CIC-14 REPORT COLLECTION REPRODUCTION COPY

$$
\square
$$

UNCLASSIFIED

LA REPORT 53-A

February 10, 1944
This document contains ${ }^{3}$? pages

METHODS OF TREATMENT OF DISPLACEMENT INTEGRAL EQUATIONS
Recipe Book
PUBLICLY RELEASABLE

By Praia Relay wetc-14 Dee: $\frac{3-19-96}{}$
REPORT WRITTEN BY:
Classification changed to t': CLASSIFIED
by authority of the U. S. Atomic Energy Commission,
S. Frankel

S. Frankel
E. Nelson

- by report library 7 . Mílled E. Nelson 3-2. $8-56$

HETEODS OF TREATMEITT OF DISPLACEMENT INTEGRAL EQUATIONS
Reoipe Book

In LA-53 a detailed troatment is given of the general theory of displaoement integral equations. It is the purpose of this sumary to present in conciee form the methods of treatment and recipes for the solution of such problems. The pertinent numerical data is prosented in the form of graphs appended to this summary. A fow of those graphs are of no signifioance to a person reading only this aummary, but they are included for the uee of readers of the mein text. These graphs are numbered, beginning with Fif. V. The first four figures are included in the text of iswist and are not pertinent in this summary.

The type of integral equation with which we deal is

$$
n(\underline{r})=\int d r^{\prime} n\left(\underline{r}^{\prime}\right) K\left(\left|\underline{r}-r^{\prime}\right|\right) F\left(r^{\prime}\right)
$$

Here the kernel K is a function of the distanoe between the two points. The weighting function, $F\left(\underline{I}^{\prime \prime}\right)$, serves the purpose of defining the range of integration and the propertios of the material in the various regions considered. Equations of this type heve applioation in many problems involving the multiplying and diffusion of noutrons in efssionable, soattoring, and absorbing materials.

UNCLASSIFIED

One of the important problems of this project is that of the oritioal sizos and multiplication raten of gadgeta made of auch materiala that the neutrons may be considered monoenergetic. If the scettering is treated as isotropic and all parta of the gadgot have the same mean free pa th, the integral equation is

$$
\begin{equation*}
n(\underline{r})=\int d \underline{r}^{\prime} \frac{1+f\left(\underline{r}^{2}\right)}{1+\gamma} n\left(\underline{x}^{i}\right) \frac{\theta\left|\underline{x}-\underline{r}^{\prime}\right|}{4 \pi\left(\underline{r}-\underline{r}^{\prime}\right)^{2}} \tag{1}
\end{equation*}
$$

γ is the multiplioation rate in such units that e^{γ} is the multiplication in a mean free time. Thus the time dependence is e $e^{\gamma v \sigma_{t} t}$ where σ_{t} is the total collision cross seotion $\sigma_{B}+\sigma_{c}+\sigma_{f}, N$ the nuclear density and V the neutron volooity. The uni" of longth in oquation (1) is the "mean attenaa. tion distance", the mean fres path, λ, divided by $(1+\gamma), i \cdot e, 1 /\left[N \sigma_{t}(1+\lambda)\right]$. The factor $(1+f)$ represent; the moan number of noutrons emerging from each collision. f is zero for pure scatterer, -1 for a pure absorber, and positive for active materia. $f=\left[(\nu-1) \sigma_{f} \omega \sigma_{0}\right] / \sigma_{t}$ where y is the mean number of noutrons omerging from fission prooess.

Spo oial studies h ge beon made to determine the effect of the failure of our abmumption of isotropic scattering and a single neutron enorgy (ef LA-53, Chapter VI). It se studies indicate that, for moderate anisotropy and velooity spread, a goor approximation is to take the present formalism, where σ_{S} is the transpor average, $\left(\overline{1-\cos \theta) \sigma_{S}(\theta) \text {, of the scattering orose }}\right.$ seotion and v is the hax onic average of the velocitien actually oocurring

APPROVED FOR PUBLIC RELEASE
 UNCLAJSIFItV

$1 /(\overline{1 / 4})$. This average cross section and velocity must be used consistently throughout the treatment, i.e., it must be used in the definition of f and γ as well as in the determination of the soale of length.

In a region far removed from any boundary or interface, i.o. in the deep interior of a large region of constant f the integral equation can be simplified by extending the range of integration to infinity (and assuming that $n(r)$ remains regular to infinity). The integral equation then reduces to a differential equation of the same form as the familiar diffusion oquation

$$
\begin{equation*}
\left(\Delta+k^{2}\right) n(r)=0 \tag{2}
\end{equation*}
$$

where k is determined by the condition

$$
\begin{equation*}
\left(\tan ^{-1} k\right) / k=(1+\gamma) /(1+f) \tag{3}
\end{equation*}
$$

The unit of length, which occurs in the Laplacian, is still the moan attomation diatance. It will be observed that although this equation (2) is of the same form as the diffusion equation there is in general no simple relationship between the two values of the constant enterinf. The two values do coilncide for very small values of both f and γ, the limit in which diffusion theory mast be correct. The smallness of k^{2}, hence of $f-\gamma$, is not suffioient to ensure agreoment.

The wave equation, (2), has simple welloknown solutions, sin kr for a plane problem, sin kr / r for spherical symmetry, $\mathrm{J}_{0}(\mathrm{kr})$ for cylindrical
symmetry, otc. Which of these solutions is to be used is in most cases imediately indicated by the symmetry of the boundaries.

The magnitude of k is determined by equation (3). A graph of the function $\left(\tan ^{-1} k\right) / k$ and its reciprocal occurs in Fig. V.

In a plane problem, 1.e. one in which $f(\underline{r})$ and $n(\underline{r})$ depend only on the cartesian doordinate x, the integral equation (1) reduoes to

$$
\begin{equation*}
n(x)=\int d x^{\prime} \frac{1+f\left(x^{\prime}\right)}{2(1+\gamma)} n\left(x^{\prime}\right) E\left(\left|x-x^{\prime}\right|\right) \tag{1}
\end{equation*}
$$

where

$$
E(|y|)=\int_{|Y|}^{\infty} \frac{d s e^{-a}}{a}
$$

which is tabulated under another aymbol in the first seotion of Janke-mnde, e.g. The asymptotic solution of (4) far from a boundary is $A \sin \left[k\left(x+x_{0}\right)\right]$ whore k is determined by condition (3). If the medium is homogeneous throughout all space, x_{0} and A are completely arbitrary. If the medium is homom geneous but extends only to one aide of a plane boundary, say at $x=0$, then A is atill arbitrary but x_{0} is determinate. The solution will not be exaotly A sin $\left[k\left(x+x_{0}\right)\right]$ near the boundary but will approach this form as an agymptote far from the boundery. (See Fig. XI.) The exact solution, $n(x)$. is found in $i 4=53$, Chapter III, and the phase of the asymptotio sine solution, x_{0}, determined. This asymptotic solution, $A \sin \left[k\left(x+x_{0}\right)\right]$, vanishes at $x=-x_{0}$, i.e. at a distance x_{0} beyond the boundary. It should be
emphasized that the point, $x=-x_{0}$, is not a root of the true solution but of the asymptotic solution, A $\sin \left[k\left(x+x_{\varphi}\right)\right]$, which is approached by the true solution for large x. For this reason, the distance, x_{0}, is known as the "extrapolated ond-point". π_{0}, like x itself, is measured in terme of the mean attenuation diatanoe, $N(1+\gamma)$.
x_{0} times $\left(1+f^{\prime}\right) /(1+\gamma)$ is nearly constant, having values slightly greater than . 71 over a considerable rango. A graph of this product is given in Fig. VI.

Intorduotion of Tamper.

Another problem which oan be solved exactly is that of the neutron distribution in two homogeneous media of the same mean free path on the two sides of a plane boundary at $x=0 . \quad f$ may be different on the two sidas of the boundary, e.g., zero or negative on one side (tamper), positive on the other (active material). In this case there will be asymptotio solutions far from the boundery on either side. These two asymptotic solutions will be the solutions of equation (2) with the two values of k^{2} determined by the two values of f. The solution in the tamper may be hyperbolio (exponential) instead of sinusoidal. This will occur if, in the tamper, $(1+f) /(1+\gamma)$ is less than 1 , thas giving an imaginary solution for equation (3). In this event the two equations (2) and (3) are more conveniently replaced by

$$
\begin{equation*}
\left(\Delta-k^{2}\right) n(\underline{r})=0 \tag{7}
\end{equation*}
$$

and

$$
\left(\tanh ^{-1} k\right) / k=\left(1+\frac{\gamma}{3}\right) /(1+\sqrt{9})
$$

Graphs of $\left(\tanh ^{-1} \mathrm{k}\right) / \mathrm{k}$ and its reciprocal fo given in Fig. V.
The boundary condition has bean saluated for the case of an exponentially decaying asymptotic tamper sulution (decaying exponentially away from the boundary). The extrapolated and point, x_{0}, of the asymptotic core solution $A \sin \left[k\left(x+x_{0}\right)\right]$, is found to be the difference between two terms, one simple and one small. The simy ie term is

$$
\left(1 / k_{0}\right) \tan ^{-1}\left(k_{0} / k_{t}\right)
$$

where k_{c} is the wavennumber of the asymp ot co solution in the core (aotive material), sin $r_{c}\left(x+x_{0}\right)$, and k_{t} the (hyper rolio) wave-number of the asymptotic solution in the tamper, $e^{k_{t} x}$. This tem is exactly the value of x_{0} whioh would be obtained by applying the diffu:ion-theoretic boundary condition, i.e. the continuity at the boundary of the lo arithmic derivative of $n(x)$, to the two asymptotic solutions. The small term is denoted by Δx_{0} and mast be subtracted from this simple term to give the ryue value of x_{0}. Δx_{0} and $\Delta x_{0}\left(1+f_{t}\right) /(1+\gamma)$ are presented in Figs. VII and VIII. It will be seen from Fig. VIII that this "extrapolated end-point correction" if measured in true mean free pathe has approximately the val:2e. $045 /\left(1+f_{i}\right)$. This approximation is independent of γ and is a sufficiently good one since the corrections give a very small contribution to the dimensions of the gadget. It is reasonable to assume that if the asymptotio solution in the tem per is
not a pure docaying exponential but, a.g*, a jyporbolic sine or cosine tho true endmpoint, x_{0}, will again be the diffuaionmthooretio ond-posut, obtained Dy equating logarithmic dorivatives, loss tho Δx_{0} of Figs. VII and VIII.

Solution for Sphores

It is shown in Ewn 53 , Chapter II, that thare oxiste an asact parallelism botween problems of sphericel symetry ane corrosponding pronlems of plane symmetry. the correspondence ia as follows: The problera of plano symmetry is tinat of a serios of infinite slabs of finite thicknons of the materials occurring in the spherical problom. The socuonce of matorials ane elab thickneases is auch that a line perpondicular to the plane fncea passes through the ame sequence of materinis and for the sane dibtances as gre found along a diameter of the sphere. This "alab problen" thus has roflection symmetry about its mid-sootion. Tho intergel equation for this distribution of matter will thus possess solutions of both odd and even aymetry ihe odd solutione, $n_{0}(x)$, (x measured from tho mid-section) exe diroctingrolstod to all of the solutiona of the aphorical problem, $n_{B}(r)$.

$$
n_{0}(x)=\left[r n_{8}(r)\right]_{r=x}
$$

This relationship between spherical and plans problem enables na to carxy over diroctly the results of the end opoint analysis to the treatanat of spherical problems.

An example of the ues of this relationahip is the troatment of the untamped sphere. The fundamential aolution in an untanped sphere is redatod to the firet odd solution in alab of thickness equal to the diameter of the aphere, say Ra. The "asympiotic solution" in the slab ia then sin $k x$ whare x is again measured from the raid-section. This asymptotic solution must. vanish distanoo x_{0} boyond the boundary, i.e. at $x=a+x_{0}$, where x_{0} is that given by Fig. VI. The sine function first vanishes for argument π, thus

$$
k\left(2+x_{0}\right)=\pi
$$

k and x_{0} are determined by f and γ, hence also a. The only assumpticn made hero is the aramption that in the middle of the slab there oxista a region in which the asymptotic solution is well eatablished so that the buc boundary concitions (at a and oa) can be applied without interfering with esoh other. A comparison of tine results of this calcujation with thoso of variation theory shows this assumption to be completely justified throuphovt tho useful range. (Cf. Fig. XVI.)

The same method is appliod to the tampad sphore. The tamped-sphero problem is replaced by that of a three-slab "sendwioh". The conter slsio is of core material and of thioknees equal to tho oore dianoter, the two outer slaba of tamper material and of thickness aqual to the tamper thickness. Tho solum tion sought is the first solution which is odi obout the middie of the sandwich. The moat convenient metinod of solution is to take definite values

for the tamper thickness, for γ, and for the two f-values. The solution then proceeds from the outside tamard the center, determining finally the core thickness, hence the core radius in the spherical analog. The asymptotic tamper solution in the sandwioh problem will be a sine or hyperbolic sine vanishing at a distance x_{0} beyond the tamper surface. The wavenumber and x_{0} are determined by f_{t} and γ. These two quantities, together with the tamper thickness, datermine the phase, hence also the logarithmic derivative of the asymptotic tamper solution at the coro-tamper interface. 'His logarithmic derivstive is equated to the logarithmio derivative of the aeymptotic core-solution, sin $k_{c} x$. The value of x so determined will be less than the true half-thickness of the core by an amount Δx_{0}. This true half-thiokness of the core is equal to the radius of the oore in the apherical problem.

Extensions of the End-Point Meichod
The asymptotic solution vanishes at a distance x_{0} beyond an untamped surface. This has been shown by the ond-point theory to hold both for plane and spherioal eurfaces. It has been found ompirically (by oemparison with variation results) to hold also for oylindrical surfaces. This result is not surprising, since a cylindrical surface is in a senso midway between the plane and spherical surfaces, but is not in any way puaranteed by the end-point theory. It jes assumed that the same gratuitous continuation of the validity of the end-point boundary condition holds for a tamped cylindrical surface. This assumption is supported by rough numerical results.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

8.
7.

a

5.
5.

Elicure x ht
4.

3

APPROVED FOR PUBLIC RELEASE

