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A class of critical assemblies has been considered in which the
core consists of an oralloy bearing gas at more or less standard

pressure and temperature and the reflector is an efficient moderator

with a smail thermal capture cross section. Age and diffusion theory

have been applied to compute the probability that a fast neutron is
thermalized by the reflector and then captured by the core. It is
first assumed that fast or epithermal neutrons do not interact with
the core and it is later shown that this assumption should be a good

one for many cases. The reflector may be a thick spherical shell.
It is shown that oralloy masses of a few kilograms can be critical
within thick reflectors of D20, Be, C, or combinations thereof. Curves

are attached which enable one to estimate critical configurations.
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INTRODUCTION

It is well known that the critical mass of an untamped or in-
efficiently tamped gaseous core at ordinary gas densities is many
orders of magnitude larger than the critical mass of a corresponding
solid system. In fact, if one imagines that a solid or liquid critical
syster is uniformly decreased in density, the critical mass will vary
as the reciprocal of the square of the density. Since gas densities
are of the order of 10-3 x solid densities, this implies critical
masses of the order of lO6 times as large for gaseous systems as for
solid ones. '

The above argument cannot, of course, be applied to a gaseous
core surrounded by an efficient moderating reflector for in such a
configuration it is only necessary that (1) the reflector thermalize
and return to the core a sufficient fraction of the fission neutrons
and (2) the core be of the order of a thermal neutron mean free path
in thickness. The second condition is easily fulfilled by systems
of moderate size since the mean free path for example of a thermal
neutron in UF6 at 70°C is about 70 cm. The first condition can also
be satisfied by a number of efficient moderators such as heavy water,
beryllium, and graphite.

In this paper I have employed age and diffusion theory to cal-
culate some critical configurations. I have assumed first that fast
and epithermal neutrons do not interact with the core at all. The

slowing down of neutrons in the reflector is treated according to
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age theory and the source of thermal neutrons is taken from age theory.
The diffusion of thermal neutrons is then calculated by use of dif-
fusion theory.

In Section I, the problem is treated in plane geometry, with the
reactive volume bounded by semi-infinite or finite slabs. I calcu-
late the probability that a neutron which is born in the gas is
thermalized by the moderator and captured in the gas. In Section II,
the problem is treated in spherical geometry with the gas confined at
the center of an infinite or finite sphere. Here we find that the
radius of the sphere must be larger than the thermal diffusion length
and/or square root of the age. The boundary condition at the core re-
flector interface is handled by means of an albedo.

In Section III, there are presented some very simple consider-
ations regarding the angular distribution of thermal neutrons at the
core-reflector interface and these are related to the core albedo.

In Section IV, there is a discussion of the reactions of epithermal
neutrons with the core. I conclude that for small spherical systems,

such reactions are unlikely to change the reactivity by greater than

about 1%.
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SECTION I. PLANE GEOMETRY

A. INFINITELY THICK REFLECTORS

Consider first that we haye a gas filled region bounded by two
semi-infinite plane reflectors. Fission neutrons are born in the gas,
thermalized in the reflectors and may be captured* by the gaseous
fissionable material. Evidently departures from infinite plane ge-
ometry are likely to reduce the fraction of neutrons captured in the
gas.

In one of the semi-infinite b?unding planes, the slowing down
density corresponding to a source of one fission neutron per second in
the gas is -zz/he
X (z, 8) = S—— (1)

Jiwe
where 2z is distance from the plane interface and © 1is the age. The
normalization is such thaﬁ d}jz(z, ©)dz = 1/2. The slowing down
density goes to zero as 2z —»~ and has zero current at the gas-
reflector boundary. This latter boundary condition is appropriate to
our assumption that neutrons cannot react with the core while slowing
down.

The slowing down density at the age to thermal forms a source of

thermal neutrons. The thermal neutron density P(z) then satisfies the

diffusion equation

*I shall often refer to the disappearance of a neutron from the thermal
group as "capture," but it should be understood that this may refer to
either rediative capture or fission. Where the distinction is important
it will be made.
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where v 1is the neutron velocity, £ % the transport mean free path for
thermal neutrons in the reflector, and L the thermal diffusion length
(namely, L = ]/ % jt[c with lc the capture mean free path for thermal
neutrons in the reflector). This equation must be solved subject to the
boundary condition that as 2z -, Pr— 0, and some other boundary
condition at the gas refiector interface. In keeping with our opti-
mistic assumptions we temporari.ly call this latter boundary condition:
P— O as z — 0, while later on an albedo will be taken into account.

1)

Equation (2) may be solved by use of integral transforms
- -
ol 272 I/L.

, or by
means of the appropriate Green's function, At any rate

the solution is found to be:

+ ez/L - er z + 16
fioee( )]

where A 1is to be chosen to satisfy p(0) = O and

X -u2
f e du.

Vit o

(3)

erf(x) =

1) viz. Sneddon, Fourier Transforms, McGraw-Hill (1951), Chapter 6.

-T=-
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It follows that

A= 2‘3,—7—2 ee/Lz{erf (—Q—) - 1}.

The current into the gas, which is equal to half the probability of

capture in the gas, is given by

.ﬁ a_P 3-& A
3 o2
2=0

so that the probability that a neutron is captured in the gas, Po, is:
Po=ee/1‘2 [l - erf l%—] (4)
Note that Po is a function only of the ratio of the distance that
a neutron goes while slowing down in the reflector, ,/5 , to the dis-
tance it goes after thermalization, L. Evidently if a reflector does
not have Po 2, 0.50 it is inefficient and large critical masses are
likely to result. This condition implies Y& .£ 0.77TL.
I have taken the constants for a number of materials from Glasstone

and Edlundz) and computed Po, with the results noted in Table I.

TABIE I
o, b IR B T
Material o(cm®) L(cm) yé /L Po eq. (k)
1120 33 2.88 2.00 0.255
D20 120 100 0.110 0.887
Be 98 23.6 0.420 0.659
C 350 50.2 0.373 0.687

2}Glass‘l;one and Edlund, Elements of Nuclear Reactor Theory, D. Van
Nostrand Co. (1952), pp. 127, 183.

8=
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We see that heavy water returns almost 89% of the fission neutrons as
thermals and is extremely efficieﬁt from this point of view.

Our interior boundary condition can be improved upon by taking the
density to vanish at an extrapolated boundary. Suppose that the gas
region is of finite thickness and there is a probability that a neutron
entering the gas from one semi-infinite reflector will cross the gas
region without interacting. We call this probability the albedo, ﬂ.
(This consideration ignores elastic scattering in the gas, which 1is
usually unimportant.) We may then take the interior boundary condition

to be (viz. ref. 2) :

g_*z’> T I'p(o) (52)
with
3 1-8B
I = 57; IT+6 ° (50)

Substituting eq. (3) 1in (5a), we find

1
- A=T@R-a)

where Ao is that value of A which satisfied the previous boundary

condition, i. e., I’ = « . It follows that the probability of capture

Po( A) is now given by

Po
P (8) = —2— . (6)
1+ L
Lr
We can see how bad an error was made by using Po for the black core by

looking at Po(p) for 8 = O. A comparison is made in Table II.

-9-
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One can also use the above equations to estimate how thin a slab
of materisl can be made critical. For albedos near unity the angular
distribution of neutrons emerging from a surface is presumably nearly
proportional to cos & with © the angle between neutron direction
and normal to the éurface. (viz., Section IV.) In such a case
p=~2 E3(d/7t) where d/A 1is the thickness of the gas region in capture

mean free paths. If capture of at least 48% of the neutrons is needed

for criticality, the minimum thickness can be found by setting Po(}) =
0.48. Results are shown in Table II.
TABLE II

Material  Aglcm) Po (Table I)  Po (0) Eq. (6)  Minimum d/A

D0 2.40 0.887 0.873 .020
Be 2.10 0.659 0.622 .183
C 2.71 0.687 0.663 .091

If we are considering UF6 one atmosphere and 70°C, A is about 70 cm,
so that the minimum thicknesses become 1.40, 12.8, and 6.4 cm for D0,

Be, and C.

B. REFILECTOR OF FINITE THICKNESS

Suppose that we now hsve a region of gas bounded by two reflectors
of finite thickness. The age equation is now to be solved subject to
the conditions that the slowing down density vanish at the external
boundary of a reflecting slab and that it have zewwslope at the gas-

reflector boundary. Consider one of the reflecting slabs which lies

-10-
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between the planes z = 0 and 2z = D. A solution to the age equation

having the above properties is

2 2
K(z, ) = __l__[e-zz/he _ e'(Z-2D) JLL) . Z-(z+2D) /ue] o
yie e

1+
where the plane 2z = O divides gas and reflector. This solution applies
only for the region 0 z $D.

When the diffusion equation is solved with the source given by

Eq. (7), we obtain

P(z) = A e-Z/L + B ez/L + 5\31_2_‘ ee/L2 l:e'Z/L {erf (2;/; - \/E >+ l}
z/L{ i ( z ﬁ) i 1 —z/L ZD/L{1+
+ e 1 erf 2/5 + I } - e_2D2/e e e
erf( z __D _ _‘Eg__>}+ o2/L e-2D/L{l_erf( z _ D “/E)}
adl ve 2/8 N
+ e'Z/L e'2D/L erf( z ., D _ @_) . l}
%8 y8 T

+ ez/LeZD/L l-erf( 2z ., Db, 18 )}}J (8)
26 8 "

For boundary conditions we may take P(D) = P(0) = O. From the condition

at z = D, we find

-11-
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A e-D/L +B eD/L S 10 ee/Lz[ 2D -D/L (erf( L>+ 25
ey l+e -20°/ 2/®

+eD/LQ.-erf >} {3D/L<erf =——-L +b.
+ e D /e 28

VN ]

: ’ 2)e L>>} ¢ 9)

The boundary condition at 2z = O gives

A+B= - 531‘_1*' 2ee/L2 ‘:l - erf £g - ——:-L—-an—z/;{eaD/L<l - erf(‘% + L—E)>

l+e

+ e D/L (1 + erf (\/% - Y—f)) }] = M. | (10)

The current at z = O is given by

4.V 4LV 5
z=0

+ e3D/L

3 dz

This, when multiplied by 2, is the probability of capture in the gas.

We may solve equations (9) and (10) for B-A. Thus from Eq. (9):

B=-A e'2D/L+ Q e'D/L.
Substituting in (10) gives
. v - e-D/L Q
- - 2
1-e 2D/L
so that
-12-
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pe-D/L
BoAs oMoy 9 - (12)

If we substit;te this result into Eq. (11), we find that the probability
of capture is a complicated function of D, ©, and L. However, we are
mostly interested in values of D2/6 considerably larger than unity. For
such values, we may expand the er;or integrals(except for erf ig) in
-D°/

O« 1, and D>>2—e- » 1s equivalent to

Eqs. (9) and (10). Assuming e T

equating the erfs to unity. We then find

-2p/L 2 - -2D/L
~ l+e e/L © e
P(D) jnd —-—e—:m e <l - erf (LL )- 2 ;—:_—2—5/—1‘) . Large D. (13)

1

This is the probability for slabs of thickness D to thermalize a fission
neutron and return it to the gas region. P(D) as computed from Eq. (13),
is plotted in Figs. 1 for D20, Be, and C. P(D) has also been computed from
Eqs. (9) - (12) for some values of l%: 2 2.0. A comparison of the re-
s;lts with those of Eq. (13) indicatgg that Eq. (13) is accurate to better
than 1% for all values of P(D) = 0.45.

If we take as the interior boundary condition that

ﬁ) = P p(0),
z =0

FE3
we find
-D/L
rqe® . yr -8
A= ~2b/L
e

r _r-e-2D/L+ l+L

-13-
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W
whence
P(p, D) = E(D)
1 1+ e'2D/L)
ttIF (1 - e-2D7L) ’ )

vhere [~ 1is given by Eq. (5b).

-14-~
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SECTION II. SPHERICAL GEOMETRY

A, INFINITELY THICK REFLECTOR

We now consider a spherical cavity which is surrounded by a sphere
of very large radius. Fission neutrons are born in the gas which is
contained in the cavity, and thermalized in the reflector. We seek the
probability that a fission neutron is captured by the gas in the cavity.

The slowing down problem for a source in a spherical cavity in an
infinite sphere has been solved by age theory, viz. ref. 1), page 229 ff.
Let the radius of the cavity be a. Then the slowing down density at

distance r from the center and at age © is

-(r-a) N -y _ 2
¥z, @) = 13 s [e (r-a)“/he _ {ﬂae JI-a/a 8/a (1 i
bar (7 e)

erf ( L))] | (15)

This is a solution of the age equation satisfying the boundary conditions

(r, ® ——> O and 2K = 0. It is normalized so that
2

dr
r—5%
. r=8a

o0

f'y_(r, o) BT r2ar = 1;
a

thus one neutron per sec is born in the cavity.
We assume that the density of thermal neutrons, P(r), satisfies

the diffusion equation:

2
9 (r P _ iz.(r p) = - =2— r 4z, o), (16)

9 r2 L rl,

-15-
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where © 1is here the age to thermal. The solution for rf may again

-jr-r'| /L.

be found by appropriate use of the Green's function e I

obtain for the quantity rp(r) = §(r),

¢h)=AdeL+Bede+ 3L2[%% ;hzgah{i_
84 vTa 12-8°
t

erf(r?f—a_+5§)}+ ee/Lz{%e'(r-a)/L {erf (rz_;le_a_ ) £g)+ l}

e
+ LaT: er-a/L {er ( ié ]}}i\ (17)

It may be verified that (17) is indeed a solution of (16). For an
infinite sphere, the boundary condition at oc implies B = 0. If we

take for our interior boundary condition f(a)= O, we obtain

2 2
3L 2a°L_ _©/a ( Y@ )
A= t -
g | A o (= ()
2
)-l) +L?a(l-erf(

2
2 a
+ ee/L {L + a (erf{

The current into the cavity will be given by

o
e[

D} oo

v v
2 FXU4 t Y Y (a)
hwa® L __L(arr)) = 4ma % [—ar) -As ] (19)
r=8 r=a

However, the solution (17) is so chosen that if A = B = O, there is
zero current at r = a. Therefore, the current into the cavity is

given by

-16-
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L.V
t 1 1
Current = - LT a =5 A[f + a:l' (20)
This current is exactly equal to the probability of capture by the gas,

so that substituting (18) into (20), we find

[L ee/82 (l - erf ('ig—))' a ee/L2 (l - erf({%—))](Zl)

P(a) =

1
L -a
This is the probability for a neutron which is born in a spherical cavity
of radius a 1inside an infinite sphere to be thermalized and returned
to the core. "a" is presumably an extrapolated radius. We have plotted

P(a) in Fig. 2 for the reflectors D,O, Be, and C.

2

If, as before, we take the interior boundary condition to be a

condition upon the logarithmic derivative of the neutron density, we

obtain:
(3—"" - J”—> - rg(a). (22)
or a
r=a
The left side is simply = - g{g A, while the right side may be written

ra - Ao), where by A we denote the value of the particular solution
of the inhomogenous equation at r = a, namely the value of A given

by Eq. (18). When we solve Eq. (22) for A, we find

1l L+a
(1+T;8L )A—Ao.

Thus

P(a)
+ L L+a
P aL

P(ﬂ: a) = (23)

vhere P(a) is given by Eq. (21), [” by Eq. (5b), and P(A, a) denotes
the probability for a neutron which is born in a spherical cavity of

radius a inside an infinite sphere to be thermalized and captured by
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L ]

the core. In Figs. 3a - 3c, are plotted P(B, a) = P(a) vs. P
for a number of values of a and for the reflectors D20, Be, and C.

This ratio is

1

2 L+a 1+B
1+ 34 2 1o

.

I have assumed that capture of U48% of the neutrons is required
for criticality and from Figs. 2 and 3 computed critical sizes. I have
assumed a mean free path for capture (and fission) in the gas of 70 cm,
for UF6 at 70°C. For the albedo, I have used results from Section III,

Fig. 4. The critical sizes are shown in Table III:

TABLE IJI
Material Critical Radius (cm) Oy Mass (kg)
D20 28.5 0.90
Be 63 9.7
C 9 19.2

Evidently deuterium bearing reflectors are the most efficient reflectors.
One could replace outer portions of the D20 reflector by graphite,

without much increasing the critical radius.

B. REFLECTOR OF FINITE THICKNESS, SPHERICAL GEOMETRY

Let us now consider the cavity of the previous problem to be sur-
rounded by a spherical shell of finite thickness. Assume that the
shell is thick enough to thermalize and return a substantial fraction

(Z 0.5) of the neutrons to the core. Two approaches to the age and

-18-
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diffusion problems suggest themselves: (1) one might expand the slowing
down density and thermal neutron density as Fourier series or (2) one
might try adding hypothetical sources as in Section I, B to satisfy

the boundary conditions. I have attempted the second method with the
feeling that it is more appropriate for a thick sphere, where presumably
many modes of any series expansion would be required.

We seek a solution for the age equation which satisfies the boundary
conditions of zero current at r = a and zero density at r =D + a
where D 1is the thickness of the spherical shell. Because of lack of
symmetry in the + r and - r directions, it does not appear possible
to add two fictitious sources as in Section I, B and thereby satisfy
both boundary conditions exactly. However, by adding one fictitious
source at r = 8 + 2D, I have been able to obtain a solution to the age
equation which satisfies both boundary conditions to good approximation
for thick spherical shells. The solution in question is:

(r-2D-a)2
1 [-—T——

LaT /T O
- . r-2D-a _ 4

_YWe o/e° " Ta (1 Cere (BRI .@))]’ (24)
a 2{6 a

where 15 is the solution for the infinitely thick shell which is given

r 1(1') ) =r’lo(r) e) - ©

by Eq. (15). The additional terms may be written (r-2D-a)'Xo(2D+a-r, e)
and correspond to a negative source at r = 2D + a. They are a solution

of the age equation because said equation for © # 0 is

-19-
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3 °r (r, ©) L 9r¥(r, ®)

arz EXC)

which is also satisfied if the derivative on the left is taken with
respect to 2D+a-r.

Y(r, ©) as given by Eq. (24) also has the property X(D+a, ) = O.
The other boundary condition is not satisfied by Eq. (24), for the
current at r = a 1is not zero. This means that Eq. (24) is a solution
of that problem in which instead of- just a perfect reflector at r = a,
we have, in addition, a source of neutrons of all ages at r = a. How-
ever, it can be shown that for thick spherical shells, the current into
the shell (at r = a) which results from these erroneous sources is
very small compared to the current through the outer boundary of the
sphere at r = D+a. Hence the fraction of the neutrons contributed to
the problem by the erroneous sources is very small. I, therefore, con-
clude that for thick shells, Eq. (24) is a good approximation to the
exact ‘solution of the age equation subject to the two boundary condi-
tions. |

In Appendix I, it is shown that, for thick shells, the current at
r = a 1is indeed negligible compared to that at r = D+a, and that in

-3132/2;9

fact the former is of order e with respect to the latter.

The solution to the diffusion Eq. (16) with a source given by Eq.
(24), follows from the discussion of Section II, A. If we again let

P = r §, we obtain

-20-
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U e

2 2 .
w(r) = A e-r-a/L +B er-a/L + 3L 5 2a L ee/a er-a/a
BI,CV'II'a

(l - erf | % + ﬂ:))+ ee/Lz{MLje-(r'a)/L(l + erf (Z/;; - E))

+ Lz er-a/L (erf(l:-'—’-—- +@) -1)}

L-a 216 L
r-2D-a
20°L, ee/a2 e- a (l - erf (a+2D-r . 1@ ) )
L2-82 2/8 a
o 5 r-a-2D _
-ee/L {L e L (l + erf( 2Dta-r _ te- ))
L+a 27/6 L
2D+a-r
2 —
a L 2D+a-r =)
tio e (erf(-—-———a/6 +'{I ) - )}] . (25)

The boundary condition at the outside of the spherical shell is

D/L D/L

Y(D+a) = A e +Be = 0. (26)

The value of (}l at the interior boundary is

2 2 —
VY(a) =A+B+ 3L [ 2a L ee/a{l-erf(i:—)

BItv 7I'a2

- e2D/a (l - erf (% +1—§))}
7

2 2 =
£ S 8 {l - erf ig)-e'zn/l‘(l+erf (2-- —
a L 1/6

L+a

2
+ e/L LaTa {erf(—L@) -l+e2D/L(l erf (— +
= A+ B+ T.

21 -
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The current into the interior cavity is given by Eq. (19). We find that

3 L+a a-L
_a%._rﬂ) = -TL A+BTL"‘U . (28)
r=a
where Uy 1is given by:
2
U = x_ lzuu.2 o/a e2D/a(l Cerr (2 @_) )
8g,vTa” | L"-a /6 - 8
Lo le on? D1y e (2 s L))
Y
8 L+a e/L o2/L (1 _ D . {8 )
L L-a (l erf(ﬁ i‘L—) ] (29)

If for our interior boundary condition, we take d(a) = 0, it follows
from Eqs. (26), (2() that

A= -—0oT

L - o~2D/L

Upon substitution in Eq. (28), we obtain:

-2D/L
#-2) -a(t b, £
r=a
It is to be bornme in mind that these results are valid only if
DX 2/5. Therefore, in the region of validity, we may expand the error
functions of D//_G‘ and to good approximation equate them to unity.

By this means we obtain

-22.
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2 2 — 3 _ 2
T2 3L [aL ee/a(l-erf Le—)- a (l-erf&)ee/l'
a 2 2 L

lt[tv Ma2 1242 L +a

2 2

e/L° _a -2D/L
- e L+a e ] 2 (31)
and
2
_ 3L a L-a _6/L° -2D/L
U——-————u4 5 [—-L ia © e ] (32)
v Ma

The current into the cavity (or return probability) follows from

Eqs. (19) and (30)-(32):

-2D/L 2 —

LlL+e L a 8/a ( -[e_)

P(D, 8) =2 | ——=p/L. +a] -3yl e 1 -erf
l-e L -a

2 = -2D/L 2
e/L ') 2a e e/L
-ae (1 - erf L) “Tia — e-2D/L e . (33)

This is the probability for a neutron which is born in a cavity of
radius a to be thermalized in a spherical shell of thickness D and
returned to the core. Eq. (33) is plotted in Figs. la - 1c, as
P(D, a) vs. D for various values of a and the reflectors D20, Be, and
C. A glance at Eqs. (13), (21), and (33) shows that P(D, a) e P(a)
and P(D, a) = P(D).

Use of the more accurate boundary condition given by Eq. (22)
leads to
L+a a-L

TA* T B+U=1(A+B+T). (34)

Upon solving for A with use of Eq. (26) we find

| C RELEASE
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Uu-1rrT
A= . (35)
l,.p+d (1+ e-2D/L) (1 - e-2D/L)
a L (1 - e-2D/L)
Thus
Y v U-rrT
ﬁ - —r-—> = r' l l (l _2D/L + T 2 (36)
r=a =+ + = te )
a L (l - e-2D/L)

and finally by comparison with Eq. (30), we see

P(f3, D, a) = B(D, a) . (37)

+_{ 1(1+e2D/L}
oD/

This expression represents the probability that a neutron, born within a

cavity of radius a, 1is thermalized in the reflector (a spherical shell
of thickness D) and then captured by the core. P(D, a) is given by
Eq. (33), and " by Eq. (5b).

From the above informatidh it appears that a sphere of UF6 at
70°C, of about 40 cm radius and surrounded by 40 cm of D0 + 4O cm of
graphite would be critical. An aluminum shell of thickness ~0.5 cm
could be between the gas and reflector. The oralloy mass would be

about 2.5 kg.

2l -
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SECTION III. ANGULAR DISTRIBUTION

In this section are presented some trivial considerations regarding
the angular distribution of thermal neutrons emerging into the gas
region. Some information about the angular distribution is useful for
estimating the probability that a thermal neutron will traverse the gas
region without an interaction which removes it from the thermal group.
This probability I call the albedo, B, which determines the interior
boundary condition on the thermal neutron density.

In considering the angular distribution, let us assume for simplicity
that the reflector-gas interface is a plane. This should be a good
approximation for spherical cavities of radius large compared to the scat-
tering mean free path for thermal neutrons in the reflector. Let us
further assume that when a thermal neutron suffers an elastic collision
in the reflector, it emerges from the collision with an angular distri-
bution which is isotropic in the laboratory system. Finally, because
in the reflector the capture mean free path is very large compared to
the scattering mean free pasth, we ignore, in these considerations, the
possibility of capture in the reflector.

let the plane 2z = O represent the interface with a moderator
extending in the +z direction, and let the density of thermal neutrons
be P(z). The collision density is obviously proportional to P(z) and
the number of neutrons which have suffered a collision at 2z and are
heading in solid angle E?f' is proportional to P(z) E??'. Consider

the neutrons which have made their last collision as a source of neutrons
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which may emerge from the medium. Measuring 2z in units of the scat-
tering mean free path and calling p the cosine of the angle between
neutron direction and :? we see that the number of neutrons emerging

with directions between [ and MK+ dp is proportional to

foof’(z)e'z/"' dz dp. (38)

o
Hence the fraction emerging in these directions is
o0
fP(z) e-z/f" dz dpM
_ o
F(pap = —5—— gy . (39)
f fp(z)e Haz ap

o O

Hence a knowledge of the neutron density enables one, with our assump-
tions, to predict the angular distribution.
For example, if the density is constant, P = P, we obtain
F(p)= 2pn. (ko)

For such an angular distribution, the probability of crossing a slab of

thickness d, capture + fission mean free path A, and zero scattering,

is 1
[ 2pe Al ap < 2 (a/2). (41)
o
For a spherical cavity of diameter 2a, the corresponding probability is
1
f 2pe 22/ gy - o(AY? [1 - (3+1) e'2a/7‘]. (42)
o

Equations (41) and (L4L2) represent the albedos for slab and sphere under
the assumption of constant neutron density near the surface.
However, if the albedo of the gaseous region is not large (close to

unity). the density will not be nearly constant near the surface. In our

-26-
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diffusion approximation, pP(z), will be determined by B (by means of
the interior boundary condition), but also B is determined by p(z)
and geometry (through Eq. (39)). Hence a self-consistent approach

is indicated. To this end, I expand P(z) about z =0 as P = Fb +elz,

ap
ﬁ> = I p(0),
=0

where since

Pl = r‘Po. It follows that the angular distribution is proportional to
B+ rltflz and

F(p) = (L+ B)p + 301 - B) ¢, (43)
I now use this angular distribution to compute the albedo (B ) for a
sphere, namely:

1
B = f F(p) e'2a/7\f"d|.... (44)
o]

Solving for P in terms of 2a/ = x, I find

<%; X+ L4+ 37)
f x e ( + 2 + -)

In Fig. 4 have been plotted P vs. x from Eqs. (42) and (45). oOf

(45)

course, the value from (45) is smaller than that for (42) for all f<1;

however, for small x the difference is small.
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SECTION IV. CAPTURE DURING SLOWING DOWN

In this section, I wish to estimate neutron reactions with the gas
during the slowing down process. That the effect for spherical geometry
is apparently neither negligible nor overriding can be seen from the
following: the density of neutrons during slowing down will be roughly
constant in the central cavity and an adjacent reflector region of
usually comparable volume. However, the nuclear density of the solid
reflector is of order 103 times that of the gas. Hence the epithermal
captures are likely to be characteristic of a system with one oralloy
atom per lO3 moderating atoms. Thus of the order of 10% of the captures
and fissions may be of epithermal neutrons.

It is not a priori evident whether the effect of epithermal re-
actions is to increase or decrease reactivity. The probability for a
neutron to undergo either capture or fission with oralloy evidently
increases. However, the higher capture to fission ratio for epithermal
neutrons makes it unclear whether the probability of fission per se will
increase or decrease.

Where the effect of epithermal reactions is small, a perturbation
approach suggests itself, as follows: let Y (r, ©) be the slowing down
density computed with no epithermal reactions. The flux per logarithmic

energy interval is then

d(r, u) du = -'I%EZJ—Q au, (46)

E
where §§; is the macroscopic slowing down cross section and u = JLIEQ s

PRERN-N, S
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with E the neutron energy and Eo its source energy. let us assume
that the flux, at any age above thermal, is constant within the gas
volume and is equal to @(o, u) for a slab or @(a, u) for a spheri-
cal cavity. Let us restrict our attention to spherical geometry in
what follows.

The probability of a reaction per cm3 and per logarithmic energy

interval is then
2,
ES

A (a, ©) du

where }Zr is the macroscopic reaction cross section in the gas; namely,
Ng(UE + a}) with Ng the density of reactive atoms and o, and Op

the capture and fission cross sections, respectively. We ignore elastic
scattering in the gas. Then the probability of reaction per logarithmic

energy interval, pr(e) is,

3 2
p,(0) au = T2 = X(a, @) du. (57)

3 £Z

The probabilities of capture and fission, pc(e) and pf(e) are:

T
p.(8) = 57—5-57' p.(©)
c °f (48)
o
f
Pf(e) = 52‘;1;; Pr(e)-

Hence the probabilities of capture or fission during slowing down to

thermal age eo, u=u,, are

B - N J =

3 Z
e Lwa fuo € _ x(a, ©) au (49a)
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3 u 2:
P = hia ° £ %(a, ©) du (49v)
f il Y,
Py = P: + Pg. (49¢c)

In Eqs. (49), :E; and E:f denote the macroscopic capture and fission
cross sections in the gas, while Zfs is the macroscopic scattering

cross section in the reflector.

(3
Pp

the source of thermal neutrons has been diminished by these reactions

is a probability of fission before thermalization. However,

and is no longer XA(r , eo) but
u
X(r, ©,) - {° p,(8) X(r, ©,-8) du. (50)

Furthermore the probability of capture or fission after thermalization is

no longer P(D, a, eo) but

u
P(D, 8, 8,) - [ ° p.(6) P(D, a, 6,-8) du. (51)
(o]

Thus the total probability of fission may be written

Zf(th) ( |
P, = ———— P(D, a, 6_) +
£ Z (tn) °
yriad Yo Zf L, Zf(th) )
i ﬂa’e)iz;[l' T, S T e 870 jau
P(D, 8, 8))  ,qa3 M 2 ()
- TvamE) -t 3 {o X(2, ©) gy Edu (52)
where
E=1 - %’E{;%%%T P(D, a, 6, - ©). (53)
-30-
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In the above equations, ©, Z ’Zr , and z’s will in general be functions
of u. A& is the capture to fission ratio, namely Zﬁf

Whether or not epithermal reactions make the system more or less
critical depends on the sign of the integral in (52). The weighted
average of the function E determines this sign. Note that the first
term in E (unity) represents the increase in fissions due to direct
epithermal fission while the second represents the loss in thermal
fissions due to the disappearance of neutrons in epithermal reactions.

E 1is evidently a complicated function. However, on the average
it will be small compared to unity. The term 1 + & (uyl +(th) is
likely to average around 1.20 and values of P(D, a, eo - 8) about |
0.85 are reasonable so that it is likely that |El~0.05. By E I
here mean the average weighted as in the integral in Eq. (52).

let us now see how these results look for the case of infinite

spherical reflectors. From Eq. (15) we find

N 2 _

%(a, e)=——-—:2L————|:1-_ﬂa_§_ee/aCL-erf (L:_)> . (54)
hwaym e

Remembering that the original source is normalized to one neutron per

sec, we see that the probability of fission in the epithermal region is

u
e L [ =__ 9/82<1 (1)) ) 2, 5)
Pp =3 J = e ert( 1) EZs(u) u (5

For most of the interesting energy range and many elements Z s is a

constant © proportional to u while Z f(u) is a complicated function

-31-
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with resonances. Thus the integral Pg must be computed numerically
for an accurate evaluation. However, for at least a large energy
interval, roughly 10 kev Z E Z 10 ev, Z f(u) on the average behaves
as E-l/z, while for some lower energy intervals it may be possible to

consider Zif as a constant.

At any rate, if we assume © =

—u at E2. , .,
3§ZsZt nd that E&_, &y

and Zf are constant, we f£ind (for the interval els 0 < 62):

0, /a2 G 0,/a° e
P, =Zfzt a2 ela (l-erfﬁ)-ez/aé-erf Q)'(‘)'f))

If we assume that sz behaves as E-l/2 and the above conditions on

other parameters,

g 2 e e e B
382 o Yy e 2

which expression I have not evaluated analytically. However, in general

u/2 will be a rapidly varying function of the integrand compared to

e
the other factor. Hence we may approximate the latter factor by its

value at u = Uy, obtaining

e ZZf(final) a _.® /éz e N . 57)
E A /e 2
8

I have used these expressions plus approximations for the various
cross sections to estimate that with a gas of UF6 at 70°C and one

atmosphere pressure, (a) for a 4O cm sphere in D20 or Be, approximately

-32-

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

10% of the neutrons will undergo epithermal fission and (b) for a 7O cm
sphere in graphite about 20% of the neutrons will undergo epithermal
fission. In both cases, a majority of the epithermal fissions will
occur for neutron energies below 1 ev, for which both A and © are
not much different from thermal values.

When I combine these results with an average value for E (Eq. (53))
of the order of 0.05, I conclude that the effect of epithermal reactions
is not large for spheres of approximately minimal radii. More specifi-

cally, it appears unlikely to affect the reactivity by more than about 1%.
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APPENDIX I. CURRENTS FROM FICTITIOUS SOURCES FOR THE FINITE SPHERE

In this section I consider Eq. (2L) ,the approximate solution to
the age equation satisfying boundary conditions ¥(a + D, 8) = O and
?1/3r r=a = 0. In particular I investigate the currents at r=a and

r=D+ a. The current density is proportional to:

r, ©
2_25{,_(;;__) = J(r, ©). (A, 1)
It is evident that
arrl(r, e)
J(a, 8) = ———a—r——— - X,(a, 0) (A, 2a)
J(a + D, ©) = arx(r 9> (A, 2b)
r=a+D
where the notation Xl = X - 'lo has been employed. Substituting

Eq. (15) for L, and Eq. (24) for 1’1’ we find:

J(a, ©) = _;_:[:G_ - g>e-n2/e ) gi%__e ee/,,2 ean/a{l _ erf(% . ,Cg)}]
l&a'ﬂ'}/'\re a 7/ [2)

J(a + D, ©) = __l____.[<§ - 22@_) e-Dz/he ) m_g_ D/a ee/az{l i erf(% . @)}]
a 2)e

Lbatywe

For the spherical shells with which we are concerned 2 Z 2 so that

Yy

we may expand the error function J(a, ©), using:

1 - erf(x)~ S .

Tx

-34-
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Y
We find,
~ 1 -D2/e Dza(e - D
Lhawy/wO
If DX )4)/5, we may also expand the error function for J(a + D, ©), ob-
taining:
2 2
-1 -D“/4®@ D"a/®
J(a +D, 8) ——— e / 5Tab + 567 ° (A, 5)
hatw /WO

From these two equations it follows that

2
J(J;_—Z(i D? 5y ~ o(e™3/40), (2, 6)

For thick spheres this will be a small number. For some interesting values
of D, it may not be permissible to use the expansion (A, 5) for J(a + D, ©).
However, it can still be shown that J(a, ©) will be small compared to

J(a + D, 0).

From our work with plane geometry, Section I, B and Fig. 1, we know
that even plane reflectors having D& 2/5 (with © the age to thermal)
cannot return half the neutrons to a core. It follows that efficient
reflectors are always thick in the sense that DX 276; that (A, 4) is

a good approximation; and that J(a, ©) is essentially negligible.
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