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The problem of a gas which is beinp; heated at an expon-

entially inoreasing rate, and vhich is confined by a plane

j

E,\% , wall of unheai:ed material, is solved -bo find the form of the
e g) i
43—“"‘; ) rarefac tion wave in 'bhe gas, and the shock wave in the wall., -
=" :
=<
§—=_—_8; . The results have boen given in graphical form in enother re=- L
=S » -~ T
§§£F port, LA 10, by Ra Davis and S. Frtmkel. o
=8 _ =

a

Our problezi is: Yo dotermine whot happens when & gag contained by

a plane wall of matter is heated at au exponsatially increas;ing rate. As the
pressure rises, the wall is pushed outward, a rarefaction wave runs back into
the ges, and a shock wave moves forward inte the walle For high enough preose
sures the heating of the wall by the shock wave is sufficient te vaporize the
wall material; wo shall suppose the pregsure so high that the interﬁal onoergy
before the arrival of the shock wave is negligible compared to the shock wave
hoating. The only properties of tho wall which then dohdern us are its initial
density, and the relation between intornal energy, ﬁ', and pressure, p, for the

vaporized nmaterial. This will be telzon of thé £fém p= (¥ .~ 1)U with ¥ constant.

A similar prossurs~cnergy relation will be used for the gas confined by the walle
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THE BXPCHBNTIAL SHOCK VAVE E .

Since the inberface betwecn wall and gas may be expected to

move exponentially, we first congider ﬁho shock wave produced by an oxpone

entially accelerated.piston.

Lot x be the original position of a given element of a mass in the

wall, X(xt) be its position at time t. The equation of motion is

p¥ = - —dBee, (1)

where £ is the initial density of the material,

The donsity at any later time is glven by

o o ol
P T X/ 3=z * . @)

At the wall-piston interface, x = 0, we have the boundary condition

x (ot) = X &% . (3)
The boundery conditions at the shock front are
..i.,..

b = &= 1 (4)
2 _ ¥+ P,

V"2 "¢ (5)
+_ 2 N\

W= 75 AT (8)

¥+ r,

i
where Pp and pp are the density end pressure at the front, V is the shock

wave velocity, u is the meterisl velocity at the front., Behind the front the

mateorial is comprossed adiababically:
The adié'bicity of the expansion is exprossed by the fact that S is not a

function of %; the dependence of S on x is detormined by the entropy change

imparted by the shock wave,

ﬁ )
eee o )
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Teller has showm that these equattons ’co.ri be’eo;ved by a similarity

transformation of the form

X= e“t(IO(S) ’ (8)
p=p et £ (s) , ©)
£ = iz-’-‘-- L PpW=1,2W=1 (10)

The variable § is the rolative position from back to front of the shock wave,
£ = 0at the piston, § = 1 at the shook front. The position of tho shock
front is x =X=X;6"t, the prossure at the front is pleg“t.
Using (&) and (9), (1) becomes ‘
A TR ‘é’f‘&“"’f ; ' (11)
the prime denoting differentiation with respect o § |

(2) takes the form

¢
= ‘10 b (12)
whence (4) gives the boundary ocondition
Yoy, 8- .
Or Py (13)

The left hand side of (7) is now
E E -4
P = Y f LP c /

and S(x) must be ths value of this quantity imnmediately after the shock wave

w) T ()

hits the point x, :s..ec,

SGx)= g f (’7(‘9"‘>)K(€"“t)xax‘e°‘* ‘

Thus (7) becomes
g-1 ¥ 2 . ' ’
'F k? X+: > § . (14)

H uncusser’iﬁ ’?
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The shock wave velooity equation,s($),:sitves & R ~
; Lat 2. b3 2 nT
=x"X e

T ¥+ e
Vo= Fi 737‘ ‘Y )

or - R, (15)

V5 N

This result can be checked by direct integretion of the velocity equafion,
4

— ot ¢ € t T L >
. !/_LLL_E.\. at (Jger b & .
)S_‘C *lnv4t= 2 r f‘ﬂoe« ‘V 7 F K

I"inally we cen verif'y that the rewmining shock wave condition, (8), is

satisfied: the material velocity at any point is
. ) "
X=X (¢-fye "
: — ' =t At ya
- - _ v P AL
s0 LL-X(!)—0(_X.JI @(*))@ = < O(XC = b"r)\/J

in agreemont with (5) and (6).
Tho similarity transformation (8) and (9) is thus compatible
with all the equations and houndary conditions, We are left with two
equations, (11), which, using (15), can row be written
2\_ 1} [ 2. '
§LP"§‘-P"'W" 3'_,,,{, (16)

and (14), which together dotermine the two functions f and !P , and the

detailed properties of the shock weve, Since these two equations form

& socond order system, and two boundery conditions are given in (10}, the
solution is uniquely determined. The third bourdary condition (13) was used
in deriving (14), and is automatically satisfied in virtue of (14) and (10).
I% is-notable that the form of the shock wave depends only on ¥ and is in-

.

dependent of all other features of the problem.

% 000 oo . t
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It follows from (14) that, sincs the nrase:ure.'ﬂnﬁ the!rei‘orc by

L T . Ny

.
remelins finito at the piston, the deunsity becrnes infm::.to a8 £ o

4

The roason for the appearancc of this singularity is the noglect of the en-
tropy of tho material before the shock wave hits it. It is clear from (14)
that inclusion of the initial entropy would round off tho demsity to the
value approprinte to an adiabatic compression from the initial to the final
pressurc, Sinilarly, the teriperature at the piston maintains its initial
value, zero.

lie have expressed the solution in terms of the disbance noved by
the shock front, rather then the distence noved by the pistonts The ratio
between these distances is given by -;(-ig---"- = g{) (0), and cen be detemined
only by intopration of the equabtions. Once Xl is found in this way, the {rosd:
prassure is given by (15).

The equations {14) and (16) can be solved by a streightforward
mmerical intogration, starting at j:» .1 since the boundary conditions are
givon at this ond. Vear g = 1, Y and £ are representod by the power series

oot g (-]
for+ Bann ey

4 useful check on the numerical integration can be obtained
fron tho energy and momentum co:servation laws. The totel momentum of the

vave is
! 2 2t g [ .
PepfEdx =X e (o-5")ds
-]
whenee, since f’ = Px 20s We oblain the relation

wc (°)=‘(x+')go‘(cp-§ap')d;§ =(6+»)[gf¢{>ig-}]. oan

el £ 2 e
:OKZX?/QQW.?{".}%T("}‘P Z LP—LP‘ 5‘]&%)
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APPROVED EOR PUBLIE ‘RELEAS




APPROVED FOR PUBLI C RELEASE

Lo ¢ URLLASITICY
-G . .o :

and its rate of chenge is E = (ph) : )

%=0.» Wh'ld’]_ &ims. .: E o.

-F(o)q)(o)z-([ J{Lp,,_\m(hp L,Of)ja’f | (18)

THE RAREFACTIOlN WAVE

(1Y X ]
se@e
(11X X ]
[
(XY X ]
(X X}

In the heated gas we suppose the energy generated per gram
per second is -g%-—--:é 2% &, The expansion is no longer adiabatic,
in place of {7) we have
dQ = du+pdv (19)
whers V= -f;,l-'- 1s the specific valume, ua UV is the intermal energ;y/gfam.

Vith p=(%, - 1)U, (19) becomes Yl:'i' (Vdp + 8 pdv)= dQ, or

t

Vp + €DV = (¥, - 1)% 020 E, (20)
The equation of motion (1), end the mettor continuity equetion (2) |

are now written

£X=~-§—;%-> (21)
1 /2 X (22)
/6x ?

whore ﬁs is the initial density of the £ase

In the gas x is taen norative, x =0 being, as before, the

gas~wall intorface, and the sinilarity trensformation takes the form

X = X.,e“w() (23)
b= P e™ (f) (24)
{ :'f?é%)w("’):"’)\c(")"/' (25)

§ now runs rIrom -1 at the back of the rarefaction wave s 0 O at the
~)

interface. At the back of the vave x =X = -X_'l e“t, P=P.y of% L,

The boundary conditions at the back of the wave are the continuity

of [J and ps OSince ’; e o "Pt .,.:‘LI:.G: q??sz.i.:y.:a.oiu.iition is ﬂt\:CL A SS‘IHED
LP ( ') ﬁm:. . 03. .:f. .:: ..0 (28)

Neove
[
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The pressure in the gas not ye-b-.rcachzci p ‘;;lre orgrefaction wove is

P (r"‘>‘) (K "'1 ... E/Joo 0.0 &0 (Y'l)iﬂn ez'\t
so continuity of prossure dena.nau

p., = LA @

The bourdary conditions at the interface are that the pressurc nust be

J

continuous and the displecement must bo the sane for shock and rarefaction wavess

In vlace of (11) we now have

IR AR AR i) %:‘9(; T, (2¢)

while (20) gives

, . . (‘{ f)E, [.:
(26 -§€ )P ~ ¥ %% O’ “p., (29)
which can beo rowritten ve e K‘)‘ ¢,
c.L (£ £ LQ >__ (5-08p, H_ (50)
% P 5
For £20, (30) mtegrates to the fom (14). Using (27),

P ( ﬂ:.&@:.:.) .é.‘.—f_'j_‘__ (21)
d § £ y? .

A rolation enslogous to (15) cen bo obtained by comparing (28) and (29)

st g:: «le In virtue of (25) and (26), (28) reduces %o

O A =

while (29) gives

: {
P (-1) = - I § (")- (33)
Thus '
{
1 I, - —"
/?'I‘:¢'b g ? (34)

vwhich checks that the rarefachion wavs moves with tho velocity of scund:

T ¢
<t T T v e
'X,_‘E :[,QVX‘%., d* ~I/ 2, L}C At = VR
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(28) thus vocomes  +* 3 5110 13y A
LN . Ale o . , ois .
§ (p'ikp*'kp”'("{?’m\' (35)

The two functions £ and ¥ are now detormined by (31) and (35).

Similer equations have besen obtained by Dirac, but with a differcat form

of energy-genoration law, In analogy with the shock wave we have three

boﬁndary conditions, given by (25), (26), at the back of the wave. Although

we have a third-order sypstem of oquations these three boundary conditions do

not fix a solution, since, as can be seen from (32), (33), (34), the point

g * = 1 is a singular point of the equations: LP"(- 1) and £* (- 1) are nct
dotermined, ub only their ratio., It then remains possible to fit one bowndary
condition at the interface. Since both prossure and displacenment must be con~
tinuous at the interface, the system at first sight seems overdetermined. Buf
it is apparent from (15) that the shock wave solution does not determine both

p and X ot the interface, but only the ratio -}EB“_ o The bouxdary condition at

(-0 - E,ﬁﬁ-ol ,
X:\P('O)z X_T‘P(‘Hﬂv i

or, using (15) and (34)

L, S _2A £(t9 — (36)
y, Wl ¥+ Plro)

TIE SOLUTION ITAT §= -1

g = 0 thias talzes the fom

Sinece numorical intogration bocomes difficult a% a sinpgular point,
it is desirabie to obtain an analytic expression for the solution uncar j.a-l.
Urite (P .-_g 44, « The boundary conditions (25), (28) require

2(0) = 21 (0)= O, ‘ (37)
I )

L | —

RCLASSIFED
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and (35) becemes .o. E Eo E Eo E:
T IR NI I T R
g % =t X == -Z-f (38)
Intorrating (31), and choosi.ng the constant of integration to satisfly the
boundary conditions, ¢ .
“€ e, "3 P ¢
—-\-eb—* = ‘—'Z.f "%" d S (39)
- - : .
or, writing § -H-)] . :
.{:_C.Lﬁ")‘ H-?-_(n (M—'fv’)d‘m dm . )
(-r)* = (t-‘ﬁ)’
* In virtue of (37) %! may bo considered of order N ; the integral on tho right
is tlen n |
Y AL - N +0 (7).
[+ 2 EE dy < s+ 2 (- O (0

and (40) gives

£oimg o+ WEED K 12 (5% -0 (W),

£ =% (=t +0m )" + 2 (%=1 V5.
In tems of § , (38) vecomes
(=W = (=) = (1= () )%= 2
or, keeping only the leading terms in n s
- ZV\*(EHYA)W'%(&K )'x,« o - (a1)

tyse - ;""“h « Bg. (41) %akes the form
(]

y = - SLok - f;lax zg_ n_,
X, (%+i0) (2, +1)* Y4
This can be solved by putting y =¥ 2, which gives

lz _ (2+2yzrz) .y o227 2,2
el

(f 1)
A

d ] Z zf(x-u)
ence
[ Z24dZ
I wrz)(Z+7)’
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{

(Y X 1]
(X X 1]
se@od
(I X &2
L J
[IX 22

.
(X J

and “““‘.ASSW\W )

o‘:‘ooo
*o .
o0 e

Y (L XX

™
~—
.

(43)

Emoo
e Ne o
La\)
:ﬁoo

For small values of o

*
;"‘2., ;-Zt
Z =2 = Zl + (Zz - Zl) [(Omz.:i-.-" ZZ (c"‘ )2 22., +ovovoo] .

Forh20, 2= - 2;. If cis positive Z inoreases with incrcasing B -
Ifc = (-l)"},f-’i'.' a, a> 0, 2 veyies from - Z7 to - Zp as n goes from 0 towd
This latter case is interesting in explaining a non-uniformity which occurs
for very dense walls. A wall of infinite density of course will not nove;
the appropriete solution is £21,P= g ,’\P'?- 1. FHowever it follows from
(42), (43) that, indepondent of the wall density, near n=0,P=1+Wn (23 - Z3),
_;:_ﬁ__ 21 - n{(Zy - 2;7)e Thus tho density at the back of the weve always bogins
to drop lincarly, with a slope determined ounly by b’, o Thoe explanetion is that
for large values of a, Z very rapidly shifts from its initlael value - Z; Yo its
finael value - Zp for which the coefficient of the n -dependent term in (43) van-
ishes. TFor very demse walls the rapid change in density is thus confined to the
very back of the wave; as soon as aqﬂ’l, the rate of change in density becomes

of order %'0_2_55’:&4 .

BEHAVIOR NEAR TIHE THTERFACE

The numerical integration of (31) and (35) cen now be carried out by
starting near § 2 =1, using the solutions (42), (43) with a trial value of ¢, and
carrying the solution to g: 0. The solution obtained will be that appropriate
: A, ¥,

t rt 1 L
o & cortain value o 7, (Z+ N

One check on the numerical integrotion cen be obtained from the fact

, determined by (36).

that the expansion of ‘the meterial mear the interface tekes place when the

pressure is low and little work is done, so the tempersture should be tho same

e

*g «-& +E-ZE ) { )' " :/”+ ;,[gt Z }(C7)j( B 4.
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as in the materiel not yet reagfied sby oi,heom:.w?e‘t 31‘1113 cen be verified ana-
lytically from (39), which gives a.s: t;lo ]..;;d.l.x;g"tom near §..0, (o) kP (0)=1,
\ls also heve the rclations analogous to (17) and (18), from the
momontum law
£(0)= 1~ 2%, l’_zjtpdg-z- 1] ,

{ron the encrgy law

Flo)p(o) = 72 - 3 L—,-'~ {0 (pog) ]

s l
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