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A class of critical assemblies hss been considered in which the

core consists of an oralloy bearing gas at more or less standard

pressure and temperature and

with a small thermal capture

have been applied to compute

thermalized by the rei?lector

the reflector is an efficient moderator

cross section. Age and diffusion theory

the probability that a fast neutron is

and then captured by the core. It is

first asaumed that fast or epithermal neutrons do not interact with

the core and it is later shorn that this assumption should be a good

one for many cases. The reflector may be a thick spherical shell.

It is shown that oralloy masses of a few kilograms can be critical

within thick reflectors of D20, Be, C, or combinations thereof. Curves

are attached which enable one to estimate critical configurations.
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It is well known that

efficiently tamped gaseous

“ordersof msgnitude larger

solid system. In fact, if
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INTRODUCTION

the critical maas of an untamped or in-

core at ordinary gas densities is many

than the critical mass of a corresponding

one imagines that a solid or liquid critical

system is uniformly decreased in density, the critical mass will vary

as the reciprocal of the square of the density. Since gas densities

are of the order of 10-3 x solid densities, this implies critical

6
masses of the order of 10 times as large for gaseous

solid ones.

The above argument cannot, of course, be applied

systems as for

to a gaseous

core surrounded by an efficient moderating reflector for in such a

configuration it is only necessary that (1) the reflector thermalize

and return to the core a sufficient fraction of the fission neutrons

and (2) the core be of the order of a thermal neutron mean free path

in thickness. The second condition is easily fulfilled by systems

of moderate size since the mean free path for example of a thermal

I
neutron in ~6 at 70°C is about 70 cm. The first condition can also

be satisfied by a number of efficient moderators such as heavy water,

I beryllium, and graphite.

In this paper I have employed age and diffusion theory to cal-

culate some critical configurations. I have assumed first that fast

and epithermal neutrons do not interact with the core at all. The

slowing down of neutrons in the reflector is treated according to
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age theory and the source of thermal

The diffusion of thermal neutrons is

fusion theory.

In Section

reactive volume

● ☛☛ ☛✎

neutrons is taken from age theory.

then calculated by use of dif-

I, the problem is treated in plane geometry, with the

bounded by semi-infinite or finite slabs. I calcu-

late the probability that a neutron which is

thermalized by the moderator and captured in

the problem is treated in spherical geometry

the center of an infinite or finite sphere.

radius of the sphere must be larger than the

and/or square root of the age. The boundary

born in the gas is

the gas. In Section II,

with the gas confined at

Here we find that the

thermal diffusion length

condition at the core re-

flector interface is

In Section III,

ations regarding the

handled by means of an albedo.

there are presented some very simple consider-

angular distribution of thermal neutrons at the

core-reflector interface and these are related to the core albedo.

In Section IV, there is a discussion of the reactions of epithermal

neutrons with the core. I conclude that for small spherical systems,

such reactions are unlikely to change the reactivity by greater than

about 1$.
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A. INFINITELY THICK
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SECTION 1. PLANE GEOMETRY

REFLECTORS

Consider first that we have a gas filled region bounded by two

semi-infiniteplane reflectors. Fission neutrons are born in the gas,

thermalized in the reflectors and may be captured* by the gaseous

fissionable material. Evidently departures

ometry are likely to reduce the fraction of

gas.

from infinite plane ge-

neutrons captured in the

In one of the semi-infinite bounding planes, the slowing down
0

density corresponding to a source of one fission neutron per second

the gas is
-22/48

X(z, e)=e
Jw

where z is distance from the plane interface and 0 is the age.

normalization is such that ~Z(Z,8)dz= l/2. Theslowingdow’n
o

density goes to zero as z +oo and has zero current at the gas-

in

(1)

The

reflector boundary. This latter boundary condition is appropriate to
,

our assumption that neutrons cannot react with the core while slowing

down.

The slowing down density at the age to thermal forms a source of

thermal neutrons. The thermal neutron density

diffusion equation

*
I shall often refer to the disappearance of a

p(z) then satisfies the

neutron from the thermal ‘
group as “capture,” but it should-be understood that this may refer to
either radiative capture or fission. Where the distinction is important
it will be made.
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d2P(z~ p(z) .-v: e
-z2/4e

-—

(3 Z2 L2 tJw -
(2)

where v is the neutron velocity, Xt the transport mean free path for

thermal neutrons in the reflector, and L the thermal diffusion length

(namely, L=
K “th ‘c

the capture mean free path for thermal

neutrons in the reflector). This equation must be solved subject to

boundary condition that as z +@, ~ + O, and some other boundary

condition at the gas reflector interface. In keeping with our opti-

mistic assumptions we temporarily call this latter

P+ O as z + O, while later onan albedo will

Equation (2) may be

means of the appropriate

the solution ia found to

solved by use of integral

the

boundary condition:

be taken into account.

transform’), or by

Green’s function, e
-1Z-ZJ I/L. At any rate

be:

,~~t ee/L2[e-z,L{erf ~-&- -$). 1}

(3)

(

z
erf — +_@

2@
L )}1

where A is to be chosen to satisfy P(O) = O and

1)
viz. Sneddon$

I
x 2

erf(x) = — ‘u duo
~;oe

Fourier Transforms, McGraw-Hill (1951), Chapter 6.

-7-
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It follows that

*=& #/L2~*f (’$.)-1}

The current into the gas, which is equal to half the probability of

capture in the gas, ia given by

vYt ~p ) Vlt ~
—. -—

3 c?Z = 3L
2.0

so that the probability that a neutron is captured in the gas~ PO) is:

Po=e [
e/L2 ~ 1-erf~ . (4)

Note that Po is a function only of the ratio of the distance that

a neutron goes while slowing down in the reflector, @ , to the dis-

tance it goes after thermalization, L. Evidently if a reflector does

not have P020.50 it ia inefficient and large critical masses are

likely to result. This condition implies @% O.77L.

I have taken the constants for a number of materials from Glasstone

and Edlund2) and computed Po, with the results noted in Table I.

TABJE I
,/,:, ‘“L=%

Material 0(cm2) L(cm) fi /L Poeq. (4)

H20 33 2.88 2.00 0.255

D20 120 100 0.110 0.887

He 98 23.6 0.420 0.659

c 350 50.2 0.373 0.687

=~e and Edlund, Elements of Nuclear Reactor Theory, D. Van

Nostrand Co. (1952), pp. 127, 1~.

-8-
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We see that heavy water returns almost 8$$ of the fission neutrons as

thermals and is extremely efficient from this point of view.

Our interior boundary condition can be imprwed upon by taking the

density to vanish at an extrapolated boundary. Suppose that the gas

region is of finite thickness and there is a probability that a neutron

entering the gas from one semi-infinite reflector will cross the gas

region without interacting. We call this probability the albedo, ~.

(This consideration ignores elastic scattering in the gas, which is

usually unimportant.) We may then take the interior boundary condition

to be (viz. ref. 2) :

)9P = rP(o)
= 2=0

with

r=++2kt

(5a)

(5b)

substituting eq. (3) in (5a), we find

~A=-- ~(A - Ao)

where A. is

condition, i.

Po(6) is now

that value of A which satisfied the previous boundary

e., r==. It follows that the probability of capture

given by

Po(t$) = ‘0 “ (6)

l+

We can see how bad an error was made by using Po for the black core by

looking at Po(P) for @ = O. A comparison is made in Table II.

APPROVED FOR PUBLIC RELEASE
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One can also use the above equations to estimate how thin a slab

of material can be made critical. For albedos near unity the angular

distribution of neutrons emerging from a surface is presumably nearly

proportional to cos 0 with 0 the angle between neutron direction

and normal to the surface. (Viz., Section IV.) Insucha case

&2E3(d/2) where d/A is the thickness of the gas region in capture

mean free paths. If capture of at least 48$ of the neutrons is needed

for criticality, the minimum thickness can be found by setting Po(P) =

0.48. Results are shown in Table II.

TABLE II

Material ~t(cm) Po (Table I) PO (0) Eq. (6) Minimum d/A

D20 2.40 0.887

Be 2.10 0.659

c 2.71 0.687

If we are considering ~6 one

so that the minimum thicknesses

Be, and C.

0.873 .020

0.622 .183

0.663 .091 ‘

atmosphere and 70°C, A is about 70 cm,

become 1.40, 12.8, and 6.4 cm for D20,

B. REFLECTOR OF FINITE THICKNESS

Suppose that we now have a region of gas bounded by two reflectors

of finite thickness. The age equation ia now to be solved subject to

the conditions that the slowing down density vanish at the external

boundary of a reflecting slab and that it have zenslope at the gas-

reflector boundary. Consider one of the reflecting slabs which lies

-1o-
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between the planea z = O and

having the above properties is

[

~(z, fl)=+ e-z2/4e -

where the plane z . 0 divides

z = D. A solution to the age

e-(z-~)”2/4e + e-(z+~)2/4e

equation

1 (7)

gas and reflector. This solution applies

only for the region 0< z SD.

When the diffusion equation is solved with the source given by

Eq. (7), we obtain

~(z) ~ A e-z/L + B ez/L + & ee/L2
t

‘ez’LF-erf(#‘%ii-

[e-z/L{e,f(’--$-‘+)+1}

l+Jm2/e{e-z’Lem/L{l+

For

at

{(+ez/L e2D/L ~
- erf — —+ ?!Z

$ ‘i: L )}}
. (8)

boundary conditions we may take P(D) = P(o) = o. From the condition

z = D, we find

APPROVED FOR PUBLIC RELEASE
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. -2D2/e

-1 +ee-m2/e

~+’yrf(g-q+$

G R+’?)}]=’.

+e3.D/IJ 1 erf
(9)

The boundary condition at z = O gives

[ ,+e.2D2/g{-erf(j+$W’”2ee/3J2~ - erf ~ - 1A+ B=-T

The current at z . () is given by

= M. (lo)

(11)

/2.0

This, when multiplied by 2, is the probability of capture in the gas.

We may solve equationa (9) and (10) for B-A. Thus

Substituting in (10)

-2D/L + Q e-D/Le
B= -Ae

gives

-D/L ‘
A=M-e

1
- e-2D/L

fromEq. (9):

so that

-12-
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-2D/L 2=-D/L
B -A=- M1+=

~+ Q1-e-2D/’L”
(12)

If we substitute this result into Eq. (11), we find that the probability

of capture is a complicated function of D, e, and L. However, we are

mostly interested in values of D2/0 considerably larger thsn unity. For

such values, we may expand the error integrals(exceptfor erf~) in

-D2/e<< 1, and D>>% ~
Eqs. (9) and (10). Assuming e is equivalent to

equating the erfs to umity. We then find

-2D/L ~/L2
P(D)~l+e

1
- e-2D/L e (1 -erf(q)-z;;:,.)e Lar’~=D* (,31

This is the probability for slabs of thickness D to thermalize a fission

neutron and return it to the gas region. P(D) as computed fromEq. (13),

is plotted in Figs. 1 for D20, Be, and C. P(D) has also been computed from

Eqs. (9) - (12) for some values of 2 >2.0. A comparison of the re-
)&

sulta with those of Eq. (13) indicates that Eq. (13) is accurate to better

than l% for all values of P(D) > 0.45.

If we take as the interior boundary condition that

)3P
= r P(o),~

2.()

we find

-D/L
rQ e

-D/L-Mr-Qe

A=

P -r e-~/L+ I ,Le22D/’I

-13-
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whence

P(P, D) = P(D)

1 (1 + e-2D/L)
1+~ (l e-2D/L ‘

)

where r is given by Eq. (5b).

-14-
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SECTION II. SPHERICAL GEOMETRY

A. INFINITELY THICK REFLECTOR

We now consider a spherical cavity which is surrounded by a sphere

of very large radius. Fission neutrons are born in the gas which is

contained in the cavity, and thermalized in the reflector. We seek the

probability that a fission neutron is captured by the gas in the cavity.

The slowing down problem for aeource in a spherical cavity in an

infinite sphere has been solved by age theory, viz. ref. 1), page 229 ff.

Let the radius of the cavity be a. Then the slowing down density at

distance r from the center and at age e is

[

~(r, e)= 1 1,2 e-(r-a)2/4e-~ er-a/aee/a2(l-
4ar ( w 30).

(15)

This is a solution

~(r,e)-~ O
r-+ co

of the age equation satisfying the boundary conditions

and dx

)x=
o. It is normalized so that

thus

r=a

J ~(r, 0) 41Tr2dr= 1;
a

one neutron per sec is born in the cavity.

We assume that the density of thermal neutrons, ~(r), satisfiea

the diffusion equation:

a2(rp) 3-+(rp)=-— r X(ry 6)J
8r2 L r~t

-15-

(16)
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where 0 is here the age to thermal. The solution for r~ may again

be found by appropriate use of the Green’s function e
-lr-r’l/Lo ~

obtain for the quantity rp(r) = $(r))’

#(r) =A~@-a)/L+ ~er-a/L 3L+
[

2a2L eO/a2

{

er-a/a ~ -

81tv~a2 L2-a2

( ~+?)}+ $’L’{&e’r-”’L {’rf (~ - ?)+ ‘}
erf r

82
er-a/L

‘E {erf(~ +%)-!}]” (17)

It may be verified that (17) is indeed a solution of (16). For an

infinite sphere, the boundary condition at 00 implies B = O. If we

take for our interior boundary

A. 3L

[

2a2L eO/a2

8~.v Tla2 L2 - a2

{(82+ ee/L2 L + a
erf

condition $(a)= O, we obtain

The current into the

‘ r=a

cavity will be given by

[)

Jtv 24411a— -V(a)

3 n a
r=a 1 (19)

However, the solution (17) is so chosen that if A = B = O, there is

zero current at r = a. Therefore, the current into the cavity is

given by

-16-
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Current = - 4Va ~A[~ , +]. (20)

This current is exactly equal to the probability of capture by the gas,

so that substituting (18) into (20), we find

This is the probability for s neutron which is born in a spherical cavity

of radius a inside an infinite sphere to be thermalized and returned

to the core. “a” ia presumably an extrapolated radius. We have plotted

P(a) in Fig. 2 for the reflectors D20, Be, and C.

If, as before, we take the interior boundary condition to be a

condition upon the logarithmic derivative of the neutron density, we

obtain:

The left side ia simply
L+a- ~A, while

(22)

r(A-

of the

by Eq.

Thus

where

Ao), where by A. we denote the

inhomogenous equation at r = a,

(18). When we solve Eq. (22) for

the right side may be written

value of the particular solution

namely the value of A given

A, we find

A = Ao.

P(a)
P(f3,a) = — 1 L+a.—

l+paL

P(a) is givenby Eq. (21), r by Eq. (5b),

the probability for a neutron

radius a inside an infinite

(23)

and P(P, a) denotes

which is born in a spherical cavity of

sphere to be thermalized and captured by

-1’7-
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the core. In Figs. 3a - 3c, are plotted P(P, a) ; P(a) VS. ~ ~

for a number of valuea of a and for the reflectors D20S Be} and C.

This ratio is

1

I have assumed

for criticality and

assumed a mean free

that capture of

from Figs. 2 and

path for capture

4% of the neutrons is required

3 computed critical sizea. I have

(and fission) in the gas of 70cm,

for UF6 at 70°C. For the albedo, I have used results from Section III,

Fig. 4. The critical sizes are shown in Table III: .

TABLE III

Material Critical Radius (cm) Oy Mass (kg)

D20 28.5 0.90

Be 63 9*7

c 79 19.2

Evidently deuterium bearing reflectors are the most efficient reflectors.

One could replace outer

without much increasing

B. REFLECTOR OF FINITE

portions of the D20 reflector by graphite,

the critical radius.

THICKNESS, SPHERICAL GEOMETRY

Let us now consider the cavity of the previous problem to be sur-

rounded by a spherical shell of finite thickness. Assume that the

shell is thick enough to thermalize and return a substantial fraction .

(~0.5) of the neutrons to the core. Two approaches to the age and

-18-

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



diffusion problems suggest themselves: (1)

down density and thermal neutron density as

might try adding hypothetical sources as in

one might expand the slowing

Fourier series or (2) one

Section I, B to satisfy

the boundary conditions. I have attempted the second method with the

feeling that it is more appropriate for a thick sphere, where presumably

many modes of any series expansion would be required.

We seek a solution for the age equation which satisfies the boundary

conditions of zero current at r = a and zero density at r = D + a

where D is the thickness of the spherical

symmetry in the + r and - r directions,

to add.two fictitious sources as in Section

both boundary conditions

source at r = a + 2D, I

equation which satisfies

for

r

exactly. However,

shell. Because of lack of

it does not appear possible

I, B and thereby satisfy

by adding one fictitious

have been able to obtain a solution to the age

both boundary conditions to good approximation

thick spherical shells. The solution in question is:
[ (r-2D-a)2

- r-2D-a

.l!EEee/a2ea ~-erf (2D+a-r , -
( @l)]a

2)G
a’

(24)

where
% is the solution for the infinitely thick shell which is given

byEq. (15). The additional terms may be

and correspond to a negative source at r

of the age equation because said equation

written (r-2D-a)lo(2D+a-r, e)

=2Di-a. They are a solution

for e$ois

-19-
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I

which is also satisfied if the derivative on the left is taken with

respect to 2D+a-r.

%(’, e) as given by Eq. (24) also has the property ‘%(D+a,e) = o.

The other boundary condition is not satisfied by Eq. (24), for the

current at r = a is not zero. This means that Eq. (24) is a solution

of that problem in which instead of.just a perfect reflector at r = a,

we have, in addition, a source of neutrons of all ages at r = a. How-

ever, it can be shown that for thick spherical

the shell (at r = a) which results from these

very small compared to the current through the

sphere at r =

the problem by

elude that for

exact “solution

tions.

D+a. Hence the fraction of the

shells, the current into

erroneous sources is

outer boundary of the

neutrons contributed to

the erroneous sources is very small. I, therefore, con-

thick shells, Eq. (24) is a good approximation to the

of the age

In Appendix I, it is

equation subject to the two boundary condi-

shown that, for thick shells, the current at

r = a is indeed negligible compared to that at r = D+a, and that in

fact the former is of order e
-3D2/40

with respect to the latter.

---- -

The solution to the diffusion Eq. (16) with a source given by Eq.

(24), follows from the discussion of Section II, A. Ifwe again let

~ = r~, we obtain

-20-
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lalillm

#(r) = A e-r-a/L + B er-a/L + ~fl~ma2

t

2a2L ee/a2 er-a/a
~2 82

r-a-2D

{

-eO/L2 & L
(

@))
L+a e

l+erf[_-L–
2~e

2D+a-r
“2 —

L
% 1)}]

erf 2D+a-r + – -
‘Ge ([ qs L “

The boundary condition at the outside of the spherical shell is

#(D+a) = A e-D/L + B eD/L = O.

The value of # at the interior

YJ (a)

[

2a2L
=A+B+ 3L —L2 ~2

8~tv~a2 -

boundary is

=A+B+T.

-21-
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Ulmm

The current into the interior cavity is givenby Eq. (19). We find that

where u ia given by:

( (:+))a L-a eO/L2 e-2D/L ~ + erf-—
‘LL+a

~ -erf[$+ ~ .
a L+a ee/L2 e2D/L ~--—
L L-a fl))]

If for our

from Eqs. (2b),

(28)

(29)

Interior boundary

(20 that

condition, we take ~(a) = O, it fotiows

A=-
T .

1
- e-2D/L

Upon substitution in Eq. (28), we obtain:

)(<.$$
-2D/L

=T~+L1+e
L= )

+ u.

r=a

It is to be borne in mind that these results are valid only if

D Z 2@. Therefore, in the

/functions of D @ and to

By this means we obtain

region of validity, we may expand

good approximation equate them to

(30)

the error

unity.
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TS

and

Eqs.

P(D,

9mll!L
3L

[

a2L

(

~0/a2 ~ -erf <-&
L* 82

4/tv Wa2 - )

- eO/L2 a2 e-2D/L
L+a 1

$

3

[

L-a 1e/L2 e-2D/L ●

u=—
4~v 7fa2

+Ge

(31)

(32)

The current into the cavity (or return probability) follows from

(19) and (30)-(32):

( ]
e -2D/L

- a ee/L2 1 - erf $ -A
eO/L2

L+a ~ - e-2D/L
. (33)

This is the probability for a neutron which is born in a cavity of

radius a to be thermalized in a spherical shell of thickness D and

returned to the core. Eq.

P(D, a) vs. D for various

c. A glance at Eqs. (13),

(33) is plotted in Figs. la - lc, as

values of a and the reflectors D20, Be, and

(21), and (33) shows that P(D, a) ~ P(a)

and P(D, a) ~ P(D).

Use of the more accurate boundary condition given by Eq. (22)

leads to

-~A+~ B+U=~(A+B+T). (34)

Upon solving for A with use of Eq. (26) we find

-23-
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w

.

(35)

and finally by comparison with Eq. (30), we see

P(~,.D, a) =
P(D, a)

‘. ,+~($+$(~-j

(37)

This expression represents the probability that a neutron, born within a

cavity of radius a, is thermalized in the reflector (a spherical shell

of thickness D) and then captured by the core. P(D, a) is given by

Eq. (33), and ~ by Eq. (5b).

From the above information it appears that a sphere of

70°C, of about 40 cm radius and surrounded by 40 cm of D20 +

UF’ at

40 cm of

graphite would be critical. An aluminum shell of thickness xO.5 cm

could be between the gas and reflector. The oralloy mass would be

about 2.5 kg.
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SECTION III. ANGULAR DISTRIBUTION

In this section are presented some trivial considerations regarding

the angular distribution of thermal neutrons emerging into the gas

region. Some information about the angular distribution is useful for

estimating the probability that a thermal neutron will traverse the gas

region without an interaction which removes it from the thermal group.

This probability I call the albedo, # , which determines the interior

boundary condition on the thermal neutron density.

In considering the angular distribution, let us assume for simplicity

that the reflector-gas interface is a plane. This should be a good
.

approximation for spherical cavitiea of radius large compared to the scat-

tering mean free path for thermal neutrons in the reflector. Let us

further aasume that when a thermal neutron suffers an elastic collision

in the reflector, it emerges from the collision with an angular distri-

bution which is isotropic in the laboratory system. Finally, because

in the reflector the capture mean free path is very large compared to

the scattering mean free path, we ignore, in these considerations, the

possibility of capture in the reflector.

Let the plane z = O represent the interface with

extending in the +Z direction, and let the density of

a moderator

thermal neutrons

be P(z).

the number
.

heading in

The collision density is obviously proportional

of neutrons which have suffered a collision at

solid angle ~ is proportional to p(z) =

to P(z) and

z and are

. Consider

the neutrons which have made their last collision as a source of neutrons

-25-
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which may emerge from the medium. Measuring z in units of the scat-

tering mean free path and calling ~ the cosine of the angle between

neutron direction and ~ we see that the number of neutrons emerging

with directions between P and p + d~ is proportional to

(38)

Hence the fraction emerging in these directions is
*
PZ e-zl~dzdfifo

F(u)dM = 0 . . (39).,.. ,
L*

H p(z) e‘zi~dzd~

00

Hence a knowledge

tions, to predict

For example,

of the neutron density enables one, with our assump-

the angular distribution.

if the density is constant, @ = Po, we obtain

F(p)= 2P. (40

For such an angular distribution, the probability of crossing a slab of

thickness d, capture + fission mean free path 1, and zero scattering,

is

f

1
2pe -d/Ap d

~ = 2E3(d/a ).
o

(41)

For a spherical cavity of diameter 2a, the corresponding probability is

{

1
2~e

[

‘2a~/~ dp= 2~&]2 1 -
(~ + l) e-2a/~

1
● (42)

o

Equations (41) and (42) represent the albedos for slab and sphere under

the assumption of constant neutron density near the surface.

However, if the albedo of the gaseous region is not large (close to

unity), the density will not be nearly constant near the surface. In our
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diffusion approximation, f(z), will be determined by @ (by means of

the interior boundary condition), but also P is determined by fY(z)

and geometry (throughEq. (39)). Hence a self-consistentapproach

is indicated. To this end, I expand P(z) about z = O as P = P. +Plz,

where since

)aP
G s r P(OL

2=0

PI=p po. It follows that the angular distribution is proportional to

p +rQA2 a“d

I now use this angular distribution to compute the albedo (~ ) for a

sphere, namely:
.

(44)

Solving for P in terms of 2a/’ = x, I find

In Fig. 4 have been plotted P vs. x from Eqs. (42) and (45). Of

course, the value from (45) is smaller than that for (42) for all 8<1;

however, for small x the difference is small.
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SECTION IV. CAPTURE DURING SLOWING DOWN

In this section, I wish to estimate neutron reactions with the gas

during the slowing down process. That the effect for spherical geometry

is apparently neither negligible nor overriding can be seen from the

following: the density of neutrons during slowing down will be roughly

constant in the central cavity and an adjacent reflector region of

usually comparable volume. However, the nuclear density of the solid

reflector is

captures are

atom per 103

and fissions

of order 103 times that of the gas. Hence the epithermal

likely to be characteristic of a system

moderating atoms. Thus of the order of

may be of epithermal neutrons.

with one oralloy

I@ of the captures

It b

actions is

neutron to

increases.

not a priori evident whether the effect of epithermal re-

to increase or decrease reactivity. The probability for a

undergo either capture or fission with oralloy evidently

However, the higher capture to fission ratio for epithermal

neutrons makes it unclear whether the probability of fission per se will

increase or decrease.

Where the effect of epithermal reactions is small, a perturbation

approach suggests itself, as follows: let X(r, 0) be the slowing down

density computed with no epithermal reactions. The flux per logarithmic

energy interval is then

@(r, u) du=
p

du, (46)

s E
where ~zs is the macroscopic slowing down cross section and u = ~fi ~

-28-
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with E the neutron energy and E. its source energy. Let us assume

that the flux, at any age above thermal, is constant within the gas

volume and is equal to #(o, u) for a slab or @(a, u) for a spheri-

cal cavity. Let us restrict our attention to spherical geometry in

what follows.

3 and per logarithmic energyThe probability of a reaction per cm

interval is then

where ~r is the macroscopic reaction cross section in the gas; namely,

Ngbc + Wf) with Ng the density of reactive atoms and =C and &f

the capture and fission cross sections, respectively. We ign03X? elastic

scattering in the gas. Then the probability of reaction per logarithmic

energy interval, p=(e) is,

4Va3 Zr
Pr(e) du = ~ — ~(a, 0) du.

Ezs

The probabilities of capture and fission, pc(0) and Pf(0) are:

Hence the probabilities

pc(e) =

pf(e) =

of capture

thermal age O., u = Uo, are

cc
+C

pr(e)
‘c f

=a~af ‘r(e)”
c

or fission during slowing down to

(4’7)

4_ma3
J

uOz
P:=—

3
~ ~(a, 0) du

o

-29-
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= 4Xa3 ‘o
Zf

% f —.
3 ~ Q’ ‘(a’ ‘) ‘u

s

(49b)

P; = P: + P;. (49C)

In Eqs. (49), ~c and ~f denote the macroscopic capture and fission

cross sections in the gas, while ~~ is the macroscopic scattering

cross section in the reflector.

the

and

$ is a probability of’fission before thermalization. However,

source of thermal neutrons has been diminished by these reactions

is no longer ~(r, O.) but

(50)

Furthermore the probability of capture or fission after thermalization is

no longer P(D, a, O.) but

u
P(D, a, O.) - f0 pr(e) p(D, a, co-e) du.

o
(51)

Thus the total probability of fission may be written

~f(th)

‘f= ~r(th)
P(D, a, O.) +

[

+ * (uo~(a,e)~-1- j%g~
1

P(D, a, co-e) du
o s r

P(D, a, tlo) Zf(u)

= 1 +a(th) + * fuo~(a, e)~ Edu (52)
o s

where

E=l -
l+a(u)
~ ‘(D’ a’ ‘o-e)”

(53)
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In the above equations, O,~t,Xr, and=’ will

of u. c1 Is the capture to fission ratio, namely

Whether or not epithermal reactions make the

in general be functions

z~f.

system more or less

critical depends on the sign of the integral in (52). The weighted

average of the function E determines this sign. Note that the first

term in E (unity) represents the increase in fissions due to direct

epithermal fission while the second represents the loss in thermal

fissions due to the disappearance of neutrons in epithermal reactions.

E is evidently a complicated function. However, on the average

it will be small compared to unity.
/

The term 1+ CX(u) l+~(th)

likely to average around 1.20 and values of P(D, a, 00 - 0) about

0.85

here

are reasonable so that it is likely that \~\*O.05. By ~ I

mean the average weighted as in the integral in Eq. (52).

Let us now see how these results look for the case of infinite

spherical reflectors. From Eq. (15) we find

Is

(54)

Remembering that the original source is normalized to one neutron per

see, we see that the probability of fission in the epithermal region is

(55)

Z isaFor most of the interesting energy range and many elements s

constant 0 proportional to u while Zf(u) is a complicated function
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with resonances. Thus the integral P; must be computed numerically

for an accurate evaluation. However, for at least a large energy

interval, roughly 10 kev ? E 310 ev, ~f(u) on the average behaves

E‘1/2, while for some lower energy intervals it may be possible toas

consider Zf as a constant.

At any rate, if we assume e =
u

zand that ~~s, ~,

3tz#Zt

and z f are constant, we find (for the interval Ell< e < e2):

[(Pf = ZfIt 2 Z1’21- erf

If we assume that z f behaves as E
-1/2

and the above conditions on

other parameters,

x(f final)

‘uO’2 J“ 2’2 {4A }

— - ee/a2 (L - erf +) u
% =

352s

which

eu/2

expression I have

will be a rapidly

not evaluated analytically. However, in general

varying function of the integrand compared to

the other factor. Hence we may approximate the latter factor tIyits

value at u = Uo, obtaining

(57)

I have used these expressions plus approximations for the various

cross sections to estimate that with a gas of ~6 at 70UC and one

atmosphere pressure) (a) for a 40 cm sphere in D20 or BeY apprOxtiately
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1~ of the neutrons will

sphere in graphite about

fission. In both cases,

undergo epithermal fission and (b) for a 70 cm

2@ of the neutrons will undergo epithermal

a majority of the epithermal fissions will

occur for neutron energies below 1 ev, for which both a and e are

not much different from thermal values.

When I combine these results with an average value for E (Eq. (53))

of the order of 0.05, I conclude that the effect of epithermal reacticms

is not large for spheres of approximately minimal radii. More specifi-

cally, it appears unlikely to affect the reactivity by more than about l%.
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APPENDIX 1. CURRENTS FROM FICTITIOUS SOURCES FOR THE FINITE SPHERE

In this section I consider Eq. (24)Jthe approximate solution to

the age equation satisfying boundary conditions ~(a + D, 0) = O and

)
2Z/dr =O. In particular I investigate the currents at r=a and

r=a

r = D“+ a. The current density is proportional to:

2.W-LQ .J(r,8).
ar

It ia evident that

~r~l(r, e)
J(a, e) = ~r

)
- Xl(a, e)

- r=a

J(a + D, e) =
)

~r%(r, e)
ar

r=a+D
.0

where the notation xl = Z -Z. has been employed. Substituting

Eq. (15) for ~. and Eq. (24) for ~ , we find:
1

(A, 1)

(A, 2a)

(A, 2b)

()2D-.— }1-D2/8-~0/a2e~/aI-erf(D +@J
a ee a2 e

{ ~a

J(a +D, 0) =
J.

[( )

lD

{ ]

e-D2/4e -@_ eD/a ee/a21 -erff~+ a)--—
4alI~~ a 20

82
a,, E

D
For the spherical shells with which we are concerned — 22 so that

+7

we may expand the error function J(a, 0), using:

=-X2
1- erf(x)~ — .

f=
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I mmim

We find,

J(a, e)= 1 e-D2/0 D2a/e - D

4a_lT~w [
aD+O

. (A, 4)

If DZ 4@, we may also expand the error function for J(a + D, 0), ob-

taining:

J(a + D, 0)=
-1

4alT~ ‘D*’” &•

From these two equations it follows that

*
~ o(e-3D2/’q.

(A, 5)

(A, 6)

For thick spheres this will be a small number. For some interesting values

of D, it may not be permissible to use the expansion (A, 5) for J(a + D, 0).

However, it can still be shown that J(a, 0) will be small compared to

J(a +D, e).

From our work with plane geometry, Section I, B and Fig. 1, we know

that even plane reflectors having D<2@ (with f3 the age to thermal)

cannot return half the neutrons to a core. It follows that efficient

reflectors are always thick in the sense that Da 2@; that (A, 4) is

a good approximation; and that J(a, e) is essentially negligible.
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