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PATTERN FURMATION BY SHOCK PROCESSES™

J. W. Shaner
Los Alamos National Laboratory

Abstract

Shock waves in condensed media often produce and leave behind periodic
patterns and textures. These patterns have been observed both in real time
and in post-mortum examination. In many cases the patterns can be related
to analogous Pattern-forming mechanisms in classlcal fluid dynamiecs, such
as the Rayleigh-Taylor and Helmholtz instabilities. In other cases, the
textures arise from peculiarities in the dynamic st.ess siate immediately
behind the leading edge of the shock wave.

Periodic waves in thc interface betwe2n two shock welded mecals have a
close resemblance to the classical Helmholtn instability. From a practical
point of view, these waves are crucial to the formation of a good bond.

Impulsive acceleration of an interface can result in tne Meshkov in-
stability, which forms patterns qualitatively similar tc the Rayleigh-
Taylor 1instability drivew by continuous acceleration. However, the
patterned stress state left behind after a shock crosses a perturbed

interface can result in perturbatlon growth for shock propagation in either
lirection across the interface.

Even in homogeneous media, the non-hydrostatic component of the stress
hehind a shock can drive a pattern forming instability. Adianbatic shear

hawling has been proposed as a mechanism to explain bhoth the patterns
vhicrved in shock-compressed and recovered metal samples and the apparent
lusun  of  macroscople shear strength of shocked ceramics. New optical
pliel  taphs of shocked quartz supporc this mechanism.

ERNE supported by the United States Department of Energy.



Introduction

Shock waves in condensed media Aare wusually associated with very
destructive and chaotic explosions. However, even these destructive
precesses exhibit a wide varilety of patterns formei directly behind the
shock tront. In some cases one car even recover, up?n release of tl shock

pressure, pleces in which the shock-induced patterns are preserved.

Experiments over the past few decades have shown %+hat a surprising
degree of order and coherence persist behind 2 shock wave, at least until
waves rrflected from irregular boundaries seriously compllcate the flow.
For example, with the assumption that the stress b~nind a shock is
hydrostatic, measurements of shock propagation have provided a good first
approximation to much of our high pressure equilibrium equation of state
dnta.l Furthermore, direct flash x-ray diffraction measurements have shown
that cven crystalline order is preserved behind a shock wave in solids, and

that this order 1s coherent with respect to the unshocked crystal structure
2

as well,

In this paper 1 shall review and highlight three kinds of macroscopic
patterns which occur in shock wave processes 1in  condensed media. These
patterns have 1in common  that they evolve in a microsecond, or less, and
that each 18 nnatogoun to nu ingtabitity in conventlonal tluid nechnnics.
The firet {s a wnvy interface left behind when two metals are forced to
calttide at high velocity. These waves have fentnres qunlitatively  Tike
those fonnd  in the clargicn]l Kelvin=Helmholts inatability nasociated with
ilenr flow in fluldse The accond pattern 1 diycuns {g n periodic lamellar
structm e which has often been observed In metals nnd cernmics subjected tao
dhock compressnfon and recavered upon reteases  This phenomenan {8 related
to a  therwomechnnteal  fluld {urtnbitity usnally referred to nas adiabntice
phear hnnding.  The thinl pnttern T diacuns evolven nfter an hdttaltly
plannr  nhock wave pnswes o rippled interface seporaring two mmtes fnls.
Tuts cantiguration {8 sfmilarv to the Raylteich=Taylor {nstnbilily problem.
However, wafuce for wtrong shocks ovea condensned medfa nmnt be cons tdered
compresnible, 1nterenling non-tinearftics veewr enrty {n the growth o« the

fvitianlly perturbed intorfacwe.



Waves in Explosive Welding

In order to form good weld joints between metals, two essential condi-
tions must be met. The metal surfaces must bLe wuncontaminated (e.g. by
oxlde layer:) and they must be brought :nto intimate contact. Im fusion
welding, the metals are actually melted arnd concaminations are allowed to
float away from the joint region. 1In pressure welding, any surface layer
of contaminants is broken up, allowing intimate contact, at elevated
pressure, of the clean metals. Neither of these processes is very effec-
tive 1f the metals have widely different melting points or plastic flow

strengths.

During World War I, ordinance specialists noticed that under certain
conditions, bullets and shell fragments bonded to the metal target plates
they hit. Although these may have pbeen the first observations of explosive
welding, the first published acconunt did not appear until 1949.3 During
the next two decades, a number of people begar to exploit some of the
unique features of explosive welding to make bonds between metals which
would be impossible by other neans.a At the same time, carefully con-
trolled cxperiments, where impact veloeity and obliquity of collision were
contruolled, showed that ripples formed at the interface under the same con-
ditions that favored good weld joinrs.s'5 These ripples nre the subjecct of

this rection.

The ripplen formed at the f{interface of two metals undergoing hianh
velonity oblique tmpnet were {irst studied systematiecally by Abrahnmson. ?
He mnsed the coufipuration sketched in Fig, tae Flnt nosed ster 1l bullets
were fired at totn metol targets fnelfacd nt nn anple, 0, with redpest Lo
the f{ront surface. In n conrdinave systoem fixed at the poinl of contnet,
the target tooka 1tkoe mn {netdent Jet of  veloctty V/atn  and  ongle  of
inctdenco 0 with respect to the pltane of the bullet face. Abrahnmaon {ound
thnt {f Veatn® wng tesn (han the aperd of somd tn the target, or 1 {1t wax
nupernouiec  bac with 0 grentoer than aome crftical value, waven were formed
at. the antevtaces 11 V/ein® wnn supernonfe and 0 wna bewxs than Vhe

critical value, no waver were formed.
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For the subsonic case, simple conservation of momentum implies that
the incident jet bifurcates into flows to the right and to the left along
the bullet face 1in Fig. la. For supersonic flow with 0 above a critical
value, we also have conditions for a jet farming and flowing to the 1left
away from the point of contact. TFor supersonic flow with smaller than
critical obliquities, no such jet is formed, and the incident flow does uot
bifurcate. This behavior of supersonic flow is well known from the devel-

opment of explosively driven shaped-charge jets.7

The correlation of a wavy interrace with bHifurcated flow and a Jet
emerging from the point of contact and flowing to the left in Fig. la

suggests the Kelvin Helmholz instability as a mechanism.8»?

‘n fact chere
must be large gradient 1in horizontal flow velocity at the nlanar bullet
face. On the uther hand, the large gradients along the bullet surface

seriously complicate a quantitative analysis.

The configuration shown in Fig. 1b is now that most commonly used for
welding and cladding, especially for very large pieces.lo In this configu-
ration, Vp is th: velocity given to the flyer plate by detonating explo-
sive, while 0 is thc angle of impact. V_ can be varied by changing the

tyne of eiplosive or the stancoff bczween the flyer ¢na the base plate.
For steady flow, the point of contact moves witn the detonation velocity
(vc - VD). and Vp and 0 are constants. This geometry can easily be
transformed to that of Fig. la, and therefore, the Jetting conditions are
#imilar. For conditions favoring good weld joints, jets have actuanlly buen

obuierved. )

In Lhe welding process, the function of the Jet emergling fron the con-
tact point I8 easy to understand. The jet secrubs materinl from both the
flyer nnd base plates allowing clemn metal surfaces to come into contnet nt
high pressures. For optimum welding, one needs a Jotting configuration,
nnd fmpact velocitfes high cnough to caune merals to fFlow plastically but
not so high thal materinl at the {nterface melta. Rapid melting and

resolidification serfonsly wieakens the bond 10,
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The most detailed study of the waves on the welded interface was

carvried out by Bahrani, et.al.12

In this study they found that as the wave
amplitude grew, significant non-1l. -arities appeared. By plating the steel
base and flyer plates with copper and nickel, they were able to observe the
effects of the jet and where in the interface profile remaining surface ma-
terial wound up. Nickel from the flyer plate was concentrated in a vortex
pattern behind the peaks of the waves, while copper from the base plate was
moved ahead of the peak of the wave. Both copper and nickel were mixed in

a vortex on the leading edge of the wave. The leading and trailing vorti-

ces are also asymmetric.

At the pr-esent timz, the only theoretical and numerical analyses of
these waves in weld joints have been qualitative or badly oversimplified.
The analysis by Bahrani, et al.,12 although in qualitative agreement with
thelr experiments is not quantitative. The quantitative analyses, based on
Kelvin-Helmholtz instability theory are successful at predicting
wavelengths for the ripples, but these calculations do not audress the vor-
ticity and non-linear wave growth.a'g Detailed calculations of the non-
linear instability of parallel shear flows perhaps come closest to the
experimental situation, exceprt that we do not have a strictly parallel
shear flow.13 Finally, the effects of 4{nterfacial energy, material
strength, and comprrssibility have not been considered quantitatively. In
conclusion we can say that we have enough empirical results to make good
we.d Jjoints explosively. However, we do not yet have the annlytical capa-
bility to predict the kinds of non-linearities which develop in the waves

at 'he bondi'd interface.

Adiabatic Shear Banding

Aunother pattern often found in materials recovered after shock com-
pression and release conrists of roughly periodic lamellar structures along
specific crystallographic planes. These features have been known for a

long time {in metnls.la

Recently spatially periodic luminescence also oeen
obrerved directly behind a shock front 1in qunrtz-ls Some crystallites in a
polyr~rystalline sample show many such f[eatures, while others do not. The

crystallite orientation with respeut to the shork or relcase wave fronts
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are obviously important. The connection between crystalline and stress

tensor orientation is the key to the generation of these patterns.

In the simplest model for steady shock wave propagation in condensed
media we consider the stress to be a simple scalar pressure. However, in
even the earliest work on shocks in solids the authors realized that solids
could support non-hydrostatic stresses.l Since the compressivn due to a
shock wave is uniaxial in the direction of propagation, the natural choice
of orinciple stresses are the longitudinal component, along the propagation
direction, and the transverse compouenis, assumed equal for isotropic mate-
rials. We expect that the longitudinal compoaent will be greater than the
transverse components, So long as the material can support shear stre3sesS.
With this stress configuration. the planes in which the shear stresses are

maximum will lie at 45° to the longitudinal direction.

Under these conditions, as the shock strength is increased, the longi-
tudinal component of the stress will increase, while the transverse compo-
nent 18 determined solely by Poisson’s ratio, nntil a point called the
Hugoniot Elastic Limit is reached. At this point, the shear stresses in
the planes at 45° to the propagation direction are the maximum the material
can support, and stronger shocks will result in plastic defeormatlon such
that the resolved shear stresses remain bounded. This picture ir the basis
of the vouMises yileld c-iteria often used in hydrodynamic flow

calculations.

Within the framework of this simple model we would expect that as the
shock strength inarcased, the longltudinal and transverse strecsses would
differ by an amount such that the maximum resolved shear stresses would be

just cnough to start plartic flow.

We show in Fig. 2 the various stress strain pathu we cxpect 1f the mu-
terial behaves hydrostatically ur with a constant dlfference between longi-

tudinal and transverse stress above the llugoniot elartic limit.
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For a number of years, however, we have suspected that the stress
state behind a strong shock approaches hydrostatic (i.e. no stress
deviators). This has been especially evident for brittle materials but
more recent results suggest the same phenomenon for metals. In particular,
by looking at the ability of shock compressed metals to support elastic
recompression and decompression waves, Asay has shown that the intermediate

stress—-strain curve in Fig. 2 may be more appropriate for metals.l6

A model developed by Grady shows the qualitative features resulting in

the periodic structures.l7

Tf an initially hemogeneous material is allowed
to evolve from initially uniform shear, it may develop a shear bonding in-
stability under appropriate conditions. 1f, for exanple, the effective
viscosity decreases with temperature, a local high temperature will cause
concentration of the dissipative energy due to shear flow. As a result

further temperature rises will further concentrate the shear flow.

For a two dimensional problem with material velocity, U, 1in the y

direction and gradients only in the X direction, the flow equations are

U 1 &t .
St oo Y v and (L
(o]
6T £2r SU
-0 — = T_o (2)
t Sx* r.‘o X

In Eq. (1), n,
the thermal diffusivity, which limite the local temperanture rise, and C 1=

is the density, and 1 i5s the shear stress. 1In lq. 2, D is

the heat apacity. These equations must be completed by a third describing
the retation of shear stress, velocity gradient and temperatu... For exam-

ple, Gracy modeled tle effective viscosity to give



-a(T-T,) ] 8

Te [n° € Sx

. (3

By linearizing Eqs. 1-3 for small perturvations from a homogeneous state,
and assuming solutions of the form et ein' one obtains a curve for a vs
B=1/) as shown in Fig. 3. The growth rate is limited for small wavelengths

by the assumed thermal conduction.

The largest difficulty in applying this model quantitatively is
establishing a realistic ccnstitutive relation (3). With reasonable as-
sumrtions about the viscosity model, Hayes ana Grady have shown that
agreement can ve obtained between the sclution to Eqs. 1-3 and the observed
lamellar structure in shozked aluminum with a wavelength of the order of
1-10 um.la The predicted growth rate at this wavelength 1s around 108

Svc_l, which is also appropriate for a shock process.

A much more detailed analysis. especially of Eq. (3) will be neceasary
before an understanding of the phenomenon of shear banding can be complete.
For example, one would expect localized work hardening to play the same
role of damping the instability a- does thermal conduction. In the case of
brittle =s0lid: one needs to iuclude the surface energy generated by
fractures, unless the confining pressure is so great Lhat even brittle ma-
terials behave plastically. However, the adiabatic shcear banding model
dres cxplain the apparent macroscopic hydrodynamic nature of solids under
shock compression, and the varied patterns appearing during and upon

recnvery fror shock waves.
Rtchtmyer-Meshkoy (RM) Instabfiity

When a shock wave passes an  interface separating two fluids of
ditforing densiry, an instability analogous to the classical
Ravlieigh-Taylor {nstability occurs. Since the shock naccelerates the
futerface tn the directieon of propagation, any initial perturbarions will
prow if the acceleration 1s directed from the light fluid to the heavier
Eluid. However, there are scveral qualitative differences between the con-

t*nunus acceler:tion and the {mpulsive acceleration cases.
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In the original paper, Richtmyer solved numerically th¢ hydrodynamic
flow associated with the shock wave, or impulsive, acceleratlon of the
interface between two fluids.19 The configuration is shown 1in Figure ¢&.
An initial perturbation of the iuterface of the form a coskx was assumed.
In the case of continuous accel ration, the time dependent amplitude 1is

given by

Pa=—p
i = kg(t) a(t) (1) (4)
Pat+o)

where g(t% 1s the acceleration of the system and ¢, and Py are the
densities."o If the acceleration is impulsive, as with a shock passiag the

interface, then

g(t) =T &(t) , (5

where U Is the material velocity jump across the shock. Integrating

equation (4) then gives

. fia=pD
a = kla_ f-:—-l} (6)
02+Dl

Altho. gh this expression is an oversimplification f.om several poiuts of
view, which wili be discussed later, results derived from 1t agreed with
Richtrmyer s numerical calculations for y-<lav gasces, so long as he chosc
densities and an initial amplitude appropriate for the time j:.ut after the
shock-interfuace interaction. For low amplitude shocks in {dcal gases, the
density ratlo between singly shocked decse lufd (SF2?2 {n Fig. 4) and doubly
shocked light fluid (DSFl in Fig. 4) is within a few percent of the {nitial
density ratio. Therefcre, the most scnsitive parameters in Eq. (6), are
ag, Which can be compressed by a factor of two even with C.1-0.2 MPa shocks
in 1ideal gases  and the material velocity at the interface which may be

lens than half of that tollowing th~ 1lrst shock in fluid 1. Uncertainty
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in the choice of these parameters arises as a ‘esult of comparison of nu-
merical results for ccmpressible fluids with an analytical expressioc for

incompressible fluids.

The simplified expression (6) does show a fundamental difference be-
tween the impulsive and constant acceleration cases. In the constant ac-
celeration case, the perturbations grow only if the acceleration is
dire:ted from the light {luid to the heavy fluid. Otherwise the perturba-
tion oscillates. On the other hand, equation (6) indicates that for an
impulsive acceleration th¢ perturbation of an interface grows no matter
which direction the acceleration, or the direction of stiock prupagation,
ic. 1If a shock passes from a low density to a high density fluid the per-
turbation amplitude grows. If the shock propagates from a high deusity to
a low density fluid, the amplitude passes through zero and grows with

opposite phase.

Nine years after the Richtmyer work, Meshkov published experiments
measuring interface perturbation growth wich weak shocks (7CG.1 MPa) 1in
ideal gases (0.1 MPa air, He, Freon, and COZ).ZJ In these experiments he
observed the linear growth of an initial perturbation when the shock passed
from a lignt gas to a lLeavy gas. He also ubserved the reversel in phase
and subsequent amplitude growth when the shi:ck passed from the heavy to the
light gas. These results, although in qualitative agreement with equation
(6), shcewed growth rates only 0.5 times the predictions. The source of
this discrepancy was presumed to be either an expecimental problem associ-
ated with the film scparating the gases, or the onset of non-linearity

(La~1). No further cxperiments have been done to confirm th-se hypotheses.

An interesting feature found both Ia the numerical calcularions and in
a ¢lose examination of the experimental uata 1s that even the 1inltial
grovth  of the perturbations 1is non-lincar. The growth rate oscillates by
10-20% around the vaiuce predicted by Eqe. (6). Richtmyer already identified
this featare as duc to the overstable nature of a rippled shock fronc in
compressible fluids. 1In reference to Fig. 4, 1f the skock velocity in
fluid 2 1s slower than the incident shock in fluid 1, the transmitted shock

will be rippled with an initial phase tua same as that cf the {laterface.
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When such a shock wave propagates in & compressible fluid (i.e. finite
sound velocity), pressure is concentrated behind the laggine part of the
shock froat by convergence. Therefore, the stress field immediately behind
a rippled shock will have a coherent texture with respect to the ripples.
In the subsequent flow, signals ran propagate forward to the shock frent,
making the shock front non-steady, and backward to the original interface,

superirposing another texture on this interface.

The overstable, or oscillatory nature of a rippled chuck front has
been measured directly in metals by Sakharov and Mineev.22123 1p these ex-
periments, a r'ppled shock front was driven into metale at a stress level
high enough that the metals behaved macroscipically like fiulds. The phase
of the ripples reversed before the shock front became planar indicating
that the perturbation oscillates as it decays. This feature 1s a
manifestation of the textured stress field left behind by non-planar shocks

in a compressible medium.

Since the textured stress field behind a rippled shock depends on the
nature of the ripples in the shock front, and since this texture can effect
the initial non-linear growth of a perturbed interface, wel have to 1look
more closely at what variety ot configurations of interface and stress
waves are possible. The calculations of Richtmyer and Meshkov’s experi-
ments utilized only gamma-law ideal gases. For this restrictive equation-
of-staze. the density, p, 1s proportional to moulecilar weight, m.
Similarly, the sound velocity, C, 1s proportiornal to (T/m)llz. where T is
the temperature. Ip the limit of weak shocks, the shock impedance, I = pC,
is then simply proportional to ml/z. The <+<hor'- 1mpedances, shock
velocities, and densities of the two fluids all play a role in the hydrody-

namic evolution of the system.

The 1deal gas equation-of-state allows only two of six qualitetively
different configuratiors for the R-M {instability. For example, we have
already seen that 1if p, > P1» the initlal interface perturbation grows
without change in phase. On the other haud, 1if P > Po» the 1initial per-
turbation changes phase before growi:y. Similarly, 1if C, < C;, rhe

transmitted shock wave 1is in phasc with the initlal interface perturbation.
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Therefore, the 1nitial regions of highest stress in the textured stress
field behind the rippled transmitted shock will be near the part of the
interface concave toward fluid 2. On the other hand if Cz > Cy, the ini-
tial ripples in the transmitted shock are of opposite phase with respect to
the interface perturbations, and the streus field texture induced by the
Tippled shock is the opposite from the €, < Cy, case. For ideal guses, if
Py > Py» then C, must be less than Cy, ard vice versa. However, it is easy
to find pairs of materials with more gencral equations-of-state for which

this roje does not hold.

Une further complexity concerns the relative shock impedance of the
fluids. Fcr the ideal gas equation of stvate, the denser fluid necessarily
has the greater shock impedance. Therefore, 1f py > ), then the wave
reflected back into fluid 1 is a second shock, as shown in Fig. 4. Again
it 1s easy to find pairs of materials for which Pg > Py but I, < I,.
Then, although the Interfacc perturbations still grow without change of
phase, the reflectcd wave is a rarefaction. For a rippled rarefaction we
should cxpect the stress field texture left behind to be roughly opposite
in pha:e to that 1lcft by a shock. All of these cuses are summarized 1in

Table 1.

At this point, we shuuld point out that even the complexities of
Table 1 are not sufficlent to cover all of the poteutial non-lincarities in
this originally simple hydrodyunmic flow. Carcful measurements by

24 and Moﬂhkov.25

Sturtcevant, have demonstrated that the converpent parts of
shack waves, even In ddeal pones, usderyo a complex time history, iuncluding
tle: formation of Mach reflectiona, or three=shock interscction points. 1In
the elassic Mach reflection problem, we know that a slilp line develops
behind the triple shock interactiou point, with a lnrge flow velocity pra-
Glent across the alip 1ine. 1o some cases this slip Iine 18 cleariy unsta-
Lle (Helmt oltz Tnacablitey), and persistent vortices can he left brhind20.

Meshkov has aldo shown that efmtlar complex wave fnceractions  can  develop

27

tn a rippled rarciacttion wave.
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Although we have listed the grors features which influence the non-
linear growth of the RM instabilities in Table 1, the complexity of the de-
tails of flow essociated with rippled waves may result in a much richer
variety of possibilities. Fluid viscosity and 1interfacial tension will
undouhtedly complicate the RM instabllity in fluids with weak shocks. We
expect, for example, that if the interfacial energy density in the wmixing
region is comparable with the energy of compression by the shock wave, then
surface tension will play a role in the subsequent flow. Mnie careful
measurements and rellable and detailed hydrocode calculations will be nec-
essary to observe all of the non-linear phenomena associated with this in-

stability.

We have outlined three qualitatively different kinds of non-linear
instabilities resuliing 1n pat.ern formation behind 3hcck waves in
condensed media. Each instability has an analog in more conventicnal fluid
dynanics. A great deal of analytical work, particularly numerical
calculations, will be necessary pefore we will be able to claim a detailed
preaictive capability for any of these pattern forming mechanisms.
However, the strong analogles %o better known fluid instabilities have
given us significant insight into the processes at work eveﬁ on the sub-

microsecond time scale.



~14=

References

l.

10.

1t.

12.

113.

J. M. Walsh and R. H. Christian, Phys. Rev. 97, 1544 (1955).

Q. Johnson and A. C. Mitchell, Phys. Rev. Lett. 22, 1369 (1972).

Lo Ro Carl. Meto Pl‘ogo ‘0_6. 102 (19-,04)0

R. Crossland and A. S. Bahrani, Contemp. Phys. 9 71 (1968).

W. A. Allen, J., M. Mapes, and W. G. Wilson, J. Appl. Phys. 25, 675
(1954).

G. R. Aprahamson, J. Appl. Mech. 83, 519 (1961).

J. M. Walsh, R. G. Shreffler, and F. J. Willig, J. Appl. Phys. 29, 349
(1953).

J. N. Hunt, PHil. Mag. 17, 669 (1968).

Yu. A. Gordopolow, A. N. Dremin, and A. N. Mikhailor, Fiz. CGoreniya
1. Vzryun 14, 77 (1978).

S. fl+ Carpenter nnd Re Ho Whittman, Ann. Reve of Matls. Scie 5, 177
(1775).

0. Ry Bergunun, Ge Re Cownn, nud A He Holtzman, Trams. Metal. Sond

AIME 236, 646 (1964).

A. Se Bahrant, T. J. Black, nud B, Crossland, Proce Reynl Soe. A296,

123 (1967).

J.o Ly Rohingon, .I. Flodd Meche 63, 723 (1974).



14.

15.

16.

17.

18.

20.

21.

22,

23.

24.

76,

-15-

Co So Smith. Trans. Metall' SOC- AIME (1958)0

P. J. Brannon, C. H. Konrad, R. W. Morris, E. D. Jones, and J. Asay,
Sandia Report SANLS82-2469 (1983).

J. Asay, private communication.

D. Grady, !. Geophys. Res. 85, 913 (1980).

D. B. Ha‘es and D. E. Grady in Shock Waves in Condensed Ma:ter - 1981,
P412 AIP, New York 1982.

R. D. Richtmyer, Comm. on OPure and Appl. Math XI1I, 297 1960).

G. Taylor, Proc. Royal Soc. (London) A201 (1950).

E. E. Me:"kov, Izv. ANSSSR. Mekh. Zhidkosti i Gaza &4, 151 (1960).

A. D. Sakharov, R. M. Zaidel’, V. N. Mincev, and A. G. Oleirik, Soviet
Physies = Dokl. 9, 1091 (1965).

V. N. Mineev nud K. V. Savinov, Soviet Physics JETF 25, 411 (1967).

B. Sturtevant and V. A. Kulkarny, J. Fluid Mech. 73, 651 (1§70).

E. F. Mevhkav and Ve No Mokhov, Flz Corvuiya { Vzryun 18, 93 (1982).

R. Ko butt, Proc. Symponfum {n Appl. Math 13, 77 (1962).

b, A. Klopoy and E. K. Meshkov, Ftz. Corenfya {. Varyun 18, 9t (1982),



~16-~

TABI'Z 1. POSSIBLE BM CCNFTLURATIONS

Ve
:

7

(8]

(M

KEFLECTED

ZINIITY SCUND VELONITY IMPEDANCE INTERFACE WAVE EXAMPLE
2y > iy <y > C: I, > I, 448 ¢ Cu /PMMA
o > 2y Cy <€y I,>1 + S 1DFAL GASES
Za> 2y Cq < Cy I. < I, + rd Teflon/Be
I, <z Cy > Ty I, > 1, - S Be/Teflon
i < Iy Cr > &y I, <1, - R LDEAL GASES
ta <z, Cy < Cy I, <14 - R PMMA/Cu

In chase with original perturbation.

Jzpesite phase with respect to original perturbation

Shoce wave.

Fazelactlion wave.
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Figure Captions

Fig.

Fig.

Fig.

Fiu .

l.

L)
“e

3.

l‘.

A. A flat-nosed bullet, fired obliquely into a target plate can
develcp ripples in the bullet face.

B. The most useful configuration for explosive welding results in

ripples at the weld joint.

longitudinal stress vs strain for various compression processes.
The Hugoniot represents a possible track for shock compression.
T. represents the maximum stress deviator the material can
auppert. If the stress behind a shock front had no tendency to
approach a hydrostatic state, compression would be along the upper

yield curve.

Schmatic of the sclution to the linearized ver.ion or Egs. 1-3.
The prowth rate for adiabatic shcar bands 1s limited at large

wavenumber by thermal conduction.

Coufipuration for observing Richtmyer-Meshkov instabilities. On
the teft, »a nhock {8 1ncident from fluid | (Fl). The  shocked
fintd {s denoted SFL. On the right, after this sheck hns pansed
the {tuid {nterfner, the tranamitted nhock separntes fluid 2 (F2?)
from the shocked ftuid 2 (SF2), The reflected shock neparates
shovked fiatd V (SFEY {rom the double ahoeked flutld (DSIEY).
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