x):

-‘x -x‘l
-— -

Y < (/Y e’ 2 5 b (=) PN (3)

e 5 is any displacement which keeps the valus of (Ji) unchanged

then we can rewrite Eq. (%) as:

-1z *R - x'

7k ) Vi) (W

|2*R-x

A Y(x+B) = (l/}-sﬂ)/dﬁ' -

{2 we now displace the origin of x by an amount R and use the periodiclty of u,

ws can rewrite Eq. (L) in the following way:

-lx - x' :
——— b (x') Y(x'+R) (s)

.

A W(x+R) = (/4n) | axr 2

[x_ = %'

!
Comparing Eqs. (3) and (5) we see that if Y(x) is a solution of the integral
equation, Y(x+R) will also be a solution.
If, as is usual in the theory of metals, we properly chsose the elemen.

tary solutions of ths integral equation (3), it will be true that for soms k3
- 1k *R
YErR= e = = iy (&)
) — ike.x
So that: }/(:9 st 2= ﬂk (x)

where dk (x+R) = !‘k (x) (n
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A general solution of the integral equation can of course be built up by supere
posing solutions of the form (7). ‘

The vector k is of ocourse analagous to the wave number of the ssympto-
tic infinite medium solution of the integral equation (3) in the elementary case
where J (i) is constante 1In that case ﬁk (1) is of course constant slao. We
shall find it convenient to deal directly with the pericdic fumction dk rether
than with the reutron density itself. Toa cccmplish this we substitute Eq. (7)

ir. Eqe (3) and cbtain:

1K - - .l ox!
M (1) oL umwfu'r——j?~ wx) o =X ¢ (1) (8)

which L& converiently rewritten:
x|

, -l - % '
AB () = (/D [ase Stk 2Dy A (9)

|z - x

This equaticn is seen to be an intwgral emuation for the functicn ﬁfk (5), the
kernel of the integral equaition contiraing the oversll wave-vector of the solutirn
explicitly and beirg Eernmitian, if the propagation vector k is real.

In order to illustrate the general method of procedure, and for use in
investigeting the approximats methods to be develcped, we will solve a simple
problem sxuctly. We assume for u(x) the following: |

b (x) =1+a cos (2nx/a) =1 t (a/2) oanix/a.+ (a/2) 0-2"1:/& (10)

It is also convenient, but not essentisl, toassume k = oe We then wish to find
the velue ¢f A required for criticality as a funotion of a and of &. As usual

in a plane problem, we simplify the irntegral equatiocn to the following:

=", ‘*-—-~—(11)
g&-\\:‘;‘—ﬂmﬁ_

2 B(x) = (1/2) J dx' E(tx-xt| ) w(x*) £ (x")

LLICICr
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We now exparid # (x) in a Fourior series and obtain:

- 2s / 12
g = S ﬁno-inxa (12)

n~eo

We substitute the expression (12) in the Eqe (11) and obtain:

20
7 / , 2ni '/
A > [ 62 1 nx/s_ 2. ¢n &1/2)fr dx*' E(jx -« x' ) e noxa
n B " n -0

” n 1/
+ (a/2) 2 dn (]/’2)[ ax' E(lx - x) °2 i(ntl) x'/a
n )

+ (a/2) J dn(l/’a)f dx' B(Ix -x4) oEﬂi(n-l)x«/& (13)
n ~ 00

The integrals appearing in Eq. (13) can easily be done and we obtain, by shiftirng

the summation index n:

oni n x/ a : ' n
5 wn e gi )‘n Ednf (a/2) dn-l’r (a/2) ﬁnfl} .2 i nx/a ’(lh)

where ;
tan.l E"'n/a.
2n/n (15)

S

From Eq. (1) we finally get the following recursion relations for the ¢nx

A dn =% [dn + (a/2) ﬁfn_lf (a/2) ﬁn*l] {16)

If two of the neighboring an are specified it is clear that we ocan solve

for &1l of the # . In general, as the magnitude of n gets very large ﬂn will
n

inorease without limit. If the value of )\ is properly chosen, howsver, then ‘n
will converge to zero. Since the Q'n are the Fourier co-efficients of a amcoth
funstion #(x) the § must converge to zero for large n if we are to have a real

n
solution of the integral equation. We can therefore proceed by assuming that ﬁn
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ig zero for sufficiently large n and determining A\ from this requirement.

We notice that Eg. (16) is unohanged by the substitution of -n for n,
and we can therefore argue that the sclutions of (16) must be either even or
cdd in n. The odd solution can be ruled out because it would require that ﬁo
be zero, which implies that the neutron density averages to zerc. We there-
fore lcse nothing by assuming that ﬂn is equal to d—n’ Consideration of Eqe.

(16) with n set equal to zero yields the condition:
X
BT A B, + a2, &
or (\ - Xo) ﬁfo = a A, 951

/8, = (-2 Jad (17)

We then write the remsining equations (16) irn t he following forn:

X - \] o k - k ? 2
1
A a )‘2 a
= +
P NEN e di Ao 2 %5
2 2
N (18)
For convenience we abbreviate the co-efficients as follows:
= +
2‘1 8 ﬁo b1 ﬂfz
ﬂe = n.? b’l + bi.’ !53
Otco (19)
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Ro equals unity.
We rcw sclve these equations for Rl by assuming that all the ﬂn Pe=
yond & certain point are equal to zero and then taking into acocunt more and

more of the ﬂfn. If we first decide to neglect R2 and all Rn beyond, we obtain:

Rl = .1 (20)
If we now neglect all Rn except R1 and R2 we olearly obtain:
Rl = nl*' bl R2
R2 N R1
whence:

R = + ¢t R 21

1 M1 *2 N (21)
or R=a /(l-a_ b

1 1 ( 2 1)

It is then easily seen that inclusion of higher and higher R will give values
n

for Rl that are succesaive approximations to the value of the continued frsction:

Ry T %

l-aebl

1-I3b2

l-ath

(22)

s Sre..  eowsasre

We now ingert the values which we have for "n and b and set the
n

resulting continued frection equal to the value of Rl given in Eqe. (17). e

thus obtain the following seculsr equation for X:
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1 2
T 2
1 - & o 23
e X L S
2 3
(23)
This may conveniently be rewirtten in the more symretrical form:
1 02 Ao M
- T
A Xy X xl
2 1
A =
QR N, W, 5 (21
) \l LS 12

For a given velue of the kn are determined. If the value of a is then
given 5 can be found by & small amount of trial and errore. The cont.inued frec-
tion in Eq. (24) fortunately converges exceedingly rapidly for reasonatle values
of a eand a.

We should make sure that the Eq. (2;) gives X correctly in the limit
a =0 or a =0. If either a or a approsches zerc the medium approaches homo-
geneity and A\ should approach unity. If a is very small )‘o will be equal to

upity and all the higher X will be zero. Equation (2L) then reduces to:

=1 +(02/2) xl/(x - xl) (25)

From this we see that )\ apprcaches unity as 8 apprcaches zeros It is furthere

-

Fiinted on DIETZGEN 2193M "AGIPROOF" fracing ppagPRc)\/ED FCR PUBLI C REL EASE




APPROVED FOR PUBLI C RELEASE

«1lCw . -

more clear that if a apprcaches zero, Eq. (25) will again hold and A\ must again
approach unity so that we have verified that Eq. (2L) has the correct limiting
behavicr,

We now wigh tc work out an approximste procedure for ocalculating 3,
whick will be reasonably aéourate and éimple for an arbitrary function u(zt_) . If
the wave veotor k is real, Eq. (9) can be arranged to have a Hermitian kernel.

We multiply each side of Bq. (9) by \]u (x) and rewrite it as follows:

-lx - x'} .
Mk (@ = (/) faxr 2 B s g @D

(26)
This equation can be derived from a simple variationsl principle and )\ camn be

written es the maximum of the following expression:

-[x - x'| -
REJEY l)ﬂk(i') “(x)

dx (dx*' & (:_:_) p(x) (1/4n)
S Joa & |z - 21 (27)

U=

fax ¥ (0 4, ® w(x)

The maximum will be reached when ﬁk is anactusl solutiaon of Egq. (9). If the
veriation of p(x) is not too violent, ﬂk (x) will be approxinately constant.
We, therefore, place, gk(i) and ﬁ{(y equal to unity and investigate the agrease
ment between the value of U thus obtained and the correct velue of X. It is,

of oourse, clear that the value of U thus obtained will always be lower than the

correct value of A. We write A\ for this approximate value and obtuin:

, -1x - x'| ike(x' - x)
. fax Jaxr (/um AT athal m(x) w(x" (28)

{ax u(x)

Each integral in Eq. (28) is taken over all space. The result of the integra.

tion over x' in t he numerator will be a function periodic with the. riodicit

LD
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of the lattice. Lhe integration over x in the numerator ané denominator can
then be extended over a unit cell of the lattice.
In order to obtain the expression (28) for )\ in a somewhat more usable

form, we expand p (x) in a Fourier series:
B (x)= 3 pe == (29)
The !L t‘orm.a denumerable sst and are of the form:

K =21 (patq Srry ) (30)

Here p, q r, are integers and qa, é, Y are the defining vectors of a lattice in
K space. This new lattice is reciprocal to the lattice defined by a, b, ¢, in

the x space in the following sense:
Beb=a.g=0 aea =1 (51

and cyclically for/9_, Ye The conditions (21) are obviously satisfied by the

cholce:

and similarly foré, and y. Any K satisfying Eq. (30) has the propasrty t hat:

K. (la+mdb tnc) =27 x (an integer) (3%
Therefore, every term in the expaunsion {29) is periodiz with a periodicity which
18 that of p (5).
We now insert the sxpansion {29) in the Eqe (28) for X. It is necos-

sary to remember that:
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=12
-tz - x' .
(1/7L™ f-di' o )% 1'2 e ikex' _ _tan 1 x|
lx - x| |k |

and also that pl’;=p e since p(i) is remls We obtain:
tan=1 [ £ ¢ |

5 JFoiKex mtkex o iKtex dkex
- Jax 20 Z g o7 TR T uga 0= S0 [K' k| (35)
fax w (%)

Woe o0all the volume of the unit cell V and remember that the average of p (ﬁ)

is unity. Also we have:

' - ® ]
J‘ai(i LY L ax -0 K # K’

v XK (36

Bquation (3%5) then becomes :

A= 2 Z hy t&n.lni'fil v
K K* . “.(.nfgl 35&1
v
-1
or A = Z\pxla tan 15:;‘
X |E +k | (37)

Siace the average of V‘(i) is unity, “o is also equal to umity. We can then

write (37} as:

|E* k| (28)

The quantity X 'is, therefore equal to the value whish it would have for
Ry,

il —~—,

baur/
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homagensous system plus Q positive corrsction, due to the inhomogenity. This
says, in other words, that 1/(1 + f) is greater for criticelity in the inhomo-
Zonacus case, or that 1+ £ is less, which implies that makiag the material
nen-uniform increases its astivity. It can be sesn in the following way that
this statement is correct. Consider a homogeneous mixture of fissionadble and
absorbing materials combined in such proportions that the mixturs neithor abd.
sorbs nor reproduces. If we take the sume materials in the same proportions,
but in the form of an inhomogeneous lattize rather than a mixture, we can make
the size of a singls pioce of the fissionable material such that this piece will
be guper-oritical. This is, of course, an extreme cases. The slightest distur-
bance of the homogonity will increase the activity of the system. This will be
8o since in the homogensous arrangement the absorption of one neutron ylelds one
neutron on the average. In any inhomogsneons arrangement the neutron d ensity
would ba higher in the placss rich in fissionable material than in the absorbing
regions. This means that a larger fruction of neutrons will be absorbed in
fission than previously and ths system will be supersritisal.

The expression (38) gives a value of A. which is too low. Therafore
the sorrection to the homogeneous value of \ is certainly positive but some-
what largsr than gi{en by Eq. (38;.

The exproshion (38) is convegiant but has, thus far, no rigorous foundua=
tion if E_is not real. We proceed tp'derive this equation in such a way that the

1
: |
restriction to real values of k can be removed. We can write equation (9) as

follows :
- , 0 lx - x’I ike (x' - Xx) '
g (0= (/um [ax Ty el R SR - RPTCR )

>
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opposite direstion to that in Eq. (39) and p(x) 1s equal to unity. We write
ﬂ’ﬂo and A=\, and obtain:

-|Xx - x*|

8,0 - (/) Jaxt S = e (228 (1 g (40 (40)

We multiply Eg. (39) by (/%) £ (x) and Bq. (LO) by o #(x) and inte-
o %\ -
grate over x. ‘e intershange ths dummy variables x and x' in the integrations

on the right hand side of the first expression and note that the right hand sides

of the two expressions are now equal. We therefore obtain the exact squation:

fdi[

The function do (x) is really constant and can be taken equal to unity. We

¢ (x)

- = ]do (x}) 8 (x) = 0 (L)
" 0 B (x

2] b

(o)

obtain:

fax v (1) 8 (»
(o]
jax # (x) u2)

This gives a simple expression for A\, except that an exact expression for # (x)
3

is necessary. We prossed by approximating £ (x) by a mathod of iteration. We
insert a constant for & (x) on the right hand side of Eq. (39) and take the
result as an improved expression for # (x). This gives:

8

| -1x - x' x' - x
B9 = /49 fax: PR o1 D (13)
. X - x'

We then inserf tho FoMrier expﬁnsi’on (29) for u(x) and do the indicated inte-

grations. This ylelds:
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iK.x tan lk*’Kl

:Z “K e‘_—
K
[k + K| (L)

We than insert this in Eq. (42), togother with the Fourier expansion (29) for

p (x)+ This yields:

% -1 -
A\ { [va tan lEle jdx 31 (E-{') e X

ve_°k g K TFET = (L5)
“Liy + K
%‘(“K tan l='_[ fdx e‘l]i°£
jk + Kk | -

1f the integrations are then extended over a unit ce)) with V equal to the

volums of the zell, we obtain:

Yk + K|
* ta = -
. o % Zx- b b =y v e

T tan |k k|

vd
e + K| K,0

- 2 tan™! |k *K|
= A %b*x‘ T _l-

tan~} | k |

" —

° L | (L&)

tan~l |k q~
Remembering that X\ = e _se’ and R =1, we finally obtain:

o} \k'

[k + K| (L7

—————
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tion to resl valuss of k + If k is imagiaary, howevér, it is not clear that the
trus X 1s higher than that given by Eq. (47). If the accuracy of Eq. (47) 1s
good 'ar real {. however, we would expect it to be good for imaginary E.
Suppose we assume k =i h where h is a real vector. In Eq. (L7) lg*il means

the square root of the scalar produst of the vector with 1itself, not with its

complex conjugate. Remembering, this, we obtain:

A < Zluxle tan”! Nish + B) - (in +K)
© 0 Jarn.orrp

-5 tan-! 1\(h - 1K) .+ (n -1K)

K t {(h- 1K) + (h - 1K) N

: Jo-i0 . (a-18 (L)

This sum 18 obviously real since ’;K = By It can be written:

tann™ fn{, 5 P tanh™! (h=1K) . (h-1K)  tanh™? J(heik) < (h71E
A= 2l 2yl (1/2) = Nheth) - (i)
N Kte {(2-1K) + (h-1K) J(B+1K) < (neik)
NP reyid
Il Kro \((Eng)ﬁ (1)

In Eq» (L9), R {w} means the real part of we The princpal bransh of the function

-1, is always required.

tanh
We now wish to check thes gccuracy of Eq« (47) by comparing ths valus of
% caloulatsed by the exact Eqe (2L) with the approximete value of X. We assume,

a3 wé did in the derivation of Eq. (2i) that k is equal to zero. The aymbols

ased in Eqe (47) now are specialized to the following: ‘
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o1 - BEEES
p(x) = 1ta cos (27x/a) =1 +(a/2) e 1ix/a +(a/2) e 2nix/a
b= 1
<Q
F'l = 31/2 [El' = 2“/.'
by = a/2 |x~lj = 22/a
we © 0 otherwise , (50)
Equation (L7) therefore yields:
- -1 (2n/a)
A1 + 2 (a°/l) len =1 + (a®/2) A (51)
21/a 1

If we sssums (uz/h) [Al /(N - )\1)] A/ (N - 12) << 1 ' in Bq. (24) we

ovtain:
x=1 +(%2) 2/ - N) (52)

In this equation X\ will be nearly unity, and if we assume that )\1 is much less

than unity we obtain:

A o= 1 +(a2/2) A (53)

which agrees with (49)« The validity of these approximations can be sean from
ths following examples. We write A = 11T A\ and calculate AX for various values
of & and 2 by equation (47) (or equation (51) for this special case) and by the
axaot equatien (24). We also give (AX)/ua), whioch is indepsndent of a in ths ape
proximtion lesading to equation (L7, and may be expscted to be nearly indspendent

nf a in reasonable cases with the use of the exact equation (24).
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AX AN a a AVa2 Ax/a2
Bqu.(2L) Equ. (L7) Equ. (21) Equ.(47)
0200500 0000491 0.1 0.2 0.0125 0.0124
0.00316 0.00310 0.1 0.5 ‘00125 0.012}4
0.0125 0.0124 0.1 1.0 0.0125 0.012,
0.00270 000237 0.5 0.2 0.067= 0.0593
0.0165 0.0148 0.5 0.5 0.0660 0.0593%
0.0629 0.9593 0.5 1.9 0.0629 0.059%
0.00576 0.00450 1.0 0.2 0.14L 0.112
0.0348 0.0281 1.0 0.5 0.139 0.112
0.126 0.112 1.0 1.0 0.126 0.112

It is to'be noticed that the approximate AX is always less than the exact
8%, as expected. For a lattice with periodic lengih considerably lese than a mean
free path (a =~ 0.)), @ (5) can oscillaete between z2ero and two (a =<1.06) without
intreducirg any sppreciatle error in the approximete value of A\e The approzie
ma@e form gives a good idea of the size of the sffect even when the periodic
length becomes a mean free path.

It might be expected that if u(x) departs little from unity and has s
short perlodic length, e first-orde® perturbation calculatiocn of A should suffice.
This ie not true and, in fact, several different values for ) can be obtained by
doing the perturbation calculsticn in several s eemingly equivelent ways. It seoms,
in fact, that the calculation is essentially seocond order ;nd this can be seen
from the following considerationse.

Fo write the equation whose kernel is sdjoint

to that of equgticn (9):

A

i
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We consider first a case with g (x) equal to unity (the unperturbed case) and
then change p(x) to 1t 4 p(x). The eigenvalue will change to X+ A\ where AN\

is given by the usuel first order perturbation calculetion:

|x- x'l 1k (x°-x)

fdx fdx( E‘ (X) (l/h") —-——.-—x-qz- (x') 'dk(x (55)
fax £, ® g, @

We usa Eq. (54) to do one integration and obtain:
[

Ao 6w 4 @ &
for 7 @ 4 @ (5

We insert for ¢k snd ﬂk the unperturted ¢§ e.nd ¢; which are constants, and we

obtain:

i
o

(57

The result of tha firstecrder perturbation calculation is, therefore, that the
eigenvalue is unchanged. We must then go, either to a second order calculsticn or
uge one of the treatments vhich have been given. It shoulc be pcinted out that
the first order calculation will give correct answsrs in problems where Ax is not
gssumed to be zero cn the average. It is only in cases where no change is mace

in the tots) amcunt of active wmaterisl that a second order calculation may be
nocessséy.

The treatment which we have develcped is certainly not capeble of giving

Printed an DIETZGEN Z198M “"AGEPROOF" tracing paper

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

Ln ‘

.20-

tLe oritical mssof a lattice assembly. It does eratls us to estimate the
approximste effect of the inhomogenity. 6 can stats some obvicusly necessary
and cbvicusly sufficisnt conditicne thst a given assembly be essentially home-
genscus. We require that fcr the glven A of the core or tamper that the propoge-
tion veotore of the infinite medium plane wave sclutions should have megnitudes
which are eszentinlly independent of direction. We further require that this mag-
nitude shall bs different from that for the corresponding homogeneous medium by
only a small frection of itselt. Ve can furthsr argue that the effect on the
oritical size produced by the inhomogenity will be of the order of magnitude of the
effect on the magnitude of the veotcr ko

If the irhomogeneities are not too large sxcellent apprcximstions to
the criticel nass of an inhomogerecus core can be obtained by replacing the core
by an "equivelent" homogeneous one. The "equivalence" being determined by makirg
the homogeneous msterial such that an infinite medium of it would have the ssme
A for the important K velues as does an infinite medium of inhomogeneous material
as developod by the methods of this reporte.

Inhomogeneities of mean free path present problems which heve not
been golved. Inhomcgeneities in a system in which many neutron velcoities are
involved present interesting probleme which have only besn partly solved in some

especielly simple cases.
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