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PATTERN FuRMATION BY SHOCK PROCESSES*

J. W. Shaner
Los Alamos National Laboratory

Shock waves in condensed ❑edia often produce and leave behi~d periodic
patterns and textures. These patterns have been observed both in real time
and in post-mortum examination. In many cases the patterne can be related
to analogous Pattern-foming mechanisms in classlcal fluid dynamics, such
as the Rayleigh-Taylor and Helmholtz instabilities. In other caaea, the
textures arise from peculiarities in the dynamic st.t?ss SLP~e immediately
behind the leading edge of the shock wave.

Periodic waves in the interface betwezn two shock welded ❑etals have a
close resemblance to the classical Helmholtz instability. From u practical
point of view, these waves are crucial to che formation of a good bond.

Impulsive acceleration of an interface can result in L1le Meshkov in-
st.sbility, which forms pattevw qualitatively similar tc the Rayleigh-
Taylor instability drtveii by contin’~ous acceleration. However, the

p~tterned stress state left behind after a shock crosses a perturbed
{ntcrface can result in perturbation growth for shock propagation in either
dlrcction ncross the interface.

Even in homogeneous med~a, the non-hydrostatic component of the stress
})t!lil}d a shock can drive a pattern forming instability. Adinhntic shear

l);ItI,llII~ hn~ been prol)o~ed ~S ~ mechanism to exploln both the pntterns
(I!),,,r:l’din shnck-compressed nl,drecoverrd mcr.nl samples and the appnrcnt
](,!;!, (lf macroscopic :;hc~ur stren~th of shocked ccramic~. Ncw opticnl

pll(lt : ,lphsof shc)ckrd quartz support this mcchanlsrn.



-2-

Introduction

Shock waves in condensed ❑edia are u3ually associated with very

de~tructive and chaotic explosions. However, even theee destructive

prrcesses exhibit a wide va~iety of patterns formei directly behind the

shock tront. In Bone cases one can even recover, up~n release of tl shock

pressure, pieces j.nwhich the shock-induced patterns are preaened.

Experiments over the past few decndes have shown that a surprising

degree of order and coherence persist behind e shock wa-,re,at least until

wa’~es r~flected from irregular boundaries seriously compl!.cate the flow.

For example, with the assumption that the stress lvnind a shock is

hydrostatic, measurements of shock propagation have provided a good first

approximation to much of our high pressure equilibrium equation of state
.

dnta.1 Furthermore, direct flash x-ray diffraction ❑easurements have shown

that cvtincrystitlline order 18 preserved behind a shock wave in solids, and

that this order is coherent with respect to the unshocked cryst~l structure

llsWell. 2
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Waves in Explosive Weldin~

In order to form good weld joints between

tions must be met. The metal surfaces ❑ust

oxide layers) and they must be brought :.nto

metals, two essential condi-

be uncontaminated (e.g. by

intimate contact. IIIfusion

welding, the metals are actually melted ar.~icontaminations are allowed to

float away from the joint region. In pressure welding, ar,ysurface layer

of contaminants is broken up, allouing intimate contact, at elevated

pre.96ure, of the clean metals. Neither of these processes is very effec-

tive if the metals have widely different melting points or plastic flow

strengths.

During World

conditions, bullets

they hit. Although

War I, ordinance specialists noticed that under certain

and shell fragments bonded to the metal target plates

these ❑ay have been the first observations of explosive
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For the subsonic case, simple consenation of momentum implies that

the incident jet bifurcates inta fl~ws to the ;“ightand to the left along

the bullet face in Fig. la. For supersonic flow with 8 above a critical

value, we also have conditions for a jet f~rmlng and flowing to the left

away from the point of contact. For supersonic flow with smaller than

critical obliqutties, no such jet is formed, and the incident flow does l!ot

bifurcate. This behavior of supersonic flow is well known from the devel-

opment of explosively driven shaped-charge jets. 7

The correlation of a wavy interiace with >ifurcated flow and a jet

emerging from the point of contact and flowing to the left in Fig. la

suggests the Kelv+.n Helmholz instability as a ❑echanism. 8,9 In fact there

must be large gradient in horizontal flow velocity at the planar bullet

face. On the uther hand, the large gradients along the bullet surface

seriously complicate a quantitative analysis.

The configuration shown in Fig. lb is now that most commonly used for

welding and claddinp,, especially for very large pieces. 10 In this configu-

ration, V is
P

thlivelocity given to the flyer plate by detonating explo-

s~ve, while 8 is th(tangle of impact. Vp can be varieci by I:hanging the

type of cxplostv~ or the standoff hrtwecn the flyer ,’na the base plate.

For steady flow, the point of contact moves with the deton~.tion velocity

(Vc - VD), and Vp nnd fi are c~,,stants. This geometry can c~lsilybe

trnnsfrirmrd to thnt of Fig. la, nn(! therefore, the Jettjng cr)ndit~[)ns arc

:;imilnr. For conditions Tnvoring ~ood wrld joints, jrts have nctunlly been

11ob::(+rv(ld.
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The ❑ost detailed study of the waves on the welded interface was

12 In this study they found that as the wavecarried out by Bahrani, et.al.

amplitude grew, significant non-l. ar<ties appeared. By plating the steel

base and flyer plates with copper and nickel, they were able to observe the

effects of the jet and where in the interface profile remaining surface ma-

terial wound up. Nickel from the flyer plate was concentrated in a vortex

pattern behind the peaks of the

moved ahead of the peak of the

a vortex on the leading edge of

ces are also asymmetric.

waves, while copper from the base plate was

wave. BGth copper and nickel were mixed in

the wave. The leading and trailing vorti-

At the ptesent tim~, the only theoretical and numerical analyses of

these waves in weld joints have been qualitative or badly oversimplified.

The analysis by Bahrani, et al., 12 although in qualitative agreement with

their experiments i~ not quantitative. The quantitative analyses, based on

Kelvin-Helmholtz instability theory are successful at predicting

wavelengths for the ripples, but these calculations do not atidress the vor-

ticity and non-linear wave growth.8’9 Detailed calculations of the non-

linear instability of parallel shear flows perhap~ come closest to the

experimental situation, exce~.: that we do not have a strictly parallel

shear flow.13 Finally, the sffccts of Lnterfacjal energy, material

strength, nnd comprr~~ibility have not been considered quantitatively. In

conclusion we can say that we have enough empirical results to make good

wed joints explosively. However, we do not yet have the annlytlc~l capa-

bility to predict the kinds of non-lineurities which develop III the waves

nt ‘hc bondltd interface.

.Idinbnttc Shcnr Bandin~-.-,—--—..-—....

A~mthcr pattern often found in materials recovered after shock com-

pression nnd release cnn~ists of roughly pcriodlc lomellar structures along

Sp@l’ific crystallographic planeM. These features hnvP been known for a

long time in mctnln. 14 Rl~contly spntially periodic Iuminesc[tucc also D~~n

‘5 Some cry~tnlliteb in anbncrved dir~ctly behind n shock front f.nq~lartz.

polypryutnll.inc sample SI1OW❑nny such [enturca, while others do not. The

cryfltnllt.te orientation with rcspc’ct to the ~honk or relcnee wave frunLm
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are obviously important. The connection between crystalline and stress

tensor orientation is the key to the generation of these patterns.

In the simplest model for steady shock wave propagation in condensed

media we consider the stress to be a simple scalar pressure. However, In

even the earliest work on shocks in solids the authors realized that solids

1 Since the compression due to acould support non-hydrostatic stresses.

shock wave is uniaxial in the direction of prop~gation, the natural choice

of orinciple stresses are the longitudinal component, along the propagation

direct<on, and the transverse compouenus, assumed equal for isotropic mate-

rials. We expect that the longitudinal component will be greater than the

transverse components, so long as the material. can support ahear streasea.

With this stress cuufiguration. the planes in which the shear stresses are

❑aximum will lie at 45° to the longitudinal direction.

Under thcee conditions, as the shock strength is increased, the longi-

tudinal camponent of the stress will increase~ while the transverse compo-

nent is determined solely by Poisson-s ratio, ~!ntil a point called the

Hugoniot Elastic Limit is reached. At this point, the shear stresses in

the planes at 45° tn the propagation direction are the maximum the material

can support, and stronger shocks will result in piastic deformation such

that the resolved shear stresses remain bounded. This picture 1? the basis

of the vonMiees yield c=iteria often used in hydrodynamic flow

calculations.

Within the framework of this simple model wc would expect that as the

shock strength tncrvnscd, the longltudin~l tind transverse stresses would

differ by an amount such that the mnximllrnrusolved shear stresses WOU14 be

just rnnu~h to ~tart plnr~lc flow.

WU :;I1owin Fig. 2 the Yariuus ~tr[”s.+strain pn:h[;wc rxpect if the m{,-

trrt~l hehavc~ hydrostnticnlly ut with n constant difference betwrrn longi-

tudinal and transvcr~c strr~~ above the llugrinjotcln~tic limit.
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For a number of years, however, we have suspected that the stress

state behind a strong shock approaches hydrostatic (i.e. no stress

deviators). This has been especially evident for brittle materials but

more recent results suggest the same phenomenon for metals. In particular,

by lookiilgat the ability of shock compressed metals to support elastic

recompression and decompression waves, Asay has shovn that the intermediate

stress-strain curve in Fig. 2 may be.more appropriate for metals. 16

A ❑odel developed by Grady shows the qualitative features resulting in

the periodic structures. 17 ‘Cfan initially homogeneous material 18 allowed

to evolve from initially uniform shear, it may develop a shear bonding in-

stability under appropriate conditions. If, for exa~ple, the effective

viscosity decreases w~th temperature, a local high temperature will cause

concentration of the dissipative energy due to shear flow. As a result

further temperature rises will furtl,erconcentrate the shear flow.

For a two dimensional problem with material velocity, lJ, in the y

direction and gradients only in the X direction, the flow equations are

(!)

In Eq. (l), PO is the den~fty, and T ic the N!lunr stress. In I;q.2, I’)is

the tllormnldiffuslvity, whicli lirnitgthe local temperur.urc rise, and C Is

the Ili’nt‘:npncity. ‘I%(!MPrquntlons must bc cnrnplrtcd by a third describing

tl~crelation of r4hcnr~trres, velocity gradient find temp~rat~l.,. For ~~xam-

plo, Gr:lr;ymrd(~l~’dtl~ nffectivc Vlsco:;lty t(lgive
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(3)

By linearizing

and assuming

B-l/a as shown

by the assumed

Eqs. 1-3 for small pertur”~ations from a homogeneous state,

solutions of the iorm eat eifix, one obtains a cume for a vs

in Fig. 3. The growth rate is limited for small wavelengths

thermal conduction.

The largest difficulty in applying this model quantitatively IS

establishing a realistic ccnstitutive relation (3). With reasonable as-

sum;tians about the viscosity ❑odel, Hayes and Grady have shown that

agreement can >e obtained between the sclution to Eqs. 1-3 and the observed

lamellar structure in shocked aluminum with a wavelength of the order of

1-1o Im.la The predicted growth rate at this wa-Jelength is around ~08

-1SL,C: * which is also appropriate for a shock process.

A much more detailed analysis, especially of Eq. (3) will be necessary

before an understanding of the plienomenon of shear banding can be complete.

For example, one would expect localized work hardening to play the same

role of damping the instability a= does thermal conduction. In the case of

brittle solids one needs to include the surface energy generated by

fractures, unless the confining pressure is so great lhat even brittle ma-

terials behave ~lastically. Howe.(er, the adiabatic sh(’arb~nding model

dries explain the apparent macroscopic hydrodynamic nature of Solitis undt!r

shcck compressicrl, and the varied pntterns nppearlng during and upon

r(!ro’.~rry fror shock waves.

R-[::t)-t ni\’r’r-Mes}lkov ~R_M~ Inst;lb!litv. -...----—- ..—- . ——.- -—-—

h7.cn a shock wave passP5 :In interface s!pnrating two fluids of

IIllfrring dcnsiry, an ill:+tabtlity ,111/1logous 1u the cltis~icnl

R:lylclgh-Taylor Lnktnbillty Occlll-s. Since tilt? shock nccolerates the

Intcrfnce In the di.rectton of propagation, ally initial pertur!~ationn will

p)row if tllcflccclcriltforiis dlrccted from the ligh~ fluid to the hcavi~r

fluid. How~~ver, thl’rt’~rr ~uvcrnl qunllt,~ttve differences bctwt’.’nthe con-

t411UOUR acceler”!Lion .Ind ~}lotmpulsivr accclerwt,iun caees.
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In the original paper, Ric.htmyer solved numerically the hydrodynamic

flow associated with the shock wa~*e, or impulsive, acceleratlo~ of the

interface between two fluids. 19 The configuration is shown in Figure 4.

An initial perturbation

in the case of continuous

gi-~enby

of the ~uterface of the form aocoskx was assumed.

accel ration, the time dependent amplitude

P2-P1,
a = kg(t) a(t) (—’ ,

P2+P1’
(4)

where g(t) is the acceleration of the system and c1 and P2 are

densities.20 If the acceleration is impulsi~’e, as with a shock passi.~g

is

the

the

interface, then

g(t) = u s(t) ,

where U is the material velocity jump across the shock.

equation (4) then Ei.{es

. ~G~-Dl,
a = kua ——c)

‘2+P1’

(5)

Integrating

(6)

Altho Ah this rxpressinn is an o~~crsimplification f:um Se..”eral points of

View, which wili be discussed later, results deris;cclfrom it agreed wlt}l

Richtmvcr’s nllm[~!icillcalculations for y-law gases, so lung as he Ckiosc

densltt~s and an initial amplltude apprc~[~rlate for the time j:.st after th[!

shock-interfocc interaction. For 10U amplitudu sl~ocks in Id{lnlgnses, the

density riitiobetween singly shockwd dun~e ,luld (SF? in Fig. i! :Indcl~uhly

shocked liRht fluid (DSFI in FiR. 4) is within a few pcrct~nt of the initial

density ratio. Tllerefcre, the most s(~nsitivc paromt?ters in Eq. (6), are

a~, which can be compressed by a factor of two uveu with C. 1-0.2 M~il ~h[~~ks

in Ideal gases, and the ❑aterial veloctty at the interface which rnnybe

less than hnlf of that tullowing tb- LLrst shock in fLuid 1. Llncertnivty
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in the choice of these parameters arises as a esult of comparison of nu-

❑erical results for compressible fluids with an analyr.lcal expression for

incompressible fluids.

The simplified expression (6) does show a fundamental difference be-

tween the impulsive and constant acceleration cases. In the constant ac-

celeriltion case, the perturbations grow only if the acceleration is

dire:ted from the light ~luid to the heavy fluid. Otherwise the perturba-

tion oscillates. On the other hand, eqvation (6) indicates that for an

impulsive acceleration th{’perturbation of an interface grows no matter

which direction the acceleration, or the direction of shock propagation,

IG. If a shock passes from a low density to a high density fluid the per-

turbation amplitude grows. If the shock propagates from a high de;~si;y to

a lnw density fluid, the amplitude passes through zero and grows with

opposite phase.

Nine years after the Richtmyer work, Meshkov published experiments

measuring interface perturbation grovth with weak shocks (-G.l MPa) in

ideal gases (-O.l MPa air, He, Freon, and C02). 21 In these.experiments he

obser-~ed the linear growth of an initial perturbation when the shock passed

from a l.igflt gas to a l.eavy gas. He aiso observed the revers?l in phase

and subsequent amplitude growth when the sh[.ckpassed from the heavy to the

light gas. These results, although in q(lalitative agreement with equation

(6), shf,wcd gr~-iwthrates only 0.5 times the predictions. The source of

this disur(~pancy was pres(~m~d t~ be either an experimental prc~blem associ-

ated wiCII tl]r film separating tilegases, or Lhc onset Uf non-linearity

(La-1). NC] f?.lrtl~er~’xperimc’ntshave been done to confirm =h’”:+ehypotheses.

An illt(~restingfeature found both In tllcnumerical calcular.!ons 3TIIIin

.1rlosc ~“xamlnatlon of tllcrxperlmental Ullta 1s that even the initial

gr,~~:rh ()f the p(’rtu;-hattonsis non-linrar. The Growth rate oscillates by

1O-20Z nroul~d the i’al(lrpredicted by Eq. (6). Richtrnyer already identified

this frl-lt(lrt’.?s du(.to tl)rovcrstablc nature of a rippled shock front in

comprrsslhle Clllfds. 111r,~ference to Fig. L, if the skiock velocity in

flllid L tfi glowt~r tlI,III tilt) i~clder~t shock in fluid 1, the transmitted nhock

wtLl be rippled with an initial phaae tilssame as that Cf the i,lterface.
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When such a shock wave propagates in e compressible fluid (i.e. finite

sound velocity), pressure is concentrated behind the lagg~n- part of th~

shock frost by convergence. Therefore, the stress field immediately behind

a rippled shock will have a coherent texture with respect to the ripples.

In the subsequent ilow, signals can propagate forvard to the shock front,

making the shock front non-steady, and backward to the original interface,

superimposing another texture on this interface.

The overstable, or Oscillatory nature of a rippled chuck front has

been measured directly In metals by Sakharov and Mineev. 22,23 In these ex-

periments, a rd.ppled shock front was driven into metals at a stress level

high enough that the metals behaved macroscipically like fiuids. The phase

of the ripples reversed before the shock front became planar indicating

that the perturbation oscillates as it decays. This feature is a

manifestation of the textured stress field left behind by non-planar shocks

in a compressible medium.

Since the textured stress fiz:,dbehind a rippled shock depends on the

nature of the ripples in the shock front, and since this texture can effect

the initial non-linear growth of a perturbed interface, we ha-#e to look

more closely at what variety ok configurations of interface and stress

waves are possible. The calculations of Richtmyer and Meshkov’s experi-

ments utilized only gamma-law ideal gases. For this restrictive equation-

of-staze. the density, p, is proportional to mulef Ilar weight, m.

Similarly, the sound velocity, C, is proportional to (T/m)l’2, where T is

the temperature. In Lhe limit of weak shocks, the shock impedance, I - PC,

is then simply proportional to rnl/2. ‘l’he :hor’- impedances, shock

velocities, and densities of the two fluids all plzy a role in the hydrody-

namic evolution of the system.

The ideal gas equation-of-state allows only two of six qualitatively

different configurations fo] the R-M instability. For ~!xample, we have

already seen that if P2 > PI, the inltlal interface perturbation grows

without change in phase. On the other hand, if pl > p2, the initial per-

turbation changes phase before growl!}:. Similarly, if C2 < cl, I’lIL?

transmitted shock wave is in plIas(wiLh th(}initial Interface perturbation.
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‘l%erefore, the initial regions of highest stress in the textured stress

field behind the rippled transmitted shock will be near the part of the

interface concave towurd fluid 2. On the other hand if C2 > Cl, the f.ni-

tial ripples in the transmitted shock are of opposite phase with respect to

the interface perturbation, and the stre~s field texture induced by the

~ipplcd shock is the opposite from the C2 < Cl, case. For ideal

P2 > Pl, then C2 mt!stbe less than Cl, al:dvice versa. Xowever,

to find pairs of materials with ❑ore gencr~l equations-of-state

this role does noL hold.

gases, if

it is easy

for which

One further complexity concI?L’ns the relativ~ skock impedance of the

fluids. Fcr the ideal gas equ8tlon of s~ate, the denser fluid necessarily

has the greater shock impedance. ‘rhereforc, if P2 > ,)1,then the wave

reflected back into fluid 1 is a second shock, as shown in Fig. 4. Again

it is eas;? to find pairs of materials for which P2 > Pl, but 12 < ll.
.

Then, although the Interface perturbation still grow without cha~.ge of

phsse, the reflect-1’dwave is Q rarefaction. For a rippled rarefaction t~e

should expect the str{~ss field texture left behind to be roughly opposite

in pha:e to that 1(’ftby a shock. All of these Cii$es nre summarized in

Table 1.

At this point, wc sllIIIIIcl point out thnt even the cnml)lcxltles of

Tnhle 1 are not sufficiiI-,Lto cover all of the pc)telltin.1non-lincarlt.ic~ in

this orl.[:inal.ly simple Ily(lrodjl)nmic :1OWO Carrful ml’nu~lrcmcnt~ hy

Stllrt{’v:lnt , 24 25and Meshknv. II(IVC d~)mr~nstrut~c{ tl~nt tllc r’l)nvery,tlnt parts of

sl)()[k Wilvps, ev[ln 111Iden].}:ri:i[!s,Il;’dc$r}.oiIcomplc’x t~mc history, incllldin~

tll$l formi~tlon of Mi][~ll rufl,,~tion:~, or tllrcc-shnck inLor:~~’cttonpoints. 111

tllrrl.:lswlcMncl] rol”ll’~’t{onpr[lhl,rm,wc know thilt :1 HI [p Iin(! dc’vclops

hchlrlll UIIC Lrtpl(! ~;llock l.nf[,rilct?(}l~ pol.nt, wft}I n lnr-~t! FI.ow vrlo(’lty ~ra-

Llltnt arr(l.~!~Lllc:1111)Ifnc. l.nfll~m{,U;+SCH tl\Js~].~p l.1.nc fs clunrly tlllHt:l-

Llr (Il(!lml nl.tz rn!:l:lhl]lty),nnd l~crs:l,st[?lltvtlrt’ces C:II1 h,= left 1)1’hind 2tle

MLIHI14(IV l);~$i JIIHII Sll[W/11 thn: I; { Ml 1 rir Ct)mp ].rx w: I\’I’ 1 llE(!ri4r:kt~ms 1::111 d(’vl’ lop

[n n rlppl(~ll rnr[~lnrl 11111 W:IVP. 27
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Althoudh we have listed the grocs features which influence the non-

linear growth of the RM instabilities in Table 1, the complexity of the de-

tail~ of flow associated with rippled waves may result in a much richer

variety of possibilities. Fluid viscosity and interracial tension will

undoubtedly complicate tht RM Instability in fluids with weak shocks. We

expect, for example, that if the interfaclal energy dznEiity in the mixing

region is comparable with the energy of compression by the shock wave, then

surface tensfon will play a role in the subsequent flaw. Mole careful

measurements and relLable and detail.ed hydrocode calculations will be nec-

essary to observe all @f the non-linear phenomena associated with this in-

stability.

We have outlined three qualitatively different ktnds of non-linear

instabilities re~uli:ing in pat.ern formation behind ~hcck waves in

condensed media. Each instability has an analog in ❑ore conventional fluid

dynalics. A great deal of analytical work, particularly numerical

calculations, will be nccessfiry nefore we wI.11 be able to claim a detailed

predictive capability for any of t.hesc pattern forming mechanisms.

However, the strong nnaivgies to better known fluid in~tabilitieg hnve

givrn us significant insight into the processes nt work even on the sub-

mlcrosecon.1 tlmc scale.
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Figure Captions

Fig. 1. A. A flat-nosed bullet, fired obliquely into a target plate can

develcp ripples in the bullet face.

B. The most useful configuration for explosive welding results in

ripples at the weld Joint.

Fig. 2. longitudinal streaa vs strain for various compression processes.

The Hugoniot represents a possible track for shock compression.

Tc represents the maximum stress deviator the material can

suppcrt. If the stress behind a shock front had no tendency to

nppronch ithydrostatic state, compression would be along the upper

yield curve.

Fig. 3. Schmntic ()f the ~(,lution tu che lincnrized vcr.,lon oi Eqs. 1-3.

Tho Xrowth rate for ndinbntic !:huar bnndn is limited ilt lnrgc

wnvonumhcr hy thurrnal conduction.
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