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ABSTRACT

Methods are developed for estirwting the effeat on a aritioal

assembly of fabricating it as a lattice rather than in the more simply

interpreted homogeneous nxmner,
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NEUTRON DIFFUSION IN A SPACE LATTICE OF FISSIONABLE

AND ABSORBING MAT15?IALS.
%

.

k experiments with OrikiOal assemblies it is Oft!3n00W?dSd to

fabricate aotive nnterial, tamper nmterial and absorbing materkl, such as

boron, in tha form of blocks or slabs and then to assemble these blocks or

slabs in the form of some regular 8paoe lattice. From the point of view of a

thqoratioal treatment it would, of oour8e, be preferable if the ●8sembly were

00mpo8ed of a homogeneous oore and a homogeneous tamper. If the diinensiona of

a unit cell of the lattice are snmll compared with a neutron mean free path the

asssinblyuay be considered as practically homogeneous and 80 treated. It il?

the purpose of this report to develop mothoda for deciding how big the lattice

81ze can be before a serious departure from homogeneity is introduced.

we propose to di.v&8a the following idealized ease in sozw detail.

Suppose we have an infinite medium inwhish fisnion,

absorption aan ooour. Suppo8e that neutrom of only

in the system and that the neutron mean free path ‘i8

elaetio aoattering and

one velooity are present

independent of position,

it being equal to unity with the unit of length u8ed. We then a8sume that f(~),

the average number of extra noutrone emitted per oolli8ion, is a function Of

posltimwhioh varies periodionlly throughout the medlwn. Speoifioally, l+f(~)

will have the form:

1 * f(x) = p (JJ
.

The funotion ~(~) is assumed to have a space average

is the 8paoe average of the total number of neutrons

per oollision. We define ● unit oeYl of the lattice

,

(1)

—.
——..- .. ----—-—.—- ..-
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a and make the statement of period icity, tkt :

#(x+la*mQ *no) = p (~) (2)-.

where I,n,n, are integers. ~Viththese assumption we oan then write the fol-

l~wing integral equation for the neutron density _Y(x) ;

\

~ ~(~) = (1/4~) &&’
~+ql
~ p (~’) ~(g’) (3)

(~-x’l

If ~ is any displacement w“nichkeeps the valua of # (~) unohanged

then we can rewrite Eq. (Z) aa:

\

-1~+~- ~q

~ Y(5* ~) = (1/4fd dx’ e
- ~~+g- ~J*

P (~’) Y(E’ ) (u

X: we now dtsplaoe the origin of ~by an amount Land use the perlodlclty of V,

W9 can rewrite Eq. (~~ in the following wayz

I

e-l~-~’l
k flz+ ~ = (1/~@ d=,

* (~’) y(&’+RJ (5)
lx--3’)2 ●

Comparing ~a. ~3) and (5) we see that if ~(~) is a solution of the integral

equation, V(X tR) will also be a solution.-.

If, SS is uuual in the theory of metals, we properly ahwse the elemen-

tary solutions of the integral equation (~), it will be true that for 8onM k:

y(:HJ= eike~ y(x)
(6)

so that 1 k(xJ=eik”~ $k (x)
,

where $k (x+R) = $ (x)--

UNCLASSIFIED
lc- (7)

~q .:.
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UIIKIA$SIFIEII
A general 8olution of the integral equation aan of cour8e be built up by super-

posing solutions of the fom (7)0

The vector _k is of oourse analagous to the wave nwaber of the a8ympto-

tia infinite medium solution c.fthw integral. equaticn (?) in the elementary case

where p (x) is con6t8nt. In that ease $k (~) is of course constant also. We

shall find it oonveniont to deal direot.lywith the peric!dic function $k rather

than with the ~eutron density itself. Toaoccmplish this we substitute F~. (7)

ir.Eq. (3} and cbtain:

M@ eik”L=(l/40&x’ ?
-la- ~’1 ik.xt

IX-X’12
p(~’) e -- $k(:’) (8)

--

which is conveniently rewritten;

/

“IL - q
W@ = (li~~) ~’ ~. * i ~.~ -

(9)a ids’) ffk(~’) .
l:- ~’

f

This equation is seen to be an integral m.uation for the functicn @k (~), the

kernel of the integral equatiozIcontizairig the overell wave-vector ef the soluticm

mplioitly and being I?ermitian, if the propagation vector k is real.

In order to illustrate the general method of procedure, and for use in

investigating the approximate methods to be develcped, we will solve a simple

problem exactly. We assune for p(~) the following:

~ni%/’& -2flix/a
p (x)=lta cos (2nx/a)=l + (a/2) e -t(a/2) e (109

It is also convenient, but not essential, toass~e ~ ‘o* We then wish to find

the val~e cf h required for criticality as a fumtion of a end of a. As usual

ixIa plane problem , we simplify the integral equatien to the following :

J
C@x6(X)=(1/’2)

_ ....~(ll) ---
tit E(~x-x’l ) #(x’) $ (x’) ~..~ .-.. :-.. .

-a, --G--., --’=. =..-—-— -

~~~
....-1 Arftrflrft
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We now expuid b (x) in a Fourictr series and obtain:

d(x)=~ jJne2’inx’a
(12)

n:,-oa

We substitute the expression (12) in the Eq. (11) and obtain;

.93

2’ i nx~’=~ @n(1/’2)
~

2ni n xpla
~X~n* dx~ E(Ix - X’\ ) 6

n r!

f

03

+(a\2) I $n (1/’2) ~~ E(~x -x!)) e2ni (n*l) x ‘/a

n -m

(

m
2ni(n-l)x’/a (1?)

~ (a/2) Z ~n(l/2) dx’ E(1x -x’() e
n -m

The ictegrals appearing in Eq. (13) otineasily be dope and we obtain, by 8hifti=g

the summation index n:

n$ne
2ni n x/ a 1ezni ~ x/a (lLJ

.Z An”~nt (a/2) 6n-1+(aL3 6n,1
n n

where :

From Eq. (1~) we finally get the following reoursion relationa for the @n;

(15)

(16)

If two of the neighboring $n are speoified it is clear tbt we oan solve

for all of the d . In general, as the magnitude of n gets very large @n will
n

inoreuisewithout 3ifit. If the value of A i6 properly ahosen, however, then dn

Priufcd on DIETZGEN PIWJM ‘-AGH’RUUF’” tmcmg paper

+11 oonverge to zero. Since the ~n are the Fourier oo-efficients of a smooth

funution #(x) the $ must ’converge to ze~o for large n if’we are to have a real
n
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suffioiently large n and determining

notice that Eq. (16) is unohanged by

and we am therefore argue that the ablutions,of

—.

__ -~

i from this requirement.

the substitution of -n for

(16) mustbe either even or

n,

cdd in n. The odd so~ution can be r~~ed out beaause it would require tbt fio

be zero, which implies that the neutron density averages to zero. We there-

fore lase nothing by assuming that $ is equal to $-n. Consideration of Eq.
n

(16) withn aet equal to zero yields the condition;

Xfi ‘Xo$o+axo$l
o

or (X-ho) do=.iojd,

Jj/’bo‘ (x - Xo) /aX. (17)

W8 then write the remaining ●quations (16) in the following fern:

‘+- $2

(18)
—— .—

For eonvenienca we abbreviate the co-efflclents ●s follows;

eta.

We then divide all of the equationrn~y &o and call the ratifi~(~a ~ R . where

v’

I
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R. ●quals unity.

We now sclve the6e equations for R by assuming that all the On be-
1

yond ● Certain point are equal to zero ●nd then taking into acocunt more and

more of the &n. If ~e first deo~de to neglect R2 and all R beyond, we obtain:
n

‘1 = al
(2@)

If we now neglect all Rn except R and R2 we olearly obtain;”
1

‘1
=al+~ R

12

‘2 = a2Rl

whence: ‘
R
1
‘a1*a2b111 (23)

or Rl=al \ (1. a2 bl)

—

It is -then ~sily se>n that inolueion of’higher and higher R will give values
n

for RI that are suocesaive approximations to the value of the oontinued fraotion;

‘1 = al

1 - aoj
1- a3 b2

1
- albb3

-/
(22)

W. now insert the values whioh we have for an ●nd b and set the
n

resulting oontinued fructioneq~l to the value of RI giyen in Eq. (17), we

thus obtain the following seculsr equation for X:

Prinled on DIETZ=N #lP6M “AGEPRWF” tracing POPCW
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This rny conveniently be rewirtten in tha more 6yznmetrical form:

2 11
l..+.— ‘+ (21,)

—-. —

For a given value of the k are detemined. If the value Of a is th8n
n

given k cm be found by ● mall amount of trial anti error. % continued frac-

ticn in Eq. (24) fortunately oonverge~ exceedingly ~pidly for re%sona~’le values

of n anti a.

We should -ke isuretbt the Eq. (21!)gives ~ oorrectly in the limit

a ‘O ora=Oe If either a or a approached zero tho medium approaches homo-

geneity ad 1 should apprOaCh unity. If a is very smll 10 will be equal to

unity and all the higher A will be zero. ~uation (2b) thsn reduces to:
n

A = l+(a2/2) Xl/(). - Al)

Frc,m this we see that h approaches unity as a approaches zero. It is further-

L

I PI intetl on DIETZGEN S 193M “AGEPROOF” troclng popef
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more clear that if a approaches zero, Eq. (25) will a~ain hold and k must again

apprcach unity so that we lnve verified that Eq. (~) ha8 the oorreot limiting

behavior.

We now wi8h te work out an approximate procedure for oaloulating ~,

which will be reasonably aoourate and simple for an arbitrary funotion p(x) . If

the wave veotor k 16 real, %“ (9) cen be arranged to have a Hermitian kernel.

We multiply each side of Eq. (9) by <p (x) and rewrite it as follows:

‘his equation can be derised from a simple variational principle and X oan be

written as the maximum of the following expression:

The maxisiumwill be reached when$k is an actual solution of Eq. (9). If the

variation of p(x) is nut too violent, $k (x) willbe apprsxiuat.ely constant.

We. therefore~ place, @k(~) and *(Q eqwl to unity and investigate the agree-

ment between the value of U thus obta~ned and the oorrect vslu~. of X. It iS,

of course, olear that the value of U thus obtained will alnays be lower thin the

oorreat value of X. tiewrite x for this approximate valuo and obtain~

Eaoitintegral in Eq. (28) is taken over all spaoe. The result of the integra.

tlon over Zt In the n~erator will be a funation periodia with th eriodiqit ’~

“~

md cm DIE TZGfN ,# 198M “AGEPROOF” tracing pOFcr
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of the lattice. ~he integration over x in the numerator and denominator can

then be extended over a unit oell of the lattice.

In order to obtain the expression (28) for X in a somewhat more usable

form, we expand P (~ in a Fourier series: “

p (x_)- % ~Kei~z (29)

The K form a denumerable set and are of the form:

~=an (P&*q#@YJ (30)

Here p, q, r, are integers and ~,~, ~are the defining Ven?tore of a lattice h

K space. This new lattice i8 reciprocal to the lattice defined by~, ~ ~, in

the 5 space in the following sense:

a.b= a.c=O a~a= 1 (71)--- - --

and cyclically for#9 ~ Tho con~itions (z1) are obviously satisfied by the

choice:

a_bxo
-~

a . (bxc) (32)---

ar.d.similarly for~~ and ~ Any ~ satisfying Eq. (30) has the property tkt;

K . (l~+mQ+nc) =2n x (an integer) (73)

Therefare, every term in the expansion (29) is peri.odiswith a pertodioity whiah

i8 tkt of w (K).

We now insert the expansion (29) in the Eq. (28) for A. It iS zlecOS-

aary to remember that :

.

.

Print4 on DIETZGEN # 198M “AGEPROOF” trocing papct
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u

and also that P* =
K ‘c~’

since p(x) is rtml. We obtain:

the volume of the unit c el 1 V and remember tht the average Of p (~)

is unity. Also We tMlV9:

‘V X=K”-.

Equation (3[;)then becomes :

m ,

Sisco

write

).

x“

tan-l l~+k[
IvKi*

l-. -1-
K+k

therefore equal to the value whioh

.

(36)

Wo ean then

(38)

it would have for

Printed on DIETZGEN S198M “AGEPROOF” tracing paper
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homogeneous system plus a positive correction, due to tie inhomogenity+ This

saya, in d.her words, that 1/(1 t f) is greater for criticality in the inhonao-

g9n60ut3case, or tkt 1* f is less, fii~h implies tkt miking tho material

ncn-uniform jnoreases its aatiirity. It oan be 8een in the follmirig nay that

this statement is oorrect. Consider a homogeneous mixture of fissionable and

absorbing materials oombined in such proportions that the mixture neither ab.

8orbs nor reproduces. If we take the 8fAf!M3 materials in the same proportions,

but in the form of an inhomogeneous lattice rather than a mixture, we oan mqke

the ~ize of a single pitio of the fissionable material suoh that this piece will

be 8uperaoriticale This ia, gf course, an extreme oese. The alighteat di8tor-

~~~e of the ~~m~genity will ~norase the activity Of the syst~. This will be

so slnue in the homogeneous arrangement the absorption of one neutro~ yields one

neutron on’the average. In any inhomo~;eneons arrangement the neutron density

WGUIA be htghar in the plsoes rich in fissionable material than in the absorbiag

reg~on~. Thi8 m=ne that a larger fraction of neutrons will be ab~orbed in

fie8ion than previau81y and the syatwa will be super>ritieal.

Tha expression (38) gives a value of X. whioh i8 too low~ ‘fhorefore

th~ .Zorrectioa to tha homogeneous value of h is certainly pwitive but s~e-

x~wt larger than gi~en by Eq~ (39) ●

The exprssi~on (~8) is oonfre?ient but has, thus far, no rigorous founda-

tion if k Is not real. We proceed tp derive thi6 equation in suoh a way that the
1. t

1

reetricCion to real values of k c~n be renoved. We can write equation (9) a8

follovns:

Prtnted on DIETZGEN >-199}A “AGEPROOF” tracing popcr
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opposite direot. ion to that in Eq. (39) and p(x) i8 equal to unity. we write

d=go and X=X6 and obtain:

-1~-~’l

d.,(x_)‘(l\@jd~’ e
~-ik. (X’+X)

- (l/xo) 60 (~’;
[~.z’lz - -

(40)
..

W multiply ~. (39) by (l!x ) do (XJ and @O (40 bY
p (x)

~~(~) and inte-
0 x

~rste over ~ We interchange the dummy variables ~ and ~’ in the integrations

on th~ right hand side o? the first expre8siou and note that the right hand sides

o? the two expre8aions are now equ%l. We therefore obt~in the exaat equations

fl

P (JQ

1‘z +-—
do(xJ6(~)=o

A
(w

The funotion do (~ is really oonatant and oan be taken equal to unity. ‘Ye

obtain t

Jd% y (x) d (~
11o-=

J
“da ~ (~) (v)

This gives a simple expression for A, exoept that an exaot expression for h (~
i

is neoesaary. We proaaed by approximating 6 (~ by a method of iteration. ‘Ue

insert a constant for $ (~ on the right hand side of Eq. (79) and take the

result as an improved expression for 6 (~ . This gives :

~.,Q

e=~~ - ~’1

6(9 * (l\4~ ~dx_’ ~
ik. (X’ _ X)

- P(S’)

I

(49
_12 ‘- -&.xt

We then Ineerf the Fo!hrierex+ ns~on (29) for p(x) and do the indioated into.

gratious. This yields:

—.
I . ---------... ----------- ~=~’

I
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=Z
K

‘K

‘K

(Vbq
.

iK.x tan-l \k+Kl.-
e --

1 --”

We then insert this in Eq. (L&), together with the Fourier expknsion

v(~” This yields:

Xf the

volume

integratioaa a re then extended over a unit oel1 with V equa:

of the cell , we obtain~

Remembering
. tad ~f “

that x and p. ‘1, we finally obtain:
o o

Tnis equation is formally identical with Eq.

(44)

to

(ho

[47)
.

(37) but there is now no reatric-.-
.—

_.. .._
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tlon to real values of k . If ~i8 lma~iaary, hmrev&, it is not clear that the

tru9 I 18 higher than that gi7en by iZq. (&7j. If thaaccuraoy of Eq. (47) is

good fw real &, however, we would expeot it to be good for imginary~.

Suppose we assume k= i h where & i~ a real veotor. In Eqe (4?)(~t~[meana--

the 8quare root of the scalar product of the veotor with itself, not with its

oomplox con~-~gate. RemembgrinK this, we obtain:

-1
~=~[W2 tan

d

i~ ‘Q ● (ih+x)

K
(igt~).(i~+g

“ : {#K?
tan-l i{(h - iK) ● (h -iK

i J(&. ig ● (~- iK_)

: I*KI
~ ~n~-l (~. i ~ . (h.iK]

a

J(Q. ig .(2-N-) O@)

This sum ia obviously real since ~ = P ~. It can be written:
K-

‘-

h-i~.(h-i~ tafi-ltati-~ /h I+ ~~,o~x~ (1/2) ~ ~K , h-i~
A = ---

/!L1 --- -

= t!Aqh”ll&l ~ ~

[

.nh-l ~~-
1~~ K,ol%f R

J(= I
(49)

In l?q, (&9), R ~w} means the real part of w. T~e prinapl b~noh Of the f~ction

tanh-~ z ia al~~~ required.

We now wish to oheck the accuraoy of Eq. (k?) by comparing th8 value of

A oaloulated by the exaot Eq. (~) yith the approximate value of A. )?eassume,

-s X6 did in tho derivation of Eq. (~) that k is equal to zero. The 8ymbo~s

used in Eq. (47) now are specialized to the following:
.-—
—. -—

- ———

‘ ——
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2 nix/& 4nix/a

&A(xJ= 1+-a C08 (2nx/a) ‘1 +(a/2) e t (a/2) e

~’vation (h7jtherefore yields:

obtain :

In this equation X will be nearly unity, anii if we aasu?ue that A is muoh less
1

than unity we obtainc

x= 1 +(a2/2) Xl (55)’

whiuhsgreea with (~g). The validity of these approximations aan be seen from

:.hnfollowing exa.nples. !Yewrite 1= 1 * AX and calculate Ak for various values

of a and n by equation (47) (or equation (51) for this Sp-ial case) and by th~

euaot equatien (24). ‘.% also give (AX)\a2)0 whioh is independent of a in the ap-

proxinnttcm leading to equation (4’?),and may be expected to be nearly ~nd~pefien~

OF a in reationablecases with the uge of the exact equation (~)-

~
— —.-— .—
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AX a a AX/a2 Al{a2

% ● (214) Equ.(L7) Equ.(2h) %~a (47)

06300500 0.000L94 0.1 0.2 0.0125 0.0124

0000%16 0000310 0.1 0.5 ‘0.0125 0.01.24

0.0125 0.0124 0.1 1●o O.olGq 0.0124

0.002?0 0.Q02Z7 0.5 O.Q 0.0675 0,0593

0.0165 O.cwfl 005 O*G 0.0660 000F93

● 0629 0.0593 0.5 1.() 0.0629 0● 0597

0.0fi?6 o● 00450 1●0 0.2 o.llJ$ 0.112

0.0348 0.0281 100 0.5 0.139 0.112

0.126 0.112 1.0 1.0 0.126 0.112

\

It is to be noticod that the approximate AA is always less than the exaot

AX. as expected. For a lattice with pe~~od~c lengt}, oons~derably less thari a mean

fr~e ~th (a= Otl), P (x) can oscillate between zero and two (a =1.0) without

intrcsducir,gany appreciable error in the approximate value of @X. The approxi-

mate form gives a good idea of the size of the effect evcniwhen the periodic

length beoomea a mean free path.

It might be expeotod that if p(x) departa little from unity and has a

short periodic length, e.first-ordeF perturbation calculation of A should suffice.

This ie not true and, irl fact, several different value8 for }.can be obtained by

doizg the perturbation calculation in several seemingly equivalent ways. It seems,

in fact, that tk.eoaleulation is essenklally seoond order and this aan be seen

from the following considerations. W write the equation whose kernel is adjoint

to that of equaticn (9):

~~

/’

.
=-z

-—
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% Ifk@ = ( l/’@) dfia

&k . (~’ - X)

[~- ~’la -

P(~ rk (~’) (54)

b consider fir8t a case with p (~ equal to unity (the unperturbed case) and

,hen ohange P(XJ to lt A p(~) . l’heOigenvalue wi]1 change to k-fAA where Ak

~s given by the US-1 first.order perturbation calculation c

(d& /-dx( ~ (x) (1/’4.) O-’L- :;’ ei~@”%l(~9 d,(y) ~,,,
A~= - ‘. -x

J* ~ (Jj 4,1;

Ye US6 Ea. (6L) to do one integration and obtain;
s

~ jti_ zk (4 ~k (~ ~ K)
AX=

jd~ ~ (XJ i, ~) (ct6)

% in~e~ for J?kend @k tl-,eunperturbed ~k and ik whiah are constinta~ and we

>btii~:

.

~d~ A p (:)

~= dx
i-

G =0 (57)

Th result of tha first-crder perturbation calculation is, therefore, tkt the

eigenvalue is unckangud. NO must then go, either to a second order oalculfitien Or

uae one of the treatments which have been given. It shoulc be pc.lnted out that

the first order calculation will give correot answers in problems where AP is not

ufiuumedto be zero on the average. It i8 only in oases where no chsnge iS matie

in the totul amount of active material that a second order calculation maybe

nece8sary.

The treatment which we hava develc,ped is certainly not capable of giving

~
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+~a~oriti~~l ~s60f a lattioe assembly. It does eriik]eus to estimate the

approximate effect of’the inhomog6nity. Ye can 8tat6 some obviously m30e68ary

and cbvicmsly suffioie)ntconditlcce that a given a~sembly be e8aentially honm-

geneousc We require that fcr the given A of the core or tamper that the propoga-

tion veotcmc of the ififinitemedium plane wave solutions should Wve magnitude8

which are essentially independent of direotion. We further require that this mag-

nitude shall be different from that for the corresponding homogeneous medium by

only a 8*1I frhction of itself, We can further argue that the effeot on the

oriticnl size produoed by ‘the inhomogenity will be of the order of ~gnitude of the

effeat on the =gnitude of the veotcr k.

If the ixihomogeneities are not too large exaellent apprcximationis to

the critioal ua8s of an inhomogeceous sore oan be obtained by replacing the core

by an ‘equivalent” homogeneous one. ‘l’he‘equivalence” being determined by making

tho homogeneous material such th’t <an infinite medium of it would have t’hessme

k for the important K values as does an infinite medium of inhomogeneous mterial

as developou by the methods of this reports

lnhomogeneities of mean free path present problems whiah have not

baen solved. Inhcmwgeneities in a system in which numy neutron velocities ar6

involved present interesting problems which have only been partly s~lved in eaae

espeojally simple cases.
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