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Introduction

Magnetohydrodynamics is a fluid model for the motion of an ionized gas in a magnetic field.
In it's ideal, non-dissipative form, the Lundquist equations, it has the same mathematical character
as the model for gas dynamics. It gives, in the same way, a self-consistent description of the fluid
dynamics, including the exchange of momentum and energy between the field and the fluid.

Mathematically, the Lundquist equations are a symmetric hyperbolic system of equations in
conservation form. Theorems of existence and uniqueress of solutions for initial and
boundary-value problems have beea proven. Waves and shocks are among the solutions to the
equations. In these respects, the Lundquist equations are completely similar to the gas dynamic
equations.

However, because of the greater complexity of the physics which they describe, some
aspects of the solutions are quite different. The magnetic field introduces a strong anisotropic
character to the medium which causes wave propagation to depend on the direction of propagation
with respect ot the magnetic field. In addition, there are several distinct speeds so that, in general,
the responses to disturbances are quite complex.

To capture the principal features of the solutions in numerical calculations, several problems
must be addressed. Some of these problems are unique to MED: for example, preserving the
solenoidality of the magnetic field. Others are similar to ordinary gas dynamics, such as energy
conservation, numerical stability, and computational diffusion, but are more complex or have
different consequences for MHD than for ordinary fluid flow.

These fundamental problems in the numerical solution of the MHD equations are discussed
as four topics: the dispersion of the Lundquist equations and the dispersion and stability of finite
difference approximations; the conservation laws of MHD and the achievement of conservation in
the numerica!l solutions; a discussion of convective transport and its role in computational diffusion;
and finally, a method for preserving the solenoidality of the magnetic field.

The Fundamental Equations of Plasma Physics

In plasma simulation, one solves the fundamental equations of plasma physics for the
self-consistent evolution of the electric and magnetic fields, and for the individual particle orbits. A
nlasma, which is composed of electrons and ions, each with charge £ q and mass My, generates an

electric and magnetic field, E and B. Individual particle orbits are determined by the dynamical
cquations,

o, ,
at - U (M
and
du u xB
—a-z- = _ql. (E + _L__) . ()
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The motion of individual particles causes fluctuations in the net charge,
P=Z q, Jdlx' 8(!'-xp)S(x‘ -x), &)
DS
and current, '
1, . o
J=§ q, jdx uPS(x -xp)S(., X). (4)

The shape function, S, which is familiar from plasma simulation, is a positive function with
bounded support. h, and with unit nonmalization. In a physical plasma, h is negligible, but the

number density of particles is so large that on any length scale of interest, p and J are smoothly
varying. In a simulated plasma, this is not necessarily true because there are fewer particles. For

mathematical convenience, the particle distributions are regulasized in Eqgs. (3) and (9 so that p and



J are continuous and differentiable ever on small length scales compared with the particle
separation.

The net charge and current produced by the particles in tumn act on the electric and magnetic
fields. The action is described by Maxwell's equations: the homogeneous equations are Faraday's
laws,

l-—a—B—+V><E=O. (5)
¢ o
and the solenoidal condition on B,
VeB=0. (6)

These equations express intrinsic properties of the fields. The inhomogeneous equations which
relate the sources to the fields are Poisson's equation,

VeE=4np, @)
and Ampere's law,
vxp. L OE _ 4 @)
(G c

The self-consistent solution of these equations is quite complex, requiring full knowledge of all the
individual particle orbits and the resulting electric and magnetic fields. This can be done for
Vlasov's equation for short imes and small length scales by using the methods of nlasma
simulation.

The Derived Equations of Magnetohydrodynamics

One is fortunate that many physical problems can be modeled with less than complete
knowledge of ail the individual particle orbits. One successfully models fluid flows, for example,
by solving the Navier-Stokes equations for the mass, momentum and energy of the flow. These
equations average over the complicated motion of individual particles to reduce the number of
independent variables needed to characterize the flow.

Similarly, magnetohydrodynamics (MHD) also averages over the motion ot irdividual
charged particles interacting with a naagnetic field. Compared to plasma simulation, it describes the
behavior of plasmas on long time and space scales, sufficiently long that ranid fluctuations in local
charge density average to zero and that individual particles are deflected so much by short runge
interactions that they forget their initial conditions. The scattering, due to collisions, localizes the
effect of individual particles to distances less than a inean free path, which is defined as the distance

a particle can travel before being scattered through an anglc equal to 90° Usually, but not by
necessity, the motion of particles is assumed to be non-relativistic.

The simplest model for magnetohydrodynamics is expressed by the Lundquist equations,
which comnprise Ampere's law,

c
J=—(VxB), 9)
ir
Faraday's law,
JB
— = -¢Vx E (1)
ot
where Eis given by Ohm's law,
nux B

E + - = (. (1D

u is the center of mass velocity of the fluid. The evolution of the sources of the magnetic ficld iy
described by i mass continuity equation,



§p—+V-up=0. (12)

ot
the momentum equation,
du
poy +Veupu=-Vp+JixB, (13)
and energy equation,
oi
p—a—+Voui=—p(Vou). (14)
t

where i is the internal energy per unit mass. These equations are derived from the particle
equations in Ref. (1).

Magnetohydrodynamic Waves

Consider an infinite, homogeneous fluid in static equilibrium, with density pg, pressure py),

and magnetic field Bg. Small amplitude perturbations about this state evolve as described by the
linearized equations of motion,

9,
dp] v
a T PVeu) =9 (16)
dul
Pya * VP +BB)-(B e V)B, =0 a7
dB,
e + Bo(Vou]) - (Boo V) u, = 0 (18)

For simplicity, a system of units is chosen in which c=4x. If one substitutes a solution of the form,

i (ol Kx
B, =B (=0¢" ™" (19)
the partial differential equations above can be written as a system of algebraic equations,

'wpl+po(k‘°u,)=0 (15)
-O)PI - YP() (k.u|)=0 (15')
. o)p”u|+ k(pl+B“oB|) - (B().k)nl = () (a7

- mBl+ 80( k-ul) - (Boo k)u1 = (). (1%
These equations have a solution of the assumed form when the determinant of coefficients is zere,
I S 4 1 0202 1.2
0 =1pcpe”- B ) [pe -(pa” +B7 )" + "B (20)

9 . . A . I
where a< =y py/ pyy 18 the ordinary sound speed, and By, i+ in the component of the magnetic ficld



in the directicn of the wave travel, B, =B ¢k /1k |

The characteristic equation is eighth order, with four distinct roots. Each root corresponds tc
a possible independent mode of the system of linear equations. The roots are the particle
charactenctics,

c=0, (20a)
Alfven waves,

B

c =+, (20b)

which cannot travel perpeudicular to B, and the slow and fast waves, which are roots of the term in
biackets in Eq. 20,

p 1

&= L@iate @A) adand ) (20c)
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where A2 = B2/ p, and Azn = an / A. Parallel to the magnetic field, A, = A, and the two
solutions to Eq. (20c) are,

c=1ta (21la)
and
¢=1A. (21b)
Perpendicular to the magnetic field, the two roots are,
c=0; c=i(a2- Az)m. (22)

The last roots are magnetoacoustic waves.

The wave speeds are represented in a Friedrich's diagram, which depicts the wave fronts that
result from a point disturbance, such as would occur were a pebble dropped into a still pond of
water. There are three wave fronts, two of which result from waves which propagate parzllel to the
magnetic field. The three waves are called fast, slow and Alfven waves. There are two cases,
depending upon whether a < A or a > A, as shown in Fig. (1).

For the linearized equations, the group and phase velocities are equal

do _ o

dk k'

and thus the roots of the dispersion relation are the characteristic speeds it which information is
propagaicd and the wave fronts define the domain of influence of cach point in the medium. The
wave fronts aiso define the domain of dependence of the solution at each instant. If one were to
construct a diagram in one dimension of all the points from which a signal can propagate to a given
point x, in a time t, the diagram would look like Fig. (2). For numerical staoility, the domain of

dependence must always exceed the domain of inflluence.
A disturbance at t = () for any x such that x¢ - ct Sx € x + ¢t where ¢ is the maximum wave
speed, will influence the solution at x, at time t. When the system is finite, the boundaries also will

begin to influence the solution after a sufficiently long time. If the signal transit time from
boundary to boundary 1s short compared with the time scale of interest, the problem becomes more
like a boundary vilue, or elliptic problem than an initial value, or hyperbolic problem.

(23)

Numerical Stability: Tmplicit and Explicit Scliemes

H Lgs. 015-18) are differenced in time and Fourier transformed in space, they may be
wntten,

p: - p:’ + poi(k . u?) At =0 (15%)



P -po+ypyiker®) At = 0 (16
P,y ~up) +ik(p} +ByBY) At-i(By ek)BY At =0 (17

1 0 . 2] . 3] _ "
B]-B1+BO(1k-u])At-l.BOOku]At-0. (189

where u® = 6u' + (1-0) uO. andpo=¢ p1+ (1-9) pO. The scheme is called a 8 scheme.
Various values of 8 and ¢ correspond to well known algorithms. With 6 =1 and ¢ = 0, one has
the exglicit leapfrog or Courant scheme; with 6 = 1/2 and ¢ = 1/2, the impiicit Richardson scheme;
and with 8 =1 and ¢ = 1, the implicit backward Euler scheme. To derive the dispersion relation
for the discretized equations, one simply replaces the ordinary frequency @ by Q () and the
ordinary wave number k by x (k, £2). To obtain the numerical dispersion, one first solves for Q2
and then for o (k).

With the time variation, el ®!, as before, the finite difference approximation to the time
derivative becomes,

Lo sin WAt
p.—P - .
L= jep - 2 (24)
At 1 wAt
2

where the reference time, t, is midway between p1 and pO. The intermediate value, u®, can be
written,

= 12 +u)+ (0-12) - -u)), 25)

=u ei‘“ = [cos w?t + 2i(6—1/2)sin(o§t

It is now convenient to define a new frequency 2, and wave number K,

WAt ]
tan—-—z-—
Q=0 |— |, (26)
mAt
2 ]
W=k [ 1+i(8-12)04 ],
= [ T+ice-127040 [k

The numerical phase velocity is simply

i
c'2 = A
K9 k¢
and the dispersion relation is of exactly the same form as before with ¢* substituted for ¢. The roots
of the numerical dispersion relation are calculated from the original roots,

R
¢ = c2 27



or
Q% = AP @ (28)
requiring the solution of a transcendental equation.

For exarnple, for waves propagating perpendicular to the magnetic field (B,, = 0), the wave
speed is given by

c=t@+A)? (29)
where A is the Alfven speed,

A= 2 , (30)

12
P
and the wave is the magnetoacoustic wave. The frequency is given by,

Q= K@+A)U+i0-1U2)QA) 1 +i(o-12)QA). (31)

When € = ¢ = 1/2 (the Richardson scheme), - © < ® A t < & for all values of the right hand side.
As At increases, w approaches the Nyquist frequency, ® -> + 7 /At. Because  is real for all
values of k and At, the Richardson scheme is unconditionally stable.

The Courant or leapfrog scheme correspondsto 8 = 1, ¢ =0. One solves first the
momentum equation u, and then Faraday's law, the continuity and pressure equations for Bl, p1
and p1 using u 1). The dispersion relation for the Courant scheme is given by

2 K&

Q = — (32)

kcAt
2|

The scheme is conditionally stable. When kcAt > 2, Q is pure imaginary and thus  is also pure
imaginary, and exponentially growing modes occur. That is, when a signal propagates more than
one wavelength in At, the scheme is unstable. The domain of influence exceeds the domain of
dependence.

1-

In general, when 6 and ¢ are unequal to 1/2, the frequency is complex. For example, when
@ = @, one can easily solve for the imaginatry part of Q,

K@ +A)@- 12 3‘2’-
Im(Q) = - (33)

5 A
1=(68- 127K @'+ AD) ()

When 8 < 1/2, Im Q < 0 (and thus Im (®)) and the modes will grow exponentially. When 6 >
172, Im Q >0, and the modes will decay exponentially. When At is very large,

Im (Q) _A..E = = ‘____._l__.__. (34)
2 (€ -1/2)
orfor9 =1
WAL 4
{ts » e— 3
lin ftan 5 A (35)

Thus, implicit time differencing will damp modes; explicit time differencing will be unstable unless
B+p21



The discretization in time will cause the phase velocity for short wavelength modes to be
small. Physically, the ratio of w/k should be constant for all k. Numerically, w cannot be larger

than the Nyquist frequency. Thus, as k increases, ok must decrease. Numerical dispersion will
cause a train of short wavelength ripples to trail a disturbance.

Energy Conservation and Time Centering

Linear stability is a necessary, but not sufficient, condition for stability. The Lundquist
equations are nonlinear, and one must have nonlinear stability as well. To achieve this, the
equations rnust either be energy conservative or dissipative. If total energy increases with time, the
equations are nonlinearly unstable.

In the analysis of the linearized Lundquist equations, a particularly simple case was examined
above. Certain conclusions from that analysis can be applied to other discretizations that are not so
simple. This allows the freedom to choose time differencing to conserve energy without violating
linear stability constraints.

Consider the Lagrangian, semi-discrete approximation to the Lundquist equations. In these
equatiors, the convective derivative and the time derivative are combined in the material derivative,
and Faraday's law is written in it's equivalent Lagrangian form.

p0 (' -1°) = -p°(V e u®) At (36)

1 0

B -B =[-B](V0u9)+(B‘pOV)u9]At (37)

0 o1
@ -u’) = [-V(p¢+ B ;B

)+VOB“’B“’}At. (38)

These are not the same choices of time levels as in Egs. (16" - 18"), but they can be analyzed

similarly and shown to be stable with 8, ¢ 2 1/2. From these equations, one can form the energy
integral and demonstrate that energy is conserved.
Consider a small volume of fluid whose surfaces move with the fluid velocity, and within

which the magnetic field, density, and pressure are essentially constant. Let ¢ = 1/2,

B? = (pB +(1-(p)B (39)
The change in magnetic field energy is given by,

AE ---[(B PVi.@Y V] = [(B +B%(B'-B )v°+—(n V! - v‘B} (40)
Substituting from Eq. (37) yields
AR = [{--I—B eB! } Veub +B“’0(B“’0V)u ]V At,(4])

where the relation,

vievl = (Veu®)arv? 42)

is assumed.
The change in kinetic energy is given by

= p"[(u ]VO- [u . ul-u) (6 -%—)(u uo)z]VO (43)

Substituting from Eq. (38) yields,



0og!
)+ude (VeB®B?

VAL-(6- %) @' -u)?pov° (a4

1 B
AE, = l:—ueOV(p +

The change in internal energy is given by integrating Eq. (36). This change, added to Egs.
(42) and (44) yields the change in total energy,

0
AE = [-v. u® (p*+ -B_%B_)w *BYB?e ue}vom-(e- %) @ -u®?pov® @5)

The last term is negative definite when 6 > 1/2, and the differencing is dissipative as required. Total
energy is easily conserved, simply by adding the lost kinetic energy to the internal energy,

p°(i-i%)=-p?(Veul)at + (8- v2)(u'-u’) (46)

_The Eulerian form of the equations can be analyzed similarly. Consider the explicit difference
equations,

p0(u' -u°)=[ Veu' pou -Vp°+VxB°xB°]At (47)
p0(i'-1%) = -p°(Veu')ar -veu®p0i® (48)

B‘-B°=[qu1xn°]m (49)
Following a similar path to the one above, one forms the energy integral for these equations,

AE = [-uloVquouO Veu p’+p0i%) -V-((u‘xB”)xBO)]At (50)

- 1/2(u1 -uo)2 p? + 1/2(B] -30)2
Two features of this equation should be noted. Because the equations are explicit, the
magnetic field and velocity are at different time levels in the equations and energy is transferred
from the flow to the magnetic field. If the scheme is to be dissipative overall, the sum of the two
quadratic terms must be negative. This requires that the flow be superscnic,
2
u2 > — =A%

Second, because the equations are Eulerian, a convective term for the kinetic energy appears which
is not in conservation form. This is a common result, and forces the use of a conservation equation
for total energy, rather than for its component parts individually.

From this single result, it is not correct to conclude that all explicit schemes will be
nonlinearly unstable for low speed flow. However, it is often observed in numerical calculations
that explicit methods are much noisier than implicit methods, and this may indicate an ur.derlying
instability. In any case, it indicates that schemes with acceptable properties in applications to fluid
dynamics may not have the same properties when applied to MHD.

Spatial Differencing

To solve the Lundquist equations numerically, one must discretize in space as well as in
time. The least complex case, for MHD flow on a Lagrangian grid in one dimension, will be
discretized.

The data for a numerical calculation is typically specified by giving the values of the
dependent variables at grid points, x,,. These points are caused to move with the fluid velocity,

To define the values of the solution at intermediate points, the values at grid points are interpolated.



For example, the velocity is given by a similar convolution to that used earlier in Egs. (3) and (4)
for particles,

u(x)=ZJ-dx'8(x-x‘) S(x'-x)u_,
v
where S is the shape function defined by the recursion relation,
Sm=J.dx' $°(x-x)s™(x).

In this family of shape functions, there is included nearest grid point interpolation, or NGP,
|x |

i 1, — <112

s'- — Ax ,
Ax :
0, otherwise
and linear interpolation,

. | | x| <l

s! = 1 Ax Ax

Ax :

0, otherwise

Substituting these shape functions into the differential equations yields discrete equations directly.

Consider, first, the continuity equation, Eq. (12), To convert from the Eulerian to the
Lagrangian form of this equation, one substitutes the definition of the Lagrangian, or material, time
derivative,

D_@ 0
dt ot ox
In Lagrangian form, the continuity equation is written,
du _
dt te ox 0.

If one chooses to specify the density at the center of each cell, and to use NGP interpolation
for the density and linear interpolation for the velocity,the discretized continuity equation that
results is,

[

dp, « 8'(x-x,) |
ZC’[F‘—H%ZJU' x| T

S is defined so that dS/dt = 0. Since sO and 9s 1/dx are constant within each cell, the continuity
equation can be written,

It is easy to show from the definition of cell volumes that mass is conserved.
It is useful to define geometric coefficients,



[ 1, v=c+l
d =L -1, v=c V=x_.-x
ve Vv ’ ¢ “wil v
¢ 0, otherwise

Wherever the velocity is differentiated in the differential equation, the geometric coefficients will
appear in the difference equations.
Using the geometric coefficiants, Faraday's law and the energy equation are written,

dB_

dt—0

+BZdu-B d v, =0,

—Z +B Zd u-BmZd w, =0,
-d—rii+ypc§‘;dwuv=0

The momentum equation can be written using the coefficients, but the form should be chosen
so that energy is conserved. First, let us define the energy by integrating the total energy over a
cell,

X+l

- J' <p(i+u2/2) + B2/2>dx
X,

o nwn

.1 2 2
pc(lc+3’( uv+uv uv+1+ uv+l))

The kinetic energy can be expressed in terms of a mass matrix,

(EK)C=ZZUV. W U v,v' =12,
v v

where

1 12

1
M, =30V
3 e L2
One can then postulate a momentum equation using the mass matrix and the geometric coefficients,

du?
c v
Z Mvv‘ dt = Z dvc(p )V 2 Bc dchg c’ o =Xy.z
[+

vl
Because the same geometric coefficients are used for the momentum equation as for Faraday's law
and the energy equation, energy conservation is easily demonstrated,



o2
z Z V VC( c _c_)-uV.BCB: dVC

2
z -p, wv-——d u, +B_e(d B)u =0

Unfortunately, the e.quauons are difficult to solve because the mass matrix must be inverted
to solve for u,,. This difficu'ty can be avoided by "lumping" the mass matrix,

M=pV..

With a lumped mass natrix, the momentum equation requires no matrix inversion,

1 _ du,
E(Mc+Mol) dt =chvpcvc'
c

The energy equation do=s not change because the "lumped* mass matrix is used. However, the
supstitution may introduce an inconsistency. For example, a linear pressure gradient will not yield a
constant force on a gria with Jregularly spaced points.

Generalizing the fo.mulation to two and three dimensions requires redefining the geometric
coefficients. Coefficients for two dimensional grids are calculated using bilinear interpolation, and
for three using trilinear interpolation. A description of the method in three dimensions is given in
Brackbill [Meth. Comput. Phys., 16, 1, 1976], and of the properties of the equations in Brackbbill
[J. Comput. Phys. 63, 314, 1986].

Summary: Finite Difference Equations for MHD in One Dimension

Implicit {inite difference equations for the MHD equations in one dimension on a2 Lagrangian
grid are listed. The equations combine the differencing in time and space described in the previous
sections.

In the order in which they are solved each time step, the equations are:

0 0
V =x . -x
C v

[ -1, v=c

1
- 1, v+l=
dvc = v { v C

0, otherwise

1 0
ol -p%+ pl D d 8

1 0 ] 8 I 8 _
Byt_ - B)_C + ByC E d,u, At - BY E dvcvv At =0
| 0 1 9 9 _
BB +BL Y d wa-BS Y d wA=0



pl-pl+pl D d ol Ar=0

1
Mc=pcv‘ M=—2'(MC+MC’I)

: y
M,(ul-ud) = D dw< p? + (B, B, + BY BL) } VAt
:
M, (v - v0) = -, d,_B% B V. At
:
M,(w - wl)=-D d, B®BSV At
:

1 0
x -x =ud At
v v v

For energy conservation, @ = 1/2.

Rezoning

A Lagrangian grid is not always the best one to use for a numerical calculation. For example,
in a shock problem, the smallest cells develop behind the shock where the density is highest, rather
than in the shock front where the gradients are largest. Yet, the accuracy of the numerical solution
would be enhanced were the cells smallest in the shock front, in order to resolve the gradients.

To move the grid points where they are needed, or to add points, one must ransfer the data
from one set of grid points to another. Essentially, the data must be transferred as accurately as is
practical. Inaccuracies in conserving mass, momentum, energy and magnetic flux, and the
diffusion of gradients must be minimized.

A simple, yet satisfactory, transf=r method for one-dimensicnal problems using interpolation
may be constructed. Consider the density first. A functional, M, may be defined by,

X
M(x)= J- dx'p (x9)
0

To reccver the density, given M, one simply differentiates. The density is given by interpolation,
but the integral of the density over the domain is independent of the order of interpolation because
the interpolation function is normalized,

Kyal
M= ipcvcf ST (- x,) = i Pe Ve
c=l S o=l

When the density is linearly interpolated, the functional is given by,

X
M, = Zjdx‘pcsl(x‘-xc) + M,
¢
A

Evaluating the integral yields,



1

M -M
g[pc-z + 6pc-1 + pc ] = __L___V_l

xv - xv-]

The density is given by a matrix equation, even when the grid does not move. If the matrix is
lumped, as was the mass matrix in the Lagrangian equations above, computational diffusion is
introduced. The replacement,

1 )
po = k] Pt 60 0]

is equivalent to one diffusion step with diffusivity 1/8.
If the grid is replaced by a new one, the functional may be interpolated from one grid to the
other vvithout loss of mass. If x,, is replaced by x',,, the new density or the new grid is calculated

in two steps. First M on the new grid is calculated by interpolation,

M = Z M,S"(x,-x,).

The density is then calculated by differencing the functional, assuming that the density on the new
grid is defined vy the same interpolation as on the old,

] . . le . M ) [
'g‘[pc-2+6pc-l+pc}=—_ v

LY LY

X v X v-l

For consistency, the order of interpolation for the functional should be one greater than the
order for the density. Since it is inconvenient to use higher order than quadratic because of the
difficulti=s inspecifying boundary conditions, this limits the order of interpolation of the density to
linear. One could avoid the matrix inversion by using NGP interpolation for the density. The
equivalent order advection scheme is donor cell, which is known to be diffusive. Thus, one is
restricted to linear interpolation.

Similar functionals may be defined for the momentum, magnetic flux and energy. They :.e,

X X X
U(x)=de'pu; V(x)=J-dx'pv; W(x)-—-J-dx‘pw
0 0 0

X X
A=~J-dx'B; A=J‘dx'B
z y

0 0

. u+V2+W
£efapiis S0

The momentum functional, for example, is calculated with NGP interpolation for the density and
lincar interpolation for the velocity, and is written,
Py [ u,+6u +u ] U.-U,,
——] v vl v | = e—
8 X - X

¢ ¢l
The other components ot the momentum are calculated from similar equations.

The magnetic field is calculated similarly to the density. The energy, however, will be higher
order in the kinetic energy than in the internal energy because of its quadratic dependence on the
velocity. To deal with this difficuity, one should use the tunped mass matrix, defined above, with
consequent dissipation of kinetic energy.

The method, EPIC, of which this is a simplified version, can be extended to two and three
dimensional problems. EPIC is described by Eastwood, this meeting.



The Solenoidal Condition

The solenoidal condition on the magnetic field, Eq. (6), is an initial condition for the
Lundquist equations. If one forms the divergence of Faraday's law, Eq. (10), one finds that if the
field is solenoidal initially, it will remain solenoidal.

Unfortunately, this is not true for numerical calculations of MHD flow in two and three
dimensions. This is one important aspect of numerical magnetohydrodynamics that is not the same
in two and th - ¢ dimensions as it is in one. Either through errors in boundary conditions, or errors
in the finite di:ference approximation to Faraday's law, the field may develop a non-solenoidal
component in time. An error in solenoidality will cause the magnetic field to exert a non-physical
force along field lines.

An easy correction to Faraday’s law, which alters neither the stability nor the solubility of the
Lundquist equations, is as follows: One adds a term to Faraday's law which causes the decay of
div(B),

dB
—a—t-=—VxE +dV(VeB).

The additional term is adapted from a suggestion made by Marder [ J. Comput. Phys. 68,48,1987]
to control charge imbalance in plasma simulation codes. It makes no difference to the physical
solution, because div(B) is zero anyway, but it does cause the error to diffuse away from source

regions in numerical calculations. Now the evolution equation for non-zero div(B) contains a self
-correcting term,

d(VsB)
“‘;-——=V0dV(VOB)

where d is the diffusivity. One can choose d arbitrarily, but it should be large enough to keep pace
with e nrodtiction of errors, and small enough so that it dees not impose a Jirnit on the time step
when differc ed explicitly.

The correction term appears to be nonlinearly stable as well for it increases dissipation,

oB
Bo-g-=— BeVxE+dBeV (VeB)

=- VeExB +VedBVeB -EeJ -d(Ve3d)

The first terms are in conservation form. The third is the work done by the magnetic field on the
fluid. The last is the dissipation in magnetic field energy due to the diffusion of the divergence of
the field.
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